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We theoretically investigate laser-induced spin transport in metallic magnetic heterostructures
using an effective spin transport description that treats itinerant electrons and thermal magnons
on an equal footing. Electron-magnon scattering is included and taken as the driving force for
ultrafast demagnetization. We assume that in the low-fluence limit the magnon system remains in a
quasi-equilibrium, allowing a transient nonzero magnon chemical potential. In combination with the
diffusive transport equations for the itinerant electrons, the description is used to chart the full spin
dynamics within the heterostructure. In agreement with recent experiments, we find that in case
the spin-current-receiving material includes an efficient spin dissipation channel, the interfacial spin
current becomes directly proportional to the temporal derivative of the magnetization. Based on an
analytical calculation, we discuss that other relations between the spin current and magnetization
may arise in case the spin-current-receiving material displays inefficient spin-flip scattering. Finally,
we discuss the role of (interfacial) magnon transport and show that, a priori, it cannot be neglected.
However, its significance strongly depends on the system parameters.

I. INTRODUCTION

Rapidly heating magnetic heterostructures generates
spin currents on ultrashort time scales [1, 2]. Their
unique transient dynamics lead to fascinating physics in
magnetic multilayers. For example, the spin current gives
rise to the emission of THz electromagnetic radiation
in magnetic heterostructures, resulting from the inverse
spin Hall effect [3, 4]. Additionally, in noncollinear mag-
netic systems THz standing spin waves are excited by
the spin-transfer torque [5, 6]. Moreover, the spin cur-
rents can play an assisting role in deterministic all-optical
switching [7–11]. In other words, optically induced spin
currents provide a versatile tool to manipulate magnetic
systems on ultrashort timescales and pave the way to-
wards future spintronic technologies.

Since the first experimental proof of subpicosecond de-
magnetization in laser-excited magnetic thin films [12],
the physical origin of ultrafast spin dynamics remains
a subject of heavy debate. Locally, possible mechanisms
that drive ultrafast demagnetization are the direct coher-
ent interactions between photons and spins [13, 14], and
local spin dynamics as triggered by laser heating or ex-
citation [12, 15–28]. The latter may involve an increased
rate of various spin-flip scattering processes that eventu-
ally transfer angular momentum to the lattice degrees of
freedom [29, 30]. Furthermore, nonlocal mechanisms can
play a role, since spin angular momentum can be trans-
ported away from the the ferromagnetic layer via the gen-
erated spin currents. Different mechanisms have been
proposed, such as superdiffusive spin transport [31, 32],
and the spin-dependent Seebeck effect [33, 34].

∗ Corresponding author: m.beens@tue.nl

In the last few years, multiple experimental and the-
oretical studies suggest that the local demagnetization
and spin-current generation have the same physical ori-
gin [26, 35–37]. The main observation is that the rate
at which spin-polarized electrons are generated is deter-
mined by the demagnetization rate [35]. This can be
understood as being a result of electron-magnon scatter-
ing, which stems from the s-d interaction that couples
local magnetic moments to itinerant spins [21, 26, 38–
40]. Recent experiments support this view and show a
direct proportionality between the spin current injected
into a neighbouring nonmagnetic layer and the temporal
derivative of the magnetization [41, 42].

In this work, we investigate the relation between
demagnetization and spin-current injection in rapidly
heated magnetic heterostructures. We specifically ad-
dress the role of thermal magnons and their interac-
tion with electrons, and use a diffusive spin transport
description that includes both spin-current carriers. It
is assumed that electron-magnon scattering is the main
driving force for ultrafast demagnetization. This scat-
tering channel has been extensively investigated in the-
oretical studies [17, 21, 24, 26]. Magnon transport and
spin-dependent electron transport are treated on an equal
footing. This is achieved by allowing the magnon chem-
ical potential to be nonzero [43]. The description has
many similarities with the steady-state magnon transport
calculations in magnetic insulators [43–45] and metallic
heterostructures [46, 47]. Ref. [46] suggested that for
thermally injected steady-state spin currents at metal-
lic interfaces the magnonic contribution cannot be ne-
glected a priori. Here, we develop this insight for the
time-dependent scenario of rapidly heated magnetic het-
erostructures. Furthermore, we show that the interfacial
spin current becomes directly proportional to the tempo-
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ral derivative of the magnetization in case the receiving
material is an efficient spin sink. As we demonstrate ana-
lytically, other behavior is found when the latter displays
inefficient spin-flip scattering.

This article starts with an overview of the used model
in Section II, specifically discussing the underlying as-
sumptions. For a number of experimentally relevant
cases, such as a Ni/Pt bilayer, we present numerical cal-
culations for the local demagnetization and spin trans-
port in Section III A and III B. In Section III C, we an-
alytically derive the different relations between the in-
terfacial spin current and the magnetization for the lim-
iting cases of either efficient or inefficient spin dissipa-
tion in the spin-current-receiving material. Finally, we
investigate the role of magnon transport and interfacial
electron-magnon scattering in more detail.

II. MODEL

This section gives an overview of the diffusive model
we use to investigate spin transport in rapidly heated
magnetic heterostructures. Although other authors al-
ready presented the descriptions of spin-dependent elec-
tron transport [35–37, 48–50] and diffusive magnon trans-
port [43, 44] separately, we here discuss them in a more
integrated fashion. Readers familiar with these descrip-
tions can skip this section and move to Section III.

Here, we start with introducing the description of the
thermal magnon system.

A. Magnon density and magnon energy density

We define the magnonic system similar to Tveten et al.
[26]. The standard Heisenberg model for a lattice of lo-
cal spins, representing the relatively localised 3d elec-
tons, is expressed in terms of bosonic creation and an-
nihilation operators using the Holstein-Primakoff tran-
formation [51]. Diagonalization by the use of Fourier
transformations yields the magnon dispersion relation,
which is approximated as being quadratic εq = ε0 + Aq2

[26]. Here, q is the magnitude of the magnon wave vec-
tor, ε0 is the magnon gap and A is the spin-wave stiff-
ness. The corresponding density of states is then given
by D(ε) =

√
ε− ε0/(4π2A3/2) [26, 52].

In contrast to Ref. [26], we assume the magnon system
remains internally thermalized. As we only address the
low-fluence limit, we argue that after the laser pulse ex-
cites the ferromagnet the magnon distribution function
remains very similar to a Bose-Einstein function. On the
ultrashort time scales that we are interested in, which can
potentially be much shorter than the magnon lifetime, we
should treat the magnon number as a (quasi-)conserved
quantity. Then, the magnon number and total magnon
energy compose two degrees of freedom. Hence, two pa-
rameters are needed to describe this system, the magnon
temperature Tm and the magnon chemical potential µm.

We stress that the chemical potential and temperature
used here correspond to effective parameters, where ef-
fective refers to the fact that the magnon distribution
function might slightly deviate from a Bose-Einstein dis-
tribution. The description is similar to Ref. [21], with the
extension that it allows a nonzero chemical potential.

The magnon number density nd and magnon energy
density Ud are defined by the integrals [52]

nd =

∫ ∞
ε0

dεD(ε)nBE(ε, µm, Tm), (1)

Ud =

∫ ∞
ε0

dε(εD(ε))nBE(ε, µm, Tm), (2)

where nBE(ε, µm, Tm) corresponds to the Bose-Einstein
distribution

nBE(ε, µm, Tm) =
1

e(ε−µm)/(kBTm) − 1
. (3)

Note that in Eqs. (1)-(2), we extended the upper bound-
ary of the energy integration to infinity, which is valid
under the condition that the temperature remains much
lower than the Curie temperature Tm � TC . Now nd
and Ud can be expressed in terms of a polylogarithm
[53]. We assume that deviations in the magnon tem-
perature are small compared to the ambient tempera-
ture T0, i.e., (Tm − T0) � T0. Furthermore, we assume
µm/(kBT0)� 1 and ε0/(kBT0)� 1. The polylogarithm
can be expressed in terms of a series expansion for the
given small factors. We elimate the factors higher than
linear order. Details about this approximation are given
in Appendix A.

Following this procedure, the temporal derivative of
the magnon density and the magnon energy density are
expressed as

∂nd
∂t

= Cn,µµ̇m + Cn,T Ṫm, (4)

∂Ud
∂t

= CU,µµ̇m + CU,T Ṫm. (5)

The definitions of the prefactors are given in Table I. The
prefactor Cn,µ requires special attention, since it depends
on the magnon chemical potential. As explained in Ap-
pendix A, the latter is essential to describe the correct
behavior as a function of chemical potential and is a di-
rect consequence of the bosonic nature of magnons. As
the chemical potential approaches the magnon gap, the
magnon density grows increasingly strong, corresponding
to the divergence of Cn,µ. For physically relevant values
of the magnon gap this effect is nonnegligible. Therefore,
the model includes one nonlinear term arrising from Cn,µ.
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B. Spin and energy transfer rate by
electron-magnon scattering

Here, we give expressions for the spin transfer and en-
ergy transfer between the magnonic system and the itin-
erant electron system, which are driven by electron-
magnon scattering. Starting from the s-d Hamiltonian
[26], the electron-magnon scattering rate is calculated us-
ing Fermi’s golden rule [21, 26, 53]. It is assumed that
the itinerant electron system is instantaneously thermal-
ized and parametrized by the spin accumulation µs and
electron temperature Te. In the limit that the Fermi en-
ergy is the largest energy scale in the model, the angular
momentum transfer rate Isd (in units of ~) and energy
density transfer rate Usd can be expressed as [26, 52, 53]

Isd =

∫ ∞
ε0

dε
Γ(ε)

~
D(ε)(ε− µs) (6)

×(nBE(ε, µFs , Te)− nBE(ε, µm, Tm)),

Usd =

∫ ∞
ε0

dε
Γ(ε)

~
(εD(ε))(ε− µs) (7)

×(nBE(ε, µFs , Te)− nBE(ε, µm, Tm)).

For simplicity, the energy-dependent scattering rate co-
efficient Γ(ε) is assumed to be constant and replaced by
the dimensionless effective coefficient Γ0. The constant
Γ0 can be directly related to the effective Gilbert damp-
ing [52].

Following the same procedure as simplifying the
magnon densities, the transfer rates can be expressed as

Isd =
gn,µ
~

(µs − µm) +
gn,T
~

(Te − Tm), (8)

Usd =
gU,µ
~

(µs − µm) +
gU,T
~

(Te − Tm). (9)

The coupling constants are summarized again in Table
I, which are all expressed in terms of the scattering rate
coefficient Γ0, the spin-wave stiffness A and the ambient
temperature T0. The factors ζ(z) and Γ(z) correspond
to the Riemann zeta function and Gamma function, re-
spectively.

C. Diffusive magnon transport

Here, we discuss the description of diffusive magnon
transport. We follow exactly the same steps as the model
for diffusive magnon transport in magnetic insulators
[43, 44]. As discussed below, applying this in ferromag-
netic metals requires some extra comments.

To treat the magnons within a local-density approxi-
mation it is needed that the characteristic length scale
of the system, which in this case is the thickness of the
ferromagnetic layer, is much larger than the thermal de
Broglie wavelength. Up to a numerical prefactor the lat-
ter wavelength is of the order λth ∼ (A/(kBT0))1/2 [43].

For Ni this estimate gives λth ∼ 0.4 nm at room tem-
perature, using the numerical values listed in Table A1.
Secondly, to be able to describe the transport as diffusive
the magnon mean free path λmfp ∼ (AkBT0)1/2τtr,m/~
should be much smaller than the thickness of the fer-
romagnetic system. The magnon momentum relaxation
time τtr,m is discussed below. For Ni we estimate that
the mean free path is of the order λmfp ∼ 1.5 nm. De-
spite that these requirements are only weakly satisfied
for an ultrathin ferromagnetic layer, we assume that the
qualitative behavior is predicted correctly by the diffusive
magnon transport description.

Within these limits the magnon current density and
the magnon heat current density can be expressed as [43]

jm = −σm
e2

∂µm
∂x
− L

T0

∂Tm
∂x

, (10)

jQ,m = −L∂µm
∂x
− κm

∂Tm
∂x

, (11)

where σm is the magnon conductivity, L is the spin See-
beck coefficient [44, 54], and κm is the magnon heat con-
ductivity. The transport coefficients are given in Table
I. To a good approximation, all transport coefficients are
linear in the magnon transport time scale τtr,m, which
corresponds to the magnon momentum relaxation time.
This time scale is at least as short as the electron-magnon
scattering time, which is naturally related to the observed
demagnetization time scale. Hence, the latter is an up-
per bound for τtr,m. In the remainder of this article we
assume that the time scale τtr,m is of the same order of
magnitude as the demagnetization time. For instance, we
use τtr,m = 0.1 ps, corresponding to the typical order of
magnitude of the demagnetization time in ferromagnetic
transition metals.

To clarify the notation we give the continuity equation
for the magnon density and magnon energy density

∂nd
∂t

+
∂jm
∂x

= Isd, (12)

∂Ud
∂t

+
∂jQ,m
∂x

= Usd. (13)

Filling in Eqs. (4)-(5), Eqs. (8)-(9), and Eqs. (10)-(11),
gives the full expressions that are used in the calculations
presented in the later sections of this article. Now we
move on to the electronic system.

D. The continuity equations for the electronic
system

We assume that the out-of-equilibrium spin density δns
in the itinerant electron system can be parametrized by
δns = ν̃Fµ

F
s , where ν̃F = 2ν↑ν↓/(ν↑ + ν↓) is the spin-

averaged density of states evaluated at the Fermi energy
[55]. Expressed in terms of the spin accumulation, the
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Table I. Model coefficients expressed in terms of the magnon
transport time scale τtr,m, spin-wave stiffness A and the bulk
electron-magnon scattering rate coefficient Γ0 [43]. The in-
terfacial scattering rate coefficients can be found by the sub-
stitution Γ0 → g↑↓/(πs).

Symbol Expression

Cn,µ
(kBT0)1/2Γ(3/2)

4π2A3/2

(
Γ(1/2)

( ε0 − µm
kBT0

)−1/2

+ ζ(1/2)
)

Cn,T
(kBT0)1/2Γ(3/2)

4π2A3/2
(3/2)ζ(3/2)kB

CU,µ
(kBT0)3/2Γ(5/2)

4π2A3/2
ζ(3/2)

CU,T
(kBT0)3/2Γ(5/2)

4π2A3/2
(5/2)ζ(5/2)kB

σm
e2τtr,m(kBT0)3/2Γ(3/2)ζ(3/2)

2π2~2A1/2

L
τtr,m(kBT0)5/2(5/2)Γ(5/2)ζ(5/2)

3π2~2A1/2

κm
τtr,m(kBT0)5/2(7/2)Γ(7/2)ζ(7/2)

3π2~2A1/2
kB

gn,µ
Γ0(kBT0)3/2Γ(5/2)ζ(3/2)

4π2A3/2

gn,T
Γ0(kBT0)3/2Γ(5/2)(5/2)ζ(5/2)

4π2A3/2
kB

gU,µ
Γ0(kBT0)5/2Γ(7/2)ζ(5/2)

4π2A3/2

gU,T
Γ0(kBT0)5/2Γ(7/2)(7/2)ζ(7/2)

4π2A3/2
kB

continuity equations for the spin and energy in the fer-
romagnetic layer are given by [26, 36]

ν̃F
∂µF

s

∂t
+
∂jFs,e
∂x

, = − ν̃Fµ
F
s

τs,F
− 2Isd, (14)

Ce
∂TF

e

∂t
+
∂jFQ,e
∂x

= gep(T
F
p − TF

e )− Usd + P (t, x).(15)

The spin current jFs,e and electronic heat current jFQ,e are

given below. The term proportional to τ−1s,F, which is

introduced phenomenologically [26], represents the ad-
ditional spin-flip scattering processes. The latter in-
cludes Elliott-Yafet spin-flip scattering processes and is
the main spin dissipation channel for the combined elec-
tronic and magnonic system [26]. Ce corresponds to the
electron heat capacity, gep corresponds to the electron-
phonon coupling constant and TF

p corresponds to the
phonon temperature. The function P (t, x) represents
the laser-excitation profile, which will be further spec-
ified when the calculations are presented.

Imposing that there is no charge transport, the elec-
tronic spin current jFs,e and heat current jFQ,e can be ex-

pressed as [36, 49]

jFs,e = − σ̃
e2
∂µF

s

∂x
− σ̃

e2
Ss
∂TF

e

∂x
, (16)

jFQ,e = − σ̃

2e2
Πs
∂µF

s

∂x
− κe

∂TF
e

∂x
, (17)

where σ̃ = 2σ↑σ↓/(σ↑ + σ↓) is the spin-averaged electri-
cal conductivity, Ss is the spin-dependent Seebeck coef-
ficient [49], Πs is the spin-dependent Peltier coefficient
(Πs = T0Ss), and κe is the electronic heat conductivity.
The expressions for the dynamics of the electronic system
within the nonmagnetic layer can be found by replac-
ing all indices F → N and removing the spin-dependent
quantities (including Isd and Usd).

Finally, for the phonon system we take a highly simpli-
fied approach. For convenience, phonon heat transport
is not included. Furthermore, in the description for the
local phonon temperature a heat sink is included that dis-
sipates energy out of the phonon system within a time
scale of 20 ps. The latter is introduced to make sure the
system relaxes to its initial temperature on a reasonable
time scale. We stress that the exact description of the
phonon system does not play a direct role in the discus-
sions presented in this work.

E. Boundary conditions and system specifications

Finally, we have to specify the boundary conditions.
We define the ferromagnetic layer on the domain x ∈
[−dF, 0], where dF is the thickness of the ferromagnetic
layer. At the left end of the system we impose insulating
boundary conditions, setting all currents to zero.

jm(−dF) = jQ,m(−dF) = 0. (18)

jFs,e(−dF) = jFQ,e(−dF) = 0. (19)

Secondly, at the interface, which is positioned at x = 0,
the total spin current and total heat current should be
continuous.

jFs,e(0) + 2jm(0) = jNs,e(0), (20)

jFQ,e(0) + jQ,m(0) = jNQ,e(0), (21)

where the superscript N indicates the quantities in the
nonmagnetic layer. The factor 2 arises from the fact that
a magnon carries twice as much spin angular momentum
as an electron. We write the interfacial electronic spin
current and heat current as

jFs,e(0) =
g1
~

(µF
s − µN

s ) +
g1
~
Sis(T

F
e − TN

e ), (22)

jFQ,e(0) =
g1
~
T0S

i
s

2
(µF
s − µN

s ) + κie(T
F
e − TN

e ), (23)
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where the prefactor g1 is determined by the interfacial
electrical conductance [37] and all variables are evaluated
at x = 0. The interfacial electronic heat conductivity
is given by κie. The factor Sis corresponds to the spin-
dependent Seebeck coefficient of the interface.

The interfacial magnon current and magnon heat cur-
rent are determined by the interfacial electron-magnon
scattering rate [26, 46]. The linearized expressions for the
scattering rate can be found by replacing Γ0 → g↑↓/(πs)
in Eqs. (8)-(9) [26, 52, 53], where g↑↓ is the real part of
the spin-mixing conductance and s is the saturation spin
density. In other words, the interfacial magnon current
jm(0) and magnon heat current jQ,m(0) are expressed as

jm(0) =
gin,µ
~

(µm − µN
s ) +

gin,T
~

(Tm − TN
e ), (24)

jQ,m(0) =
giU,µ
~

(µm − µN
s ) +

giU,T
~

(Tm − TN
e ). (25)

The second term in Eq. (24), proportional to gin,T , cor-

responds to the interfacial spin Seebeck effect [56].
Finally, the nonmagnetic layer is defined on the do-

main x ∈ [0, dN], where dN is the thickness of the non-
magnetic layer. At the outer interface x = dN we impose
the boundary conditions

jNs,e(dN) =
g2
~
µN
s (dN), (26)

jNQ,e(dN) = 0. (27)

For convenience, we assume that this interface is a heat
insulator. In contrast, we allow the interface to be perme-
able for spins. The latter is parametrized by the constant
g2. In case g2 6= 0, spins are allowed to leak out of the
bilayer. It is assumed that the interface is connected to
an ideal spin sink, which corresponds to a vanishing µs
for x > dN and yields Eq. (26). The latter could for
example be realized by a secondary magnetic layer that
is perpendicularly oriented to the other magnetic layer,
as is the case in noncollinear magnetic heterostructures
[42].

In the following, we will start with discussing the situ-
ation where g2 = 0, corresponding to completely insulat-
ing boundary conditions. Later, we will investigate the
situation g2 6= 0 in more detail.

III. RESULTS

In this section we present the numerical solutions to the
equations discussed in the previous sections. Specifically,
Eqs. (12)-(13) are solved for the magnonic system in the
ferromagnetic layer, and Eqs. (14)-(15) are solved for the
electronic system throughout the complete heterostruc-
ture. Furthermore, the boundary conditions as discussed
in Section II E are imposed. First, we investigate the dy-
namics of the local thermodynamical parameters: tem-
peratures, chemical potentials and the magnetization.
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Figure 1. Laser-induced dynamics of the temperatures,
chemical potentials and magnetization within the Ni layer of
a Ni(5 nm)/Pt(3 nm) bilayer. The quantities are plotted as a
function of t after laser-pulse excitation at t = 0, and are spa-
tially averaged over the ferromagnetic (Ni) layer. (a) The elec-
tron temperature (blue) and magnon temperature (red). (b)
The spin accumulation (blue) and magnon chemical potential
(red). (c) The normalized magnetization. The solid green line
indicates the changes of the total spin density. The dashed
green line indicates the case that only changes in magnon den-
sity are taken into account. The thin gray line represents the
magnetization in case of an isolated Ni layer, in the absence
of a neighboring Pt layer.

A. Temperature, chemical potential and
magnetization dynamics

We start with calculating the laser-induced response of
a Ni(5 nm)/Pt(3 nm) bilayer with insulating boundary
conditions at the outer interfaces. Specifically, we first
investigate the dynamics of the local thermodynamical
parameters within the Ni layer. To model laser heating
we assume that the spatial and temporal profile of the
laser pulse can be approximated by

P (t, x) =
P0

σ
√
π

exp

[
−x+ dF

λ̃

]
exp

[
− t

2

σ2

]
, (28)

where P0 is the absorbed laser pulse energy density and σ
determines the pulse duration, which is set to 70 fs. The
laser pulse penetration depth is given by λ̃ and set to a
typical value of λ̃ = 15 nm. For simplicity, we assume
that the laser pulse absorption in the Ni and Pt layer is
equally efficient and we use P0 = 0.15 × 108 Jm−3. All
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other system parameters are given in Table A1 and A2.
Figures 1(a)-(c) show the response of the magnetic bi-

layer to laser heating. All plotted variables are spatially
averaged over the range of the ferromagnetic (Ni) layer.
Figure 1(a) shows the rapid increase of the electron tem-
perature TF

e and the response of the magnon temper-
ature Tm driven by electron-magnon scattering. This
transient behavior of the magnon temperature yields a
rapid increase in the magnon density. Figure 1(b) dis-
plays the laser-induced dynamics of the the spin accu-
mulation (blue) and magnon chemical potential (red).
The spin accumulation shows the typical bipolar behav-
ior, in analogy with previous calculations and experimen-
tal observations of the generated spin-polarized electrons
[35–37, 40]. The magnon chemical potential shows dif-
ferent behavior, it can be shown that this is related to
that the equilibration of the chemical potentials plays a
minor role and the magnon chemical potential opposes
the dynamics of the magnon temperature.

Finally, Fig. 1(c) shows the normalized magnetization
as a function of time. The magnetization requires special
attention. In this work, it is assumed that the magnetic
signal measured in the experiments is determined by the
total spin density. The magnetization is defined as

m =
s− 〈nd〉 − 〈δns〉/2

s
=
s− 〈ntot〉

s
, (29)

which is normalized with respect to the saturation spin
density s = S/a3, where S is the spin per atom (in
units of ~) and a the lattice constant. The bracket
notation indicates spatial averaging over the ferromag-
netic layer. The solid green curve in Fig. 1(c) shows
the typical ultrafast demagnetization behavior and criti-
cally depends on the spin-flip scattering rate τs,F. Since
electron-magnon scattering conserves the total spin an-
gular momentum, Elliott-Yafet spin-flip processes origi-
nating from spin-orbit coupling enable the demagnetiza-
tion of the combined spin system [24, 26, 57, 58]. In the
end, spin is efficiently transferred to the lattice, as was
recently demonstrated experimentally [29, 30]. We stress
that this interpretation of the magnetization remains a
point of discussion and its relation to the magnetic sig-
nal in the experiments strongly depends on the probing
method. Therefore, we have plotted the dynamics of the
magnon density 〈nd〉 separately, normalized with respect
to the saturation spin density s, indicated by the dashed
green line in Fig. 1(c). As will be discussed in the next
section, the used interpretation of the magnetization, as
being determined by the sum of the magnon density and
the itinerant electron spin density, is strongly supported
by the investigation of the relation between the interfa-
cial spin current and the demagnetization rate.

Finally, the thin gray line in Fig. 1(c) represents the
calculation of the magnetization in case the Pt layer is
absent and spin can not be transported out of the Ni
layer. The latter emphasizes that, although interfacial
spin transfer yields a significant increase of the demagne-
tization rate (as compared to the solid green curve), the
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Figure 2. Laser-induced spin transport in a
Ni(5 nm)/Pt(3 nm) bilayer with insulating boundary condi-
tions. (a) The interfacial spin current (blue) as a function
of time t after laser-pulse excitation at t = 0. The dashed
red line indicates the temporal derivative of the magnetiza-
tion, scaled by a prefactor that is fitted to the amplitude of
the spin current. (b) Distinct spin current contributions as
a function of spatial coordinate x, evaluated at t = 0.05 ps.
Blue indicates the electronic contribution, red the magnonic
contribution and green the total. (c) Schematic overview of
the system.

demagnetization is primarily driven by local spin dissi-
pation.

B. Spin transport in magnetic heterostructures

In this section, we calculate the spin current that arises
from laser exciting the magnetic heterostructure corre-
sponding to the results of Fig. 1. As given by Eq. (20),
we define the total interfacial spin current at x = 0
as jints = jFs,e(0) + 2jm(0), where jFs,e(0) is the spin
current carried by the conduction electrons and jm(0)
is the interfacial magnon current. We again focus on
a Ni(5 nm)/Pt(3 nm) bilayer with insulating boundary
conditions, as schematically depicted in Fig. 2(c).

The blue line in Fig. 2(a) shows the results from cal-
culating jints by numerically solving the set of equations
as presented in Section II. The material parameters and
description of the laser pulse are identical to the previous
section. The result clearly shows the bipolar behavior of
the interfacial spin current, yielding a transient oscilation
within the THz regime. The red dashed curve indicates
the temporal derivative of the magnetization, scaled by
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a prefactor that is fitted to the amplitude of the spin
current. The comparison indicates a qualitative agree-
ment with the experiments [41, 42], as a close relation
is expected between the spin current injected into the
nonmagnetic layer and the temporal derivative of mag-
netization. The visible phase shift is interesting in itself,
but smaller than the temporal resolution of 40 fs in the
experiment in Ref. [41].

Figure 2(b) shows the different contributions to the
spin current as a function of position x, calculated at
t = 0.05 ps. The figure suggests that for the used pa-
rameters magnon transport and spin-polarized electron
transport comparably contribute to the total spin cur-
rent within the bulk of the ferromagnet. One should
keep in mind that their ratio strongly depends on the
specific time instance and system parameters. The spin
transport by electrons is mainly driven by bulk electron-
magnon scattering, which generates negatively polarized
spins that are transferred towards the receiving layer via
spin diffusion. The negative magnon current in Fig. 2(b)
indicates thermal magnons being created at the interface
by electron-magnon scattering. Consequently, a flow of
magnons towards the negative x direction is generated.
The magnon current jm(0) is mainly determined by the
temperature difference Tm − TN

e at the interface, which
corresponds to the interfacial spin Seebeck effect [56]. In
contrast to our work, the latter is typically neglected in
the models for spin transport in metallic magnetic het-
erostructures [36, 37].

In the following section we investigate the relation be-
tween the interfacial spin current and the magnetization
analytically, and specifically address the role of (interfa-
cial) magnon transport.

C. Relation between the interfacial spin current
and demagnetization

In this section we analytically investigate the relation
between the interfacial spin current and the demagneti-
zation.

Integrating Eqs. (12) and (14) over the thickness of the
ferromagnetic layer and adding up the results yields an
expression for the interfacial spin current

jints (t) = −2dF
d〈ntot〉
dt

− dF
〈δns〉
τs,F

, (30)

where the brackets indicate spatial averaging over the fer-
romagnetic layer. Equation (30) simply follows from spin
angular momentum conservation, as the total spin den-
sity 〈ntot〉 can only be changed by either spin transport
or local spin dissipation. In the limit where the latter
is absent τs,F →∞, spin transport and demagnetization
couple trivially. For the systems of interest, where we
have a subpicosecond τs,F, a more cumbersome calcula-
tion is required to eliminate the local spin dissipation
term from Eq. (30).

In order to do this, we solve the spin diffusion equation
for the full heterostructure. In the frequency domain, we
write

∂2µF
s (ω, x)

∂x2
= κF(ω)2µF

s (ω, x) +
2τs,FIsd(ω, x)

ν̃Fl2s,F
, (31)

∂2µN
s (ω, x)

∂x2
= κN(ω)2µN

s (ω, x), (32)

where we use the parameter κF(ω) = l−1s,F
√
iωτs,F + 1 for

the ferromagnetic layer and κN(ω) = l−1s,N
√
iωτs,N + 1 for

the nonmagnetic layer [59]. ls,F and ls,N correspond to
the spin diffusion length of the ferromagnetic and non-
magnetic layer respectively. The boundary conditions
are identical to Section II E, but now expressed in the
frequency domain. For convenience, we neglect the spin-
dependent Seebeck effect (Ss and Sis) in this analytical
calculation. The goal is to express the Fourier transform
of the interfacial spin current

jints (ω) =
g1
~

(µs,F(ω, 0)− µs,N(ω, 0)) + 2jm(ω, 0), (33)

in terms of the electron-magnon scattering rates, specifi-
cally, the bulk contribution Isd(ω, x) and interfacial con-
tribution jm(ω, 0). The resulting expression is given by

jints (ω) = 2A(ω)jm(ω, 0)− 2dFB(ω)Isd(ω), (34)

where Isd(ω) is given by

Isd(ω) =

∫ 0

−dF
dx′

κF(ω) cosh[(dF + x′)κF(ω)]

sinh[dFκF(ω)]
Isd(ω, x

′).

(35)
Furthermore, the function A(ω) is given by

A(ω) =

1 +
~ν̃FdF
g1τs,F

(
l2s,FκF(ω)

dF

)
tanh[κF(ω)dF]

1 +
~ν̃FdF
g1τs,F

(
l2s,FκF(ω)

dF

)
tanh[κF(ω)dF]GN(ω)

,

(36)
which can deviate from one (compared to Eq. (34)), in-
dicating that the spin current driven by electron-magnon
scattering at the interface is modified by spins flowing
back into the ferromagnetic layer. Secondly, the bulk
contribution depends on the function B(ω)

B(ω) =

(
1

dFκF(ω)

)
tanh[κF(ω)dF]

1 +
~ν̃FdF
g1τs,F

(
l2s,FκF(ω)

dF

)
tanh[κF(ω)dF]GN(ω)

.

(37)
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Figure 3. Laser-induced spin transport in a
Ni(3.4 nm)/Cu(2.5 nm) bilayer for two types of boundary
conditions at x = dN. (a) The interfacial spin current (blue)
as a function of time t after laser-pulse excitation at t = 0,
for an interface at x = dN that is permeable for spins (g2 6= 0)
and connected to an ideal spin sink. The dashed red line indi-
cates the temporal derivative of the magnetization, scaled by
a prefactor that is fitted to the amplitude of the spin current.
(b) The interfacial spin current (blue) for insulating boundary
conditions (g2 = 0). The dashed red line indicates the sec-
ond derivative of the magnetization, scaled to have the same
amplitude as the spin current.

The function GN(ω) includes all the parameters that de-
scribe the properties of the nonmagnetic layer and the
interfaces

GN(ω) = 1 +

g1 +
g1g2τs,N

~ν̃Nl2s,NκN(ω)
tanh[κN(ω)dN]

g2 +
~ν̃Nl2s,NκN(ω)

τs,N
tanh[κN(ω)dN]

. (38)

What remains is simplifying Eq. (34) and expressing it in
terms of the total spin density 〈ntot(ω)〉 and thereby the
normalized magnetization m. For convenience, we first
focus on the situation that interfacial electron-magnon
scattering is absent.

1. Bulk electron-magnon scattering

Here, we set jm(ω, 0) → 0. Hence, the interfacial spin
current is given by the second term in Eq. (34). As is dis-
cussed in Appendix B , a relevant approximation is that
the function Isd(ω) closely resembles the spatial average
〈Isd(ω)〉. To eliminate 〈Isd(ω)〉 from Eq. (34), we make
use of the continuity equations for nd and δns spatially

averaged over the ferromagnetic layer. In the absence of
interfacial electron-magnon scattering this yields

iω〈nd(ω)〉 = 〈Isd(ω)〉, (39)

iω〈δns(ω)〉 = −2〈Isd(ω)〉 − 〈δns(ω)〉
τs,F

− jints (ω)

dF
. (40)

Using these equations the interfacial spin current can be
expressed in terms of the Fourier transform of the total
spin density

jints (ω) = −2dFB̃(ω)× (iω〈ntot(ω)〉), (41)

where the new function B̃(ω) is given by

B̃(ω) =
B(ω)(iωτs,F + 1)

iωτs,FB(ω) + 1
. (42)

The function B̃(ω) carries all information about the re-
lation between the temporal evolution of the magnetiza-
tion and the interfacial spin current. We investigate the
Taylor expansion

B̃(ω) = B(0) + iτω +O(ω2), (43)

where we introduced the time scale τ = −iB̃′(0). We fo-
cus on a Ni(3.4 nm)/Cu(2.5 nm) bilayer, which is similar
to the system used in the experiments of Ref. [42].

When the interface at x = dN is permeable for spins
(g2 6= 0) and connected to an ideal spin sink, we esti-
mate τg2 6=0 ∼ 5.1×10−16 s, when using the constants for
Ni/Cu as presented in Table A1 and A2. For frequencies
up to the THz regime it satisfies τg2 6=0 ω � B(0) ∼ 0.52,

implying that B̃(ω) is approximately independent of fre-
quency and given by B(0). Inverse Fourier transforming
Eq. (41) yields

jints (t) = −2dFB(0)× d〈ntot〉
dt

. (44)

By definition −(1/s)d〈ntot〉/dt = dm/dt. Using this sub-
stitution the interfacial spin current in terms of the nor-
malized magnetization m is

jints (t) = ε× (2dFs)
dm

dt
, (45)

where we defined the efficiency parameter ε = B(0). This
expression is identical to the relation as reported in Ref.
[42].

Contrasting behavior is found when we switch to g2 =
0, when all spins are blocked at x = dN. A critical role
is played by the function GN(ω), which under these con-
ditions shows GN(0) � 1 and dominates the frequency
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dependence of B̃(ω). Using that the Cu nonmagnetic
layer satisfies dN/ls,N � 1, it follows that

τg2=0 ≈ B(0)2
ν̃FdFτ

2
s,N

ν̃NdNτs,F
∼ 7.0 fs. (46)

In combination with B(0) ∼ 4×10−4, it typically satisfies
τg2=0 ω � B(0). Hence, in this specific case the first-

order term of B̃(ω) dominates. The spin current is now
given by

jints = τg2=0 × (2dFs)
d2m

dt2
. (47)

Rather than being proportional to dm/dt, the interfacial
spin current is now approximately proportional to the
second derivative of m. This behavior is a direct conse-
quence of the large spin-flip scattering time τs,N = 17 ps
of Cu [37]. In this case an efficient spin dissipation chan-
nel is absent, resulting in an altered response of the spin
accumulation in the nonmagnetic layer which affects the
temporal behavior of the interfacial spin transport.

The clear distinction between the dynamics predicted
by Eq. (45) and Eq. (47) for a Ni(3.4 nm)/Cu(2.5 nm) bi-
layer is depicted in Figs. 3(a)-(b). We here assumed that
the laser pulse is only absorbed by the Ni layer and used
P0 = 0.2 × 108 Jm−3. The absorption by the Cu layer
is neglected, since Cu has a relatively small imaginary
component of the dielectric constant [36]. All remaining
parameters are given in Table A1 and A2. Figure 3(a)
shows the correspondence between the spin current (blue
solid line) and the temporal derivative of the magneti-
zation (red dashed line) in the case that the bilayer is
connected to an ideal spin sink. There is no significant
phase shift present, which is in agreement with the exper-
iments in Ref. [42]. In Fig. 3(b) the spin sink is absent,
and a close relation between the spin current (blue solid
line) and the second derivative of the magnetization (red
dashed line) is found. Note that the scaling factors given
in the figure do not match the values calculated in the
text, as the calculations presented in the figures include
magnon transport, the spin-dependent Seebeck effect and
the full frequency dependence.

We observe that in case the receiving layer is an effi-
cient spin sink, or is connected to an efficient spin sink,
the interfacial spin current is directly proportional to the
temporal derivative of m, as described by the relation Eq.
(45). This is in agreement with the results of the previous
section because Pt has a very short spin-flip scattering
time of τs,N ∼ 0.02 ps [60, 61]. In the opposite case, if the
receiving material displays inefficient spin-flip scattering,
other relations may arise. We stress that the behavior
predicted by Eq. (47) strongly depends on the exact com-
ponents of the heterostructure. As shown by the calcula-
tion, a Ni/Cu bilayer is an ideal system to demonstrate
the latter limiting case, mainly because Cu has a very
large spin-flip scattering time scale and a Ni/Cu inter-
face has a relatively large electrical conductance [37]. To

demonstrate this experimentally, two methods can poten-
tially be used to probe the spin-current generation into
the nonmagnetic layer. First, probing the THz electro-
magnetic radiation that results from the inverse spin Hall
effect yields the temporal profile of the spin current [41].
However, due to the small spin Hall angle of Cu the sig-
nal is expected to be very small [62]. A second method
is using the magneto-optical Kerr effect. In that case,
the spin accumulation is probed instead of the spin cur-
rent [35]. For insulating boundary conditions, the spin
density that builds up in the nonmagnetic layer is given
by

〈δns(ω)〉N =
1

dN

jints (ω)

iω + τ−1s,N
. (48)

Here, the brackets indicate spatial averaging over the
nonmagnetic layer. For Cu, with the large τs,N, the inter-
facial spin current and the build-up spin density differ a
factor ∼ iω. Indicating that the optically probed signal
will replicate the first derivative of the magnetization.
Despite the difficulty of observing the behavior of Eq.
(47), the analysis emphasizes that by modifying the prop-
erties of the nonmagnetic material the bandwidth of the
spin current can be tuned [3, 60]. Although compositions
other than Ni/Cu might not yield the ideal comparison
as in Figs. 3(a)-(b), performing experiments for various
nonmagnetic materials and probing both the magnetiza-
tion and the spin current simultaneously, will yield valu-
able information.

In the analytical calculation presented in this section
we left out the interfacial electron-magnon scattering. In
the following section, we specfically address its contri-
bution to spin current injection and discuss the role of
magnon transport.

2. Interfacial electron-magnon scattering and magnon
transport

Magnon spin transport and magnon heat transport are
directly coupled, which makes them complex to investi-
gate analytically. Hence, this section presents a numer-
ical analysis of the role of interfacial electron-magnon
scattering and magnon transport.

The results are shown in Figs. 4(a)-(d), and corre-
spond to a Ni(3.4 nm)/Cu(2.5 nm) bilayer connected to
an ideal spin sink. The calculations include bulk electron-
magnon scattering, interfacial electron-magnon scatter-
ing and the spin-dependent Seebeck effect. The used
system parameters are presented in Table A1 and A2.
The phase diagram in Fig. 4(a) indicates the amplitude
of the spin current, determined by its maximum value,
as a function of the spin-mixing conductance g↑↓ and the
magnon transport time scale τtr,m. The spin-mixing con-
ductance, which is made dimensionless by dividing it by
a factor (πsdF), determines the strength of the interfacial
electron-magnon scattering and thereby the magnon spin
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Figure 4. Phase diagrams that characterize the interfacial spin current in a Ni(3.4 nm)/Cu(2.5 nm) bilayer connected to an
ideal spin sink. (a) Phase diagram of the amplitude of the interfacial spin current as a function of the spin-mixing conductance
g↑↓ (made dimensionless by dividing it by (πsdF)) and the magnon transport time scale τtr,m. (b)-(d) Phase diagrams as a
function of the spin-mixing conductance g↑↓ and the bulk electron-magnon scattering rate coefficient Γ0, where τtr,m = 0.1 ps
is set constant. (b) The amplitude of the interfacial spin current. The red star indicates the values used in Fig. 3(a). (c) The
amplitude of (−2edFs)dm/dt. (d) The efficiency parameter ε, as defined in Eq. (45).

current near the interface. The time scale τtr,m deter-
mines the effectiveness of magnon transport in the bulk.
In order to have interfacial electron-magnon scattering
significantly contribute to the total spin current, it is re-
quired to have efficient magnon transport in the bulk, as
indicated by the light region in Fig. 4(a).

Figure 4(b)-(d) compare the contributions by bulk and
interfacial electron-magnon scattering. These phase dia-
grams are plotted as a function of the spin-mixing con-
ductance and the bulk electron-magnon scattering rate
coefficient Γ0. Here, the magnon transport time scale is
set to τtr,m = 0.1 ps, similar to the calculations presented
in the previous sections. The color scheme in Fig. 4(b)
indicates the amplitude of the interfacial spin current.
The figure emphasizes that including interfacial electron-
magnon scattering boosts the amplitude of the spin cur-
rent, however, the significance of the increase depends on
the efficiency of the bulk electron-magnon scattering.

Figure 4(c) indicates the amplitude of dm/dt, given
in the same units as the spin current. Intuitively, the
demagnetization favours a simultaneously large interfa-
cial and bulk electron-magnon scattering rate, since both
contribute to the generation of thermal magnons. This
does not linearly translate to a maximized spin current,
as the relation between the spin current and demagne-
tization depends on which contribution dominates. The
color scheme in Fig. 4(d) indicates the efficiency ε, as de-
fined in Eq. (45). Keeping in mind the analytical calcula-
tion, the range of ε is approximately related to the values
of prefactors A(0) and B(0) (see Eqs. (36)-(37)). In case
only interfacial electron-magnon scattering is present this
yields ε ∼ A(0) ∼ 0.79, whereas for the pure bulk sce-
nario ε ∼ B(0) ∼ 0.52. A small deviation compared to
Fig. 4(d) arises as the numerical calculation includes the
spin-dependent Seebeck effect and the full frequency de-

pendence.

All calculations presented here imply that spin trans-
port by magnons, which is typically neglected in the
calculations of laser-induced spin transport in metallic
magnetic heterostructures [36, 37], is relevant to include
in the analyses [26]. Since magnon transport is driven
by electron-magnon scattering at the interface, the ratio
of Γ0 and g↑↓/(πsdF) plays a decissive role [26]. Fur-
thermore, constants that parametrize either bulk magnon
transport or spin-polarized electron transport are essen-
tial. Their coupled dynamics complexifies the character-
ization of bulk spin transport, including the modification
of the diffusion length scales [47]. On top of that, non-
magnetic system parameters that correspond to the ther-
mal proporties of the system do strongly affect the impor-
tance of magnon transport. For instance, the interfacial
magnon current is mainly determined by the tempera-
ture difference Tm − TN

e , which critically depends on the
thermal and optical proporties of the nonmagnetic layer.
Further theoretical work is required to chart the essential
dependencies on the properties of the heterostructure.

Hence, we state that the role of interfacial electron-
magnon scattering and, consequently, bulk magnon
transport can not be neglected a priori [26]. It may
play a significant role dependent on the specific system
components and properties. Nevertheless, bulk electron-
magnon scattering always remains essential, as ultrafast
demagnetization is observed in magnetic thin films re-
gardless of the presence of a neighbouring nonmagnetic
metallic layer [63].
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IV. CONCLUSION AND OUTLOOK

In conclusion, we modeled ultrafast demagnetiza-
tion and spin transport in rapidly heated magnetic
heterostructures, addressing the interplay of thermal
magnons and itinerant spins. Within this model, the
magnetization is determined by the total spin density
of the two populations and ultrafast demagnetization is
driven by the combination of electron-magnon scatter-
ing and additional spin-flip scattering processes originat-
ing from spin-orbit coupling. Secondly, electron-magnon
scattering is a driving force of nonlocal spin transfer,
for which we calculated the resulting spin transport by
magnons and spin-polarized electrons within a diffusive
description. It is shown that, in case the receiving ma-
terial is an efficient spin sink, the interfacial spin current
becomes directly proportional to the temporal deriva-
tive of the magnetization. Furthermore, we have dis-
cussed the role of interfacial electron-magnon scattering
and magnon transport, and showed that they cannot be
neglected a priori. However, their significance strongly
depends on the material properties of the full magnetic
heterostructure.

In this work we focused on ultrathin magnetic het-
erostructures. To explore the role of bulk tempera-
ture gradients and identify characteristic length scales,
a quantitative analysis over a larger range of thicknesses
is required. Secondly, it will become interesting to go
beyond the assumptions that the phononic system plays
a minor role and behaves as an ideal spin sink. As re-
cent experiments show that during the ultrafast demag-
netization spin is transferred to the lattice [29, 30], and
specifically circularly polarized phonons [30], it becomes
obvious that a more complete description of the phononic
system is needed. Moreover, it was already proposed that
a coupling between magnons and phonons should be in-
plemented within a three-temperature description [64].
Nevertheless, it is expected that the dominant physical
concepts are captured within the assumptions of the pre-
sented model.
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series expansion [45]

Lis(e
x) = Γ(1− s)(−x)s−1 +

∞∑
k=0

ζ(s− k)

k!
xk. (A2)

Since x remains small, we truncate this series for k ≥ 2,
which is the basis for the calculation of all coefficients
presented in Table I. As an example, we calculate the
magnon density from Eq. (1)

nd =
(kBTm)3/2

4π2A3/2
Γ(3/2)Li3/2

(
e(µ−ε0)/(kBTm)

)
. (A3)

Applying the expansion up to first order in
µm/(kBTm), ε0/(kBTm)� 1 we have

nd =
(kBTm)3/2

4π2A3/2
Γ(3/2)

[
Γ(−1/2)

(
ε0 − µm
kBTm

)1/2

(A4)

+ζ(3/2)− ζ(1/2)

(
ε0 − µm
kBTm

)]
.

If we now impose that we only have small changes of
the magnon temperature compared to room temperature,
(Tm − T0)/T0 � 1, and only collect the terms up to first
order in small parameters we find

nd =
(kBT0)3/2

4π2A3/2
Γ(3/2) (A5)[

Γ(−1/2)

(
ε0 − µm
kBT0

)1/2

+ ζ(3/2)

−ζ(1/2)

(
ε0 − µm
kBT0

)
+ (3/2)ζ(3/2)

(Tm − T0)

T0

]
.

Evaluatimg this expression at the maximum temperature
and chemical potential of the calculation in Sec. III A

Table A1. Parameters that characterize the magnonic sys-
tem in Ni.

symbol meaning estimate

T0 (K) ambient temperature 295
TC (K) [65] Curie temperature 628
τtr,m (ps) a magnon momentum relaxation time 0.1

A (meVÅ
2
) b spin-wave stiffness 400

a (nm) [66] lattice constant 0.35
S c Spin per atom (in units ~) 0.6× (1/2)
Γ0

d e-m scattering rate coefficient 2× 0.038
ε0 (meV) e magnon gap 0.05

a Discussed in the main text.
b Typical order of magnitude estimated by A ∼ 2kBTCSa

2.
c Estimated from atomic magnetic moment given in [19].
d Using relation Γ0 = 2α [52] and α of Ni [15].
e Typical order of magnitude from FMR frequency of ∼ 10 GHz.

(Fig. 1), it only differs approximately one per cent from
the exact value Eq. (A3).

Taking the temporal derivative of nd yields

∂nd
∂t

=
(kBT0)3/2

4π2A3/2
Γ(3/2) (A6)[(

Γ(1/2)

(
ε0 − µm
kBT0

)−1/2
+ ζ(1/2)

)
µ̇m
kBT0

+(3/2)ζ(3/2)
Ṫm
T0

]
,

which determines the coefficients Cn,µ and Cn,T , as de-
fined in the main text and given in Table I. When µm
approaches the magnon gap ε0, the first term in Cn,µ di-
verges, which originates from Bose-Einstein statistics. It
is essential to include this nonlinear term in Cn,µ as oth-
erwise we would find time traces of the magnon chemical
potential that may largely exceed the magnon gap.

For all remaining coefficients in Table I, the first
term in the expansion Eq. (A2) will only yield higher
order contributions. In that case the coefficients fol-
low equivalently from first-order Taylor expansion (the
second term in Eq. (A2)), where in the prefactors it
is used that for sufficiently small ε0 we approximate
Lis(exp(−ε0/(kBT0))) ∼ ζ(s). We stress that all expan-
sion methods we use here remain a rough estimate. In
order to retrieve valuable quantitative results from the
magnonic calculation it is essential to implement the full
polylogarithm.

Appendix B: Notes on the approximations in the
analytical calculation

In Section III C the bulk electron-magnon scattering rate,
which is implemented in the spin diffusion equation as a
source of spins, is simplified using the following consid-
erations. We express the source Isd(ω, x) in terms of a
cosine expansion

Isd(ω, x) =
Isd,0(ω)

2
+

∞∑
n=1

Isd,n(ω) cos
(nπx
dF

)
, (B1)

where the coefficients Isd,n(ω) are given by

Isd,n =
2

dF

∫ 0

−dF
dxIsd(ω, x) cos

(nπx
dF

)
. (B2)

Note that the zeroth mode corresponds to twice the
spatial average Isd,0(ω) = 2〈Isd(ω)〉. The higher-order
modes are a measure of the spatial inhomogeneity of the
source term. We want to express the function Isd(ω), as
given in Eq. (35), in terms of the coefficients Isd,n(ω).
By performing the spatial integration we find
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Table A2. Parameters for the electronic system of Ni, Pt and
Cu. Parameters that characterize the interface correspond to
Ni/Cu and Ni/Pt.

symbol Ni Pt Cu Ref.

γ (Jm−3K−2) 1077 721 100 [36, 37, 64]
Cp (106 Jm−3K−1) 3.6 2.85 3.45 [36, 64]
gep (106 Jm−3ps−1) 0.855 0.29 0.07 [36, 64]
2ν̃ (eV−1nm−3) a 272 137b 26 [37, 50, 60]
2σ̃ (106 Sm−1) a 7.1 6.6 39 [36, 37]
κe (Wm−1K−1) 50 50 300 [36, 37]
Ss (10−24 JK−1) c −0.3
g1 (1019 m−2) d 0.3 1.0 [36, 37]
g2 (1019 m−2) 1.0
κie (109 Wm−2K−1) e 10 40 [36, 37]
Sis (10−24 JK−1) f −0.3 −0.3
g↑↓ (1019 m−2) 0.3 1.0 [59, 67]
τs (ps) 0.1 0.02 17 [37, 60, 61]

a We assume that the spin-averaged quantities ν̃ and σ̃ are
approximately given by the (total) electrical quantity divided
by two.

b Calculated from the ratio of the conductivity and diffusion
coefficient in [60].

c Using that the Seebeck coefficient scales as (π2/3)kB(T0/TF ),
with Fermi temperature TF ∼ 104 K, the polarization Ps ∼ 0.2
and sign of the spin-dependent Seebeck effect [49].

d Estimated from the electrical conductance given for Ni/Cu in
[37] and [Co/Ni]/Pt in [36].

e Estimated from the electrical conductance and the
Wiedemann-Franz law [37].

f Assumed to be equal to the bulk value.

Isd(ω) = 〈Isd(ω)〉+

∞∑
n=1

Isd,n(ω)( nπ

dFκF(ω)

)2
+ 1

. (B3)

Hence, the n ≥ 1 modes of Isd(ω, x) are truncated by
the denominator. In combination with that the inhomo-
geneous modes remain relatively small compared to the
homogeneous mode, it turns out to be a relevant approx-
imation to neglect all the terms in the summation in Eq.
(B3).

Appendix C: System parameters

The system parameters that are used in the calculations
presented in the main text are summarized in Table A1
and Table A2. Table A1 shows the estimated parameters
that characterize the magnonic system in Ni. Table A2
presents the parameters of the electronic system in Ni,
Pt and Cu. Furthermore, it includes the parameters that
correspond to the interfaces.
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