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Abstract

In any exploslive device, the chemlical reaction of the
explosive takes place Iin a thin 2zone Jjust behind the shock
front. The flnite size of the reaction zone is responsible
tor: the pressure generated by the explosive belng less near the
boundarles, for the detonatlon velocity belng lower near a
boundary than away from It, and for the detonatlion velocilty
belng lower for a dlvergent wave than for a plane wave.

In computer models that are used for englneering design
calculations, the simplest treatment of the exploslve reactlion
zone Is to lgnore 1t completely. Most explosive modelling Is
sti{)] done thls way. The neglected effects are small when the
reactlon zone |s very much smaller than the explosive's
physlical dlmenslons. When the ratio of the explosive’s
cetonatlon reactlion-zone length to a representative system

dimenslion Is of the order of 17100, neglecting the reactlion
Zzone |s not acdlequate.

An obvious solution is to model the reactlon zone In full
detall. At present. there is not sufficlent conputer power to
do 3o economically. Recently we have developed an c¢lternative
to thlims standard approach. By transforming the governling

equations to the proper Intrineslc-coordinate frame, we have
simplifled the analysis of the two-dimensional! reactlon-zone
problem. When the radlus of curvature of the detonatlion shock
ils large compared to the reactlon-zone length, the calculation
of the two-dimensional reaction zone can be reduced tc a
sequence of one-dimeas'onal problems.

Work performed under the auspices of the U.S. Department of Fnerpy.



Describing the propagaticn of detonation In complex
multli-dimenslional esxpiosive geoinetrties Is an Important and
ongoing problem i{n the design process for exploslvely driven
devices. In order for the design of the explogslive system to be
successful, two requirements need to be met. First, the
detonatlon of the explosive system must be relatlively
Insensitlive to variatlons 1In the Initial condltions (e.g., to
changes in the temperature and varlations 1in the I[nitlation
system). At the same time, the explosive system must be safe
from acclidental |inlitiatlon of detonatlion. The ratlo of the
exvlosive’s detonatlon reaction-zone length tc a repreasentative
system dimension |s the parameter that controls these
properties. The deslirable ratio 1I|s of the order of ./100,
Problems of accldental inltlatlon are minimized, yet at the same
time the detonation |Is relatively Iinsensitive to Initial
condltlons. For most explosive geometrles, this ratlo Is small
enough so that the Integrated momentum through the reaction zone
Is 'mall in comparison to that |Ir the broad reglon where the
reactlon products expand and do work on thelr surroundlings.
Thus the reactlion zone hast little direc’. Influence on the
process of driving lnert materlals that are In contact with |t.
However, the lndlrect Influences of the reactlicn zone o1 *he
calculation can be much more Important. When the ratio
parameter is 1100, a 9algnjflcant fractlon of the explosive
charge experliences such things as both reduced detonatlion

pressure and veloclty near boundarles, ag wel: as a s9lower
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detonation velocity for a divergent detonation than for a plane
one. These, in turn, lead to large errors In zeroth-order
effects such as the time of detonation arrival and the
two-dimensional detonation wave shape. From the point of view
of the designer, this lIs a difflicult computational regime. Not
only does he need to resolve the bproad region where the
reactlion products expand and do work on thelr surrcundings, but
he must also resolve the thin reactlon zone.

Because of the disparate lengths of the reaction zone and
release wave, most of the explosive design codes In use today
empl oy some varlant of the constant detonation veloclty
*Huygens" construction to propagate the detonatlon wave. This
method for propagating the detonation only works well for
explosives for which the —reactlon zone can be lgnored (li.e.,
the ratio parameter Is less than 1/1000). Ac hoc "flxes" of
this simple model have heen used to mode! systems for which the
ratlo parameter 1Is larger than 1/1000. On~ example nof such a

“tix* Includes a lower detonation velocity near the edge of the

explosive than In the center. These have met with oniy I!imlted
success,
With all of its shortcomings, the simple “Huygens' method

has one real advantage, computational aspeed. Since the

rcaction zone does not need to be modeled when this method |Is
emp!oyecd, design calculations can be done In a short enocugh
time to allow many design lteratlonad to be tried. Thly |s an
Ilmportant feature that design cocdes need to have.

In order to improve on thla almple method, constitutlive
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Information must be avalilable about the explosive’s reaction
zone. This can be either explicit or Impllclt Information.
When expliclit informatlion I3 avallable, one can 1In princlple
fol low the standard approach and do multl-cimensional
simulations that resolve both the reaction 2zone and the
explosive products region. This information is usually supplied
in the form of the shock Hugonlot of the “unreacted" explosive,
an equation of gtate (eos) of the explosive products, and a
compatible energy-release rate callbrated to one-dlmensionai
experimeints,

To be useful, a numerical simulation of the reactlon zone
must be «ble to resolve 3ill of the Important features of the
flow. Filckett (1] has shown that when the standard 1D
Lagranglan-mesh artificlal-viscosity methods are wused, roughly
20 computational cells are needed In the reaction zone to get
10% accuracy. This translates Into many tens of thousands of
computational cell® for a typlcal 2D numerical calculation.
Even with today’s supercomputers, such calculations take tens of
hours of computaticon time; they are not practical for routine
design calculations. When one reduces the number of cells In
the calculation In order to get sensible computation times, the
accuracy of the caiculatlons suffers.

In large measure, the Inordinately large conputation time
ls a result of the lack of sophlsticatlion of the standard
method. The wunlform fine mesh that’s needed to achleve
reasonable resolutlion iIn the reactlon zone, |8 excesaslively flne

for the release-wave calculatlon. Today researchers are
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developing a varlety of improved methods that include such
features as; (1) multl-grid techniques that employ 'moving fine
zonlng near shocks (2], (23 schemes ©based on the method of
characteristics such as CIR and Godunov (2,31 and (3)
shock-tracking methods (4). To date, however, none of these
methods has reached the point of maturity where they could
replace the standard method for routine detonation
calculations.

The central Issue 1In improved 20 calculations of
detcnatlon Is a hligh-accuracy calculation of the reactlion-zone
structure, and a relatlively coarse grid caiculation of the
following products release wave. One way of gettino a hligh-
accuracy calculatlon of the reactlcern-zone structure, iIs to do
It analytically. This alternative brlings wlth It not only the
direct computatlional benetit, but it also brings the advantage
of a theoretical understanding of the two-dimensional
detonation process. With such an understanding, we could make
a fast hlgh-resolution wave-tracking code that solves the
reaction-zone flow analytically and the release wave w!th a
coarse grld numerical sirwulatlion. Thls Increased knowledge
also brings with It the Iinsights that lead to the improvements
that are necessary I|f some of the more sophlsticateéed
computational methods mentioned above are to become practical
tools.

An analytical solution of the general two-dimenslional tlime-
deper.dent detonation problem !s not within reach. However., In

many appllications of exploaslves, one observes that the radius of
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curvature of the detonatlon shock Is large in comparison with
the reaction-zone length. Recently we have developed an
alternative to the standard numerlical approach that‘’s based on
the large rcradlus of curvature limit. By transforming the
governlng equations to the proper Intrinslc-coordinate frame, we
have simplified the analysis of the two-dimenslional reaction
zone problem, and reduced it to a sequence of one-dimensional
problems. The coordinate frame of cholce is one In which the
spatlal coordinate axes are everywhere locally parallel and
perpencicular to the shock. The governing equatlions consist of
a kinematic equation that describes the progress of disturbances
moving along the shock, and equations for the reartion-zone
dynamirs that describe the quasli-steady flow pormal to the
shock and through the reactlon 2zone. We cali this method
DETONATION SHOCK DYNAMICS (DSD»>.

We have divided this paper into four sectlons. In sectlion
11, we glve an ovarview of the theoretlical model. Th!s sectlion
Is divided Iinto three subsectlons. In Shock Klpematlcs, we
briefly describe our coordlinate system and the kinematics of the

detonation shock. The subaection entltied Boundaryv

Conditions, l® devoted to a dlscussion of the boundary
conditlona that are applled at the edges of the explosive. In
Reaction—-Zone Dynamics, the Euler equacions are

tranaformed to the intrinsic-coordinate frame, and the analysis
that leads to the quasi-steady descriptlion is briefly reviewed.
In sectlon I[III, we demonstrate how our theory can be used Lo

study a representative exploslve dcdeosign problem. In sectlion 1V,



we summarize our results.

QVERVIEW OF THE THEQRY:

The thrust behind our theory 1Is the concept that the
response of the detonation shock ls local, and 1is governed by
Its current local <conflguration. Philosophically, 1t is an
extension of Whitham’s geometrical shock dynamicsg to detonation
(5). Our theory Is a uniform perturbation theory, that s
based on the notlon that the radlus of curvature of the shock
ils large when compared to the reaction-zone length. It Is a
rnonlinear theory that can be used to descrlbe arbitrarily large
departures of the detonation shock shape from the plane one-
dimensional state. From the results of our theoretical
calculatlons, the following plcture has emerged. In many
situations, the dynamics of the detona%lon reactlon zone !|s
decouplied from the evolution of the large following rarefaction
wave, and Is controlled by the flow near the shock. As a
result, we have found that the Important waves in the reaction
zone, elther rarefactions or compressions, are transverse
waves. Qur theory describes how these two-dimen=mional waves
are generated (e.g., near an explosive edge) and move.*
laterally through the reactlion zone (see Figure 1). There are
three components to the theory: (1) a klnematlc conditlon for
the shock surface, (2) condlitlons to be satisfied at the
boundarles of the explosive and (3> the flow dynamics in the
directlion normal to the shock (l.e., through the reactlon

zone). We wili brlefly descrlibe each of these.
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Our tbheory |s based on th2 time-dependent, two-dimensional
reactive Euler equatlons. As a conseqguence, the detonatlion
shock (shock) Is a surface of discontinulty. Since we wish to
treat detonatlion-wave evolution In complicated two-dimensional
geometrles, we have developed our theory In a problem determined
Intrinsic-coordlinate system (s=e Figure 2. It Is a
shock-centered frame that moves with the local normal
detonatlion-shock veloclty (Dn>. The space variables are the
distances F and 2 locally parallel and perpendicuiar to
the shock.

Shock Klpematics

The principal object o©f the theory Is to calculate the
shock shape as a function of time. The intrinsic
representation of a curve, such as the shock, Is In terms of Its
curvature (& > as a functlon of arc length along the shock (E )]
and time (t). In this coordinate system, the shock shape is
described by the shock angle (ﬁ) as a {unctlion of 5 and t.
In terms of these varlables, the shock curvature s f'= Qéf
where the 3 indicates a partlal derivative with respect to
arc length. The laboratory coordlnates for the shock are

retuirned by
¥ N
2’- 27 - [l , s feap)le, 0)

Y ]
-
where 2-’_ and lé are the coordinates of the edge. Typlically

we are most interested In describing the changes in the shock

shape that are the result of the Interactlon that occurs
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between the shock and an expliosive edge. For such problems,
having the zero of arc length coincide with the edge Is the
most convenlent origin to use for § . Figure 3 shows a
schematic representation of the shock lncluding the independent
variable (> and the definltlon of the dependent varlables
D~ and ¢ . The carteslan unit vectors are é\a and é}_ .

The geometrlc compatlibllity conditions for a moving two-

dimensional surface are given in Whitham (5]

Qéat:' ',37} D’&,a (2)
/
By =B M. (3)

The variable o is equivalent to time, and labels a particular

and

shock surface. The constant /B rays are crthogonal to the

shock and are its propagators. The streamtube area |Is /,ﬂ '

where at flxed OC
JE = f7B )
(i.e., the area between two adjacent constant /B rays.

For the roblems of Interest Iln condensed phiase
detonation, the shock |s seldom normal to the explosive
boundary. As a result, the coordlnate p Is nct a convenlent
independent varlabie since boundary c’ondltlons must be applied

at the edge. Changing I[ndependent varlables from (O(.P) to

(t.g ), we have

JE = ﬁ?J/B # Bdx (5)

dt = Ju, /L)

where the coefflclent B describes the change |In arc length
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wlth time along a constant ;B ray. Performing thls
transformation, the surface klnematics (l.e., Eq. (2)] takes on
the form of a one-dimensional wave equation alcng the shock
with B being the wave veloclty and DIJ is a Burgers Equation-

llke transport term

@t *BQ?}_ =-a5_§ . (7)

The coefflclent -23 Is obtalned by requliring that the
transformation [ Egqs. (5) and (631 1|s solvable, from which |t

follows that

J ol
From Egs. (3) and (8) |t follows that

¥
B= [B.Dudf + Bt). (9)

The function zﬁiﬁﬂls the amount of shock arc length which

Al = B:/a . (8)

crosses the /ZB = constant ray that intercepts the edge and Is

B (t)= Dye /2n/¢:) . (70)

This intrinsic form of the shock-surface kinematice is

glven by

fundamental to any shock-tracking method that seeks to descrlbe
the evolution of shocks of arblitrary shave In a unlform
mannec. Clearlv, Egs. (7> and (9) are simply a constraint
betweenn D. and /(::Qér . However, |f a second relation
between D. and A can be obtalned, then Eg. (7) becomes a
partial-differential equatlon for the shock surface. It is
Important to note that Eq. (7) Is a “one-dimensional" condlitlon,

whose Iindependent varlables are the arc length (j? ) (the
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distance coordlnate]l] and tilme (t). Further, |f we then
prescribe the Initlal shape (95) of the surface, as well as some
boundary condltion at the lntersectlon of the detonation shock
and the explosive boundary, then Eq. (7)) can be solved to get
the two-dimensional shock locus at any subsequent time.

Boundary Conditlons

For the problems we consider In this brlef review paper,
we do not need to study the complex flow or the detalled
boundary condltlions that apply In the vicinlty of the exploslve
boundary. It wlll be sufficlent to consider only the conditlion,
If any, that must bte appllied at the locus generated by the
Intersection of the detonation shock and the edge. We conslder
only an explosive/vacuum Interface.

At such an Interface, the flow experiences a singularity.
In the explosive, the pressure just behind the detonation shock
ls near the Chapman-Jouguet <(cJ) pressure; just outside the
explosive, the pressure |s at or near zero. In order for the
flow to execute such a transition, a slngularlity of Prandti-
Meyer (PM)-type must be Imbedded In the flow at the Intersectlon
of the shock and the edge. Since locally the flow at thls polnt
Is quasl steady, It can only be elther a sonlc or a supersonic
flow (as w#een by &n observer rlding along the edge/shock
Intersection locus). We will discuss the conaequences that
result from having flows of these two types.

Along the edge/shock l'ocus, the sonlc parameter |Is a
functlion of the normal detonatlon velocity along the edge,

N
Dne. and the shock Interface angle, gb . For a polytroplc
[~
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eos, with ‘7” the polytropic exponent, the expression |s

3 z s by / - - Y,

Cr U= D, {;;7 /7= z-%;{ - ;ﬁ//‘a—a'?)-/zn/é)ﬁ 7)
where € s the sound speed, /%/ '3 the magnltude of the
particle veloclty In the shock-fixed frame and Dnx IS the
minimum value ot D. for a one-dimenslional detonation.

It the flow |Is supersonic along the locus, then
disturbances from the edge can not propagate Into the
detonatlion reaction zone. The Iinterface moves faster laterally
than do acoustlic waves. For this case, no boundary condition is
applled, and the Interface does not affect the detoni.tlon.

As the flow turns subsonic, then D.e and ¢e must be
adjusted so that the sonlc coadltlon, C"-/I//" =0 . Is
malntained. Thls condltion serves as a boundary condition for
the flow.

The following rule |3 used along the edge/shock locus:
Mopltor the sonic varameter on the locus. 1f C‘-/I//l-((') .
the flow Is supersonic and no condlition |s applied. When the
flow Is elther sonlc or subsonic, then Dne &nd a: must be

adjusted to satisfy the condition 2% /#/*— ().

Reactlon-Zone Dynamlcs

Equation (7) |Is a one-dimensional partlal-differential
reiation that D. and ¢ must satisfy |f they are to descr'be
a two-dimensional shock. If a w®second relation between D. and
¢ can be fcund, we can convert thls relation to a partlal-

dl ffecentlal equation (pde), and In the process reduce the two-
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dimenslonal shock tracking problem to a one-dimensional one.
For a number of cases, we have found such a second relation
between D. and /= daf . When It exists, this relation
contalns all the necessary reaction-zone dynamics; the
consequences of the interaction of the chemical-heat release
with the flow. To flind It, we must solve the time-dependent
two-dimenslicnal Euler eqguations, in order to solve these
equations for complex explosive gecmetries, we must express them
in terms of a natural aystem of coordinates that simpllifies
thelr form. In the limit that the radlus of curvature of the
shock |s large compared to the reaction-zone !'ength, the
coordinates shown |In Fligure 2. are particularly convenient.
Bertrand curves that are everywhere parallel to the shock are
the 7" constanl coordinates; the |ines perpendicuiar to these

curves are the constant 5 coordinates. These coourdlnates are

related to the laboratory carteslian frame, by
A
v 7 y
ri=r - ?1 Svnrgﬂ' P /73)

P
where 2° and /" are glven by Eq. (1), Expressed In these
o

and

coordinates, the Euler equatlons are

mass L *_/a/,(_/ﬂ? -7(7)7 ""@:f) 0 =0, (s4)
7% -mementum Iﬂ ;3-7;'7 to = O, (15)
S cnmesim L% 4 A%y - Dyp 2, o = O (12)

and

aerey  LE - A L = O, (17)
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The chemlcal rate law Is

cate L e = AL (8)

We have displayed or !y those terms that are necessary to do the

leading order theory in the smail A(—llmlt. In the above
_ - 2 J
L = §?+/B’ 74)27 "‘B;yf 5 (/9)

F 1s the density, ﬂ»’ is the 7-component of the particle
veloclty (at leadlng order 7/7>0 and 7’:74.9). 74, i1s the
f—par‘tlcle veloclty (74=0 at the shock), 7’ Is the piressure,
A Js the degree of reaction ( /= O at the shock), /r"'e is the
chemical rate and EE' is the speclflic Internal energy. The
above equatlons, the standard one-dlimenslional shock condltlons,
the kinematics ( Eq. (7)) and approprliate Inltial/boundary
conditions completeiy defl~e the two-dimensional problem that
must be solved. Even Ir tune smal!—/( limlt, this |Is a
formicable task.
wWwhat we have shown recently |s that for cectaln rate-law
forms (l.e., expressions for ;Z? ), the impocrtant large-scale
dynamics |Is quasl wateady (5). We cons | dered relatively
long-scale disturbances to the shock
€r= OIK) <</, (20)
D,= D, + Or€*) £21)
and two tiline regimes:

(1) "fast* dynamics t,:ét



15
— 34) I
changes In ¢ = O/é ’ 4), ‘F)';— & 5 {22)
and
(2) quasli-steady dynamics tz = éz't

changes In QS = O[é) 5 -FI = é‘E (23)

and lacger.

The “fast* scale problem was necessary to treat the Influence
of the two-dimensional I[nlitlal/boundary data, and to describe
the hydrodynamlc wavehead that separates the reactlon zone Into
parts that are e.ther Influenced or uninfluenced by the edge.
As the flow evolved, the “fast" scale perturbations became
smaller, and the dlsturhbances to the one-dimensional state
pecame larger arnd gquas! steady. This quasli-steady reglme was
particularly simple; the Euler equatlons reduced to the steady
nozzle equatlons [a steady cyllindrically-symmetric system of
ordlinary-diffecentlial equations (ode)]

L(Tn-%)F], + PKH, = 0O, ()

etc. 7 17 )
The only parameters |In these equationsy, besides the flxed
constlitutive parameters, are D. and &/ . That Is, the
injtial/boundary data do not appear In the lacrge change
~eactlon-zone dynamics. In =mome sense then, the dynaaxlcao lo
unjversal. The resulting one-dimensional problem |Is simply
the detonation ‘“elgenvalue" problem considered by Wood 8
Kicrkwood [7). Since the propagation of the detonation shock |in
decoupled from the product expanalon reglon, the theory Is free

of ad hoc approximations about the Influence of the followlng
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flow. At least this iIs the case for diverging detonation.
The quasi-steady problem def!nes D (& >. With A{
specifled, D. |Is determined by solving an e¢lgenvalue problem.
In additlon to ylelding D.¢( A& >, this solution also glves the
state at the end of the reaction zone as a function of A&
Thus for an important class of problems, the reactlon-zone
dynamics Is glven by Dn(}( ), and the two-dimensional shock-
evolutlion problem Is reduced to a one-dimensional problem.

Two polnts are worth notlng. Firat, the Dn<kf> relatlon
onty contalns iimited <onstitutive Informetlon abnut the
explosive. The constants In thls relation are lntegrals through
the reactlion zone of this Informatlon. Secondly, D~(&) Iis
Independent of Inltlal/boundary data. Therefore, when detalled
constltutlve information about the reaction zcne |s not known
(the typlcal situation for condensed phase explosives), D)
can be measured dlrectly via simple steady-state two-
dimensional hydrodynamlic experiments. Thus we have a way of
using simple experiments to callbrate the reactlon-zone
dynamics. In turn, we can use the callibratead [.(A > relation
to predlct detonatlon wave evolutlon In complex exploslive
deometrlea.

Direct calcutatlons of Dn(l( ) performed with the simple
polytroplc eos, snow that the form of the ruls |s seanslitive to
the form of the rate law (8). Calculutlion® were done for two
astate- ' ndependent rates with dlifterent depletlion forms; square-

root depletlon

R =(7-4 (25)
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and simple depietion
P = //_/7) . /24)
Tne Dn¢X > rule for Eq. (25) is
22}7:: 4/" “{'4{ B ﬁ:;?)
whlile for Eg. (26) we have

Dy =/ fﬁ,‘(%/&/) - LK . (28)

The constants ol and/B are not to be confused with Whitham’s

curvilinear coordlinates. D., is set to one. In the next
section, we glve a brief tutorlial that describes how this theory

can be appllied to explosive englneering design problems.
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APPLICATIONS:
The simplest time-dependent problem that can be done is the
constant-veloclity detonation or “Huygens' construction for a

diverglng detonation. For convenlence we take D~ = 1.

Equation (7) then becomes the simple ponlinear-wave equation

for the shock angle (see Figure 3)

Ge + (P-4)P =0 9)

where Q le the value of QS at the edge (l.e., at £ = 0.
Eqiation (29) states that gb = constant along the

characteristic llines F- /¢‘¢é)t' = constant, that ls

BB e E-(B-L)E=F . (30

If we consider a tlow where the two-dimensional shock 1Is

convergent Initlally, then the initlal ang.:, Qé , ils o
decreasling functlon of the Initlal arc length, j-‘o . Such a

flow looks compressive, In the sense that the characteristic
lines are <convergent. After a finite time, sore of the
characterlistics cross one another and the solution becomes
muitl-valued. Physlcally, the ruie D. = 1 does not apply to
a convergent detonation, so we willl not consider this case
further.

wWhen the two-dimenslonal shock is inltlally dlvergent, the
Iinitlal angle |Is an Increasing functlcn of arc length, and the
characteristic |lines are rcarefactlon-|lke. An example of a
alvergent -wave problem that |Is often encountered In demsigns Is
shown In Flgure 4. [t Is a prototypical examplie of a dlverglng

detonation that features the dlffraction of the detonatlon
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(l.e., the "shadow zone" prob!em). The left-most vertical lline
Is a symmetry plane; the lower horlizontal llne and the upper
clrcular arc are the edges of the expl'osive. The wave Is
initially clrcular with a radius Ra. Since the wave |Is
perpendliculas to the horlzontal edge, the flow along that
edge/shock locus is sonic, and the edge coes not influence the
shock evolution. When the expanding wave flrst reaches the
circular boundary, the flow along the upper edge/shock locus |Is
supersonlic. It remalns supersonic untll]l the detonation reaches
the polint where the dashed llne |s tangent to the arc. The
region above the dashed line 1ls not In direct line of sight of
the Initlai data; It 1Is a ‘“shadow zone". Diffractlon Is the
process that allows the wave to spread intc this region. The
solution In this reglon |3 determined by the boundary data
suppll!ed along the circular edge.

In both rxglons of the problem, the solution takes a
simple form. The great advantag: of our formulaticn over older
methods Iis tnis simplicity of representation. The calculatlions
shown In Filgure 4, are free of reaction-zone effects. We
conclude thla mection by showing how detonation shock dynamics
can be wus9sed to Include the Important finlte size reactlion-zone
effec\s for this oxample.

We assume that the reactlion-zone dynamics |Is glven by

Eq.<27)>

and Introdv-e the change of variable

QL)::gZé,fg’ (3/)
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where ¢Z.is the angle that the tangent tu the edge makes with

~
the reference direction 62} . Substituting these I(nto the

kinematic egquatlion (l.e., Ea., (7)), vilelds a "Bu.gers* eocuation

7z B Dne _ x K
@t % cooldy) * B%‘x - -4—9; ¢gxx b/ (32)

as the propagator for the shock. The [ndependent varlables in

Eq. (32) are scaled time (t) and scaled arc length (x). The
finlte length reacticn-zone effects enter this equation as the
transport term on the right-hand side. Thls is simllear to the
structure of wave-hlerarchy probizms that arise in one-
dimenslonal wave propagatlion problems in reactive materlals
(91. The s=econd term on the left-hand side represents the
dliffraction effect. Equaticon (32) ls a one-dimensional
parabollic pde. In the quasi-steady 'init, the reactivity acts
to smooth the shock locus.

Equation (32} was solvzd nume.ically for the design
problem shown In Filgure 4. A mesh was used with onc thousand
polnts along the shock. The computatlion time was one minute on
the Cray—-1 supercomputer. The results of the wave tracking
calculatlon for a set of parameter values that highlight the
filnite-length reaction-zone effects are shown in Figure 5.

The Important parameters In thils calculation are (& /Ra)
the ratic of the reactlon-zone length parameter to the radius
of the booster, and (Ra/Ra?> th» rativo of the boocster to the
edge radlus, The dashed contour= correspond to the standard
*Huygens" constructlion studlied In Flgure 4. The dotted

contours show the cylindrically e:(panding finlte~length
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reactlon-zone wave wjthout any edge effect. The solld contours
show the complete DSD calculation, Incluaing the edge effects.
Although the results shown 1In the flgure speak well for
themselves, a few comments are In order. Even In reglons of
the flow that are not influenced by the edge, the finite-length
reaction-zone effects cause the detonation to lag behind the
*Huygens"* wave, Near the 1ower edge, the complete D3D
calculation 18 strongly curled back. Along thlis edge., the
phase veloclity of the detonatlion wave 1Is Initlally lcw, but as
time pa®ses [t bullds back to that for a cylindrlically expanding
wave. Along the upper surface, no edge effect |s observed untll
the detonatlon wave passes into the "shadow zone". After this
occurs, tne detonation wave 1Is continually undergolng wave
diffraction. Since the phase velocity at the edge quickly
reaches a steady value that |s well below D.,, the curl back
is more pronounced In this reglon than at the lower edge. The
value of this veloclity Ils a functlon of the radlus of the upper

explos|ves/vacuum Interface.

SUMMARY :

We have developed a theory for propagating two-dimensional
detonation «hocks In complex explosive assembliles. The three
components of our method are:

(1> shock klnematics ([ Eq. (7)],

(2) boundary condlitlons [ Eq. (11>) and

(3> reaction-zone dynamics (e.g., Eq. (27)]).

In spiclit It |Is the detonatlon analog of Whitham’s lnert shock
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propagation theory, geometrlical shock dynamlics. It is a
rationally derlived theory that applles when the radius of
curvature of the detonatilon shock 1Is large compared to the
reaction-zone length. A fully nonlinear theory, !t describes
the large ampllitude changes |In the two-dimenslonal detonatlon
shock that occur over long times.

The DSD method that we‘ve developed I8 a powerful tool
that can be used to efficlently mode! reactlion-zone effects 1in
numerical simulations of detonation. Using this method,
typlcal explosive design calculations can be performed with
about one minute of supercomputer time. Th!s |s to be compared
to the tens of hours that are requlred for a modest resolution
full numerical simulation of the problem. In addition to the
direct computatlional benefit, this theory also Increases our
understanding of time-dependent two-dimensional detonation.
For example, thls theory deflines the relationship between the

detonatlon wave phase veloclty and the radius of the exploslive

edge |In the “shadow zone".
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FIGURE CAPTIONS:

Filgure (1) A schematlc diagram that shows how
chemlical/mechanicai energy are transported laterally through
the resaction zone. The klinematlc condlitlion Is applled along
(1>, boundary conditlions are applled at (2) and the reactlon-
zone dynamics describes the flow along (3). To leading order,
the reactlon zone is insulated from rarefactions from the rear.

Flgure (2) The Intrirsic-coordinate system that was used In
the calculation. The shock curvature 1Is = and

4 4 7/ 2 °f
Z =2.—7“9¢/r=r;,'-75,;7¢,

Figure (3 Intrinsic coordinates and shock klnematics. The
Independent variables are arc length (¥ ) and time <(t), while
the dependent varlables are, the normal shock velocity (D.)
and the shock normal angle_.( ). The curves = constant are

normal to the shock, and ¢e Is the angle between the tangent to
the edge and normal to the shock.

Figure (4> A prototypical dlverging detonatlon prcblem. The
wave |s propagated with D, = 1, a "Huygens' constructlon.
Below the dashed line, the wave |s free of boundary effects and
expands as a circle. Above the dashed line, the wave shape |s
determined by applying the sonlc condition along the radius Ra
clrcular edge.

Figure (5) The DSD calculatlion of trhe example COnwldereg In
Figure 4. The reactic 1-zone dynamlics rule was D, =
where the magnitude of of Is shown. Three calculations are
dlsplayed H
~~~~~ D~ = 1 "Huygens",
““““““ D = 1 - circularly expanding wave and
the full DSD calculation.
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Figure (1) A schematlic diagram that shows how

chemical, mechanical energy are transported laterally through
the reaction zone. The kinematlic condition 1Is applied along
(1), boundary conditions are applied at (2) and the reactlon-
Zone dynamics describes the flow along (3. To leading order,
the reaction zone ls insulated from rarefactions from the re:cr.
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Figure (2> The Intrinsic-coordinate system that was used In
the caiculation. The shock curvature la K= ‘é and
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Figure (3 Intrinsic coordinates and shock klnematics. The
Independerit varlables are arc length (F) and time (t), while
the dependent varlables are the normal shock velocity (D.)
and the shock normal angle (¢ >. The curvesn = constant are
normal to the shock, and ls the angle between the tangent to
the edge and normal to the shock.
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Figure («4) A prototyplcal dlvergling detonation problem. The
wave |s propagated with D. = 1, a "Huygens' constructlon.
Below the dashed line, the wave |s free of boundary effects and
expands as a clrcle. Above the dashed llne, the wave shape |=s
determined by applying the sonlc condition along the radlus Ra
clrcular edge.
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Flgure (5> The USD calculatlion of the examplie conslidecred |In

Figure 4. The reactlon-zone dynamlcs rule was D, = ¢ -o L |
where the magnitude of o( |s shown. Three calculatlions are
dlsplayed 1

e ~ D, = 1 "Huygens",

“““““““ D. = 1 - & ciccularly expandling wave and

the full DSD calculation.



