LEGIBILITY NOTICE

A major purpose of the Technical Information Center is to provide the broadest dissemination possible of information contained in DOE's Research and Development Reports to business, industry, the academic community, and federal, state and local governments.

Although a small portion of this report is not reproducible, it is being made available to expedite the availability of information on the research discussed herein.

ritle MODELING TWO-DIMENSIONAL DETONATIONS WITH DETONATION SHOCK DYNAMICS

LA-UR--88-2906

Authoris) J. B. Bdzil
D. S. Stewart

SUBmitted to Sivth ARO Conference on Applied Mathematics Boulder, CO - May 31 - June 3, 1988

DISCIAIMFR

This remort was prephrad as an account of work spmomed by an agency of the United States Government Neithet the Unital States (iovernment not any akency thereof, not any of then employecs, makes any whranty, express or impliad, or assumes any legul liahility or responsi bilaty for the accuracy, completencs, or usefulness of any mformation, upparatus, product, or proness diselosed, or represents that its use would not infringe privitely uwned rights. Kefer thic herem to any speafic commerifial product. process, of service by trate name, Irademark. manufacturer, or wherwise dies mot necessarily constitute on minly tis endursement, fecom
 amel opmons af nuthors expresseal herem du not necessasily vince it iellect llase of the

MODELING TWO-DIMENSIONAL DETONATIONS WITH DETONATION SHOCK DYNAMICS *

J.B. Bdzll
Los Alamos National Laboratory Los Alamos. NM 87545

and
D.S. Stewart

Unlversity of Illinols
Urbana, IL 61801
presented at: Slxth ARO Conference on Applled Mathematics Boulder, CO / May 31 - June 3. 1988

Abstract

In any exploslve device, the chemical reaction of the explosive takes place in a thin zone just behind the shock front. The finlte slze of the reaction zone is responsible for: the pressure generated by the explosive belng less near the boundarles, for the detonation velocity belng lower near a boundary than away from $1 t$, and for the detonation velocity belag lower for a divergent wave than for a plane wave.

In computer models that are used for engineering design calculations, the simplest treatment of the explosive reaction zone is to lgnore it completely. Most explosive modeling is stlll done thls way. The neglected effects are small when the reaction zone ls very much maller than the explosive's physical dimenslons. When the ratlo of the explosive's detonation reaction-zone length to a representative aystem dimension 15 of the order of $1 / 100$, neglecting the reaction zone is not adequate.

An obvious solution is to model the reaction zone in full detall. At present, there 1 not suffictont computer pouer to do so economically. Recently we have developed an elternative to thle standard approach. By transforming the governing equations to the proper intringle-coordinate frame. we have slmplifled the analysls of the two-dimensional reaction-zone problem. When the radius of curvature of the detonation shock is large compared to the reaction-zone length, the calculation of the two-dimensional reaction zone can be reduced to a sequence of one-dimeas!onal problems.

Work performed under the auspices of the lis. Department of Fucrgy.

INTRODUCTION:
Describing the propagation of detonation in complex multi-dimensional explosive geviluetries 13 an Important and ongolng problem in the design process for explosively driven devices. In order for the deslgn of the explosive system to be successful, two requirements need to be met. First, the detonation of the explosive system must be relatively Insensitive to varlations in the initial condtions (e.g., to changes in the temperature and varlations in the initiation system). At the same time, the explosive system must be safe from accidental inltiation of detonation. The ratio of the exploslve's detonation reaction-zone length to a representative system dimension 15 the parameter that controls these properties. The destrable ratlo $1 s$ of the order of $: / 100$. Problems of accldental inltiation are minimized, yet at the same time the detonation is relatively insensitive to inltial conditions. For most exploslve geometrles, this ratio is sinall enough so that the Integrated momentum through the reaction zone Is imall In comparison to that in the broad reglon where the reaction producta expand and do work on thelr surroundings. Thus the reaction zone has little dlreci Influence on the process of drlving lnert materlals that are in contact with it. However, the ladirect influences of the reacticn zone of the calculation can be much more important. When the ratio parameter ls $1 / 100$, a slgniflcant fraction of the explosive charge experlences such thlngs as both reduced detonation pressure and velocity near boundarles. as weli as a slower
detonation veloclty for a divergent detonation than for a plane one. These, in turn, lead to large errors In zeroth-order effects such as the tlme of detonation arrival and the two-dimenslonal detonation wave shape. From the polnt of vlew of the designer, this 13 a difflcult computational reglme. Not only does he need to resolve the prad reglon where the reaction products expand and do work on thelr surroundings, but he must also resolve the thin reaction zone.

Because of the disparate lengths of the reaction zone and release wave, most of the explosive deslgn codes in use today employ some varlant of the constant detonation veloclty "Huygens" construction to propagate the detonation wave. Thls method for propagating the detonation only works well for exploslves for whlch the zeaction zone can be lgnored (l.e., the ratlo parameter 13 less than 1/1000). Ac hoc "flxes" of thls simple model have been used to model systems for whlch the ratlo parameter 13 larger than $1 / 1000$. One example of such a "flx" Includes a lower detonatlor veloclty near the edge of the exploslve than in the center. These have met with oniy limited success.

With all of itg shortcomings. the simple "Huygens" method has one real advantage, computatlonal sped. Slnce the reaction zone does not need to be modeled when thls method $1 s$ emp!oyed, design calculations can be done In a short enough time to allow many deslgn lteratlons to be tried. Thls la an Important feature that deslgn codes need to have.

In order to improve on thls slmple method, constitutive

Information must be avallable about the explosive's ceaction zone. Thls can be elther expliclt or implicit information. When explicit information la avallable, one can in princlple follow the standard approach and do multl-cilmensional slmulations that resolve both the reaction zone and the explosive products region. This information is usually supplled In the form of the shock Hugonlot of the "unreacted" explosive, an equation of state (eos) of the exploslve products, and a compatible energy-release rate callbrated to one-dimensional exper lments.

To be useful, a numerlcal simulation of the reaction zone must be able to resolve all of the Important fealures of the flow. Flckett [1] has shown that when the standard 1 D Lagranglan-mesh artlflclal-viscoslty methods are used, roughly 20 computatlonal cells are needed in the reaction zone to ger 10\% accuracy. Thls translates Into many tens of thousands of computational cells for a typlcal 20 numerlal calculation. Even with today's supercomputers, such calculations take tens of hours of computation time; they are not practical for routine design calculations. When one reduces the number of cells in the calculation $1 n$ order to get sensible computation t imes, the accuracy of the calculations suffers.

In large measure, the lnordinately large computation t ime Is a result of the lack of sophlstication of the standard method. The unlform flne mesh that's needed to achleve reasonable resolution in the reaction zone. is excesslvely fine for the release-wave calculation. Today researchers are
developing a varlety of improved methods that include such features as; (1) multl-grld techniques that employ moving fine zonlng near shocks [2]. (2) schemes inased on the method of characterlstlcs such as $C I R$ and Godunov [2,3] and (3) shock-tracking methods [4]. To date, however, none of these meinods has reached the polnt of maturity where they could replace the standard method for routine detonation calculatlons.

The central issue in improved 2 D calculations of detonation 13 a hlgh-accuracy calculation of the reaction-7one structure, and a relatively coarse grld calculation of the following products release wave. One way of getting a highaccuracy calculation of the reactlori-zone structure, is to do It analytically. Thls alternative brlngs with it not only the direct computational beneflt, but it also brings the advantage of a theoretlcal understanding of the two-dimenslonal detonation process. With such an understanding, we could make a fast hlgh-resolution wave-tracking code that solves the reactlon-zone flow analytically and the release wave with a coarse grid numerlcal simulation. Thls Increased knowledge also brlngs with it the inslghts that lead to the improvements that are necessary lf some of the more sophlsticated computational methods mentloned above are to become practical tools.

An analytical solution of the general two-dimenslunal timedeper.dent detonation problem $!s$ not withln reach. However. In many applicatlons of explosives. one observes that the radlus of
curvature of the detonation shock is large in comparison with the reaction-zone length. Recently we have developed an alternative to the standard numerlcal approach that's based on the large radlus of curvature limlt. By transforming the governing equatlons to the proper Intrlnslc-coordinate frame, we have slmplifled the analysis of the two-dimenslonal reaction zone problem, and reduced it to a sequence of one-dimensional problems. The coordinate frame of cholce ls one in which the spatlal coordinate axes are pverywhere locally parallel and perpendicular to the shock. The governing equations conslst of a KInemat lc equation that descrlbes the progress of disturbances moving along the shock, and equatlons for the reartion-zone dynamlr:s that describe the quasl-steady flow normal to the shock and through the reaction zone. We cali thls method DETONATION SHOCK DYNAMICS (DSD).

We have divided this paper into four sections. In section 11. we glve an overvlew of the theoretlcal model. Thls section Is divided Into three subsections. In Shock Klnematics, we brlefly describe our coordinate system and the kinematics of the detonailon shock. The subsection entlited Boundary

Condltions. $1 s$ devoted to a dlscussion of the boundary conditlons that are applied at the edges of the explosive. In Reaction-Zone Dynamics, the Euler equoclons are transformed to the lntrinslc-coordinate frame, and the analysls that leads to the quasl-steady description is brlefly revlewed. In section III, we demonstrate how our theory can be used to study a representat lve explosive ciosign problem. In section IV.

OVERVIEW OF THE THEORY:

The thrust behind our theory ls the concept that the response of the detonation shock is local, and is governed by Its current local sonflguration. Philosophically, it is an extension of Whitham's geometrical shock dynamlcs to detonation [5]. Our theory is a unlform perturbation theory, that $1 s$ based on the notion that the radlus of curvature of the shock is large when compared to the reaction-zone length. It is a nonlinear theory that can be used to descrlbe arbltrarlly large departures of the detonation shock shape from the plane onedimenslonal state. From the results of our theoretical calculations, the following plcture has emerged. In many situatlons, the dynamics of the detonation reaction zone f decoupled from the evolution of the large following rarefaction wave, and is controlled by the flow near the shock. As a result, we have found that the important waves in the reaction zone, elther rarefactions or compressluns, are transverse waves. Our theory descrlbes how these two-dimensional waves are generated (e.g., near an exploslve edge) and move. laterally through the reaction zone (see Figure 1). There are three components to the theory: (1) a klnematlc condition for the shock surface, (2) conditlons to be satisfled at the boundarles of the explosive and (3) the flow dynamics in the direction normal to the shock (l.e.. through the reaction zone). We wlli brlefly describe each of these.

Our theory is based on the tlme-dependent, two-dimensional reactive Euler equations. As a consequence, the detonation shock (shock) is a surface of alscontinulty. Since we wish to treat detonation-wave evolution in complicated two-dimensional geometries, we have developed our theory in a problem determined Intrinsic-coordinate system (see Figure ? ? It is a shock-centered frame that moves with the local normal detonation-shock velocity (D_{n}). The space variables are the distances f and η locally parallel and perpendicular to the shock.

Shock Klnematlcs

The prificlpal object of the theory is to calculate the shock shape as a function of time. The intrinsic representation of a curve, such as the shock, is in terms of its curvature (\mathcal{K}) as a function of arc length along the shock (\mathcal{F}) and time (t). In this coordinate system, the shock shape ls described by the shock angle ($\boldsymbol{\phi}$) as a function of \mathcal{f} and t. In terms of these variables, the shock curvature is $K \equiv \boldsymbol{\phi}_{\mathbf{j}}$, where the if indicates a partial derivative with respect to arc length. The laboratory coordinates for the shock are returned by

$$
\begin{equation*}
z_{0}^{\rho}=z_{e}^{l}-\int_{0}^{\xi} \operatorname{iin}(\phi) d \xi, r_{0}^{l}=r_{e}^{l}+\int_{0}^{5} \cos (\phi) d \xi, \tag{1}
\end{equation*}
$$

where Z_{e}^{f} and $r_{e}^{+{ }_{e}^{+}}$are the coordinates of the edge. Typically we are most interested in describing the changes in the shock shape that are the result of the interaction that occurs
between the shock and an explosive edge. For such problems, having the zero of arc length coincide with the edge is the most convenient origin to use for \mathcal{F}. Figure 3 shows a schematic representation of the shore including the independent variable (5) and the definition of the dependent variables D_{n} and ϕ. The cartesian unit vectors are \hat{e}_{Z} and $\hat{e}_{\boldsymbol{p}}$.

The geometric compatiblilty conditions for a moving twodimensional surface are given In Whltham [5]

$$
\begin{equation*}
\phi_{\alpha}=-\frac{1}{7} D, \beta \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\phi_{y \beta}=\frac{1}{\pi} \prod_{y} \tag{3}
\end{equation*}
$$

The variable α is equivalent to time, and labels a particular shock surface. The constant β rays are orthogonal to the shock and are Its propagators. The streamtube area $1 s \mathcal{F}$. where at fixed α

$$
\begin{equation*}
d F=F / \beta \tag{4}
\end{equation*}
$$

(1.e., the area between two adjacent constant β rays).

For the problems of Interest in condensed phase detonation, the shock is seldom normal to the explosive boundary. As a result, the coordinate β is not a convenient Independent variable since boundary conditions must be applied at the edge. Changing Independent variables from (α, β) to (t, ξ), we have

$$
\begin{equation*}
d \beta=A d \beta+B d \alpha \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
d t=d \alpha, \tag{6}
\end{equation*}
$$

where the coefficient B describes the change in arc length
with time along a constant β ray. Performing this transformation, the surface klnemarlcs [1.e., Eq. (2)] takes on the form of a one-dimensional wave equation along the shock with \mathcal{B} being the wave velocity and $\mathcal{D}_{r, f}$ is a Burgers Equationlike transport term

$$
\begin{equation*}
\phi_{, t}+B \phi_{, \xi}=-D_{y, \xi} \tag{7}
\end{equation*}
$$

The coefficient \mathcal{B} is obtained by requiring that the transformation [Eqs. (5) and (6)] is solvable, from which it follows that

$$
\begin{equation*}
F_{\alpha}=B, \beta \tag{8}
\end{equation*}
$$

From Eqs. (3) and (8) it follows that

$$
\begin{equation*}
B=\int_{0}^{\xi} \phi_{\xi} D_{n} d \xi+B_{0}(t) . \tag{9}
\end{equation*}
$$

The function $\mathcal{B}_{0}(t)$ ls the amount of shock arc length which crosses the $\beta=$ constant ray that intercepts the edge and is glen by

$$
\begin{equation*}
B_{0}(t)=D_{n e} \tan \left(\tilde{\phi}_{e}\right) \tag{10}
\end{equation*}
$$

This intrinsic form of the shock-surface kinematics is fundamental to any shock-tracklng method that seeks to describe the evolution of shocks of arbitrary shape in a uniform manner. Clearly, Eqs. (7) and (9) are simply a constraint between D_{n} and $K=\phi_{, 5}$. However. if a second relation between D_{n} and \mathcal{K} can be obtained, then Eq. (7) becomes a Rartal-differential equation for the shock surface. It is Important to note that Eq. (7) Is a "one-dimensional" condition, whose independent variables are the arc length (ξ) (the
dlstance coordinatel and tlme (t). Further. If we then prescrlbe the Inltial shape ($\boldsymbol{\phi}$) of the surface, as well as some boundary condltion at the intersection of the detonation shock and the explosive boundary, then Eq. (7) can be solved to get the two-dimensional shoak locus at any subsequent time.

Boundary Conaltions

For the problems we consider in this brlef review paper, we do not need to stisdy the complex flow or the detalled boundary conaltions that apply in the vicinlty of the explosive boundary. It will be sufficlent to consider only the condition, If any, that must te applled at the locus gonerated by the Intersection of the detonation shock and the edge. We consider only an explosive/vacuum Interface.

At such an interface, the flow experlences a singularlty. In the explosive, the pressure just behind the detonatlon shock 13 near the Chapman-Jnuguet (cJ) pressure; Just outside the explosive, the pressure $1 s$ at or near zero. In order for the flow to execute such a transition, a singularlty of PrandtiMeyer (PM)-type must be Imbedded In the flow at the Intersection of the shock and the edge. Since locally the flow at thls polnt Is quasl steady, it can only be elther a sonlc or a supersonlc flow (as seen by an observer riding along the edge/shock Intersection locus). We will discuss the eonsequences that result from having flows of these two types.

Along the edge/shock locus, the sonlc parameter is a function of the normal detonation velocity along the edge. D.e and the shock interface angle. \mathscr{F}_{e}. For a polytropic
eos, with γ the polytrophic exponent, the expression is

$$
\left.C^{2}-\left\lvert\, w^{2}=D_{n e}^{2}\left\{\frac{r}{r+1} \sqrt{1-\frac{D_{n}^{2}}{D_{n e}^{2}}}-\frac{1}{r+1}\left(1-\frac{D_{n}^{2}}{D_{n e}^{2}}\right)-\tan ^{2} / \phi_{e}^{2}\right)\right.\right\}_{,}(11)
$$

where C is the sound speed, / $\mathbb{K} /$ is the magnitude of the particle velocity in the shock-fixed frame and D_{n} it is the minimum value of D_{n} for a one-dimensional detonation.

If the flow is supersonic along the locus, inn disturbances from the edge can not propagate Into the detonation reaction zone. The Interface moves faster laterally than do acoustic waves. For this case, no boundary condition is applied, and the Interface does not affect the detonation.

As the flow turns subsonic, then $D_{n e}$ and $\tilde{\phi}_{e}$ must be adjusted so that the sonic condition, $C^{2}-/ U /^{2}=0$. is malntalned. This condition serves as a boundary condition for the flow.

The following rule ls used along the edge/shock locus: Monitor the sonic parameter on the locus. if $C^{2}-/ U I^{2}<0$. the flow is supersonic and no condition ls applied. When the flow lselther sonic or suinsonlc, then D ne and $\tilde{\phi}_{e}$ must be adjusted to satisfy the condition $c^{2}-/ W /^{2}=0$.

Reaction-Zone Dynandes

Equation (7) 15 a one-dimensional partlal-differential relation that D_{n} and \varnothing must satisfy if they are to describe a two-dimensional shock. If a second relation between $D_{\text {N }}$ and ϕ can be found, we can convert this relation to a partialdifferential equation (ide), and In the process reduce the two-
dimensional shock tracking problem to a one-dimensional one. For a number of cases, we have found such a second relation between D_{n} and $K=\phi_{, \mathcal{F}}$. When it exists, this relation contalfs all the necessary reaction-zone dynamics; the consequences of the interaction of the chemical-heat release with the flow. To find $1 t$, we must solve the time-dependent two-dimenslanal Euler equations. In order to solve these equations for complex explosive geometries, we must express them In terms of a natural system of coordinates that simplifies their form. In the limit that the radius of curvature of the shock 15 large compared to the reaction-zone length, the coordinates shown in Figure 2. are particularly convenient. Bertrand curves that are everywhere parallel to the shock are the $\%$ constant coordinates; the lines perpendicular to these curves are the constant \mathcal{F} coordinates. These couralnates are related to the laboratory cartesian frame, by

$$
\begin{equation*}
z^{\Omega}=z_{0}-7 \cos \phi \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
r^{\prime}=r_{0}^{\prime}-\eta \sin \phi \tag{13}
\end{equation*}
$$

where ${\underset{Z}{p}}_{f}^{f}$ and r_{0}^{l} are given by Eq. (1). Expressed in these coordinates, the Euler equations are
maya

$$
\begin{equation*}
\mathscr{L} \rho+\rho\left(\mathbb{L} u_{\eta}-u_{r, \eta}+u_{s s}\right)+\cdots=0, \tag{14}
\end{equation*}
$$

η-momentum $\mathcal{L} u_{q}-\frac{1}{\beta} \vec{F}_{3}+\cdots=0$, (15)

$$
\begin{equation*}
5 \text { momentum } \mathscr{L} Z_{F}+\frac{1}{\mathcal{S}} P_{\vec{F}}^{\prime}-D_{n_{F}} Z_{\eta}+\cdots=0 \tag{16}
\end{equation*}
$$ and

energy

$$
\begin{equation*}
\mathscr{L} E-\frac{P}{\rho_{2}} \alpha^{\rho} p \ldots=0 \tag{17}
\end{equation*}
$$

The chemical rate law ls
cate

$$
\mathscr{L} \lambda+\cdots=R .
$$

We have displayed or fy those terms that are necessary to do the leading order theory in the small $\mathcal{K}-11 m 1 t$. In the above

$$
\mathscr{L} \equiv \frac{\partial}{\partial t}+\left(D_{n}-L_{y}\right) \frac{\partial}{\partial y}+B \frac{\partial}{\sqrt{\xi}}, \quad(19)
$$

P ls the density. $\mathbb{X}_{\mathcal{Y}}$ ls the $\boldsymbol{\eta}$-component of the particle velocity (at leading order $\mathbb{Z}_{3}>0$ and $\mathbb{Z}_{\eta, \eta}<0$), \mathbb{Z}_{F} is the F-particie velocity ($\mathbb{Z}_{\mathcal{F}}=0$ at the shock), \mathcal{P} is the pressure. λ is the degree of reaction $(\lambda=O$ at the shock). F is the chemical rate and \mathbb{E} is the specific Internal energy. The above equations, the standard one-dimenslonal shock conditions, the kinematics [Eq. (?)] and appropriate Inltial/boundary conditions completely defile the two-dimensional problem that must be solved. Even in tie small- \mathcal{K} limit. this is a formidable task.

What we have shown recently ls that for certain rate-law forms (1.e., expressions for \mathbb{X}), the Important large -scale dynamics ls quasi steady [6]. We considered relatively long-scale disturbances to the shock

$$
\begin{align*}
& \epsilon^{\pi}=O(\mathcal{A}) \ll 1 \tag{20}\\
& D_{n}=D_{c j}+O\left(\epsilon^{2}\right) \tag{21}
\end{align*}
$$

and two tine regimes:
(1) "fast" dynamics t, $=\in t$

$$
\begin{equation*}
\text { changes in } \phi=O\left(\epsilon^{3 / 2}\right), \xi_{x_{2}}=\epsilon^{x_{2}} \xi \tag{22}
\end{equation*}
$$

and
(2) quasi-steady dynamics $t_{2}=\epsilon^{2} t$ changes $\ln \phi=O(\epsilon), \xi,=E \xi$ and larger.

The "fast" scale problem was necessary to treat the Influence of the two-dimenslonal Inltlal/boundary data, and to describe the hydrodynamic wavehead that separates the reaction zone into parts that are ether influenced or arilniluenced by the edge. As the flow evolved, the "fast" scale perturbations became smaller, and the disturbances to the one-dimenslonal state became larger ard quag! steady. This quasl-steady regime was particularly simple; the Euler equations rectuced to the steady nozzle equations fa steady cylindrlcally-symmetrlc system of ordinary-differentlal equations (ode)]

$$
\left[\left(D_{n}-x_{\eta}\right) \rho\right]_{, y}+\rho k x_{\eta}=0, \quad(\alpha 4)
$$

The only parameters in these equations, besides the fled constitutive parameters. are D_{n} and \mathbb{K}. That Is. the Initial/boundary data do not appear in the large change reaction-zone dyriamice. In some sense then, the dynamical 1 e undead. The resulting one-dimenslonal problem lselmply the detonation "eigenvalue" problem considered by Wood 8. KIrkwoo, [i]. SInce the propagation of the detonation shock ls decoupled from the product expansion region. the theory le free of ad hoc approximations about the influence of the follow lng
flow. At least this is the case for diverging detonation.
The quasl-steady problem defines $D_{n}(\mathbb{N})$. With K
specified, D_{n} is determined $b_{;}$solving an eigenvalue problem. In addition to ylelalng $D_{n}(\mathbb{K})$, this solution also gives the state at the end of the reaction zone as a function of \mathcal{K}. Thus for an important class of problems, the reaction-zone dynamics 1 s given by $D_{n}(\mathbb{K})$, and the two-dimensionsl shockevolution problem $1 s$ reduced to a one-dimensional problem.

Two points are worth noting. Firat, the $D_{n}(\mathbb{K})$ relation only contains limited constitutive information about the explosive. The constants in this relation are integrals through the reaction zone of this Information. Secondly, $D_{n}(\mathbb{K})$ is Independent of laltial/boundary data. Therefore, when detailed constitutive information about the reaction zone is not known (the typical situation for condensed phase explosives), $D_{n}(K)$ can be measured directly via simple steady-state twodimensional hydrodynamic experiments. Thus we have a way of using simple experiments to calibrate the reaction-zone dynamics. In turn, we can use the calibrated $L_{n}(\mathcal{K})$ relation to predict detonation wave evolution In complex explosive geometries.

Direct calculations of $D_{n}(\mathcal{K})$ performed with the simple polytrophic eos. snow that the form of the ruling la sensitive to the form of the rate law (8). Calculatlonewere done for two state-independent rates with different depletion forms: squarecoot depletion

$$
\begin{equation*}
R=\sqrt{1-\lambda} \tag{25}
\end{equation*}
$$

and simple depiction

$$
\begin{equation*}
R=(1-7) \tag{26}
\end{equation*}
$$

The $D_{n}(\mathcal{A})$ rule for Eq. (25) is

$$
D_{n}=1-\alpha \alpha^{\prime}
$$

(27)
while for Eq. (26) we have

$$
D_{n}=1+\beta, \alpha \ln (N)-\alpha \alpha .
$$

(28)

The constants α and β are not to be confused with Whitham's curvilinear coordinates. Dos is set to one. In the next section, we give a brief tutorial that describes how this theory can be applied to explosive engineering design problems.

APPLICATIONS:
The simplest time-dependent problem that can be done 15 the constant-velocity detonation or "Huygens" construction for a diverging detonation. For convenience we take $D_{n}=1$. Equation (7) then becomes the simple nonlinear-wave equation for the shock angle (see Figure 3)

$$
\begin{equation*}
\phi_{, t}+\left(\phi-\phi_{e}\right) \phi_{, 5}=0 \tag{29}
\end{equation*}
$$ where $\not \subset$ is the value of \varnothing at the edge (1.e., at $\mathcal{f}=0$). Equation (29) states that $\varnothing=$ constant along the characteristic lines $\xi-\left(\phi-\phi_{e}\right) t=$ constant, that is

$$
\begin{equation*}
\phi=\phi_{0} \quad \text { along } \quad \xi-\left(\phi_{0}-\phi_{e}\right) t=\xi_{0} \tag{30}
\end{equation*}
$$

If we consider a tow where the two-dimensional shock is convergent initially, then the initial angus. ϕ_{0}, is a decreasing function of the initial arc length. 5_{0}. Such a flow looks compressive, in the sense that the characteristic lines are convergent. After a finite time, sore of the characteristics cross one another and the solution becomes multi-valued. Physically, the rule $\mathrm{D}_{\mathrm{n}}=1$ does not apply to a convergent detonation, so we will not consider this case further.

When the two-dimenslonal shock la initially divergent, the Initial angle is an increasing function of arc length, and the characteristic lines are rarefaction-like. An example of a alvergent wave problem that is often encountered in designs is anowil in figure 4. It is a prototypical example of a diverging detonation that features the diffraction of the detonation
(1.e., the "shadow zone" problem). The leftmost vertical line Is a symmetry plant; the lower horizontal line and the upper circular arc are the edges of the explosive. The wave ls Initially circular with a radius Ra_{a}. Since the wave ls perpendicular to the horizontal edge, the flow along that edge/shock locus is sonic, and the edge does not Influence the shock evolution. When the expanding wave first reaches the circular boundary, the flow along the upper edge/shock locus is supersonic. It remains supersonic until the detonation reaches the point where the dashed line is tangent to the arc. The region above the dashed line is not in direct line of sight of the Inltlai data; it ls a "shadow zone". Diffraction 13 the process that allows the wave to spread into this region. The solution in this region 13 determined by the boundary data supplied along the circular edge.

In both $r * g l o n s$ of the problem, the solution takes a simple form. The great advantage of our formulation over older methods is this simplicity of representation. The calculations shown $1 n$ figure 4 , are free of reaction-zone effects. We conclude this section by showing how detonation shock dynamics can be used to Include the important finite size reaction-zone effects for this example.

We assume that the reaction-zone dynamics 15 given by Eq. (27)

$$
D_{n}=1-\alpha K
$$

and introduce the change of variable

$$
\phi x=\phi_{e}+\hat{\phi},
$$

where \varnothing_{e} is the angle that the tangent to the edge makes with the reference direction \hat{e}_{z}. Substituting these into the kliematlc equation [1.e., Eq. (7)], yields a "Buigers" equation
as the propagator for the shock. The Independent variables in Eq. (32) are scaled time (t) and scaled arc length (x). The finite length reacticn-zone effects enter this equation as the transport term on the rlght-hand side. This 1 s similar to the structure of wave-hlerarchy probipms that arise in onedimensional wave propagation problems in reactive materials [9]. The second term on the left-hand side represents the diffraction effect. Equation (32) ls a one-dimensional parabolic poe. In the quasl-steady limit, the reactivity acts to smooth the shock locus.

Equation (32) was solved numerically for the design problem shown In Figure 4. A mesh was used with ono thousand points along the shock. The computation time was one minute on the Cray-1 supercomputer. The results of the wave tracking calculation for a set of parameter values that highlight the finlte-length reaction-zone effects are shown in figure 5.

The important parameters in ins calculation are (α / R_{z}) the ratio of the reaction-zone length parameter to the radius of the booster, and $\left(R_{2} / R_{s}\right)$ th, ratio of the booster to the edge radius. The dashed contours correspond to the standard "Huygens" construction studied in Figure ai. The doted contours show the cylindrically expanding finlte-length
reactlon-zone wave without any edge effect. The solld contours show the complete DSD calculation, Incluaing the edge effects. Although the results shown in the flgure speak well for themselves, a few comments are in order. Even in reglons of the flow that are not influenced by the edge, the finite-length reaction-zore effects cause the detonation to lag behlnd the "Huygens" wave. Near the lower edge, the complete DSD calculation $1 s$ strongly curled back. Along thls edge, the phase velocity of the detonation wave ls lnltally low, but as time passes It bullds back to that for a cylindrlcally expanding wave. Along the upper surface, no edge effect is observed untll the detonation wave passes into the "shadow zone". After thls occirs, the detonation wave is contlnually undergolng wave diffraction. Since the phase velocity at the edge quickly reaches a steady value that 1 s well below D.,. the curl back is more pronounced in this reglon than at the lower edge. The value of thls velocity is a function of the radius of the upper exploslve/vacuum interface.

SUMMARY:
We have developed a theory for propagating two-dimenslonal detonation shocks in complex explosive assemblles. The three components of our method are:
(1) shock klnematlcs (Eq. (7)].
(2) boundary conditions [Eq. (11)] and
(3) reaction-zone dynamles (e.g., Eq. (27)].

In spirlt it is the detonation analog of Whitham's lnert shock
propagation theory, geometrlcal shock dynamlcs. It is a rationally derlved theory that applles when the radius of curvature of the detonation shock is large compared to the reaction-zone length. A fully nonllnear theory, it describes the large amplitude changes in the two-dimensional detonation shock that occur over long times.

The DSD method that we've developed is a powerful tool that $c a n$ be used to efflclently model reaction-zone effects in numerical simulations of detonation. Using this method, typlcal explosive design calculations can be performed with about one minute of supercomputer tlme. Thls is to be compared to the tens of hours that are requlred for modest resolution full numerical simulation of the problem. In addition to the direct computational benefit, this theory also lncreases our understanding of time-dependent two-dimensional detonation. For example, thls theory deflnes the relationshlp between the detonation wave phase velocity and the radius of the explosive edge In the "shadow zone".

REEERENCES:

[1] Flckett (1976), Accuracy of the Conventlonal Lagranglan Scheme for One-Dimensional Hydrodynamics, Los Alamos Report LA6454.
[2] Woodward \& Colella (1984), The Numerlcal Simulation of TwoDlmensional Fluld Flow with Strong Shocks, J Comput Phys 54, 115-73.
[3] Addessio, et. al. (1986), CAVEAT: A Computer Code for Fluld Dynamics Problems with Large Distortion and Internal Silp, Los Alamos Report LA-10613-MS.
[4] G11mm, Isacson, Marchesin \& McBryan (1981), Front Tracking for Hyperbollc Systems, Adv Appl Math 2, 91-119.
[5] Whitham (1974), Linear and Nonllnear Waves, Wlleyintereclence, New York, 281-4.
[6] Bdzll \& Stewart (1986), Tlme-Dependent Two-Dimensional Detonation: the Interaction of Edge Rarefactions with Finlte Length Reaction Zones, J Fluld Mech 171, 1-26.
[7] Flckett \& Davis (1979), Detonation, University of Callfornla Press, Berkeley, 199-219.
[8] Stewart \& Bdzll (1988), The Shock Dynamics of Stable MultiDimensiona! Detonation, Comb Flame 72, 311-23.
[9] Reference 5, 339-59.

FIGURE CAPTIONS:

Figure (1) A schematic diagram that shows how chemical/mechanlcai energy are transported laterally through the reaction zone. The kinematic condition ls applied along (1), boundary conditions are applied at (2) and the reactionzone dynamics describes the flow along (3). To leading order. the reaction zone is insulated from rarefactions from the rear.

Figure (2) The intririsic-coordinate system that was used in the calculation. The shock curvature is $\mathcal{X}=\mathbb{Q}_{5}$ and

$$
z^{1}=z_{0}^{1}-\eta \cos \phi, r^{1}=r_{0}^{1}-\eta \sin \phi .
$$

Figure (3) Intrinsic coordinates and shock kinematics. The Independent variables are arc length (5) and t lime (t), while the dependent variables are the normal shock velocity (D_{n}) and the shock normal angles ϕ). The curves $\beta=$ constant are normal to the shock, and $\tilde{\phi}_{e}$ is the angle between the tangent to the edge and normal to the shock.

Figure (4) A prototypical diverging detonation problem. The wave is propagated with $D_{n}=1$, a "Huygens" construction. Below the dashed line, the wave ls free of boundary effects and expands as a circle. Above the dashed line, the wave shape is determined by applying the sonic condition along the radius R s circular edge.

Figure (5) The DSD calculation of the example considered In Figure 4. The reactici-zone dynamics rule was $D_{n}=1-\alpha \mathbb{R}$. where the magnitucie of α ls shown. Three calculations are displayed:
————. $D_{n}=1$ "Huygens".
$\ldots-\ldots D_{n}=1-\propto \mathbb{R}$ circularly expanding wave and the full DSD calculation.

Figure (1) A schematic diagram that shows how chemicalímechanlcal energy are transported laterally through the reaction zone. The kinematic condition 1 s applied along (1), boundary conditions are applied at (2) and the reactionzone dynamics describes the flow along (3). To leading order, the reaction zone $1 s$ insulated from rarefactions from the rear.

Figure (2) The Intrinslc-coordinate system that was used In the calculation. The shock curvature is $K=\varnothing, \rho$ and

$$
z^{\prime}=z_{0}^{\prime}-\eta \cos \phi, \quad r^{\prime}=r_{0}^{l}-7 \sin \phi
$$

Figure (3) Intrinsic coordinates and shock kinematics. The Independerit variables are arc length (F) and time (t), while the dependent variables are the normal shock velocity (D_{n}) and the shock normal angles(ϕ). The curves $p=$ constant are normal to the shock, and $\mathcal{P}_{\text {e }}$ is the angle between the tangent to the edge and normal to the shock.

Iffraction region

$$
\phi=\phi_{e}+\sqrt{\frac{2 \xi}{R_{3}}}
$$

line of sight

$$
\phi=\frac{\xi+\xi^{0}(t)}{R_{2}+t}
$$

supersonic

Figure (4) A prototyplcal diverging detonation problem. The wave is propagated with D. . $=1$, a "Huygens" conetruction. Below the dashed line, the wave la free of boundary effecte and expands as a circle. Above the dashed line. the wave shape is determined by applying the sonic condition along the radlus Re clrcular edge.

