
Modeling urban growth using a variable grid cellular automaton

Jasper van Vliet a,*, Roger White a,b, Suzana Dragicevic c

aResearch Institute for Knowledge Systems, P.O. Box 463, 6200 AL Maastricht, The Netherlands
bDepartment of Geography, Memorial University of Newfoundland, St. John’s, Canada A1B 3X9
c Spatial Analyses and Modeling Laboratory, Department of Geography, Simon Fraser University, Burnaby, Canada V5A 1S6

a r t i c l e i n f o

Article history:

Received 26 July 2007

Received in revised form 10 June 2008

Accepted 20 June 2008

Keywords:

Cellular automata

Variable grid

Urban growth models

Spatial dynamics

a b s t r a c t

Constrained cellular automata (CA) are frequently used for modeling land use change and urban growth.

In these models land use dynamics are generated by a set of cell state transition rules that incorporate a

neighborhood effect. Generally, neighborhoods are relatively small and therefore only a limited amount

of spatial information is included. In this study a variable grid CA is implemented to allow incorporation

of more spatial information in a computationally efficient way. This approach aggregates land uses at

greater distances, in accordance with a hierarchical concept of space. More remote areas are aggregated

into consecutively larger areas. Therefore the variable grid CA is capable of simulating regional as well as

local dynamics at the same time. The variable grid CA is used here to model urban growth in the Greater

Vancouver Regional District (GVRD) between 1996 and 2001. Calibration results are tested for goodness

of fit at the cellular level by means of the kappa statistic and for land use patterns by means of cluster size

analysis and radial analysis. Kappa results show that the model performs considerably better than a neu-

tral allocation model. Cluster and radial analysis indicate that the model is capable of producing realistic

urban growth patterns.

� 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Tobler’s first law of geography states that ‘‘Everything is related

to everything else, but near things are more related than distant

things” (Tobler, 1970). Translated to land use this implies that

the surroundings of a location are related to the land use at that

location, but close surroundings have a stronger influence than

more remote surroundings. The notion that land uses are spatially

related and that nearby land uses have a stronger relation than

land use at a greater distance was confirmed by empirical analysis

of neighborhood characteristics (Verburg, Nijs, Ritsema van Eck,

Visser, & Jong, 2004a; Verburg, Ritsema van Eck, Nijs, Dijst, & Schot,

2004b). This influence of neighboring land uses is strongly embed-

ded in cellular automata (CA) based land use models by their

neighborhood effect.

CA models are used in several ways to model land use changes

(Clarke, Hoppen, & Gaydos, 1997; White, Engelen, & Uljee, 1997;

Wu, 1998), where they are found to be particularly applicable to

simulate urban dynamics (Barredo, Demichelli, Lavalle, Kasanko,

& McCormick, 2004; White & Engelen, 1993). The latter is predom-

inantly so for the ability of CA to create complex patterns (Wol-

fram, 1984) that are not unlike urban patterns (Batty, 2005;

Batty & Xie, 1994). More recently, CA land use models have been

applied as tools to support land use planning and policy analysis

(Geertman & Stillwell, 2004) as well as to explore scenarios for fu-

ture development (Barredo et al., 2003; Engelen, White, & Nijs,

2003; Nijs, Niet, & Crommentuijn, 2004).

A CA essentially comprises the following elements: (1) a cell

space or lattice, (2) a finite set of cell states, (3) a definition of a

cell’s neighborhood, (4) a set of transition rules to compute a cell’s

state change and (5) time steps in which all cell states are simulta-

neously updated (White & Engelen, 2000). To make CA applicable

for geographical modeling, the strictly defined CA rules are fre-

quently loosened. These models are therefore referred to as relaxed

cellular automata models (Couclelis, 1997). In constrained CA

models, the total amount of area per land use is not a function of

the transition rules, but determined exogenously instead, while

the allocation of these land uses is computed by the CA (White

et al., 1997). For example in an urban growth model the total area

for residential land use can be derived from historic data or extrap-

olations thereof. This area demand is then imposed on the CA mod-

el that allocates a corresponding number of cells on the map, based

on the transition rules.

1.1. On a cell’s neighborhood

A cell’s neighborhood is the region that serves as an input to cal-

culate the neighborhood effect in the transition rules. This effect is a
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function of a cell’s own state and the state of the cells within its

neighborhood. In land use terms, this represents attraction or repul-

sion of neighboring land uses. Hence, the size of the neighborhood

determines the amount of land use information that is considered

in the neighborhood effect. Originally, in CA only directly and diag-

onally adjacent cells were included. In human induced land use

change however information at greater distances also influences

land use changes, although the effect typically decreases with

increasing distance. Hence larger neighborhood configurations are

used tomodel land use change and urban growth (White & Engelen,

1993). In current applications this size ranges up to an 8-cell radius,

enclosing 196 cells (Barredo et al., 2004; Engelen et al., 2003). Since

larger neighborhoods includemore land use information, they allow

for better models. The number of cells in a neighborhood is directly

related to the radius of the neighborhood. Therefore, increasing this

radius would include more land use information. However, the

required computation time would increase dramatically, as the

number of cell-to-cell relations grow with the square of the radius.

At the same time, this approach would use spatial information at

larger distances at a higher level of detail then required.

Still, intuitively, more distant areas also influence land use

change (Andersson, Lindgren, Rasmussen, & White, 2002a). This

notion that information can travel over greater distances and thus

have influence further away than just adjacent areas is well estab-

lished in Hägerstrand’s innovation diffusion (1967). To incorporate

effects operating over larger distances, it has been necessary to

combine two or more models that operate on different spatial lev-

els. In these integrated models, a gravity based regional model cal-

culates regional demands for land uses and a constrained CA model

then allocates these demands on the map (White & Engelen, 2000).

To overcome this problem, a more complete hierarchical conceptu-

alization of space was introduced in Andersson, Rasmussen, and

White (2002b). The assumption is that humans intuitively use a

similar indexation to interpret and divide space: A city has several

parts, each part consists of several blocks and every block again has

a number of houses. The closer a feature is, the more in detail we

think of it. Close surroundings, like neighboring houses, are of

prime importance in spatial decisions. The more remote environ-

ment is considered with respect to its place in a spatial hierarchy:

the next block is less important then immediate adjacent houses,

but more important than the other side of town (Andersson et

al., 2002a). In analogy to this hierarchical notion of space, cells at

a greater distance can be aggregated to larger areas, while detailed

information is kept for areas close by. This aggregation to area

averages of land uses considerably reduces the number of spatial

relations and thus the required computation time (White, 2005).

Consequently, spatial information over much larger distances can

be incorporated in the neighborhood effect and interregional ef-

fects need no longer be calculated in a separate model.

The variable grid CA is an implementation of this concept in a

CA environment that allows incorporating all available land use

information when calculating an individual cell’s propensity to

change. This is done by enlarging the neighborhood to include cells

at all distances by using a hierarchical representation of space in

the neighborhood definition. Specifically, this method uses a vari-

able grid to aggregate more remote areas to mean field approxima-

tions (White, 2005). More distant cells are aggregated into

increasingly bigger fields. This limits the number of spatial rela-

tions to be computed while nevertheless incorporating the maxi-

mum amount of land use information. Thus the model

incorporates long distant relations as well as local effects. In this

study the variable grid CA is applied to simulate urban growth in

the Metro Vancouver area (former Greater Vancouver Regional Dis-

trict – GVRD). Both its applicability to simulate actual urban

growth and its ability to simulate regional dynamics were tested

with this application.

Moreover, the variable grid as presented in White (2005) intro-

duces levels of activity for land uses. In the present application

these are not incorporated and therefore activities are not consid-

ered in this text.

2. The variable grid cellular automata model

For this study the variable grid neighborhood is implemented in

a constrained CA model. Hence the demand per land use class is

defined exogenously; for every year the demand for constrained

land use classes is defined in terms of a number of cells for the

whole area (White et al., 1997). The allocation of these cells is

determined by the potential of each cell for all land use classes

as computed by the CA transition rules and using the variable grid

neighborhood configuration. Land uses are assigned to cells with

the highest potential, until the demand for this land use is met.

Potentials for each cell and for each constrained land use class

are calculated as follows (White & Engelen, 2000):

Pil ¼ v � Ail � Sil � Zil � Nil;

where Pil is the potential for cell i and land use type l; m is a stochas-

tic perturbation term equal to 1 + (�log(random))a, where a is a sca-

leable parameter and random is a randomly drawn number from a

uniform distribution between 0 and 1; Ail is the accessibility of cell

i for land use l to transport networks; Sil is the suitability of cell i for

land use l; Zil is the zoning status of cell i for land use l; and Nil is the

neighborhood effect for cell i for land use l as computed with the

variable grid method as explained below. Calculation of variables

other than the neighborhood effect is discussed more fully in White

and Engelen (2000).

The variable grid CA was implemented using the Geonamica

spatial modeling framework. This modeling framework (without

the variable grid) has been applied successfully in land use change

models, for example the Environment Explorer (Engelen et al.,

2003) and the MOLAND project (Barredo, Lavalle, Demichelli, Ka-

sanko, & McCormick, 2003b), and in integrated spatial models,

for example MedAction (van Delden, Luja, & Engelen, 2007).

2.1. Definition of the cell neighborhood effect

The basic lattice with the highest resolution is referred to as the

level 0 grid. At this level, every cell has only one state that repre-

sents its actual land use, formalized as

C0
kðxÞ ¼2 f0;1g;

where C0
kðxÞ is 1 if land use k is present at location x and 0 other-

wise. Now each successive level (L) then contains (32)L level 0 cells.

Thus level 1 cells are an aggregation of 32 = 9 level 0 cells and a level

2 cell of (32)2 = 81. As a result, higher level cells are represented

with cell counts of level 0 land uses instead of having one single

state, and CL
kðxÞ is the cell count of land use class k in a square of

32L cells centered at x. Each level 0 cell has eight adjacent cells, 4

rook adjacent and 4 bishop adjacent. Around this level 0 neighbor-

hood there are eight level 1 aggregated cells, which are again sur-

rounded by eight level 2 cells, etc. More generally every level L

contains four rook adjacent cells Drook
i ðLÞ ¼ fði; iþ 3LÞ; ðiþ 3L

; iÞ;
ði; i� 3LÞ; ði� 3L

; iÞg and four bishop adjacent cells Dbishop
i ðLÞ ¼

fðiþ 3L
; iþ 3LÞ; ðiþ 3L

; i� 3LÞ; ði� 3L
; iþ 3LÞ; ði� 3L

; i� 3LÞg. This

neighborhood template, as shown in Fig. 1, is relative to each indi-

vidual cell and therefore moves cell by cell over the entire grid. Each

aggregated cell holds cell counts for all land uses l; k 2 f1;2; . . . ;

. . . ;mg ¼ K , where K is the set of all possible land uses states.

Influence of land use is represented by a weight which repre-

sents the attraction or repulsion from one land use to another as

a function of the distance. Since rook adjacent cells are closer than

36 J. van Vliet et al. / Computers, Environment and Urban Systems 33 (2009) 35–43



bishop adjacent cells, this requires two discrete weight values for

each consecutive aggregation level. Since the variable grid incorpo-

rates the whole area in the neighborhood, the neighborhood effect

is the cumulative effect of all weighted cell-to-cell land use rela-

tions in all consecutive levels of aggregation

Nil ¼
X

L

X

x2Drook
i

ðLÞ

X

k2K
wlkð3LÞ �CL

kðxÞþ
X

x2Dbishop

i
ðLÞ

X

k2K
wlkð

ffiffiffiffiffi

2�
p

3LÞ �CL
kðxÞ

2

6

4

3

7

5
;

where Nil is the neighborhood effect for cell i for land use l, wlk (d) is

the weight parameter representing the attraction or repulsion from

land use k on land use l at distance d and CL
kðxÞ is the number of level

0 cells with land use k aggregated in the cell centered at x. Distance

d is measured from the centre of cell i to the centre of each aggre-

gated cell, x.

3. A case study on the Greater Vancouver Regional District

The Greater Vancouver Regional District is a highly urbanized

and rapidly growing area located in the Lower Mainland of British

Columbia, Canada. In the last century population increased from a

little over 230,000 in 1921 to almost 2,000,000 in 2001 (Fig. 2). Pro-

jections in the near future show no change in this trend, and pop-

ulation is expected to grow almost linearly to around 2,900,000 in

2031 (BC STATS, 2006). At the same time space for urban expan-

sion is scarce. Greater Vancouver is surrounded by the sea to the

west, the United States to the south and mountains to the north.

The land that is suitable for urban land use is mainly protected

and used for agriculture and natural areas. Hence, to prevent urban

sprawl and protect both agricultural and natural areas, the govern-

ment aims at concentration of population and restricted growth.

Formally this is implemented in the Livable Region Strategic Plan

(GVRD, 1999).

This plan defines four aims for a sustainable growth strategy:

(1) Protect the Green Zone: The Green Zone protects Greater Van-

couver’s natural assets, including major parks, watersheds, eco-

logically important areas and resource lands such as farmland.

It also establishes a long-term growth boundary. (2) Build com-

plete communities: The plan supports the public’s desire for com-

munities with a wider range of opportunities for day-to-day life.

Focused on regional and municipal town centers, more complete

GVRD population growth

0

500

1000

1500

2000

2500

3000

3500

1900 1920 1940 1960 1980 2000 2020 2040

Year

P
o

p
u

la
ti

o
n

 (
in

 t
h

o
u

s
a
n

d
s
)

Fig. 2. Historic and projected population numbers in the greater vancouver regional district (GVRD, 1999).

Fig. 1. Three aggregation levels relative to the central cell in the neighborhood. Numbers characterize different land use types. The vector represents the cell counts of level 0

cells per land use type as assigned to the central point of the aggregated level 2 cells.
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communities would result in more jobs closer to where people

live and accessible by transit, shops and services near home,

and a wider choice of housing types. (3) Achieve a compact

metropolitan region: The plan avoids widely dispersed develop-

ment and accommodates a significant proportion of population

growth within the ‘‘growth concentration area” in the central part

of the region. (4) Increase transportation choice: The plan sup-

ports the increased use of transit, walking and cycling by mini-

Fig. 3. GVRD land use maps representing (a) the 1996 actual land use, (b) the 2001 actual land use, (c) a simulation result and (d) a random reference result.
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mizing the need to travel and by managing transportation supply

and demand.

3.1. Datasets

The GVRD area covers 2820 km2. Raster data layers are repre-

sented on a grid of 760 by 635 cells and have a 100 m spatial

resolution. Land use data was made available from the Greater

Vancouver Regional District for the years 1996 and 2001. Hence

land use change was simulated for this period, using time steps

of one year. Overall land use change, in terms of number of cells,

was derived from the 1996 and 2001 land use data and used as

an exogenous constraint to the model. Land use maps were clas-

sified in 14 classes in 1996 and 15 classes in 2001. The 14 classes

were identical in both maps, which made comparison feasible.

The one new class in 2001 is combined residential and commer-

cial land use and is reclassified as commercial. For use in the

model, land use was reclassified to seven new classes: (1) Agri-

culture, (2) Forest and Protected Nature, (3) Open and Undeveloped,

(4) Commercial and Industry, (5) Residential, (6) Extractive Industry

and (7) Water. Of these only (4) and (5) are truly active classes.

Their total number is constrained exogenously, but their alloca-

tion is completely dependent on the potential as computed with

the transition rules. Effectively, at each time step all cells in

these classes are allocated again. However, the inertia effect re-

sults in only a few actual changes, mainly the increase in these

classes. Classes (1), (2) and (3) represent passive land uses, they

can only change as a result of change in active classes. Finally,

classes (6) and (7) are fixed; they cannot change. However the

presence of fixed land uses can influence the allocation of active

land uses.

Additional data is used to derive accessibility information, a

suitability map and a zoning map. Accessibility is computed in

the model as a function of the Euclidean distance to the nearest cell

that contains a transport network. Therefore, three transport net-

works are selected: skytrain, limited access highways and major

roads. Information on transport networks was obtained from

Greater Vancouver Transportation Authority (TransLink) in BC,

Canada. To represent the physical suitability for urban land uses,

a slope map is derived from a digital elevation model and aggre-

gated to the appropriate cell size. The Digital elevation model

was provided by the Greater Vancouver Regional District. Finally

a zoning map is created to represent the restrictions on the devel-

opment of residential and commercial and industrial land use in cer-

tain areas. This map reflects the GVRD Green Zone policy to

preserve natural and agricultural areas (GVRD, 1999).

4. Model calibration and results

Calibration results are derived from properties of the simulated

land use maps. Three different aspects of the output maps were

measured. These are the goodness of fit on a pixel basis, the capa-

bility to produce realistic urban patterns, and the ability to model

regional interactions. In the assessment, the simulation results

were compared to results from a reference simulation model. A

constrained random allocation model was used to create these ref-

erence maps. This model computes the amount of actual land use

change between two land use maps and allocates this change ran-

domly but with minimal change on the base map, in this case the

1996 land use map. As a result, the randommap will have the same

land use frequency distribution as the actual 2001 land use map

(Hagen-Zanker & Lajoie, 2008).

Generation of both the model results and the reference results

involves a random term. Therefore five model runs and five refer-

ence results were obtained to assess the quality. Maps a, b, c and d

in Fig. 3 represent the 1996 land use map, the 2001 land use map, a

simulation result and a random reference map.

4.1. Goodness of fit

Accuracy of simulation results on a pixel by pixel basis was as-

sessed using the Kappa statistic. This statistic measures the good-

ness of fit between two nominal datasets, corrected for accuracy

by chance (Bishop, Fienberg, & Holland, 1975). Since land use

maps are categorical maps, Kappa can be used to assess the good-

ness of fit between the simulation result and the real land use

map at the end of the simulation period (Foody, 2002; Pontius,

2002). Because the emphasis of this study is on simulating

growth in urban land use classes, i.e. commercial and industrial

and residential, statistics are also derived for these land uses

separately.

Kappa values range from 1 to �1, where positive values indicate

a better agreement than expected by chance, and negative values a

worse agreement. However, the absolute value of Kappa is not an

appropriate measure for model results since it is highly dependent

on the number of cells that change. A simulation with very few

changing pixels will result in high Kappa values, even if all newly

allocated pixels are placed incorrectly. Therefore this statistic can

only be used to compare different results from the same case

study. Hence Kappa values are considered here relative to the re-

sults of the random model.

A drawback of using Kappa statistics for model results is

that slight displacements are classified as incorrect, whereas

from a modeler’s perspective they can be considered almost

correct. For example new residential land use that is allocated

just one cell away from the actual location of this new residen-

tial area can be regarded as a good result. Therefore a fuzzy

Kappa was used (Hagen, 2003; Hagen-Zanker, Straatman, & Ul-

jee, 2005). This statistic uses a linear distance decay function to

account for slightly displaced pixels. Fuzzy Kappa was com-

puted using a slope of 0.2 and a radius of 5 cells. I.e. a residen-

tial cell that is dislocated exactly 2 pixels, would count as 0.6

correct.

Model results are presented in Table 1. Although a random per-

turbation term is necessary to obtain realistic results, and although

simulation results differ significantly from each other, Table 1 indi-

cates that simulation results are similar in terms of goodness of fit.

Both Kappa and Fuzzy Kappa scores indicate that the model per-

forms considerably better than the random allocation model. The

relatively low Kappa scores for commercial and industry are

caused by the appearance of a few large patches of this particular

land use between 1996 and 2001. These are the results of one sin-

gle planning decision and as such they cannot be simulated using a

bottom up technique like a CA.

Table 1

Kappa and fuzzy Kappa results for the calibration period (1996–2001)

Kappa Fuzzy Kappa

Overall Residential Comm & Ind overall

Simulation 1 0.866 0.871 0.750 0.776

Simulation 2 0.866 0.871 0.752 0.776

Simulation 3 0.866 0.871 0.750 0.776

Simulation 4 0.866 0.872 0.751 0.777

Simulation 5 0.866 0.871 0.752 0.776

Random allocation 1 0.841 0.846 0.738 0.733

Random allocation 2 0.841 0.846 0.738 0.732

Random allocation 3 0.841 0.846 0.738 0.731

Random allocation 4 0.841 0.846 0.737 0.732

Random allocation 5 0.841 0.846 0.738 0.731

Scores are derived by comparing the simulation result map and one of the random

reference maps with the actual 2001 land use map.
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4.2. Pattern analysis

Since land use models often use randomness to simulate com-

plex processes, some authors argue that accuracy assessment is

not the appropriate way at all to measure simulation results (Par-

ker & Meretsky, 2004; Power, Simms, & White, 2000; Remmel &

Csillag, 2003). As bifurcation and emergence occur in complex pro-

cesses like land use dynamics (Batty, 2005), results are generally

path dependent and the same model can generate different out-

comes (Brown, Page, Riolo, Zellner, & Rand, 2005). Although such

outcomes do not match the actual land use change, they may still

represent realistic dynamics thus indicating a proper underlying

model. Pattern based measurements are a good alternative to as-

sess a model’s quality. In recent applications several metrics are

used to measure maps, based on patch characteristics (Riitters et

al., 1995), polygon matching (Power et al., 2000), or fractal analysis

(Frankhauser, 1994, 2004). In this research, two pattern analyses

are used to assess simulation results, both associated with fractal

properties of urban systems (Batty & Longley, 1994); cluster anal-

ysis and radial analysis (White, 2006).

Cluster analysis measures the relation between the size and fre-

quency of urban land use clusters. On a logarithmic scale, this rela-

tionship is linear. Hence it can be used to calibrate and validate

urban growth models. Radial analysis investigates scaling proper-

ties by measuring cumulative area (pixels) against radius on a log-

arithmic scale. Processes like urban growth that evolve outward

from a nucleating centre, show such properties. On a logarithmic

scale a linear relation can be observed, with a slope of 1.90 to

1.95 for dense urban centers, and approximately 1.0 in the outer

urbanizing zone. A clear bend appears in the plot at the transition

points between the urbanized and urbanizing points (White &

Engelen, 1993). Because the amount of change over the calibration

period is not very large, the simulations were extended to 20 years

using the same rate of change. This generates enough spatial

dynamics to investigate whether sufficient new clusters of urban

land use appear and whether the urban area indeed maintains its

characteristic radial dimensions. In this research, cluster analysis

was performed on residential land use only. Radial analysis was

computed for residential and commercial and industrial land use

together.

Results of the cluster analysis for one simulation are presented

in Fig. 4. Although the other four simulation results show similar

results they are not shown for reasons of visibility. To define clus-

ters, only rook adjacency was considered here. Clusters are aggre-

gated in size classes, and frequencies are of all clusters within the

boundaries of that class. The graph indicates that in general the

model preserves the characteristic relationship between the clus-

ter size and the frequency. However, from the graph it becomes

clear that the simulation generates more small clusters than ap-

pear in reality. An explanation for this is the strict planning policy

in the GVRD, which prevents these scattered settlements. In reality

therefore most newly developed areas are larger patches from the

beginning. This is hard to simulate in a CA environment. At the

other end of the range of class sizes, an uneven distribution is vis-

ible. This uneven distribution is an effect of the local physical con-

straints. The shape of land patches between the rivers causes some

urban patches not to grow any further.

Radial analysis results are presented in Fig. 5. For reasons of vis-

ibility, only one simulation result is shown, but the other four re-

sults show similar figures. Since urban land use is a combination

of commercial and industrial and residential land uses, this analysis

was performed on both land use classes together. The centre for

this radial analysis was chosen just southeast of the downtown

area, where Vancouver was founded originally. In the graphs for

the 1996 land use map and the simulation result, the bend be-

tween the inner core and the outer zones is clearly visible. The dif-

ference between both graphs shows that new urban land use is

mainly allocated at the fringes of the city.

4.3. Regional distributions of land uses

To assess regional land use distributions, the GVRD area was di-

vided in municipalities. For all municipalities the modeled growth

or decline in Commercial and Industrial and Residential land use was

compared to the actual change per municipality. The root mean

square error (RMSE) is used as a summary statistic for the whole

cluster analysis

0

0.5

1

1.5

2

2.5

0 0.5 1 1.5 2.5 3 3.5 4 4.5 5

log (cells)

lo
g

 (
n

u
m

b
e
r)

1996

2021

2

Fig. 4. Cluster size frequency analysis of the 1996 land use map and the result of the simulation extended to 2021. The analysis was performed on clusters with residential

land use.
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map. Results for five simulation runs are presented in Table 2. In

this table, model results are compared to the five results from

the random allocation model as well as a constant share model.

For the constant share model an increase in residential and com-

mercial and industrial area was distributed over municipalities, pro-

portionally to the existing amount of land use in these classes. This

increase was equal to the overall increase in these land use classes.

These results indicate that the model performs considerably better

than both the random allocation model and the constant share

model. Hence this indicates that it is capable of modeling regional

interactions.

4.4. Model behavior for long range interactions

Model behavior, and specifically sensitivity analysis, is often ne-

glected in land use change models (Kocabas & Dragicevic, 2006). In

this study only a qualitative investigation of model behavior was

performed to assess the effect of land use interactions over a great-

er distance. To do so, a very simple scenario was created where

only the amount of residential land use increases. This residential

land use is allocated using a self-attraction over a limited range,

decreasing with the distance. This range of influence roughly coin-

cides with the eight cell radius. All other possible land use interac-

tions are set to zero. No suitability maps, zoning restrictions or

transportation network were used in this scenario, only the ran-

dom perturbation term was included. This model basically creates

urban growth at the edge of existing urban areas, which is what oc-

curs in reality (Batty & Longley, 1994).

Then to assess the effect of long distance land use interaction,

two alternative scenarios were created, indicating different prefer-

ences for new residential areas. The first includes a long range
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Fig. 5. Radial analysis of the 1996 land use map and the result of the extended simulation. Analysis was performed on a combination of commercial and industrial and

residential cells. The boundary between the inner core and the outer zone of the urban area is visible as the bend at x = 2.

Table 2

RMSE scores for the simulation and two reference models for both residential and

commercial and industrial land uses

RMSE Residential Commercial & Industry

Simulation 1 127 80

Simulation 2 127 80

Simulation 3 128 80

Simulation 4 128 79

Simulation 5 128 80

Constant Share 371 170

Random allocation 1 364 144

Random allocation 2 364 137

Random allocation 3 365 139

Random allocation 4 360 138

Random allocation 5 363 137

Results are obtained by comparing the number of cells per municipality for the

simulation and reference results with the real 2001 land use map. Results of the

random allocation model are the average over five results.

Table 3

Parameter values for the neighborhood functions in three scenarios for land use change

Level 0 1 2 3 4 5 6 7 8

Distance to centre 0 1 3 9 27 81 243 729 2187

From On

Standard Residential Residential 1000 10 0 0 0 0 0 0 0

Scenario 1 Residential Residential 10 10 0 0 0 0 0 0 0

Water Residential 0 0 0.005 0.01 0.005 0 0 0 0

Scenario 2 Residential Residential 10 10 0 0 0 0 0 0 0

Forest Residential 0 0 0.005 0.01 0.005 0 0 0 0

Values represent the attraction of a specific land use classes on residential land use as a function of the distance for the respective scenarios. Weight values are defined for

discrete distance values. Weights for diagonally adjacent cells are linear interpolations.
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attraction from forest and natural areas to residential land use. The

second includes a similar relation from water to residential land

use. Weight functions used for all three scenarios are presented

in Table 3. All three simulations were generated for a period of five

years, similar to the simulations in the calibrated model, and result

maps were compared with each other. Fig. 6 presents the location

of residential land use under the different scenarios. These result

maps indicate that the long range interactions make a significant

difference in the allocation of new residential cells.

5. Discussions and conclusion

In this study an implementation of a variable grid CA was as-

sessed for its ability to model urban dynamics and long distance

land use interactions in particular. Model results indicate that

the variable grid CA approach is capable of simulating historic ur-

ban growth and that it produces realistic urban patterns. Moreover,

the effect of long distance interactions is significant in the alloca-

tion of land use change, and simulation results improved consider-

Fig. 6. Location of new urban land use for (a) the standard scenario, (b) the attraction to forest and protected nature scenario and (c) the attraction to water scenario (c). Black

represents newly allocated residential land use and grey represents already existing residential land use. Water surfaces are depicted for spatial reference.
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ably when they were used in the neighborhood effect. This indi-

cates a subdivision in the allocation procedure. Long distance inter-

actions determine in which part of the area new developments

take place, while the effects at short range determine the exact

allocation of pixels on the land use maps. However, errors are

not distributed evenly over the municipalities. Because of strict

zoning maps and a lack of transportation networks in specific

areas, the model underestimates urban growth in those areas. Still

these long range interactions can be interpreted as an additional

effect in land use allocation. First, land uses for the GVRD are deter-

mined, exogenously. Then the long range effects determine in

which part of the city people will live, while the short range inter-

actions determine the exact allocation within that part.

Land use data limited the simulation period for this application

to the 5 years between 1996 and 2001. This allows for a calibration,

but not for independent validation. Since more recent land use data

for the GVRD was unavailable, extrapolation of the simulation

could not be tested against real world data. Moreover, simulations

over longer periods, with more land cover to change, might give a

stronger confirmation of the variable grid concept and therefore a

stronger argument for using more remote land use information in

dynamic spatial models.
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