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Abstracts 

The main body of this thesis deals with three related concepts pertaining 

to vaccination strategies for childhood infectious disease. Chapter 2 deals 

with the implications of reversion in tlw Oral Polio Vaccine on global po

lio eradication programs. Chapter 3 explores the phenomenon of contact or 

secondary vaccination in the use of live-attenuated virus vaccines. Chapter 

4 f'xplores the importance of demograplii<" stochasticity in pulse vaccination 

campaigns. largely focusing on measles drnamics. Abstracts for each chapter 

are given below. 

Chapter 2 Abstract 

Poliomyelitis vaccination via live Oral Polio Vaccine (OPV) suffers from the 

inherent problem of reversion: the vaccine may, upon replication in the 

human gut, mutate back to virulence a11d transmissibility resulting in cir

culating vaccine derived polio viruses (cVDPVs). We formulate a general 

mathematical model to assess the impact of cVDPVs on prospects for polio 

eradication. We find that for OPV covcraµ;e levels below a certain threshold. 

cVDPVs have a small impact in comparison to the expected endemic level 

of the disease in the absence of reversion. Above this threshold, the model 

predicts a small but significant endemic level of the disease, even where stan

dard models predict eradication. In ligltt of this, we consider and analyze 

three alternative eradication strategies involving a transition from continu

ous OPV vaccination to either continuous Inactivated Polio Vaccine (IPV), 

pulsed OPV vaccination. or a one-time IPV pulse vaccination. Stochastic 

modrling shows continuous IPV vaccination is effective at achieving eradi

catio11 for moderate coverage levels, while pulsed OPV is effective if higher 

coverage levels are maintained. The one-t.i111e pulse IPV method may also be 

a viable strategy, especially in terms oft.he number of vaccinations required 

and time to eradication, provided that a ;-;ufficiently large pulse is practically 

feasible. More investigation is needed rq?;arding the frequency of revertant 

virus infection resulting directly from vaccination, the ability of IPV to in

duce gut immunity, and the potential role of spatial transmission dynamics 

in eradication efforts. 
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Chapter 3 Abstract 

Viruses contained in live-attenuated vims vaccines (LAVY) can be trans

mitted between individuals, resulting in socon<lary or contact vaccinations. 

This fact has been exploited successfully i11 the use of the Oral Polio Vaccine 

(OPV) to better control wild polio virust'S. In this work we analyze general 

LAVY vaccination models for infections that confer lifelong immunity. We 

consider both standard (continuous) vacc:i nation strategies and pulse vacci

nation programs (where mass vaccination is carried out at regular intervals). 

For continuous vaccination, we provide <t complete global analysis of a very 

general compartmental ordinary differenti<-tl equation LAVY model. vVe find 

that the threshold vaccination level required for eradication of wild virus 

depends on the basic reproduction numbers of both the wild and vaccine 

viruses, but is otherwise independent of tl1c distributions of the durations in 

each of the sequence of stages of disease progression (e.g .. latent, infectious, 

etc.). Furthermore, even for vaccine viruses with reproduction numbers be

low one. which would naturally fade frol!l the population upon cessation of 

vaccination, there can be a significant rcdnc:tion in the threshold vaccination 

level. The dependence of the threshold vc-1ccination level on the virus re

production numbers largely generalizes to the pulse vaccination model. For 

shorter pulsing periods there is negligible difference in threshold vaccination 

level as compared to continuous vaccirrn1 ion campaigns. Thus, we conclude 

that current policy in many countries to employ annual pulsed OPV vacci

nation does not significantly diminish tlw benefits of contact vaccination. 

Chapter 4 Abstract 

In the last two decades, many countries lPtve implemented pulse vaccination 

for infectious diseases (mass vaccination campaigns repeated annually or at 

other regular intervals). Based on deterministic mathematical models, pre

vious work has shown that the total expected cost of control or eradication 

(measured by the number of vaccine doses required) is identical for pulse 

vaccination (with any pulse interval) and for traditional, continuous vaccina

tion. We reconsider this problem using st.oc:hastic epidemic models (both by 

direct simulation and by employing a rno111ent closure approximation). vVe 

focus on measles and show that demogrnpliic stochasticity has a large impact 

on the relative success of pulse and continuous vaccination programs. even 

for well-mixed populations as large as 1 () million. 
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Chapter 1 

Preliminaries 

1.1 Introduction 

Childhood infectious disease has a significant impact on morbidity and mor

tality, particularly, in the developing world. Measles infections can n'snlt in 

pneumonia. and encephalitis while poliomyelitis infections may leave individ

uals with lifelong paralysis [~J. 10, 11 ]. The commonality between these and 

many other childhood diseases is that tltcy are largely preventable through 

vaccination. 

Without a doubt the greatest achievement of modern vaccination pro

grams is the global eradication of smallpox. Traceable as far back as 6000 

BC the first true smallpox vaccinations were originated in 1726 using cowpox 

virus [:38] . Despite this, it was not until 1978 that the last naturally occur

ring smallpox infection was recorded in Somalia, marking the eradication of 

the disease [12]. The lessons of smallpox underscore that eradication can 

only be achieved through a well organiztxl global vaccination program. 
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Bradley G. Wagner- PhD Thesis Chapter 1 

To date the World Health Organization has aggressively pursued vacci

nation campaigns in the developing world for polio and measles. Measles 

remains highly endemic in the developing world (and endemic in the devel

oped world) accounting for roughly 1 million deaths per year [~J, I OJ. Natu

rally occurring polio, though eliminated in the developed world, persists at 

low but significant levels in the developi11g world [11]. As long as the threat 

of transmission remains, worldwide vaccination levels must be maintained. 

Should vaccination wane, introduction of a handful of infectious individuals 

in an otherwise infection free population can result in epidemics. 

Global eradication represents the ultimate goal of any vaccination cam

paign. Only at this point may vaccination be ceased. This goal is important 

not only from the standpoint of the allc\·iation of human suffering. but also 

from an economic standpoint. The WHO estimates polio eradication alone 

would save $1.5 billion per yeas in vacc:i11ation and treatment costs [11]. 

Mathematical modelling has an import.ant role to play in the developnwnt 

of global vaccination strategies. There is a rich history of mathematical 

contributions to epidemiology. A good place to begin is with the seminal 

paper of Ker mack and McKendrick [ :2'; 1 · This work established that the 

density of susceptible individuals must exceed a critical threshold in order 

for an epidemic to occur. Though a standard idea today, it forms the basis 

for all (deterministic) vaccination models. 

Models of the type posed by Kermack and Mckendrick are phrased in the 

language of differential equations, dividing the population into homogeneous 

2 
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compartments such as susceptible, infectious or immune. The rate of appear

ance of new infections (incidence rate) i.'-', in its simplest form, proportional 

to the product of the densities of susceptible and infectious individuals. This 

proportionality is commonly referred to as mass action mixing. Systems of 

increased complexity may be considen~< l by adding additional classes that 

may, for example, be based on age (7, :; 1i]. presence of maternal antibodies. 

multiple stages of infection [17], or geographic heterogeneities. Time varying 

transmission rates may also be considered reflecting the natural seasonality of 

disease transmission [I (i. :r.>], and more generalized versions of the mass action 

interaction ean be used to reflect the effect of population density on trans

mission rates [:HJ]. Such compartmentalized mathematical models have been 

used suceessfully to explain a variety of epidemiological phenomena. These 

phenomena include changes in the time patterns of recurrent epidemics [I !] 

as well as the paradoxical increase in magnitude of some epidemics associated 

with increased hygiene in the 19th and 20th centuries [8]. 

Compartmental epidemiological modds are not limited strictly to child

hood disease. From a mathematical standpoint the childhood disease is dif

ferentiated from other disease models by two qualities; idP-ally infection (and 

vaccination) result in complete and lifelong immunity, and (in the absence of 

vaccination) transmission rates are sufficiently high that the average age of 

infection is during childhood. Of course in reality previous infection and vac

cination do not guarantee immunity. However this represents a reasonable 

approximation and further complexity may be straightforwardly added to 

3 
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models to take into account vaccine failures and less than perfect immunity 

when appropriate. 

Though differential equation based cornpartmental models often give great 

insight into the dynamics of epidemiological systems, analysis cannot be lim

ited to these methods. As differential equations deal with continuous flow 

between compartments they ignore the fact that populations are made up of 

a discrete finite number of individuals. and infection and recovery are ran

dom processes. While compartmental rnodels may be sufficiently prt~dictivc 

at large populations, for smaller populit1.ions this demographic stochasticity 

may have significant effects on the systc111 dynamics. 

The effects of demographic stochasticity were first observed by field epi

demiologists who noted that for small, isolated populations, recurrent measles 

epidemics may be prevented by rando111 extinctions [0]. The first mathe

matical treatments of this phenomena were given in the influential ·work of 

Barlett [S, (i]. These works established the idea of the critical community 

size (CCS); the minimum population si:;,c required to prevent stochastic ex

tinction (for some fixed finite time). The topic of stochastic extinction 

and critical community sizes remains an important topic of research to this 

day [1. 2, 24, 2\ :~;~, ;M, 36], and has important implications for vaccination 

strategies. 

In this work we analyze a number of different vaccination strategi(~S with 

respect to their ability to control disease spread and ultimately achieve com

plete eradication. We approach these problems using both deterministic com-

4 
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partrnental differential equation models as well as stochastic methods. We 

begin with a review of some of the standard epidemiological models on which 

this work is based. 

1.1.1 Standard Models 

SEIR Model with Continuous Vaccination 

The S EI R model with continuous vaccination represents one of the simplest 

possible predictive models of childhood infectious disease transmission [l ~)j. 

Vaccinations are assumed to be perforllled as soon as maternal antibodies 

have waned. The model is given by 

dS 3 
- = (1 - p )v N -- ~IS - µS 
dt N _ 

dE f3 
- = - IS - (p + a) E 
dt N 

dl 
dt = (J E - (µ + 7) I 

dR 
dt = pvN +'YI - pR 

dN ( ) T -= v-µN 
dt 

(1.la) 

(1. lb) 

(1. lc) 

(l.ld) 

(1. le) 

The compartments S. KI, R represent respectively the number of suscepti-

ble, infected but not yet infectious (latent), infectious, and immune individ-

uals. The total population is given by JV = S + E + I + R. The parameters 

v and µ represent the per capita birth and death rates, while .!. and .!. repre-
a -y 

sent the mean latent and infectious periods. The parameter p represents the 
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newborn vaccination proportion. 

From Eq. (I. I(•) we see that the population may undergo exponential 

growth. As we are concerned with the proportion of the population which is 

infected or infectious, it is convenient to transform the model( I. l) via 

Noting that 

- x 
X-+X;:"c N. 

dX 1 dX ( 1/ - µ) X 

dt N dt N 2 

Eq. ( · I) may be rewritten in 1.erms of proportions [I K, I !I] as 

-
dS .-- -
dt = (1 - p)v - 3IS - vS 

dE -- -
dt = ;3IS - (v + O")E 

dl - -
dt = O" E - ( v + r) I 

dR - -
- = pv + ! I - // R 
dt 

( 1.2) 

( 1.3) 

(L4a) 

(1.4b) 

(1.4c) 

(L4d) 

The long time behaviour of system ( ) is determined by two parameters, 

the vaccination proportion p and the basic reproduction number which is 

defined to be the average number of secondary infections resulting from a 

single infectious individual in an ot.herwi;-;<' susceptible population. The basic 
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reproduction number for the model (I . , ) is given by 

ffo 
Ro = -( cr_+_v_)_(t_+_v_) ' (1.5) 

In the case of constant population, (I.:-,) may be understood as a product of 

the transmission rate (3, the mean time :>pent in the infectious class Iv~,,), 

and the probability that an individual will move to the infectious class I from 

the exposed class E before death (u:v). System ( ! I) has two equilibria: an 

endemic equilibrium given by 

S* = 1 - -
1 

Ro 

E* = (v: ~) ( 1 - ~ 1 - p) 
* vcr ( 1 ) 

I = (v + cr)(v + 1·) 
1 

- Ro - p ' 

and a disease free equil'ibrium (DFE) given by 

S0 =1-p 

! 0 = 0. 

( l.Ga) 

( l.Gb) 

( 1.6c) 

(1.7a) 

(1. 7b) 

(1.7c) 

Lyapnuov function methods may be used to establish that the endemic equi-
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libriv.m is globally asymptotically stable when it exists [29], i.e., if 

P 2: Pcrit = 1 

I 

Ro' 
( 1.8) 

while the d?:sease free equilibrium is glob<illy asymptotically stable above this 

threshold vaccination level. For this deterministic model, Pcrit gives the crit-

ical vaccination proportion for eradicatio11. The use of Lyapunov functious 

for epidemic models is expanded on in d1apter :; . Analogous results for the 

continuous vaccination SIR model, which lacks the latent class E are given 

in chapter 2 

Pulse vaccination SIR model 

In puls~ vaccination strategies, mass va('cinations are performed at regular 

intervals rather than continuously. This strategy is currently utilized for 

measles and polio vaccination in a nulllber of countries, though often in 

conjunction with standard continuous vaccination [l, U] . In its simplest 

form, the pulse vaccination strategy urn be represented by an SIR model 
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pn, 42] of the type 

dS x 

dt = lJ - f3!S - vS - Ppulsc L 5(t - nT)S(nT-) 

di 
- = {3IS-(v+r)I 
dt 

n=O 

dR x 

dt = Pp11lse L 5(t - nT)S(nT-) - vR 
n=O 

S(nT-) = lim S(nT - E) 
c:--+O+ 

Chapter 1 

(1.9a) 

( l.9b) 

( l.9c) 

( l.9d) 

Eq. (I. <J) is phrased in terms of proportio11s of the population as in Eq. ( l I). 

The parameter Ppulse represents the proportion of susceptibles vaccinated in 

each pulse. while T is the pulse interval. As in (I I), v represents the per 

capita birth rate while l is the mean i11frctious period. Note that unlike t.lic 
-y 

SE! R model there is no latent period included in (: .ll). 

System (I .IJ) possesses a unique T periodic disease free solution which 

can be straightforwardly computed. For () ~ t ~ T the solution is given by 

vT 

S(t) = 1 - Ppulsee e-1/i_ (1.lOa) 
evT - (1 - Ppulse) 

( 

PpulsefuT -vT) 1t ( 
Ppulse 1 - vT - ( 1 - ) e 5 t - T) 

e Pputse o 

f(t) = 0 (l.lOb) 

Local stability analysis shows that the T-periodic DFS will be asymptotically 
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stable whenever 

1 1T - I/+ r 1 - S( t )dt < -- = -
T 0 - f3 Ro 

(1.11) 

Full details of the local stability analysis computations are given in [-JCl], §4.1. 

The condition (1.11) actually implies global stability of the DFS as is proved 

in [1:3]. Substituting the expression for S(t) ( 1.1 !1) into condition ( 1.11) yields 

the result that for any given pulse vaccination proportion Ppulse, there exists a 

maximal pulsing interval Yinax below wliich the T-periodic DFS is (globally) 

asymptotically stable. An approximatio11 for Yinax is explicitly worked out in 

[-JO] §4.1 and is given by 

T ,..._, f P1rnlse _ 

max ,..._, (3v( 1 - Pirnlse/2 - r I (3) 
(1.12) 

For T > T,nax the diseas(' persists and periodic epidemics as well as chaotic 

behaviour can be observed [40]. Note thilt. chaotic behaviour something that 

is impossible for the continuous vaccination SIR model. In this work we also 

investigate pulse vaccination models based on the SE! R model in which a 

latent or exposed class is included. 

1.1.2 Focus of this Work 

This work concentrates on three priman· topics, all related to feasibility of 

disease control and eradication under di ffcrent vaccination programs. 

10 
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Reversion in the Oral Polio Vaccine 

The Oral Polio Vaccine (OPV) is recommended for use in developing coun

tries [ :21 J. 0 PV provides a strong immm w response with long lasting immu

nity [;~]. Unlike the inactivated vaccine (1 PV) OPV is composed of live atten

uated viruses (LAVVs). These viruses lllay, via mutation, regain virulence 

and transmissibility [22]. Polio outbreaks of revertant virus have been docu

nwnted, some in regions that were previously certified as polio free [20]. As 

wild poliovirus eradication gets closer. the impact of these revertant viruses 

may he a significant obstacle to the ev<'ntual cessation of vaccination pro

grams. 

Vie construct and analyze a compart111ental model to analyze the impact 

of revertant viruses on polio eradicatio11 for continuous vaccination OPV 

campaigns. We then provide and analy1,c' a number of possible transition or 

endgame strategies to achieve complete eradication and allow for the cessa

tion of vaccination. 

Contact Vaccination in Live-Attenuated Virus Vaccines 

Live-attenuated virus vaccines (LAVY s) differ from inactivated viruses m 

that they a,re live viruses, which can lw transmitted person to person. Al

though this transmission can have unwanted consequences in the form of 

reversion or back mutation to virulence, there are also potential benefits. In 

the absence of mutation, transmission of vaccine virus results in secondary 

or contact vaccinations enhancing vaccination coverage. Contact vaccination 

11 
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is observed in the use of OPV as well as smallpox vaccines [37] , and is cited 

by the WHO as a reason for the use of OPV in the developing world [2:5]. We 

investigate the significance of contact va<·cination in the control of wild virus 

spread. We construct and analyze a ge11cral compartmental ordinary equa

tion model for continuous vaccination LAVY campaigns. We then extend 

our results to pulse vaccination campaig11s. 

Pulse Vaccination and Stochastic Eradication 

Pulse vaccination campaigns, whereby rnass vaccinations are performed at 

regular intervals. are currently used in numerous countries for both measles 

and polio [·I I, n]. We analyze the effrd. of demographic stochasticity on 

diseas(~ eradication in pulse vaccination .-;trategies in comparison to contin

uous vaccination strategies. Analytical as well as Monte-Carlo- simulation 

methods are used in our analysis. 

12 



Chapter 2 

Circulating Vaccine Derived 

Polioviruses 

2.1 Introduction 

: Vaccination for a number of diseases is currently performed through a<l-

ministration of live-attenuated virus vaccines. Attenuation means that the 

virus has been altered genetically into a state of low virulence and low trans-

missibility. Attenuation is often accomplished by passage through successive 

animal host tissues in which there is selective pressure for mutations that 

reduce the virulence and transmissibility in humans; this differs from inacti-

vated virus vaccines where the virus is killed by treatment with a chemical 

1 Previously published material: Wagner, B.G and Earn, D.J.D .. Circulating Vaccine 

Derived Polioviruses and their Impact on Gloha.l Polio Eradication. Bulletin of .tviathe

matical Biology (2008) 70:253-280. 

Printed with permission of Society for Mathematica.I Biology and D.J.D. Earn 
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agent or some physical process [29]. An iutrinsic problem with live-attenuated 

virus vaccines is that of back mutation <1r reversion, whereby the live virus, 

upon replicating in its human host, may regain its virulence and transrnissi

bility, potentially causing infection in tl w vaccinee and his or her contacts. 

Reversion to higher transmissibility is a potentially serious barrier to disease 

eradication. 

An important and well documented <~xample in which reversion takes 

place is in the use of Oral Polio Vaccine (OPV). Poliovirus is an RNA virus, 

and may appear in one of three antigenic types. Transmission may be either 

fecal to oral, or oral to oral. Initially tlic virus resides in the pharynx and 

intestines of the host. Subsequently it m<ty invade the local lymphoid tissue, 

entering the blood stream and eventuall.'· invading the motor neurons. Dam

age to these neurons may result in varying degrees of paralysis. It should 

be noted that there is no cross immunii<" between antigenic types. As well. 

the standard formulation of OPV is tnnalent: it contains attenuated ver

sions of all three types (each of which is capable of undergoing reversion and 

potentially causing paralysis [1]). 

In cases where OPV vaccination results in paralysis, this effect is com

monly referred to as vaccine associate<! paralytic polio (VAPP). Vaccine 

viruses which have regained transmissibility and neurovirulence are referred 

to as circulating vaccine derived polioviruscs ( c VD PV s) [ l 7]. 

Though largely replaced in the developed world by the Salk injectable 

inactivated polio virus vaccine (IPV) [G], OPV is still the primary vaccine in 

14 
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the developing world. Since 1988, the \Vorld Health Organization (WHO) 

has advocated the exclusive use of OPY for polio eradication, citing five 

primary factors: (1) low cost, (2) simple administration (oral), (3) high ef

fectiveness for a small number of doses, (4) ability to induce a high level of 

intestinal immunity, and (5) the possibility of contact vaccination \v·hereby 

vaccinated individuals may spread the vaccine virus resulting in secondary 

immunizations [17]. 

While the efficacy of OPV is genernlly excellent, it has been shown to 

induce a reduced immune response in some individuals living in regions where 

diahrreal disease is highly endemic. Rc«cnt work has traced the problem to 

the nse of trivalent OPV. Studies now show that monovalent OPV can be 

used to achieve a high level of efficacy in the regions where standard trivalent 

0 PV has been problematic [1-l]. Conscqnently, vaccine efficacy should not 

presently represent a concern for OPV. 

The drawbacks of 0 PV are the risk of YAPP and the creation of cYD PY s. 

IPV, on the other hand, involves no risk of reversion as it is a killed virus. 

However, IPV has the disadvantages that. it is roughly five times more expen

sive to produce [25], must be injected, cannot produce contact vaccinations, 

and is believed to induce a lower level of intestinal immunity [20]. Intestinal 

immunity is important as vaccinated individuals with no intestinal immunity 

can still have polio virus replicating in their intestines, and thus serve as car

riers of the disea..se (in spite of being immune themselves). Recent studies 

show enhanced potency IPV ( eIPV) provides improved intestinal immunity. 
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but eIPV is still believed to be inferior to OPV in this respect [20]. 

The creation of cVDPVs from OPV poses an obstacle to eventual polio 

eradication. Since 2000, four outbreaks of cVDPVs have been identified in 

Madagascar, the Philippines, Hispaniola and China [Hi]. In the cases of 

China and Hispaniola, these outbreaks occurred more than five years after 

the regions had been certified as polio free. It is important to note that 

detect.ion of cVDPVs is complicated bv the fact that most polio infections 

cause little or no illness: the ratio of paralvtic to inapparent or asymptomatic 

polio has been estimated to be 1:200 [fi. , ( i]. 

In this work we investigate an infectious disease transmission model that 

includes the possibility of reversion. We prQVide tools to assess the epi

demiological impact of reversion, and tlw creation of cVDPVs, assuming the 

present polio vaccination strategy in developing countries (continuous 0 PY 

vaccination). We then address the problem of polio eradication, presenting 

three alternative polio eradication strategies involving both IPV and OPV 

and comparing their effectiveness. The mathematical model is built from the 

basic SIR model, which we review first. Although we focus on polio here, we 

emphasize that the model is relevant to rnany diseases for which live virus 

vaccines exist. 
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2.2 The Basic SIR Model 

The basic Susceptible-Infected-Removed or SIR model is the simplest trans-

mission model for diseases that confer lifelong immunity. In spite of its sirn-

plicity, it successfully predicts the shap<' of epidemic curves [18] and yields 

useful quantitative predictions of eradication thresholds [:I]. 

We will assume initially that the population is sufficiently large that we 

can treat the number of individuals who are susceptible (S), infected (J) 

or removed (R) as continuous variable~. Note that "infected" individuals 

are assumed to be infectious and "removed" individuals are immune to the 

pathogen. If a vaccine exists and a fixed proportion of individuals is vacci-

nated as soon as any maternally-acquired immunity has waned, the model 

can be written 

dS :3 - - -
dt=(l-p)vN- NIS-µS 

di 3 - - -
- = !____IS - (µ + r) I 
dt N . 

dR - -
dt = pv N + r I - JLR 

(2. la) 

(2.1 b) 

(2.lc) 

Here. the total population is N = S + J + k The parameters of the model 

are the proportion vaccinated (p), the hirth rate (v. for natality), the trans

mission rate ((3), the recovery rate (r) and the natural death rate (µ, for 

mortality). The mean infectious period is l/1. The model assumes that 

immunity is lifelong and that there is no disease-induced mortality (or that 
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disease-induced mortality is sufficiently rnre that its dynamical effect is neg-

ligible). It should also be noted that individuals may be asymptomatic for 

part (or all) of the infectious period. 

Equation (2. I) is forward invariant in the non-negative orthant { (S, J, R) I 

S 2: 0. J 2: 0, R 2: O}, so initially non-1wp;cttive solutions can never bccomr 

negative. To see this, note that if S = 0 1 lien dS / dt 2: 0 (and similarly for l 

and R). 

It is more convenient to work with tlw SIR model in terms of proportions 

of the population, so we apply the vari<d J]c transformations 

I 
I= - . 

:'\" 
(2.2) 

If the population is constant (i.r., u =µ,which is an excellent_approximatiou 

when looking at short time scales) then equation (2:2) simply represents 

scaling by a constant. More generally, N will grow (or decay) at exponential 

rate u - µ. Noting that 

dX 1 dX X dN 

dt N dt N2 dt ' 
(2.~3) 
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where X is S, I or R we obtain the SIR model in terms of proportions: 

dS 
- = (1 -p)v - 3IS - vS 
dt 
d! 
-=fJIS-11-vl 
dt 

dR 
- = pv + 1 I - v R 
dt 

(2.4a) 

(2.4b) 

(2.4c) 

The forward invariance of equation ("2. i) in the non-negative orthant. implies 

that equation (1 l) is forward invariant in the simplex { ( S, I) I 0 ::;: S ::;: 

1. 0::;: I::;: l, 0::;: S +I::;: l}. Furthern1ore, as S +I+ R = 1, one of these 

equations is redundant, so we drop equation (:! le). 

In subsequent sections we will emplo~' equations (':' I) to model continuous 

IPV vaccination, as reversion is not an issue for the killed virus vaccine. 

2.2.1 Analysis of the basic SIR model 

A key characteristic of an infectious discn.-;c in a given population is its basic 

reproductive ratio, Ro, which is defined to be the average number of sec-

ondary infections caused by a single infected individual in a population with 

no immunity. Ro is the product of the transmission rate and the mean time 

that an individual is infectious, hence for the model given by equation (".2 l) 

(with constant population) 

Ro=-'~. 
1+v 

(2.5) 
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System (:!. 'l) has two equilibria. Denoting the equilibrium proportions of 

individuals that are susceptible and infoctcd by S* and I*, respectively, the 

disease free equilibrium (DFE) is 

s; = i - p, (2.6) 

The endernic eqv.ilibriu:m is 

s; = ~o, * v ( 1 ) I=-- 1---p . 2 
1+v Ro 

(2.7) 

It is convenient to define two further dimensionless quantities in terms of the 

model parnmeters: 

v 
!=--. 

I+ 11 

(2.8) 

which is the mean time spent in the infected class as a fraction of nwa.n 

life-span (assuming a constant populatio11) and 

1 
Pcrit = 1 - Ro · 

\Ve can then express the endemic equilibrium as 

S * 1 
2 =Ro' I; = f (Pcrit - P) 1 

(2.9) 

(2.10) 

from which we see that Pcrit is the critu:a.l vaccination level: the endemic 

equilibrium exists (i.e., is positive and hc~nce biologically meaningful) if and 
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only if p < Pcrit· It can be shown that if the vaccination proportion p 2:: Pcrit 

then the DFE is globally asymptotically stable (states near the DFE stay 

near the DFE and every solution eventually approaches the DFE). Similarly, 

if p < Pcrit then any initial condition with I (0) > 0 eventually converges to 

the endemic equilibrium [15. I~)]. Biologically, Pcrit is an eradication thresh

old: the disease will persist if and only if p < Pcrit· Note that this criti<:al 

vaccination proportion is determined sold:v by the basic reproductive ratio 

R 0 . The proportion of the population tlwt is immune at a given time is often 

called the degree of herd immunity. Thu . ..;. Pcrit is the level of herd immunity 

that must be maintained to prevent persistence should an eradicated disease 

be re-introduced. 

2.3 The Live-Attenuated Vaccine Model: Mod

eling OPV 

To account for the effects of a live-attenuated virus vaccine such as OPV. we 

assume a fixed proportion of those vac<"inated will become infected by the 

revertant virus. All other vaccinations an· taken to be successful at conferring 

immunity without illness. Leaving the other aspects of the SIR model intact, 

the new model can be depicted graphically as in Figure 2. I and expressed 
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mathematically (in terms of proportions 8, I and R) via 

dS 
dt = (1 - p)v - ,JIS - vS 

~; = <f>pv + (3IS -1! - v! 

dR 
- = (1 - <f>)pv + 1! - vR 
dt 

Chapter 2 

(2. lla) 

(2.llb) 

(2.1 lc) 

Here ¢ is the reversion factor, i.e., the proportion of those vaccinated who 

become infected by the revertant virus ( () < ¢ :s; 1). As in equation (l i), 

equation ('i I I 1 ) is superfluous and we cb:t! with the two-dimensional system 

defined by equations (l i ! <t) and (1. l ). Note that since the three types 

of polio do not interact immunologicallv. we have not included any strain 

structure in the model. 

There has been considerable recent int.crest in models that include a sep-

arate compartment for vaccinated individuals [9], rather than simply t.he 

proportion vaccinated as specified by pin equation (-'.' ! l ). A separate vacci-

nated compartment can be important if the vaccine has limited efficacy (or 

if vaccine-induced immunity wanes) because vaccinated individuals may re-

main (or become) partially susceptible. The "breakthrough infections" that 

occur in this situation typically lead to 11111ltiple endemic equilibria and back-

ward bifurcations [9]. However, as meni ioned in the introduction, OPV is 

highly efficacious and yields lifelong immunity, so we have not included a sep-

arate vaccinated compartment. Our reversion model formalizes the effect of 

immediate infection that results occasio1rnlly from vaccination, as opposed to 
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Birth V 

Vaccination 

yl 

Recovery 

Death µS µI µR 

Figure 2.1: Flow diagram for the live-att.cnuated vaccine model that we use 

to investigate the effects of OPV on polio transmission. The flow diagram for 

the basic SIR model (equation :! . I) is obh1ined by setting the reversion factor 

¢ to zero. The model (for any value of <b) is expressed in equation (: ! l) in 

terms of proportions of the population that are susceptible, infectious or 

removed. 

susceptibility to infection from subsequent. exposures following vaccination. 

2.3.1 Epidemiological parameters for Poliomyelitis 

Epidemiological parameter estimates for poliomyelitis and OPV are given in 

Table ' I. The vaccine reversion factor ( o) is estimated indirectly from two 

parameters that have been estimated pn·viously: the mean number of para

lytic polio cases as a proportion of total polio cases (7rpara) and the incidence 

of paralytic polio in newly vaccinated infants (\!infant). Assuming that VAPP 

in infants really does result directly from vaccination (as opposed to contact 

with an infected individual) and that any increase in 1fpara with age can be 
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Table 2.1: Epidemiological Paramct.cr estimates for Poliomyelitis. 

Parameter Symbol Estimate Source 

Dasie Reproductive Ratio Ro 6 [:\] 
Mean Infectious Period 1h 16 days [:l] 
Birth Rate, developed countries lJ 0.02year- 1 [23, ;"j] 

Birth Rate, developing countries lJ 0.04year- 1 [!l l 
_i~v, developed countries f 8.76 x 10-4 Et''>-.;(§->')!) qua10n_. --· 

_i~v, developing countries f 1.75 x 10-3 E t' ·> " (§» -> l) qua 10n "'- , ~ _. 

Infant YAPP Incidence V'inra11t 1/1400000 [ ( i] 
Paralytic Polio/Total Polio Cases 1[ p<Hd 1/200 [n, 4] 
0 PV Reversion proportion cf> 10-4 Equation ·2 ' (§-) I 1) '.::. _:.._ .. ). 

ignored. the reversion proportion for OPV is 

v f dJ = lll ant ;:::::: 1 o-4 . ( 2.12) 
7f para 

Note that since OPV contains attenuated ,·crsions of all three antigenic types, 

any of which may revert, we may treat o as an upper bound for reversion in 

each type. 

2.4 Analysis of the OPV model 

2.4.1 Equilibria 

Unlike typical epidemiological models, t lie OPV model ( 1. i I) has no DFE. 

Instead, for any parameter set with cf> > (). there is a single (endemic) cquilib

ri um. Indeed, set.ting the derivatives to ;:cro in equations (:2.11 ii) and ('.2 I: I>) 

24 

http:Paramct.cr


Bradley G. Wagner- PhD Thesis Chapter 2 

and summing the resulting two equatio11s yields 

S* = 1 - p( 1 - <i>) - JI* , (2.13) 

where S* and I* denote equilibrium values. Inserting ('2. l >!) into ('2. i l I 1) (set 

to zero) then yields 

!_/*2 
- (p ··t - p(l - ol) I* - p</>f = 0 f CJ! •. Ro • (2.14) 

Solving this quadratic for I* (and insist.i11g that it be non-negative) yields 

the unique solution 

1 [ 1 l 2 p</> J2 
f* = 2f (Pcrit - p(l - </>)) + 2f (Pcrit - p(l - </>)) + Ro (2.15) 

Note that Ptrue = p(l - <J>) is the trne u11.ccination proportion, i.e., the pro-

portion of vaccinations that are successful. It is convenient to define 

~p = Pcrit - JJ( 1 - </>) · (2.16) 
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The equilibrium defined by equations ( , ; ) and ('.:' I -) ) may then be more 

. simply expressed as 

(2.17a) 

(2.17b) 

This equilibrium is always biologically meaningful: it can be shown that 

(S*, I*) lies in the region {(S, I): S > 0. f > 0, S +I< l} if 0 < p < 1 and 

0 < ¢ :S 1 (see appendix _i 7). 

2.4.2 Stability 

In this section we show that the equilibrium (2. I 7) is globally asymptoti-

cally stable. Biologically, this means that regardless of the proportions of 

the population that are susceptible (S), infectious (I) and immune (R), the 

model predicts the virus will persist aucl approach the endemic prevalence 

level given by (11711). 

We begin by considering how the system behaves if it is perturbed slightly 

away from the equilibrium. We show that the equilibrium (S*, I*) is not only 

locally stable but always hyperbolic, i.e .. that the .Jacobian matrix of the sys

tem at (S*, I*) never has eigenvalues with zero real parts. Hyperbolic stabil-

ity implies that for any initial conditions sufficiently close to the equilibrium, 

the solution trajectory converges expon<'ntially to the equilibrium. 

26 



Bradley G. Wagner- PhD Thesis Chiipter 2 

Local Stability 

Linearizing equations (2 i I <1) and (2.1 i ) about the equilibrium (2 i I) and 

computing the Jacobian matrix we find 

(

-(3I* - v 
]= 

{3I* 

-(3S* ) 

JS* - (r + v) 
(2.18) 

If <f> =-= 0, the system (_i ! l) reduces to tlte standard SIR model (' I) and 

the equilibrium given by equations (:2 ; ) corresponds to either the endemic 

equilibrium (:2.fi) of the standard SIR Ill<Jdd (for p < Pcrid or the DFE (-' . tl) 

of the standard SIR model (for p ~ Pei it). In either ca.se, the equilibrium 

in question is locally asymptotically st nhle and. provided p =J Pcrit· it is 

hyperbolic [ E>] ( J has no eigenvalues 011 the imaginary axis). If p = Pcrit 

then the DFE of the standard SIR model (¢ = 0) is locally a.symptotically 

stable but non-hyperbolic. 

The eigenvalues of J can be written 

A± = 1 
; v { - ( 1 + f) + Ro ( S* - I*) 

± VlRo(S* +I*) - (I - !)]
2 

- 4R6S* I*}. (2.19) 

Note that the dependence of these eigermdues on <f> is hidden in the expres

sions for S* and I* (equation :2. l :} Si11ce A± depend continuously on </>, 

to prove hyperbolic stability of the equilibrium (2.1 i) for any <f> > 0 and 
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p f= Pcrit it suffices to show that no eigenvaJue of J crosses the imaginary axis 

as ¢ is varied, for an arbitrary fixed p f: Pcrit· Given this, and the fact tlrnt 

the eigenvalues of J arc also continuous functions of p, it will follow that the 

equilibrium is hyperbolically stable also for p = Pcrit if we can show that J 

cannot have an eigenvalue with zero real part for any </> > 0. 

Eigenvalues may cross the imaginary axis either at 0 or at Ai where A =/= 0. 

We treat these cases separately. Suppose first that 0 is an eigenvalue of J. 

Then the determinant of J must be zero. i.e., 

f3J*(v + r) - vf3S* + 1,1(v + r) = O. (2.20) 

Using equation ('! I :i) to write S* in terms of I*, and after some algebraic: 

manipulation, we find 

~r =op f . (2.21) 

Inserting (l i -;-11) for I* into ( 1 
_ l) yields 

(2.22) 

But this is impossible for </> > 0, so J does not have a zero eigenvalue. 

Now suppose that J has a purely irn<i.ginary eigenvalue Ai. Then 

det(J - AiIT) = (-f)J* - v - Ai)(3S* - (v + 1) - Ai) = 0, (2.23) 
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where Il is the 2x2 identity matrix. Examining the imaginary part of equation 

( 2 2: ;) and simplifying yields 

- I* - !:__ + S* - -
1 

= 0 
f3 Ro 

(2.24) 

Using (2. 1 :;) to express S* in terms of I* and rearranging yields 

( 1 + J )!* + ~ = Pcrit - Ptrue · (2.25) 

As I* > 0, the left hand side of (C'..-2-,) is strictly positive. Thus if Pcrit ~ Ptrue 

we have a contradiction. If Pcrit > Ptrne then from equation ( '..:> : _, >) it is 

apparent that if <P > 0 then I* > J 6..p = J (Pcrit - Ptrue)· Substituting this 

inequality into equation (l. '..:l.-1) gives a kft hand side that is strictly greater 

than Pcrit - Ptrue. and we haw a contradiction. 

Thus, the eigenvalues of J do not cross the imaginary axis for anv </> > 0. 

and the endemic equilibrium given by <~quation !. . , ,- is hyperbolically. and 

hence locally asymptotically stable. 

Global Stability 

As the system is two-dimensional, global asymptotic stability can be estab-

lished by applying Poincare-Bendixson theory and Dulac's Criterion [2G]. 

29 



Bradley G. Wagner- PhD Thesis Chapter 2 

Consider an autonomous system of ordillary differential equations, 

dx 
dt = f (:r. y) (2.26a) 

dy 
dt = g(:r. y) (2.26b) 

where f and g are continuously differentiable, and suppose that D is a 

bounded region in the plane such that ihcre exists a single stable equilib-

rium point of (~ :r;) in the closure of D. If a given orbit remains in D for all 

t > 0 t.he11 the Poincare-Bendixson thcorcni says that the orbit must. either 

have a non-trivial periodic orbit as its ~-limit set or tend asymptotically to 

the equilibrium. 

Dulac's Criterion states that given H. simply connected region D in the 

plan<'. with f and g continuously differ<'ntiable as above, if there exists a 

continuously differentiable function C(x. y) such that the divergence of the 

vector field dx (Cf) + 8y (Cg), is not ideni ically zero and does not change sign 

in D. then there can be no non-trivial pniodic orbits contained in D. 

Our live-attenuated virus model is a two-dimensional system with or-

bits bounded (in forward time) in the closure of the triangular region whose 

boundary is formed by the lines S = 0, J = 0 and S + I = 1 (as discussed for 

the basic SIR model in§~' 2). In fact, we 11ave the stronger condition that the 

interior of this set. which we denote as B = { (S, I) I S > 0, I > 0, S +I < 1}, 

is forward invariant and for all initial conditions on its boundary the flow is 

into B (see Appendix :.!.(1). There is on<' (hyperbolically) stable equilibrium 
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point in the closure of B. located in B itself (see Appendix }. !), and given 

by equation (2 I i). The functions f ( S, T) and g( S, I) given by (} i : ; t) and 

(:2.1 I l 1) are infinitely differentiable with respect to both S and I. Therefore, 

applying the Poincare-Bendixson theory. any orbit must be periodic, have 

another non-trivial periodic orbit as its :.vi-limit set. or tend asymptotically 

to the equilibrium (:2.17). To establish that every orbit must in fact tend to 

the equilibrium, we rule out the existern«' of periodic orbits in the closure of 

B using the Dulac function 

1 
C(S, I)= I (2.27) 

Notice that C(S. I) is infinitely differenti,1hle in B. Therefore, applying Du-

lac·s criterion yi('lds 

( dS) (. d!) 
88 C(S. I)dt + 81 C(S, I) dt 

(! 2{3 + vf + p<f;v) 

J2 
(2.28) 

Equation ('2.20) is strictly negative for all points in B. Hence, no periodic 

orbits can exist and by the Poincare-B<~ndixson theorem, all orbits must 

converge t.o the (hyperbolically) stable c'qnilibrium (.!.Ii). 

Damping Frequencies and Rate of Convergence for Polio 

Damping Frequencies Figure 2.2 shows the frequency of damped oscilla

tions onto the equilibrium (:2.1 J) as a function of the vaccination proportion 

p. The birth rate used is representative of developed countries (Table ~! , ). 

The dashed curve shows the results in t.lte case of zero reversion ( <P = 0), 
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corresponding to the standard SIR model. while the solid curve shows re

sults for the estimated OPV reversion proportion ( </> = 10-4
, Table :2 ! ) . The 

damping frequency Fdamp is given by 

(2.29) 

where ,\ is either of the two eigenvalues given in equation (:-2. I <i). 

Figure L~ illustrates that for the esti111ated value of</> and other epidemi

ological parameters correspon<ling to polio (Table :! ! ) , the <lifference in the 

frequency of damped oscillations cornp.-1.rcd to zero reversion is negligible. 

The maximum difference occurs near tlw SIR model's eradication threshold, 

p :::::: 0.83. As p is increased , the DFE ( . ) changes from unstable to glob

ally asymptotically stable. The solid cmve in Figure 1.1 shows a frequency 

Fdamp = 0 for p ~ 0.83. Note that the DFE is never approached by damped 

oscillations. 

\Nhile the unique equilibrium of the live-attenuated vaccine model (l. · ·,-) 

is always endemic (and stable). the man!lcr in which it is approached parallels 

the distinct behaviours near each of the stable equilibria of the standard SIR 

model. Figure 1 2 shows that there is a threshold level of vaccination below 

which the endemic equilibrium is reached by damped oscillations, and above 

which there is no oscillatory behaviour. This threshold is lower than the 

SIR model's threshold :::::: 0.83, though for </> = 10-4 the difference between 

the thresholds is only 0.43. Numerical explorations like in Figure :!. l for a 
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Figure 2.2: Frequency of damped oscillations (Fctamp, Eq. l.!. 1l) about the 

globally asymptotically stable endemic eqnilibrium (!..17) of the OPV model 

(2. l l) and the reversion-free SIR polio model, as a function of vaccination 

proportion (p). The curves are shown only over the narrow range of p for 

which there is a non-negligible difference in the damping frequencies for the 

two models. Parameter values, including the estimated OPV reversion pro

portion(¢), are given in Table l. ! (the lJirth rate is that listed for developed 

countries). For these parameters both rnodels exhibit a vaccination thresh

old beyond which the globally stable cqnilibrium is no longer reached by 

damped oscillations. The threshold is slightly below Pcrit for the SIR model. 

Increasing the value of the reversion proportion </J leads to a decrease in this 

threshold value. For the estimated vain<' of </J '.'.::::'. 10-4 (Table !. . I) this de

crease represents only a 0.4% reduction from p ~ 0.83 in the reversion-free 

model. Similar results are obtained if tlw OPV reversion proportion is taken 

an order of magnitude higher: <P '.'.::::'. 10-3 viclds a threshold of p '.'.::::'. 0.81. 
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wide range of reversion proportions (10- Ci ::::; ¢ ::::; 10-2
) indicate that there 

is a threshold value P<lamp such that damped oscillations occur if and only if 

p < Pclim1p· Moreover, Pdamp decreases as o is increased. 

Rate of Convergence To quantify th<' attractivity of the (globally stable) 

equilibrium of the OPV model (:2.11 ), Figure 2.;j shows the minimal rate of 

convergence of solutions in a sufficiently small neighbourhood of the equilib

rium (). 1-·), as a function of the vaccina.t ion proportion p. The dashed curve 

shows the convergence r;:i,te for the esti111~1.te<l OPV reversion proportion 6 

(Table ' ) , while the solid curve shows t.hc convergence rate for the case of 

no reversion (¢ = 0), which corresponds to the standard SIR model. The 

minimal rate of convergence is calculated as 

(2.;rn) 

where A± are the eigenvalues given in Eq. ( i 'l). Note that in the zero rever

sion case, the convergence rate shown is always to the globally asymptotically 

stable equilibrium (the endemic equilibrium for p < Pcrit and the DFE for 

P 2': Pcrit) · 

Figure l :~ shows that for the estinrnJ.cd value of the OPV reversion pro-

portion (Table ·_> I) the rate of convergence onto thC' globally asymptotically 

stable equilibrium (_>. l ';') differs negligibh· from the rate for the standard SIR 

polio model when the vaccination prop(lrtion is either significantly greater 

or significantly smaller than the theoret K:al SIR eradication threshold Pcrit. 
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Figure 2.3: Local minimum rate of conv<·rgence (rmin, Eq. ~.:l(J) of solutions 

to the globally asymptotically stable equilibrium for the OPV polio model 

and the standard SIR polio model withnnt vaccine reversion, as a fnnction 

of vaccination proportion p. Values of parameters. including the estimated 

OPV reversion proportion ¢ are given i11 Table 2. l. Birth rates used are for 

developed countries. For high and low lcn~ls of vaccination the local rates of 

convergence are very similar. However. as the vaccination proportion is in

creased towards the theoretical vaccinatio11 threshold for the SIR polio model, 

Pcrit ::::::; 0.83, the rate for OPV increases slia.rply to a maximum followed by an 

equally sharp decrease to rates comparable to those in the SIR polio model. 

It should be noted that as p = Pcrit is a point of stability exchange between 

the endemic equilibrium and disease free equilibrium in the SIR model, the 

rate of convergence is zero at this point. 
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Howcwr, when p approaches Pcrit, the rat<' of convergence for the OPV model 

inc:rea::-;es sharply, attaining a maximum. and then sharply decrea.ses to the 

levels of the SIR polio model. In contras!. in the SIR model, as there is an 

exchange of stability between the endemic and the disease free equilibrium 

at p = Pcriti the rate of convergence is rwar zero for p in a neighbourhood of 

Pcrit· When the reversion proportion </J is taken orders of magnitude higher or 

lower, reslllts are qualitatively similar. As d> is increased, the maximum value 

of the rate rmin is incre<lsed and attained aJ, a lower vaccination proportion 

p. 

2.4.3 Implications for Continuous OPV Vaccination 

Figur<' ! . shows. as a function of the vaccination proportion p, the predicted 

equilibrium number of infectives and annnal expected cases of paralytic polio 

in a (constant) population of one hundred million (i.e., I* N with I* from 

Eq. C~ l ~·1 i) and N = 108
). Since the nw,u1 time spent in the infected class 

is 1/(r + v), and the probability that polio will become paralytic is 7rpara 

(Table :2 I ) , the number of cases of parn lytic polio expected in time T as a 

proportion of the population is 

P(T) = 1fparaI* (/ + v) T (2.:31) 

The solid curve in Figure ~. 1 is based on the parameter estimates in Table ~. ! 

(birth rates used are for developed com11ries), whereas the dotted (dashed) 
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curve uses a value of 1> that is an order of magnitude below (above) the 

estimated value. Note that the range of p shown in Figure 1. I is mostly 

beyond th(' eradication threshold for the standard SIR (Pcrit ~ 0.83). 
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Figure 2.4: Equilibrium number of info('t.ives and expected cases of Para

lytic Polio annually per hundred million population as a function of OPV 

vaccination proportion p, for p > 0.82 The solid line represents results for 

the estimated value of the reversion proportion, <J> ~ 10-4
. A small but 

significant endemic level of the disease is predicted. Dashed lines represent 

reversion proportions an order of magnitude above and below the estimated 

value (10-3 and 10-5
). Note that for the standard SIR model, eradication of 

the disease is predicted for all p > Pcrit ~ 0.83. 

For the estimated value of the reversion factor (1> rv 10-4
), Fignre _· i 

indicates that even in a population wit.Ii 90-953 vaccination coverage the 
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model predicts persistence of the disease at an endemic level of 20 to 30 

infe9ted individuals per hundred million. and an event rate of two or three 

cases of paralytic polio per hundred million per year. This prediction agrees 

closely with the observed event. rate in the United States from 1988 to 2000 

when OPV was in use (8 10 cases of paralytic polio annually in a population 

rv 300 million; [G]). This agreement suggests that the estimated d> is of 

the right order of magnitude, since thf~ ('vent rate predicted in Figure l i is 

sensitive to </>. 

The main purpose of the OPV model (r Ii) is to help understand the 

significance of emergent cVDPVs. This i:-; perhaps best illustrated in Figure 

'2 .. -,, which shows the difference between the endemic number of infectives 

predicted by the OPV model, Eq. (:! ':), and the number of infectives 

predicted by the standard SIR model, Eq. (l.ri) or (:.?.I 0) (the SIR endemic 

level is also plotted for comparison). For p ;S 0.75, the difference is negligible 

(two order:-; of magnitude smaller than t.lw number of infectives predicted by 

the standard SIR model). The difference is maximal ( rv 380 per hundred 

million population) for p = 0.83 ~ Pcrii. the eradication threshold in the 

absence of reversion. 

We infer that for levels of vaccination even five percent below the the

oretical eradication threshold in the ahs<~nce of reversion (Pcrit), the impact 

of cVDPVs is likely to be negligible c:0111pared to the impact of the native 

viruses. Consequently, if coverage levels cannot be brought close to Pcrit then 

use of OPV is likely to be easy to justify. However, in situations like the 
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Figure 2.5: Effects of reversion on the endemic number of infective individuals 

at equilibrium. The solid line shows, as <t function of vaccination proportion 

p, the predicted endemic equilibrium for the standard SIR model ( 2. I) (which 

may be thought of as a model of IPV vaccination or a theoretical OPV that 

never reverts). The dotted curve shows the difference between the predicted 

endemic number of infectives in the ( wnt.inuous) OPV vaccination model 

(.217) (with reversion) and the standard SIR model. For vaccination levels 

even five percent below Pcrit ~ 0.83, the effect of reversion is negligible. As 

the vaccination level approaches Pcrit, t\I(' reversion-free SIR model predicts 

eradication of the disease, while the OPV model with reversion predicts a 

small but significant endemic level of the disease (note the different scales on 

the left and right axes of the plot). For t.he estimated parameters in Table 

'2. I, the difference between the models is maximized near Pcrit> though this is 

not the case for much larger values of tlic reversion proportion </>. 
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present, where coverage levels reaching Pcrit are plausibly within reach. it 

appears that OPV can itself become the primary impediment to eradication. 

It should be noted that although Fignres 'l. I and / ·, are plotted using 

birth rates for developed countries (Tahlc .> l ), the shape of the curves is 

practically invariant to the birth rate v. To see this, note that the equations 

for the proportion of infected individuals at the endemic equilibrium in the 

SIR model(_! f1) 1tnd the equilibrium in till' OPV model U 1 ·11 i) scale linearly' 

with J (..:'.>)and 1tre otherwise indepernlr-11t of v (notwithstanding the negli

gible dependence of Ro on v). Thus Figmes L I and 2 -, will scale essentially 

linearly with birth rates (for birth rates in a realistic range). For example, 

to produce these figures for birth rates representative of developing countries 

(Table :2 ! ) one need only scale both vertical axes by a factor of 2. 

Sensitivity to Distribution of Infectious Period 

In both the SIR model ( I) and our OPV reversion model (.>.11), there is 

an implicit assumption that infectious periods are exponentially distributed. 

This assumption is usually made in epidemiological modelling because it 

greatly simplifies the mathematical fornmlation, yielding a small system of 

ordinary differential equations. For arbitrnry distributions of stage durations, 

the models become more complex systems of integro-differential eqnations 

[22]. 

In general, real distributions of infectious periods are not well-fitted by 

exponential distributions [21 J. In the context of OPV, there is one poten-
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tially advantageous aspect of the exponential distribution: its extremely 

long tail, i.e., finite probability of indiYiduals remaining infectious for an 

extremely long time. This may be reasonable for polio because some indi

viduals (with severely compromised immune systems) have been observed to 

shed poliovirus for extremely long periods [7]. Nevertheless, the existence of 

chronic shedders is unlikely to result i11 •-t precisely exponential dist.ribut~on 

of infoctions periods. 

Does the implicit assumption of an exponential distribution of infectious 

periods affect our conclusions? To address this, we examine how the predicted 

endemic level of infectives C-' , 711) chang<'S as the shape of the infectious pe-

riocl distribution is changed from extrenwlv broad (exponential) to extremely 

narrow (almost no variation about the illcan infectious period, l/'y). 

We suppose the distribution of infectious periods is a Gamma distribution 

Gamma(n, n\), with mean l/'y and shape parameter n. The probability 

density for the distribution Gamma(n, n
1
,) is 

x > 0. (2.32) 

For n = 1 we obtain the exponential distribution and the limit n -+ oo yields 

a Dirac delta distribution. The probability densities for several values of n 

are shown in Figure ::!.l;a. 

For integer n, a standard trick [2, x. 21] allows us to express our OPV 
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model as a system of n + 1 ordinary diff<'rential equations: 

dS 
dt = (1 - p)v - 315- vS 

df 1 ' (3 s ' ) 
dt = <f>pv + J - ( n/ + v f 1 

d!') 
dt- = n1 Ii - (wy + v)!2 

dfn ( - = n1In-l - wy + v)ln 
dt 

~~ = (1 - <f;)pv + Wfln - vR 

Chapter 2 

(2.3:3a) 

(2.33b) 

(2.33c) 

(2.33d) 

(2.33e) 

Here. the proportion of infectious individuals is I = L~=l h and the new 

infectious subclasses h represent a mat hcmatical device with no intended 

biological interpretation. 

In Appendix .! :--;, we show that Eq. ( . :) has a unique endemic equilib-

ri um for any n (not just. the case n = l ;i.s considered in previous sections). 

\Ve computed this endemic equilibrium using the estimated OPV parameters 

(Table '2 i ) , for a large range of shape parameters from n = 1 to 1000. For 

each n, we verified that the equilibrium is locally stable by numeric compu-

tation of the eigenvalues (using the MA'J'LAB function eig). 

Figure 2.(ib shows the relationship between the equilibrium endemic level 

of infection (I*) and the shape parameter ( n) for a specific vaccination pro

portion (p = 0.85). For this particular µ. it is clear that the effect of distri-

but.ion shape on I* is negligible. More ,t:ipncrally, for any p E [O, 1], I* varies 
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by less than 0.1 % if n is varied from 1 to 1000. Thus the predicted endemic 

level appears to be robust with respeet t.o the distribution of the infectious 

period. 

2.5 Final Eradication Strategies 

It is not likely to be possible to cradicat<' polio using a continuous OPV vac

cination strategy. because a continuous source of infectives is inevitable (as 

a result of reversion). \Ve therefore explore the benefits of several alternative 

polio vaccination strategies that may elirninate the continuous source of new 

infectious individuals: 

1. Pulsed OPV vaccination. Mass vaccinations are to be performed at 

regular intervals such as every yf'ar or every other year [ l, 14]. A 

revised model incorporating pulsed vaccination is described below. 

2. Switch to continuous IPV vaccination. The standard SIR model is 

appropriate for IPV because there is no reversion. 

3. One-time mass vaccination with IPV. While continuous IPV vaccina

tion at a high level may not be financially and logistically feasible, 

given a high level of herd immunitv following a broad OPV vaccination 

program, a single mass IPV campaiµ;n might be sufficient to extinguish 

the disease. The model required i::-; just a simplification of the pulsed 

vaccination model (without repeats). 

43 



Bradley G. Wagner- PhD Thesis Chapter 2 

(a) (b) 

0.3 142.68 
--n=1 

· - · - · n=3 

--n=10 142.66 

0.25 
~· 

- - - n=100 
c 

'• n=1000 
~ ,, E 142.64 

1, 'O 
(lJ 

0.2 '1 -0 

'• 
c 

c :0 142.62 e I .r: 
·u; 

ill c 11, (lJ Cl 
'O 

lj I (lJ 

§ 0.15 
> 

i' .-B 142.6 '1 
15 I· I 

(lJ 

"' ~ 
.D I 

t 0 ;I 
0:: .D 

142.58 E 

0.1 
:0 
c 
(.) 

E 
(lJ 

142.56 'O 
c 
w 

0.05 

142.54 

142.52 
20 40 60 100 10' 102 103 

Infectious period (days) Shape parameter (n) 

Figure 2.6: The effect of the shape of tlt<~ infectious period distribution on 

the endemic level of infection in the OPV model (see §2 l.:l and Appendix 

2."} (a) Probability density functions for Gamma distributions with mean 

~ = 16 days and shape parameter n (scC' Eq. 2 T2). Note that n = 1 yields 

the exponential distribution. For n = 1000 the peak density value is 0. 789. 

(b) Endemic number of polio infectives per hundred million as a function of 

distribution shape, for fixed vaccination proportion p = 0.85. Epidemiologi

cal parameters are as given in Table 2. · for developing countries. For fixed 

mean infectious period, the shape of the full distribution of infectious periods 

has a negligible effect on the endemic level of polio infection. 
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Since genuine eradicat.ion means reducing the infective population to zero, 

the problem can be properly addressed only in a stochastic setting with 

finite populations. After introducing 11 model for pulsed vaccination, we 

turn to stochastic simulations to investigf1.te the above three proposed polio 

eradication strategies. 

2.5.1 Pulse Vaccination Models 

A pulsed version of our live-attenuated nwcine model ('.! I , ) can be expressed 

as the following set of impulsive differential equations. 

dS 
dt = I/ - ({31 + v)S - Ppulse L S(nT-)f>(t - nT) (2.34a) 

1l 

di 
dt = 31 S - (v + r)I + </>Pp111-., L S(nT-)8(t - nT) (?.34b) 

n 

~~ = rl + (1 - <P)Ppulse L S\11T-)f1(t - nT) - vR (2.3~c) 

n 

S(nT-) = lim S(nT - E) 
€-+O+ 

(2.34d) 

where the sums are over all non-negative integers n. In this pulsed modeL 

vaccinations are performed only at intervals of period T, not continuously. 

At each pulse time, a proportion Ppulsc of the susceptible population receives 

the vaccine. The above equations gener<tlize the pulse vaccination model of 

Stone and colleagues [27] to include the reversion factor </>. 

If there is only one pulse (at time T), and we consider IPV (no reversion), 
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then the equations simplify to 

dS 
dt = V - (/31 + v)S - /JpulseS(T-)b(t - T) 

d! 
dt = /3 IS - ( v + /) I 

dR = 1! + Pr111seS(T-)1)(t -T) - vR 
dt 

S(T-) = Jim S(T - c) 
E->O+ 

2.5.2 Stochastic Simulations 

Chapter 2 

(2.35a) 

(2.35b) 

(2.~)5c) 

(2.35d) 

Eqs. (' I). C' : ; I). and ( 1 
;-) ) , represent d<'1 cTministic models that can be used 

to explore the ~hree proposed alternah\<' vaccination strategies. Hmvevcr. 

integrating the differential equations will 11ot allow us to estimate the proba-

bility that a given strategy will successful Iv lead to polio eradication. To that 

end, we recast these models as co.ntinuons time Markov processes, which are 

fully stochastic and involve finite populations. \Ve use the standard Gillespie 

algorithm [U], in which the various terms in the differential equations ;-1re 

interpreted as event rates for the various \farkov processes involved. (Figure 

·> ! shows all the state transitions that oc·c:ur, with their rates.) 

We are thinking of each of the three proposed strategies as final eradi-

cation strategies after a normaL continuous OPV vaccination program has 

come as close as possible to eradication. Therefore. we take as the initial 

conditions for our simulations the equili hrium of our model (~i l i) with an 

assumed OPV coverage level p = 0.85 (slightly above the eradication thresh-
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old in the absence of reversion, Pcrit '.:::::'. 0.83). In all simulations we used a 

population of one hundred million ( N = 108
), and the birth rate was taken to 

be representative of the developing world (Table 1. I). The pulsing period was 

taken to be one year (T = 1 yr) and the first pulse was applied immediately 

after ceasing the continuous OPV program. The one-time IPV vaccination 

was also applied immediately after ceasing OPV vaccination. The pulse vac-

cination proportion Ppulse in Eq. (1.:l I) was varied over the range 0-0.35 while 

Pp11 lse in Eq. (L\.-)) was varied over the range 0-0.40. 

Pulsed OPV versus continuous IPV. 

Figure ~- i shows, for the strategies of pnlscd OPV and continuous IPV vacci-
, 

nation in a developing region, the probal >ility of polio eradication within four 

years as a function of the effective numl lCr of vaccinations performed. Here 

we define the effective number to be the 1111mber of vaccinations performed on 

susceptible individuals, noting that under a realistic pulse vaccination st.rat-

egy one might expect the true number of vaccinations to exceed the effective 

number due to duplicate vaccinations. It should be noted that this definition 

of effective number has no relationship to reversion. In order to simplify 

the comparison of the continuous and pulse vaccination strategies, we intro-

duce the idea of the effective vaccinatio11 proportion for a pulse vaccination 

strategy, which can be expressed as follows: 

V(T) 
Peff = T.Vv 

47 

(2.36) 



Bradley G. Wagner- PhD Thesis Chapter 2 

Average Annual Effective Number of Vaccinations (millions per 100 million population) 

1 
o o.5 1 1.5 2 2.5 3 5 A 

1:'.' 
co 
Q) 

0.9 

0.8 

>-
:=; 0.7 
0 
LL 

c 

£ 0.6 

~ 
c 
0 

~ 0.5 
() 

~ 
'.::: 04 
0 

g 
ii 
1l 0.3 

e 
Q.. 

0.2 

0.1 

0 

-- Continuous IPV 
· a Pulsed OPV 

0.1 0.2 04 

d 
; 

05 

I 

p 

Ill 

I 

I 

0.6 0.7 0.8 0.9 

Average Annual Effective Number of Vaccinations as a proportion of Annual Births 

Figure 2. 7: Probability of Polio eradica1 ion within 4 years as a function of 

the average annual effective number of va.ccinations, for annually pulsed OPV 

(dashed curve) and continuous IPV vacci11ation (solid curve) in a population 

of one hundred million (with birth rates typical of developing countries; Ta

ble :2 I ) . The lower horizontal axis gives t.lic average annual effective number 

of vaccinations as a proportion of the average annual births as defined by 

Petr in Eq. (:.!:>ii) (for T = 1). For conl inuous vaccination this reduces to 

the vaccination proportion p in Eq. (. ) . The upper horizontal axis gives 

the raw annual average number of vaccinations (in millions per 100 million 

population). Continuous IPV campaign:-: are successful for moderate vacci

nation coverage (Peff ~ 0.7). For very low vaccination coverage (Peff ;S 0.3) 

pulsed OPV campaigns are no better than ceasing vaccination altogether, 

due in part to the introduction of infec1ives through vaccination. However, 

pulsed OPV can also be successful if a moderate coverage level is achieved 

(Peff > 0. 75), though the vaccination4!fvd required is greater than that re

quired for continuous IPV. 



Bradley G. Wagner- PhD Thesis 

- continuous IPV 

- - pulsed OPV 

0.9 

0.8 

0.7 

c 
Q 

1§ 0 6 
i5 
~ 
w 
0 0.5 

~ 
15 
_g 0.4 
e 
a.. 

.,r 
0.2 

I 

I 

o, r 

0 
0 0.5 1.5 

I 

I 

2 

-------

2.5 
Time (in years) 

Chapter 2 

3 35 

Figure 2.8: Probability of Polio eradic<lt,ion as a function of time for a 4 

year continuous IPV vaccination prograrn with vaccination proportion p = 
0.7 (solid curve) and pulse OPV with vaccination parameter Ppulse = 0.2 

and pulse period T = lyr, corresponding to Peff '.:::::' 0.7 (see Eq. 2. :(;). The 

population size is one hundred million with birth rates typical of developing 

countries (Table .2.1 ). Nonzero probability of eradication is apparent slightly 

after half a year for both strategies. For OPV pulses. there is little increase in 

eradication probability for roughly half a w~a.r following each pulse, due to the 

pulse introducing a significant number of infectives via vaccine reversion. It 

should be noted that both strategies exhibit quickly diminishing returns, with 

the bulk of eradications occurring within the first two years of simulations. 

49 

4 



Bradley G. Waguer- PhD Thesis Chapter 2 

where Tis the pulsing period, V(T) is tlic average effective number of vacci

nations per pulsing period, N is the population size and v is the birth rate. 

Thus, under this definition, a continuous v<lccination strategy with vaccina

tion proportion p = Pelf would vaccin<ltc the same number of individuals as 

the corresponding pulse strategy in a given pulsing period. 

Substantial effects of stochasticity arc evident in Figure 2. :-. Even if we 

cease vaccination altogether (left limit of Figure J_ I) there is a non-zero prob

ability that polio will go extinct within four years. In developing countries 

(the situation depicted in Figure !.7) this fadeout probability is very small 

(less than one percent) but it should he noted that the probability of fade

out after stopping vaccination altogetlwr is much greater for smaller birth 

rates; in particular, for birth rates typical of developed countries (Table :_1 
: ), 

the one-year fadeout probability upon c<·afiing vaccination is 173. Sensitiv

ity of fadeout probabilities to birth rat<·;; occurs for two reasons: the birth 

rate determines the rate at which new ,c.;nsceptible individuals are recruited 

into the population and the equilibrium number of infected individuals is 

(approximately) proportional to the birt.li rate Eq. (2.171!)]. 

Continuing to focus on birth rates appropriate for developing countries, 

we see from Figure 2. 7 that for any Peff < 0.3 the four-year fadeout proba

bility remains negligible if pulsed OPV is employed, and small ( ,.._, 103) if 

continuous IPV is used. However, moderate vaccination levels (Pelf ,.._, 0. 7) 

yield great improvement. The four-year L-i.deout probability reaches 903 for 

Peff rv 0.75 using OPV or Pelf'"" 0.7 with TPV. 
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In general, pulsed OPV vaccination is less effective than the correspond

ing IPV strategics with the same numhcr of doses. For small OPV pulses, 

the probability of eradication is no better than if no OPV vaccination is per

formed at all (due to the introduction of infectives via reversion). However, 

for sufficiently large OPV pulses, increased herd immunity outweighs the in

put of infectives and switching from cont.inuous OPV vaccination to pulsing 

is likely to be very helpful. In particular. Figure 2. I indicates that switching 

from 85% continuous OPV vaccination to 85% pulsed OPV vaccination once 

per y<~ar will change the probability of fadeout within four years from zero 

to nearly I using the same number of do-;<~s. 

Single pulse OPV versus single pulse IPV. 

The most effective strategy might be tl1<' application of one large pulse of 

IPV, following a successful continuous OPV vaccination campaign. Figure 

:l. ( 1 shows the probability of eradication within one year as a function of the 

effective number of IPV or OPV vaccinations in a one-time pulse. As an 

example, note from the figure that an application of five milllon effective 

doses. representing less than ;353 of the susceptible population, leads to a 

one-year fadeout probability of less than 80% if OPV is used but greater than 

95% if IPV is used. Furthermore, as illustrated by Figure:.?.! ll, eradication is 

witnessed in shorter time intervals following IPV vaccination as compared to 

an equivalent OPV pulse. Thus, a one-time IPV pulse may be desirable both 

from the perspectives of total number of ,·,1ccinations and time to eradication. 
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Figure 2.9: Probability of Polio eradication within one year, as a function of 

the effective number of vaccinations for <1 ~ingle vaccine pulse of IPV or OPV 

in a population of one hundred million (with birth rates typical of developing 

countries; Table :.!. I). The lower hori7,011tal axis shows the proportion of 

susceptibles vaccinated (parameter Ppulse in Eq. (L\."1); note that </> = 0 for 

IPV as there is no reversion). The upper horizontal axis shows the total 

number of vaccinations given. IPV achieves superior eradication probabilities 

in comparison to OPV for equivalent nurnbers of vaccinations. Note that for 

less than five million IPV vaccinations, corresponding to less than 35% of the 

susceptible population (as given by Eq. a), the probability of eradication 

within one year is 95%. 
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Figure 2.10: Probability of polio eradication as a function of time, for a single 

vaccine pulse of IPV (</> = 0) or OPV (cb as in Table 1.1) with Ppulse = 0.28 

(where Ppulse is the susceptible vaccination proportion in Eq. 2.::-,). The 

population is one hundred million (with birth rates typical of developing 

countries; Table•~- I). For IPV, nonzero probability of eradication is apparent 

for shorter time intervals in compariso11 to OPV. Nonzero probability of 

eradication for OPV is observed almost t.wo months later than for IPV. 
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Rational policy options 

Our models indicate that one-time mass and continuous IPV coverage are 

effective eradication strategies, even at mudcrate coverage levels, while pulsed 

OPV vac:cination may be a viable opti011 as long as a sufficiently high level 

of coverage is maintained. Note that while· OPV is much cheaper and easier 

to administer than IPV. the logistical advantage of needing to reach a much 

smaller proportion of the population for the same payoff in probability of 

eradication is an important benefit of IPV. 

It should also be noted that in this discussion the IPV model assumes 

full intestinal immunity of the vaccinal(•d individual. This is of course a 

simplification, and IPV is generally tho11ght to induce lower levels of intesti

nal immunity compared to OPV [20]. Consequently, it is likely that the 

eradication probabilities that we have predicted for the IPV programs are 

overestimated (by an unknown amoun11. The significance of lowered gut 

immunity is still an open question. thongh as previously mentioned, recent 

studies suggest that enhanced potency IPV ( eIPV) induces an improved level 

of intestinal immunity over previous IPV offerings [:20]. 

2.6 Discussion 

\Ve have presented a compartmental model that takes into account the possi

bility ofrewrsion in live attenuated viru!-> vaccines (Figure:.!. I and Eqs. (::.'.ii)). 

For a norn~ero reversion proportion of the vaccine ( </> > 0), the model has one 
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biologically meaningful (endemic) equilil>rinm, which is globally asymptoti

cally stable. 

We applied the model to polio dynamics, assuming oral polio vaccine 

(OPV) is given to a fixed proportion of newborns (p), and investigated the 

impact of circulating vaccine derived polio viruses (cVDPVs). For our es

timated value of the reversion proportion ( </> rv 10-4
; Table l I), we found 

that for vaccination levels (p) less than 7S% the effect of cVDPVs is nC'gligi

ble compared to the expected endemic lcvC'l of the disease in the absence of 

reversion. \Ve concluded that if OPV c< 1w~rage levels are below the critical 

level required for eradication in the abs<•nce of reversion (p < Pcrit '.::::'. 0.83) 

then it is best to focus on trying to increas<~ OPV coverage levels (the benefits 

of increased coverage far outweigh the negative impact of vaccine reversion). 

However, if p can be brought close to ]Jcrit then other strategies should be 

considered to increase the probability or eradication (the inevitable input of 

new cVDPVs resulting from continuous OPV vaccination must be avoided). 

We considered three alternative eradication strategies that eliminate con

tinuous input of cVDPVs: pulsed OPV vci.ccination, continuous injectable po

lio vaccine (IPV) vaccination, and one-ti111c mass IPV vaccination. Based on 

simulations of stochastic models, we fou11d that continuous or mass JPV vac

cination achieves a higher probability of eradication (per dose) than pulsed 

OPV. In spite of the much greater cost. per dose for IPV, we expect that 

investment in IPV vaccination following "· successful continuous OPV cam

paign will be more effective because th<' time to eradication is likely to be 
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substantially shorter (Figures ~2. '-' and . ) . 

The key parameter in our models is the reversion factor </J, which can 

be estimated only crudely. Our modeling would benefit from a more precise 

estimate of </J, noting that by reversion W<' mean regaining both virulence and 

transrnissibility. Revertant vaccine virus<'s probably do not always regain full 

transmissibility, so an estimate of Ro for revert.ant strains would be helpful. 

We have ignored the benefit of contact vaccination via OPV: because the 

vaccine is live, vaccinated individuals ca11 transmit the vaccine and thereby 

immunize non-vaccinated individuals. Tltis effect should (slightly) lower the 

predicted endemic number of infectives l >dow that predicted by our model. 

With respect t.o final eradication strategies, a more thorough midcrstand

ing of IPV's effectiveness in inducing gul immunity is needed. In addition, 

polio models accounting for spatial heterogeneity and seasonality in trans

mission rates should be investigated, sill( e synchronization of fadeouts could 

increase the probability of eradication [I 1. I l, l 2]. 

2. 7 Appendix 

We show here that if 0 < p < 1 and 0 < </> :::; 1 then the equilibrium given 

by ('_>. I i) is contained in the biologically relevant region B = { ( S, I) : S > 

0, I> 0, S +I< 1 }. 
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First, if p</J > 0 then 

[ ] 

2 

I I 
1 p<p 1 
-~p + - > -C:.p ' 
2 Ru 2 

so I* > 0 in Eq. (J I iii). 

Second, we can re-express Eq. (:..!.I~ ) a.s 

S* . 1 
= 1 - Pcrit -t- 26p - -C:.p + !!_. 

[
l ]

2 

</J 
2 Ro 

Since 1 - Pcrit = l/Ro. \Ve therefore haw 

S* > 0 <===> 1 1 [ 1 ] 
2 

p</J - + -2 C:.p > -C:.p + -
Ro 2 Ro 

- + -C:.p > -C:.p +-!!_ ( 1 1 )2 [l ]2 

</> 

Ro 2 2 Ro 

1 C:.p }J</J 
-+->
R6 Ro Ro 

_l + (1 - _I ) - p(l - ¢) > p<J> 
Ro Ro 

<==>p<l. 

Finall:v, summing Eqs. (:..! ! ,-;;) and ( i •) to obtain 

Chapter 2 

(2.37) 

(2.:38) 

(2.39a) 

(2.39b) 

(2.39c) 

(2.39d) 

(2.39e) 

S' +I'~~+~(!+ /)6p-(l -f) [~top]'+~, (2.40) 
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and defining 

F(J) = 1 - (S* +I*), (2.41) 

we must show F(J) > 0 for all relevant values of J (i.e., for 0 < J < 1 from 

definition (l.x)). To see this, note that 

1 
F(l) = 1 - Ro - 0.11 = p(l - ¢) ~ 0 (2.42) 

and 

dF 1 
- = --0.p -
df 2 [

I. ]
2 

</J -!:ip + E_ 
2 Ro 

(2.4:3a) 

< 0 for all J. 

so F(f) > 0 for all J < 1. 

2.8 Appendix 

We formally calculate the endemic equilibrium of the Gamma distributed 

OPV reversion model (2. ;:\). Wt~ use th<' superscript * to denote the cquilib-

rium value and we define the dimensionless parameter 

// 

Jn= . , 
n"y TV 

(2.44) 
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For n = 1, fn reduces to f, as defined in Eq. p.>'). For the Gamma dis

tributed SIR model, the basic reproduct'/11r. nu,mber Ro is given by [W] 

(2.45) 

In terms of R 0 , the critical vaccination vroportion (which is meaningful in 

the absence of reversion) is still given by the usual formula (:.!.'l). 

Setting Eq. (:.!.:l:\) to zero, fork 2: 2 we find 

(2.46) 

and hence 

I* = (1 - J )k-1 I* k 11 1 . (2.47) 

We therefore have 

[* = ~ [* = 1 - (1 - Jn)"_/* = 1 - (1 - fn)n [* 

~ k 1 - (1 - j ) I j 1 . 
k=l n n 

(2.48) 

Summing Eqs. (~.;Ua) and (:2.;j;\l 1) at eqnilibrium yields 

S* = 1 - p( 1 - dJ) - ;n 1; . (2.49) 

Substituting Eq. (:2. l'l) into (l.:;:)1)) (set t.o zero), expressing I* in t.errns of 
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Ii via (2. i:~) and simplifying in terms Ro yields the quadratic equation 

1 [*2 [ (l . )] J* p</Jfn O -
1 

1 - Pcrit - P - 0 1 - -- = · 
n Ro 

(2.50) 

This quadratic equation for Ii has exact l \' the same form as Eq. C! I I) for I* 

in the case n = 1. As in §2.1. i, defining lip = Pcrit - p(l - </>) and solving the 

quadratic for Ii (insisting that it be non-negative) yields the unique solution 

* 1 I _ - p</J [ l[ ] ') l f 1 = Jn 2 lip + 7/~P + Ro 

from which Eqs. (:2. 1;-;) and ('2. ilJ) imply 

T' ·- [1 - (1 - fn)"] [ ~8.p I 

S* = 1 - p(l - ¢) - ~lip -
2 

[
l ]

2 ¢] 
21ip + ~o 

(2.51) 

(2.52a) 

(2.52b) 

As expected, for the exponential distribution (n = 1), Eq. (:.!.--J2) reduces to 

( .) 1 ·~) 
~. i . 

2.9 Appendix 

Here we show that for the live attenuat<'d virus model (.> I I), if 0 < p < 1 

and 0 < ¢ < 1 then the region B = {(S. I) : S > 0, I > 0, S +I < l} is 

forward invariant, and for all initial conditions along the boundary of B the 
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flow of Eq. (l. l I) is into B. 

As shown in §2.::, since the model ( , ) is constructed in terms of pro-

portions, the closure of B is forward inva.riant. Therefore it is sufficient to 

show that the flow of (2.11) along the bonndary of Bis into B. 

The boundary is given by the lines S = 0, I = 0 and S + I = 1. Along 

the line S = 0, the flow of (2.' ') is give11 by 

- =(1-p)v, dsl . 
dt S=O 

(2.53) 

which is positive for any p < 1. Hence 1.lw flow along the line S = 0 is into 

B. Similarly, if I = 0 then 

dll = opv' 
dt l=O 

(2.54) 

which is positive provided p > 0 and ¢ > 0. Finally, along the line S +I = l. 

d(S +I) I . = -(1 - </>)]JI/ - /f :S -(1 - </>)pv, 
dt S+l=l 

(2.55) 

which is negative provided ¢ < 1 and p > 0. Thus, the flow along the 

boundary lines is into B. 
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Chapter 3 

Contact Vaccination 

3.1 Introduction 

Both currently and historically live-att011nated virus vaccines (LAVV) have 

been employed against a wide range of viral diseases. Examples include the 

smallpox vaccine, the Oral Polio Vaccin<' (OPV), measles vaccine, and HIV 

vaccines currently under development [!1. t~]. 

Unlike an inactivated vaccine, a LAVY is a functioning, replicating virus 

which has been significantly reduced in virulence and transmissibility through 

the attenuation process. Typically this a.ttenuation is achieved by passing 

the virus through a sequence of animal host tissues where there is selective 

pressure for mutations which reduce its virulence [:U]. 

The transmission of LAVV s, so-called inadvertent or contact vaccinations 

is the focus of this work. Although the t ransmissibility of LAVV s is signif-
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icantly reduced compared with native or virulent forms, it has long been 

recognized that LAVY transmission ca11 he sufficient to have an important 

effect on the epidemiological dynamics at the population level. The World 

Health Organization (WHO) has cited C()lltact vaccination as one of the five 

primary reasons for use of OPV in the dC'Vl~loping world [18]. In this case it is 

seen as a benefit, as the transmission of vaccine virus lowers the proportion 

of the population that must be directly \'<tccinated to control the spread of 

the wild virus. 

Contact vaccination may have playl'd an important role in leading the 

eradication of smallpox in the 1970s. Ifowever, observed smallpox contact 

vaccination [27] is currently viewed negilt.ively becaus@ it implies a risk of 

serious allergic reaction in individuals wl 10 haven't chosen to be vaccinated. 

In addition, as for any LAVY, the smallpox vaccine virus has the potential 

to mutate and thereby revert to the original wild form [:t3]. The potential 

to re-introduce an eradicated pathogen makes contact vaccination a very 

dangerous risk in this case. 

We focus our attention specifically 011 LAVY vaccination for infectious 

diseases that generally confer lengthy or lifelong immunity to the infecting 

pathogen. These include polio and smallpox, but also childhood infections 

diseases such as measles, mumps, rubella and pertussis. We investigate the 

significance of the role of contact vaccination in decreasing the required vacci

nation coverage to control pathogenic wild virus spread, specifically deriving 

analytical expressions for the critical vaccination coverage levels for eradica-

68 



Bradley G. Wagner- PhD Thesis Chapter 3 

tion of the wild virus in terms of epide111iologically measurable quantities. 

The first part of our analysis deals 'Ni t.h LAVV programs in which vacci

nation takes place continuously. We begin by presenting the simplest LAVV 

models, which are variants of the sta11dard Susceptible-Infected-Removed 

(SIR) and Susceptible-Exposed-Infectious-Removed (SEIR) models; we then 

proceed to expand the results t.o a very general staged progression modeL 

which among other things allows us to examine more realistically distributed 

latent and infectious periods for both the wild and vaccine viruses. 

The second part of our analysis deals with pulse vaccination LAVV pro

grams. In such programs mass vaccinations are performed at regular time 

intervals. This analysis has particular relevance to polio, as some form of 

annual pulse OPV campaign is current!.'· in use in 55 countries around the 

globe [l]. 

Throughout t.his work we make the simplifying assumption that the vac

cine virus cannot undergo reversion (a return to its virulent form via nrn

tation). \Vhile this ignores a potentially critical biological process, we have 

previously shown that reversion is likelv to contribute significantly to the 

population dynamics of the pathogen 011 ly when considering strategies for 

vaccine cessation [32]. In this paper we focus on the eradication of the wild 

virus strain, minimizing the total virus transmission but not necessarily elim

inating it fully due to the possibility of reversion of the vaccine strain. '0/e 

do not consider the "endgame", strategics for withdrawal of vaccine cover

age, in this paper. Thus ignoring reversion does not represent a significant 
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approximation. 

Some previous mathematical modelling of LAVY transmission has been 

carried out for HIV [G] and OPV [12]. Int he case of HIV, LAVY transmission 

was investigated in the context of an imp('rfectly attenuated vaccine, vvhich --

in addition to having limited efficacy- h<ld the potential to cause the disease 

itself irrespective of reversion. In the cas<' of OPV. a simple LAVY mociel was 

formulated and a partial local analysis performed [12]; a full global analysis 

of this OPV model is a special case of t lie general results we derive in the 

following sections. 

3.2 LAVY Models 

The simplest LAVY model is based on the standard SIR model (2, l T] and 

can be represented as a flow chart (Figure i) or as a set of coupled ordinary 

differential equations (ODEs), 

dS 
dt = (1 - p)v - !31 l.S' - !3vVS - vS (3.la) 

dl 
dt = f31 IS - ( v + ~/1 ) l (3. lb) 

dV , 
dt = pv + /JvVS - (1; + /v)V (3.lc) 

dR ) 
- = II I + )V v - I/ Ii 
dt 

(3. ld) 

The host population is split into homogeneous classes representing the pro-

portions of individuals who are susceptibh, (S), infectious with wild virus (I), 
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Birth vN 

pvN 
,uV 

Vaccination 

(I - p)vN v 

s R 

Death 

I 
µR 

,u1 

Figure 3.1: Flow diagram for the SIVR model, the simplest LAVY model. 

The ODE formulation of this model is given, in terms of proportions of the 

population, by system (.~ I). 

infectious with attenuated vaccine virus ( V) or immune ( R). The parameters 

(31• f3v . ..land ..l represent the transmissiu11 rates and mean infectious 1wriods 
' "YI l'l 

for the wild and vaccine viruses. respectively. In the flow chart, both birth 

(at per capita rate v) and natural deatl1 (at per capita rate µ) are shown. 

However, because Eqs. (:;.1) are written in terms of proportions rather than 

numbers of individuals in each compart.rnent, only v appears in the ODEs 

[Ui, :r2]. The parameter pis the proportion of individuals who are vaccinated 

before entering the susceptible class (in practice, there is often a substantial 

delay between birth and vaccination so that maternally-acquired immunity 

has had a chance to wane). These vaccinated individuals then enter the 

attenuated-virus infectious class (V) awl are able to pass the vaccine virus 
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to susceptible individuals. resnlting in contact vaccinations. The model(:. i) 

assumes that there is no disease-specific 111ortality, that vaccination-whether 

direct or inadvertent---confers lifelong immunity, and that the vaccine virus 

does not evolve (and hence cannot revert to the virulent form). The assump

tion of lifelong and complete immunity is particularly valid in the case of 

LAVVs for childhood diseases, as they provide an active immune rrsponse 

very similar to natural infection [28]. 

We denote the basic reproduction nurnbers of the wild and vaccinr viruses 

as Ro and Rv, respectively. The basic reproduction number is defined in the 

standard manner as the average number of secondary infections (or secondary 

immunizations) caused by a single infectious individual in a fully susceptible 

population. As the vaccine virus is attcrnrnted, substantially reducing both 

trans1i-1issibility as well as virulence, W<' impose the condition Rv < R 0 . 

Furthermore we consider Ro > 1 as otherwise the virus would fade out from 

the population naturally without vacci1rn.rion. 

The ODE system () 1) was originally proposed by Eichner and Hadeler 

[ l2] to model polio dynamics when vn.ccinating with Oral Polio Vaccine 

(OPV). They showed that system (:LI) exhibits a disease free equilibrium 

(DFE), which is (locally) asymptotically stable, whenever 

P 2 Pcrit ( 1 - ~~) 1 
(3.2) 

where Pcrit is the minimum proportion of the population that must be vacci-
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nated to eradicate a disease with a vacci11e that is not transmissible, i.e., 

1 
Pcrit = 1 - Ro · (3.3) 

It is important to note that contact vaccination leads to a significant rcdnc-

tion in the threshold vaccination proportion Pcrit even for Rv < 1 ,in which 

case we expect the vaccine virus to fade rrom the population upon cessation 

of vaccination. This reduction of critical proportion is demonstrated in Fig-

urc :; ; which compares the critical proportion under contact vaccination to 

Pcrit (standard vaccination) for various fi:x(~d Rv values across a range of Ro 

values. 

Below threshold(;:. 2), system (:s. I) has a biologically meaningful endemic 

equilibrium. We demonstrate below that t.he DFE is, in fact, globally asymp

totically stable if condition (:\.:2) holds n11d that the endemic equilibrium is 

globally asymptotically stable whenever it exists. These conclusions arr also 

valid for models that incorporate latent periods (delays between t.he time 

of infection or vaccination and the onsr't. of infectiousness); see the SEIVH. 

model depicted in Figure :~.:.:'.. Much more generally, we show in this paper 

that these global stability results are valid for any staged-progression LAVY 

model (depicted generically in Figure >; ) . 
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Birth vN 

Figure 3.2: Flow diagram for the SEIVD model. The compartments Ev and 

E1 represent exposed dasses of individ1wls who have been infected, respec

tively. by the vaccine and wild virus b111 are not yet infectious. The mean 

latent periods for the vaccine and wild \·irns are given by 1 and 1-
av a 1 

Birth vN µV, µV, 

••• 

• • • 

µ!, µI, ,ulk 

Figure 3.3: Flow diagram for 1 lic general staged 

SiiI2 · · · h Vi Vi··· VnR model, which i 11cludes an arbitrary 

stages of infection for both the wild and vaccine viruses. 
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Figure 3.4: Critical vaccination proportion (::.:c!) as a function of wild virus 

basic reproduction number Ro for fixed values of vaccine virus basic repro

duction number Rv (solid line). Also shown is the standard critical vaccina

tion level Pcrit (dashed line) correspondi 11g to Rv = 0. Contact vaccination 

leads to a significant reduction in the critical vaccination proportion even for 

Rv < 1 and relatively high Ro values. 
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3.2.1 Global stability of generalized LAVV models 

We show that for the very general class of LAVY models depicted in Figure 

:L\ there is always a unique DFE and a critical vaccination threshold that 

is always given by Eq. (:.:2). If p ~ Pcrit (1 - ~~) then the DFE is globally 

asymptotically st.able, while if p < Pcrit(l - ~~)there exists a unique globally 

asymptotically stable endemic eq·a'ilibriu111. 
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The General Staged Progression LAVV Model 

We begin by formulating the general st.aged progression LAVY model de-

picted in Figure . ; :» as the following sysl<'m of OD Es. 

(3.4a) 

dVi ~ v ( v) 
dt = pv + ~(3j VjS - // + 1'1 Vi (3.4b) 

j=l 

dVi v ( v) · 
dt = 1'1 Vi - v + 1'2 V2 ( 3.4c) 

d\~ v ( \) di= 'Yj-1 VJ-1 - v + 1) vj (3.4d) 

dv~ v ( '°) dt = 'Yn-1 Vn-1 - ll + /' 11 Vn (3.4c) 

k 

df1 " I ( I) dt = ~(3//3 - ll + 11 !1 (3.4f) 

j=l 

df2 I ( I) 
dt = /'1 Ii - ll + 1'2 h. (3.4g) 

(3.4h) 

dh I ( l) 
dt = 'Yk-1h-1 - ll + "tk )h (3.4i) 

dR I v 
dt = 'Ykh +In Vn - vR (3.4.i) 
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In system(::. l). the variables'~ represent infected stages (latent if the trans

mission rate ,G'j = 0 and infectious if .J;- > O). Similarly, the Ij represent 

wild \'irus infected stages and BJ are tlw transmission rates in these stages. 

We d<~note the numbers of vaccine virus a.ncl wild virus infected classes by n 

and k. rcsp<'ctivf'ly. vVithout loss of ge1wrnlity, we assume Vn and h 1tre the 

final \'acci11e and wild virus stages with 11onzero infectivity (further classes 

with J~· = 0 or 3J = 0 could be absorlwd into the removed class R). As in 

(:\ I) the model(:\. l) is written in terms CJ!' proportions, so only the prr ca.pita. 

birth rate v appears and not the per capita. death rate µ . The parameters 

~ and -\ represent. the mean duration of the jth vaccine and wild virus 
"( j -YJ 

infected stages respectively, and p is th<· proportion of newborns which are 

succes:-;fu\l~· vaccinated (after maternal a11tibodies have waned). 

vVc· denote the state of the system ( ) as 

X = (S, V1. l-2, ... , \!;,. !1, I'], .... h. R) (3.5) 

and the biological meaningful set, as we are dealing with proportions, 1s 

clcfinrd as 

(3.G) 

The set Bis positively invariant. From tlH· form of the equations it is straight-

forwardly seen that if all initial states a.re non-negative, they remain non-

negative for all positive time. Furthermore summing Eqs. (:; !:!)-(:~. i 1) .Yields 

78 



Bradley G. Wagner- PliD Thesis Chapter 3 

the differential equation 

(3.7) 

which has a single equilibrium at Li X; = 1. Since by definition any initial 

condition in B satisfies Li Xi(O) = 1, ( ) trivially implies that Li X(t) = 

1 Vt > 0. Thus, X(t) E B Vt ~ 0 and the model(; l) is biologically well 

posed. 

Note that since Eqs. (:\ i 1)- (:.Ii) i\rc independent of R, we need only 

deal directly witl1 this subsystem, ignoring Eq. (\ I;). Thus, it is convenient 

to express B as 

n k 

B = {S, V;, Ii: S, Vi .. Ii~ 0, s + L V; + L Ii::; l} (3.8) 
i=l i=l 

where it is understood that R = 1 - S - L~=l V; - L7=1 Ii 

Basic reproduction numbers 

\i\!e calculate the basic reproduction rn1111hcrs of the vaccine (Rv) and wild 

virus (Ro). defined to be the number or secondary transmissions of a single 

infectious individual in an otherwise fully susceptible population. From the 

definition, we se(~ that each virus must h<' considered independently. If con-

sidering the vaccine virus we fix all wild \·irus classes to zero, and vice versa .. 

and set vaccination to zero. Applying tlH· next generation method [7. :n] to 
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the resulting system yields the reproduction numbers, 

R - i--'l + <I Ti 
( 

,QV n rJ\" (j-1 y )) 

v - (v +in f; (v + 1j) 1] (v + 1;') 
(3.9a) 

R _ · 1 + · 1 Ii 
( 

31 k 31 (j-1 I ) ) 
0 

- (v + 1D f; (v + 1'J) D (v + 1J) 
(3.9b) 

The next generation method provides a straightforward algorithm to obtain 

reproduction numbers by examining the stability of the system at the DFE. 

For staged progression models, reproduction numbers are worked out cxplic-

itly in [:n], along with a complete disrnssion of the method. 

Eqs. (: ( 1) can be also understood at a heuristic level. For example (for 

{3v 

constant population) the term ~) can be understood as the average num
t_v+-r;) 

ber of people infected (in a fully suscept.ihlc population) by an individual in 

v 
the jth class. while the product term fY. 

1

1 

~) represents the probability 
1 . \v+-y, ) 

th<1t an individuetl beginning in the first dass will proceed to the jth class 

before dying. Summing over all classes µ;ives the total average number of 

infections. 

3.2.2 Equilibria 

For system (:' .. !).we explicitly ('.Omput(' the disease free equilibriu.rn (DFE. 

which always exists and is unique) and t.he endemfr equilibrium (EE. which 

is unique whenever it exists). 

We note that for any equilibrium X* such that (S*, ~·,Ii*) ~ 0, Vi must 
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in fact lie in the biologically meaningful set B. To see this observe that at 

equilibrium Eq. (:L l.i) implies 

R* - ~ ( Vy• - I I *) - ln n i lk k 
l/ 

(3.10) 

The assumption that Vn*. h * arc non-nq~ative then implies that R* 2:: 0. 

and thus all states are non-negative. As previously shown by (:. ,-) at any 

equilibrium we must have 

n k 

L Xt = S* + R* + L ~* + L Ii* = 1 (3.ll) 

i~I i=l 

implying that X* E B. We make use of 1 l1is result in the computation of the 

disease free and endemic equilibrium. 

The Disease Free Equilibrium 

By definition, the DFE has I/= 0 for all j, and we notice from (:;. ) that 

at equilibrium we must have 

v 
V * rJ-1 V* 

j = ( V) J-1 · 
l/ + fj 

j2::2. (3.12) 

Summing Eqs. (:\ Lt) and (:l. lh) at equilibrium yields the relation 

(v+rv) 
S* = 1 - i Vi* . (3.13) 

/! 
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Expressing Vj* in terms of Vt via Eqs. ( ; .~), (:\.lJ) and substituting (', L1) 

into (;. I Ii) at equilibrium yields the quadratic equation 

(v + 1i) Vi*2 - (1 - _1_) Vi* - pv v . 
v Rv Rv ( v + 1 1 ) 

(3.14) 

\Ne compute the unique positive solution of (>. \ 1) :vielding the DFE. 

S* = 1 - -(1 - -) - -(1 - -) + _£__ 
( 

1 1 ~l 1 )

2 

) 

2 Rv 2 Rv Rv 
(3.15a) 

'* ll (1 1 Nil 1 )2 p) v1 = v -(1 - -) + -(1 - -) + -
( v + 1 1 ) 2 Rv 2 Rv Rv 

(3.15h) 

V* = I/ (fr l~l ) (~(1- _1 ) + (~(l -_1 ))2 + _L) 
1 (v + 1i) i=

2 
(v + 1'() 2 Rv 2 Rv Rv 

(3.15c) 

I* - 0 J - (3.15d) 

It shonld be notC'd that the equilibrium 11nmber of susceptibles. s·' depends 

only on the reproduction numbers Ro nnd Rv, and not on the durations 

of any of the stages. The 11on-negativi1y of the equilibrium (established 

in Appendix A of [~~2]) implies that th(' equilibrium lies in the biologically 

meaningful set B. 
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Endemic Equilibrium 

For p < Pcrit(l - '.t) there exists a uniq11<' endemic equilibrium. To sec this, 

we first note that (; l _>) holds, as does the analogous relationship for the 

infected classes, 

I 

I * lj-1 I * 
j = ( l) j-1 . 

v + fj 
j?. 2. (3.16) 

Applying Eqs. (:' 11;) and(.:'') to (:ii:) ctt. equilibrium yields 

( v + ID ( 1 - nn S*) = () . 

which is eqnivalent t.o 

(3.18) 

Similarly. applying(.;.: '). ('.. i) and (; ) to Eq. (i iii) yields 

V,* _ . pvRo 
1 

- ( v + 1i) (Ro - Rv) 
(3.19) 

which is positive under the attenuation condition that Rv < R 0 . Substitut-

ing expression (:: I '1) into (;.: 1) at equilibrium and again using (:L ! ~), (; iJ) 

and (, ! 11) yields 

(3.20) 

83 



Bradley G. Wagner- PhD Thesis Ch<1pter 3 

We sec that / 1 * > 0 if and only if p < (I - -,i
0 

)(1 - ~~ ), and the endemic 

equihhriurn may be expressed as 

S* = ~ 
'Ro 

(3.2la) 

V* _ ( pv'Ro ) 
1 

- (I/ + r n ('Ro - 'Rv) 
(3.2lb) 

v· - pv'Ro fi-1 

( )(

j v ) 
1 

- (v +~;(')('Ro - 'Rv l [! (// + 1;') 
(3.2lc) 

j = 2, ... , n 

l1 * = ( (v: 'YD) ( (1 - ~o) - p ( 1 + ('Ro ~v'Rv))) (3.2ld) 

T/ = Cv: -yj)) ([! (v';~f)) ((I - ~) - p (i + (~ 7::vRv))) 
(:3.2lc) 

.i = 2 .... 'k 

Again, the fact that the equilibrium is nu11negative implies that it lies in the 

biologically meaningful state region B. 

3.2.3 Global Stability Conditions 

We use Lyapunov's direct method [2:~] to establish that the DFE is globally 

asymptotically stable if p 2:: Pcrit(l - ~~) and that the endemic equilibrium 

is asymptotically stable if p < Pcrit(l - ~~;). 

The Lyapunov functions we construct. are related to those used by Guo 
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and Li [1 ;)] to prove global stability in a standard epidemiological staged 

progression model. The Guo-Li function~ are in turn generalizations of Lya-

puno\· functions recently developed to pn 1ve global stability for a variety of 

epidemiological and ecological models [,. :. I<), :20, :.! 1 J. The primary reason 

that these methods work for a wide rang<' of high-dimensional ecological and 

epidemiological models is that they do not rely on explicit equilibrium expres-

sions. Instead, we only require implicit 1dationships among the para.meters 

and equilibria (which arc straightforwardly derived directly from the differ-

ential equations) and the positive invari1l1wc of the positive cone with respect 

to the dy11amical system. 

Global Stability of the Disease Free Equilibrium 

To establish the global asymptotic stability of the DFE (:\. i -i) when p ?: 

Pcrit(l - 7;:,v) we first note that this condition is equivalent to the condition 
l\.,t) 

S*:::; ~o (Appendix :L-,). We then procc<·d to construct a Lyapunov function 

of the form 

LoFE = LbFE + L'fJFE 

k 

LbFE = I 1 + L aJIJ 
]=2 

LiFE = (S - S* In (S)) +(Vi - Vt In (Vi)) 

n 

+ Lb1 (Vj - V/ In (Vj)) 
J=2 
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where aj. bj are appropriately chosen positive coefficients and * denotes the 

equilibrium value at the DFE. We not.(' t.hat LoFE has a global minimum 

(with respect to the positive cone) located at the DFE which we denote as 

E 0 = (S*, V1* ... Vk*,O, .. . 0) and further!llore that for any variable P, 

!___ (P - P* ln (P'i) = 1 - P* 
8? . p. (3.23) 

Construction of Lf:)fE 

We ohserYc that Eqs. (: II')-(::. ii) can h(' written in the form 

f 1 "£k 811 s 
J=l. J ) f 1 

d f 2 0 f 2 

dt 
-V (3.24) 

0 

when' the k x k matrix V is given by 

-(v + 1D 

1f -(v + 1~) 

V= (3.25) 

The matrix V has a non-negative inven:;<' which can be computed directly 

as 
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1 

v-1 = (v +ii{(~+ 1~) 
1112 

1 

(v+1D 

I~ 
(1/ + 1~)(v + 1j) 

Chapter 3 

1 

(3.26) 

Furthermore. Ro can be expressed in n .straightforward manner [7. :) l] in 

terms of V as 

Ro = ( f31r .y 1'-?. 
Ji. ) v-1 

1 

0 

0 

Motivated by (:; ) I) and (:\._>7). we choo~c the coefficients aj as 

( l ) 
__ l_ ( ar ;Jl 

a2 . . . ak - Ro .uJ '-'2 ... 

(3.27) 

(3.28) . 

where we note that the leading coefficil'nt 1s equal to 1 by construction 

(Eq. (.· .. ··:)). 
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It then follows from (i.211 •), (::.11), ( '7), and (:1 2.") that 

{'2 1 k 

= (S - -) L /3]Ij. (3.29) 
Ro j=l 

Construction of LbFE 

Vv'c first write obtain the required implicit equilibrium expressions among the 

st at(' variables at S and \/1 , ... , V'~, nanl<'lv 

n 

( 1 - p) I/ = L i3)' I';' S* + I/ S* 
j=l 

n 

"J· V1r< ( v ·IT* L... .· j v j = 1 1 + 1; l i 1 - pv 

j=l 

v V* 
1'1-l j-l 

(v + 1j) 
= Vj*. j = 2 .... ,n. 

From expressions (:: l2t) and (; ~ti) we s<·e that 

d 2 S* dS Vt dVi ~ Vj* dVj 
-LDFE = (l - -)- + (l - -)- + L_., bj(l - -)- . 
dt S dt Vi dt . V1· dt 

]=2 
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Vv'e select the coefficients bJ using the sa111e inductive algorithm presented by 

Guo i1lld Li [I :'".i], which yields 

µv S* b - __ n __ 

n - (v + /~) 

bj+11'f + o'f S* 
bj = ------

(v + 1'f) 

(3.32i1) 

j = 2, .... n - 1. (3.32b) 

\iVc note that the definition as v~ as the fi11a.I class with nonzero vaecinc virns 

infect.ivity. /J~ > 0. ensur('S that bJ > 0 for all j, and that recurrence relation 

( ~. )~2) can be straightforwardly solved [: -.] to yield 

j = 2, ... ,n. (3.:3~~) 
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\Ve compute the first term of (:; . : i) as 

S dS n k 

( l - -)- = (1-p)v - '"';Fvs - ~ /3 1I·S - vS 
S* dt L 1 1 L 1 1 

j=l .i=l 

S* n k 

- (1 - p)v S + L /3/VJS* + L fJ]ljS* + vS* 
j=l j=l 

n k 

= L 3tV/ S* + vS* - L i)'v]s - L f3jljs - vS 

J=I j=l 

n s·2 c;·'-' n k 

- ~f]· Vl!*_ - _.._ - +- '"'[JVV·S* '"'.".11/·S* S'* L J vj S v s· . L· i J + L uj J + v, 
j=l j=l j=l 

( 
S S*) i. k 

= vS* 2 - - - - - ~ 31/S + '"'(31! S* 
S• S 6 1 1 L 1 1 

r I j=l 

n n n n S*2 
- :L.3:vjs+ :Lv)·\·,s· + I:aj'Vj*S* - l:f3/·5 

J=I j=l j=l J=l 

k k n n 

< - ~ (31 I S + ""{31 I C,'* - '"' (Jv VS + '"' f3v VS* - L 1 1 L 1 1'- L 1 1 L 1 1 

j=l j=I j=l 

n n 5*2 
'"'µvv*S* ""·3'. +Lii-L'is· 
j=l j=l 

j=l 

(3.:34) 

In Eq. (: . ; I) we substitute for ( l -p )v u~i 11g ('..:;il;1) and in the final inequality 

WC USE' the fact t.hat (2 - ff. - ~) :::; 0 with equality only ifs= s·. This 

inequality is just a corollary of the fact that the arithmetic mean is always 

greater than or equal to the geometric uwan (Appendix Ui). 
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Computing the second term of (:l :; ; ). using (:1 i) and (:1 :~(II;), we find 

(3.~~5) 

Now we proceed as in [l .-;] to make the i11ductive choice of the coefficients b
7 

clear. For) ;::: 2, 

( V/) d , v ( v) b 1-- -\!=b~y. V_ 1 -b v+'"" V 
J V dt J J J-l J ) I J J 

J (3.36) 

Using the choice of the coefficients bj ( ), we find 

n n 

L /3'fVjS* - (v + 1{') Vi + L bjr)·_ 1 V;-1 - bj (v + 1/) Vj 
j=l j=2 

n-1 
(3.:37) 

+ 2= (/3/ S* + bi+n'f - b) (v + 1'f)) Vj 
j=2 
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Eq. (.; T:-) may be further simplified b~· ~ubstituting from Eq. (:i. ; ,) for b2 

and employing ( : ;i ;\ .) and ( ; ;11, ). In tl1is way we find 

( 

~n BVV*S* ) v * v L.,j=2' j j v 
= /31 S - (v + !'1 ) + , v) V* /'1 Vi 

(v + 1'2 2 

= (- (v + 1i) V1* + t 3~Vj* S*) ~~ 
J= I l 
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Therefore. collecting terms from (:L37). ( ;."\), (:U.J) and(:;.:; I), we see that 

G 

+ (t bi (v + 1j) V;' + :> t, ;Jjv;s·) , 

H 

(~3.39) 

with equality if and only if S = S* and Vi = Vi*. The terms G and H 

m11y be simplified to show G + H ~ 0. precisely as in [l.)j. \Ve incluclc 

the argument here for the sake of completeness. Csing t.hc solution of the 

inductive relationship for the terms bj (1/ + 1j') Vj* (:\.:; \) yields 

n n n 

H = Lbj (v + 1:) Vj* + 2 2:t1j'V7"S* = L(j + l)BlVj*S*. (3.40) 

J=2 j=l j=l 
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Substituting for bj in terms of (:LH), applying the equilibrium relationship 

(.'. :\h) and exchanging the order of surn111at.ion, yields 

n b V \f V* n n .V V 
'"" jTj-1 'J-1 j = "'""'~ VV*S'* l'j-1 j-l 

L l/ LL(3r r (v+ V)V 
)=2 1 j=2 r=j 11 1 

= ~ ~/3VV*S* vj*VJ-1 = ~ 3vv.*S* ~ V/V/_1. 
L L r r v V.* L J J L V, V* 
j=2 r=j J J-1 j=c2 r=2 r r-1 

( 3.41) 

Using (:u:;) and (:\.11) yields the desired result 

G + H =, 8vV* S*(? - S* - §_) 
. l i ~ s s· 

n ( S" SVV* 
1 

\/*If ) "'""'3vV*S'* ( · ) __ ~ _ j. 1 _ ~ r Vr-1 

+ L 1 1 ~ J + 1 
.S S* V* v; L V V* 

j=2 - J 1 r=2 r r-1 

(J.42) 

with equality if and only if S = S*, Vi = Vi*, ... , Vj = Vj*, since th(' aritl1-

nwtic mean is always greater than the g('(>rnetric mean (Appendix ). 

Combining(:· _l'l), (:; \'l) and (:\.L~) yields 

k 

d d l d 2 ( * 1 )~I 
dt Lorn= dt LDFE + dt LDFE:::;: S - R L f3jl]S 

0 j=l 

(3.43) 

Applying the result of Appendix :L/, wl1ich states 

s < - <====> p > 7J 't 1 - -* 1 ( Rv) 
- Ro - c11 Ro 
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we obtain the desired result 

P 2 Pcrit ( 1 - ~~) ===? :t LoFE :=::; 0 , (3.45) 

with equality in Eq. (:;.Li) along a subsd of JC= {(S, Vi, ... Vn, ! 1 ... , h) : 

S = S*, Vi= Vi*, ... , Vj = Vj*}, containi11g the first n + 1 coordinates of the 

DFE. x0
. Notice that if S* = ~o then <'quality in (:: I 1) holds everywhere 

in JC. However, it is evident from(:\ I) 1J1at x 0 is the only invariant subset 

of JC. Hence, thf' LaSalle Invariance Priwiµle [2:3, '.21] guarantees that X 0 is 

globally asymptotically stable. cornpleti11g the proof. 

Global Stability of the Endemic Equilibrium -

\i\lc employ a Lyapunov function of the .c.;1anclard form to prove that the en-

demic equilibrium(: l:) is globally asy111ptotically stable whenever it exists, 

i.e., if p < Pcrit(l - ~~ ). The Lyapunov function is 

LEE= (S - S* In (S)) + (!1 - I1 * li1 (!1)) +(Vi - Vt ln(Vi)) (3.46) 

n k 

+ "'""'c (V - V* ln(V)) + ~ d (I - I* In(!)) 6J J J J ~JJ J J' 

j=2 J=2 
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where* denotes the value at the endemic equilibrium (:\.1 i ). Again we choose 

the ai. bi by t.he inductive algorithm pr<'s<'nted in [1.-i], such that 

{3~ S* 
Cn=---

(v + 1;[) 
(3.47a) 

v + {3vS* CJ+llj j 
c·= j=2 ... n-l 1 (v + 1j) 

(3.47b) 

d 
_ f3LS* 

k -
(v + 10 

(~3.47c) 

d ~.I+ f'.115* 
dj = j+(l lj ~)j j = 2 ... k - 1 

l/ + 1j 
(3.47d) 

Much of the analysis is identical to that (lr § ',J ', of this paper and §5 of [ 1--i]. 

so we highlight only the differences. 

The equilibrium relationships, (:; )! ) and (:; .w(), still hold for the en-

demic cqnilibriurn as they did for the DFE. However, Eq. (; :;11,1) is now 

replaced by the expression 

n k 

(1-p)v = l:oiv:ts* + LJJ]l/S* + vS* (3.48) 

j=l j=l 

and we now have the equilibrium relationships 

(3.49a) 

(3.49b) 
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We compute the first term of ft LEE analogously to (:U I), employing (: i>). 

(3.50) 

with equality only when S = S*. We now can split our calculations into 

d ( ( V*) d n ( V) d ) - LEE < Av + 1 - -
1 

-Vi + 'c 1 - -.
1 

- V 
dt - Vi dt ~ 1 V* dt 1 

' )=2 J 

( ( 
I* ) d k ( I ) d ) + A1+ 1-_!_ -Ii+'. d 1-__z_. -I 
11 di ~ 1 I* dt 1 

J=2 J 

(3.51) 

The first term of (:L.-11) is exactly that crnnputecl in Eqs. (U 1)-(:: :;,"-),while 

the second term is exactly that computed in Eqs. (25)-(33) of [1:-q. We 
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therefore conclude that 

(3.52) 

with <:quality if and only if S = S*, Vi = \/1*, ... , Vj = Vj*, 11 = 11 * ..... 11 = 

Ij *. This confirms that the endemic equilibrium (:i ; i) is globally asymptot

ically stable when it exists. 

3.2.4 Disease and Vaccine-Induced Mortality 

The model ("LI) does not take into acuntnt the effects of disease or vaccine 

induce<i mortality. Using a related model. we take these factors into account. 

\Ve d(·rnonstrate that inclusion of these eff\~cts does not change the qualitative 

results (stability thresholds). The staged-progression model we consider may 

be phrased in the following manner, 

dv'i {-. V T ( V V) 
-d = pB + ~ f]j i·1S - µ+fl + E1 Vi 

t 
j=l 

dV2 v ( v v) dt = fl Vi - µ + 1'2 + E2 Vi 

dVj v ( v v) 
dt = Tj-1 VJ-1 - µ + "Yj + Ej VJ 

dVn v ( \ v) 
-;Jt=rn-1Vn-1- µ+111 +En Vn 
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(3.53f) 

(~3.53g) 

(3.53h) 

(3.53i) 

(3.53j) 

In contrast to (.l. l) the syst(~m (:> · i is phrased in terms of tot.ct! popu

lation N rather than proportions. The lot.al birth rate is give by B. EJ and 

E~ represent the vaccine and wild virus-i11duced death rates in each stage, 

while µ is the per capita natural deatli rate. The terms Bj, ;3J represent 

the total transmission rate of vaccine and wild virus in each stage. Note 

that this model assumes pseudo-mass act ion incidence ;3 as opposed to stan

dard incidence ~. The previous LAVV models considered assumed standard 

incidence. Other parameters are as defiiwcl in (:L !). 

The motivation for our departure fro111 using proportional models is strictly 

mathematical in nature. As demonstrated in [ 16] for the proportional version 

of the standard SIR model with disease-induced mortality, inclusion of dis-

ease induced mortality results in quadrnJic terms not present in the original 

proportional model. Due to this fact, tlw form of Lyapunov functions used 
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to show stability in the absence of vacci1w and disease-induced mortality can 

not be straightforwardly employed. However, the Lyapunov functions can be 

straightforwardly employed to the model written in terms of total population 

(:~ .-):;). In the absence of vaccine and disease induced mortality there is no 

difference between the models (:.:-,:;) and ( \ l) after the latter is expressed 

in proportions. 

Since the total birth rate is fixed. 1l1e model (: -,: :) will be valid over 

time periods for which the total birth rnte is relatively stable. As previ-

ously not(~d the model (": I) employs ps<·ado-mass action mixing a..c.; opposed 

to standard mass action mixing. This as:-;nmption is not biologically unreal-

istic, as pseudo-mass action mixing has licen shown to suceessfully predict 

transitions in dynamics of childhood dis('ases [ri, 11]. 

For system (;.-i:;) the basic reproduct.ion of the wild and vaccine virus 

are[Li,31] 

(3.5-ta) 

(

j-1 I )) g (µ + ~i + d) . 

(3.54b) 

Straight.forward computation establishes that system (» .-i:») has a umque 
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DFE given by 

( ~ ~ )2 ) * B 1 1 1 I p s = - 1 - -(1 - -) - -(1 - -) + -
µ 2 Rv 2 Rv Rv 

(3.55a) 

'* B ( 1 1 ( 1 I ) 
2 

p ) v1 = v v -(1 - -) + -(1 - -) + -
(µ+1 1 +E1 )) 2 Rv 2 Rv Rv 

(3.55b) 

V* = , /,_ 1 
. -(1 - -) + -(1 - -) + _E_ , B ( i v ) (1 1 (1 1 )2 

) 

J (µ + 1{ + En g (µ + 1'( + c/) 2 Rv 2 Rv Rv 

(3.55c) 

I/= 0 (3.55cl) 

and a unique endemic equilibrium given I iy 

S* = _!!_ 
µRo 

(3.56a) 

* ( pBR0 ) Vi = \" v 
(µ + /1' + E 1 ) (Ro - Rv) 

(3.56b) 

V* = ( pBRo ) (rr /~1 ) 
) (µ. + ,y +En (Ro - Rv) i=2 Ul + Tiv +en 

(3.56c) 

j = 2, .. . ,n 

Ji*=((µ+~ +c{)) ((1- -~o)-p (i + -(R_o_~_vR_\-,))) (3.56d) 

• ( B ) (rrj "d-1 ) ( i ( Rv ) ) I) = I I) . I l' ( 1 - -) - p 1 + ( ) 
(µ + /1 + El z=2 (µ + Ti + E; I Ro Ro - Rv 

(3.56e) 

j = 2, ... ,k 
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By employing Lyapunov function analo.L?;ons to those used to show global 

stability of the DFE and EE for the LAV\' model (Tl), it is seen that the EE 

is globally asymptotically stable whenever p < Pcrit(l - ~~) while the DFE is 

globally asymptotically stable whenever p 2: Pcrit(l - ~~ ). The computations 

follow exactly from the stability proofs for system (:; I), therefore we don't 

repeat them here. 

We see that incorporating vaccine and wild virus induced death rates, the 

stability threshold for wild virus eradiuu ion remains the same. specified by 

the reproduction numbers of the vacci1w <rnd wild virus. 

3.2.5 Realistically distributed stage durations 

Au important feature of the general staµ;<·d progression model that we have 
-

considered (.:. I) is that any of the stages < 1f infection can have durations that 

are distributed realistically (as opposed to exponentially). To illustrate this. 

we highlight the most important special case of (:~. i), which is specified by 

\' 
lj = na v 

j = 1, ... ,n (3.57a) 

,~- = (m - n)1Y j = n+ 1, ... ,m (3.57b) 

').I = la1 

J 
j = 1, .... l (:~.5 7 c) 

1] = (k - lh1 
j=l+L ... ,k (3.57d) 
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!3j = () 

/3V = 0v 
J ' 

/31 = 31 
J . 

j=l, ... ,n 

j = n + 1, ... , m 

j = L ... , l 

j=l+l,. ... k 

Chapter 3 

(3.57e) 

(3.57f) 

(3.57g) 

(3.57h) 

Here. Eqs. (:t .. -) 7, ) and (' -,~·, ) define tlw first n vaccine virus compartments 

and l wild virus compartments to be lat<'11t.. With these parameter relation-

ships, the differential equations (; I) I!HHlcl the situation where there is a 

single latent and infectious stage for ca('ll of the wild and vaccine viruses. 

but the stage durations are distributed according to Erlang distributions. 

The Erlang distributiou is a special case of a Gamma distribution, namclv 

Gamma(n. :) , (3.58) 

where n is a positive integer specifying the shape of the distribution and 

T is the mean of the distribntion (for tltc parameter choices indica.ted in 

Eq. (.·-)~),the means ar0 T = l/Jv. l/":\'. l/J1 and l/11
). The distribution 

Garnma(n, ~) ha.s a probability density given by 

( T) (n/T!" 
g x; n, n = f(nf-- Xn-le-nx/T. (3.59) 

The Erlang distribution is representatiw of realistic latent and infectious 

periods, as it may be narrowly focused about the mean [:3, 14, 2S, 2(i, :32]. 
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The extreme limits arc the exponential distribution ( n = 1) and the delta 

distribution ( n ___, oo). Figure : .. -, shov-·:-- the probability density for Erlang 

distributions with shape parameter ranµ;ing from 1 to 1000. 
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Figure 3.5: Probability density for an Erlang distribution of Gamma(n, ~), 

with mean 16 days and shapt' paramett~r n ranging from l ( expone11tial) to 

1000. As the shape parameter is incrca;-;cd the distribution becomes more 

closelv focused about the mean. 

While Eq. (: \ -i I) specifies the para111der conditions that yield an SEIR. 

model with Erlang distributed latent and infectious periods, the same ap-

proach can be applied to any stage of au i1rbitrary staged progression model. 

Consequently, our results are valid for t lie very general situation in which 

there are an arbitrary number of infection:-- stages for the wild and/ or the vac

cine virus. and where each stage has an Erlang distributed duration. Thns, 

regardless of how complex the sequence of infected stages are, the threshold 

for eradication is given hv Eq. ( . 2) and d<·pends only upon the reproduction 

104 



Bradley G. Wagner- PhD Thesis Chapter 3 

numbers Rv and R 0 . 

3.3 Contact Vaccination within a Pulse Vac-

cination Campaign 

Contact vaccination within a pulse vacci11ation campaign may be described 

by the following equations, where the time interval between vaccination 

pulses is T. The underlying structure i:-: based upon the standard (SIR) 

model [2]. 

n 

dV ~ v V' dt = Ppulse ~ S(nT-)o(t - nT) + /3 (t)VS - (11 + r )V (3.60b) 

n 

di 
dt = 3

1
(t)JS - (11 + "/)! (3.60c) 

dR I v 
dt = r I+ r V - vR (3.60d) 

Here. we use the notation 

S(nT-) = lim .'-J'(nT - c:). 
c:~o+ 

(3.60e) 
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and we assume 

;Jv(t+T) = 3v(t) 

;31(t + T) = 31(t). 

Chapter 3 

(3.60f) 

(3.60g) 

Here .. we ignore wild virus and vaccine \·irns specific death and express the 

model in t<~rms of proportions. The para111ct.er Prulse is tlw pulse vaccination 

proportion. i.e., the proportion of susc('ptibles who are vaccinated during 

each vaccination pulse. Other quantitic:-- in (.: ; .i 1) have the same meanings 

that they do in systems (T ! ) and (:', !). For the sake of generality, we allow 

the vaccine virus transmission rate 3v ( ! ) and the wild virus transmission 

rate 3 1 
( t) to be time-dependent. Howewr. we &ssume that the transmission 

rates are continuous functions of time ai1d T-periodit. In practice, the pulse 

interval T will always be a multiple of one year, so we are including the 

possibility of any seasonal changes in 1 rnnsmission rates for any realistic 

pulse interval. 

3.3.1 Existence of the Disease Free T-Periodic Solution 

We prove in this subsection that for the ~.,·stem given hy ( ; ! ii 1) a biologic(l,Uv 

meaningful T-periodic disease free solii.1 ion (DFS) always exists. The sta

bility of this solution, and the existencl· of multiple T-periodic disease free 

solutions, will be discussed in subsequent. subsections. 

Existence is shown in the following m;11111er. Firstly. we enforce the disease 
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free condition, I= 0, so Eq. (:\.h(lc) is ant.omatically satisfied and we are left 

with the reduced system 

dS v ~ , _ 
dt = v - f3 (t)VS - vS - Ppulse L S(nT )6(t - nT) (3.6la) 

11 

dV ~ _, v v dt = Ppulse L...,S(nT )6lt - nT) + J (t)VS - (v + r )V. (3.6lb) 

n 

Eq. (::.(, J) is two dimensional and non-nutonomous. Nevertheless, existence 

of a T-periodic solution may be shown hv exploiting the theory of impulsive 

differential equations. We proceed by Hpplying the methods described 111 

[J]. The necessary definitions and noL1t.ion (as in [ l]) are summarized 1n 

Appendix : ,,, for reference. 

We note that our system (: '· 1) can br· rewritten in the form of Eq. ( ; .i , ) 

in Appendix ·{ " as 

~~ = l/ - i3 v ( t) vs - l/ s } 
= q(t,x) 

dV . . 
dt = B"' (t)VS - (v + 1v)v 

t =/: kT (3.62) 

t = kT 

107 



Bradley G. Wagner- PhD Thesis Chapter 3 

where 6X = X(kT+) - X(kT-), I is th<' identity matrix and 

p = ( 1 - Pp11ise 0 ) 

Pp11bv 1 

(3.63) 

As we are dealing with proportions of tlw population, the biologically mean-

ingful ,-;et is B = {(S, V): S 2: 0, V 2: 0. 8 + V ~ 1 }. 

B:v a..ssrnnption. /3V(t) in ( \ 1i:..!) is C'011tinuons. In addition, conditions 

and ;, of Appendix ; :-.: are satisfied dir<'ct.ly by Eqs. (:u,_>) and (; • .. ) \vith 

0 = B. The set B is canonical in the sense of Appendix :; ...,: Firstly. B is 

compact (dosed and bounded) and convex. Secondly, B is specified b.v three 

inequalities, which-together with their r<~spective .lacobians-are 

8~1 [ ] 
iJ( s, V) = -1 0 

a~') [ ] 
;)(S, V) = 0 -1 

8~3 [ ] 
iJ(S, V) = 1 1 

We next note that for x E 8[3 

1 E a ( x) if S = 0 

2 E a(x) if\/ =0 

3 E a(x) if S + V = 1 
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(3.65b) 
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where a:(x) = {i: <Pi(x) = 0}. as defined in Appendix :Lr. This implies that 

for i E a:(x) and x E DB 

(3.66a) 

(3.66b) 

(3.66c) 

Additionallv 

(3.67) 

since P is a linear function whose matrix representation has~ non-negative 

entries and column sums equal to one (. ) (hence P maps B to B). From a 

biological perspective. P moves individwils from the susceptible to tlw vacci-

nated class but does not result in a net change in the number of individuals, 

hence maintaining the positive invariance of B. 

Therefore, by Theorem I of Appendix : .\ the system (:Ui I )--and hence 

the original pulse vaccination system giw11 by (: Uif J) --possesses a biologically 

meaningful T-periodic DFS. 
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3.3.2 Stability of the T-Periodic Disease Free Solution 

Necessary Conditions 

Having shown that a disease free T-pcri< idic solution always exists, we now 

seek to discover under what conditions this solution is asymptotically stable. 

To this end we investigat.e the variational equation obtained from lineariza-

tion of system (i.liil) about the diseas<' free T-periodic solution which we 

---- ----denote {S(t) = S(t), V(t) = V(t), I(t) = O}. The variational equation that 

governs the growth and decay of small 1wrturbations (s, v. i) about the DFS 

is given as follows, where :i: denotes the time derivative of x. For t # kT, 

-j]v (t) V(t) - v -(jv (t ).c:(t) -31(t )S{t) s 

'lJ iJV(t)V{t) ;JV(t)S{i) - \JJ + -yV) 0 v 

i 0 0 ;31(t)S{t) - (v + 1.l) 

while for t = kT, 

s(kT) 

v(kT) 

i(kT) 

(1 - p) () 0 

p 

0 
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The fundamental matrix solution w(t) ol' (Ui('(;j) is defined to be 

S1 s2 S3 

w(t) = VJ 1'2 V3 (3.69a) 

ZJ I?, Z3 

IJJ(O) =I (3.69b) 

when• each column of (1 ,:J:t) is a solutio11 of (:i ii";i). Tht' stability of the T-

periodic solution is determined by the <'i,~cnvalues of w(t) evaluated at. time 

t = T. This result is explained by starnhrd Floquet theory [:2Ci]. For any 

small perturbation from the D FS which we denote E~, c?:, E:9, the growth of 

the perturbation is given to first order i11 E as 

Eq. (:: /(1) implies that 

Es(T) 

Ev(T) 

E1(T) 

IJE(T)ll:::; lllJJ(T)!J llc
0 11 = 111ax j,\i(w(T))l ik0 ii, 

I ~-c J.2.3 

(3.70) 

(3. 71) 

where A; denotes an eigenvalue of w(T). Therefore, if all eigenvalues of W(T) 

have magnitude less th~n one, any perturbations will decay at least geo-

metrically with every period T and the DPS will be (locally) asymptotically 
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stable. 

Although there is no general method for constructing the fundamental 

matrix, much can still be said about it. It. can be seen from (:Ui<-'a) that the 

equation for the perturbation i( t) is decoupled from the rest of the system 

and thus can be explicitly solved as 

i(t) = i(O)ef~ ;3 1 (r)S~)-(v+1 1 )dr. (3.72) 

As a result, we can slightly simplify thl· !"orm of the fundamental matrix and 

write 

W11 (T) w i2(T) W13(T) 

w(T) = W:n(T) W22(T) W23(T) (3.73) 

0 0 1 
,{~ 1 r [;3 1 (t )S(t)-(v+"f 1 )J dt 

Because the eigenvalues of block diagonal matrices are the eigenvalues of each 

of the blocks, the form of (:i. ~-:\) implies that one of the eigenvalues of w(T) 

is 

(3.74) 

The T-perio<lic solution (DFS) will be lorn! asymptotically stable if 

max l,\i(w(Tl)I < 1, 
l=l,2,3 

(3.75) 

and only if 

(3. 76) 
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Inserting(.\.; I) in (:\./1;) gives a necessarv condition for stability, 

(T ~ 
i>d :S: 1 {:=:::} ) 

0 

{J1 ( t) S (t) dt ::::; ( v + ,,/) T . (:3.77) 

A com pl ct c dosed-form analytical expression for the \IF iJ c;-wnot in general be 

computed, so we will be forced t~) compldc the stability analysis numerically. 

If condition (:1-11) is satisfied then the stal >ility of the DFS will be determined 

by the eigenvalues of the smaller matrix 

( 

W11(T) 
W reduced (T) = 

W21 (T) 

(3.78) 

Wrudnced (T) may be thought of as the fundamental matrix solution of the 

variational <~quation (:) i, '") restricted t< 1 the ( S, V) plane. In the following 

sections we will numerically investigat<' the eigenvalues of this matrix to 

determine the stability of the DFS. 

It is enlightening to note that if tlw transmission rate /31(t) = 3 1
, a 

constant, then expression(:;.~·!) simplific.c; to the ubiquitous condition [o, 2'.J, 

301 
J 

1 1T --- I I + v 1 
- S(t) dt < -- = - . 
T 0 - 31 Ro 

(3. 79) 

which states that the average proportiou of the population that is susceptible 

(over a pulse interval T) must be kept I ielow the threshold level R
1 

. The 
\,() 

general necessary condition ( ; :·-;-) is different only in that the average of 
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S( t) is weighted by the oscillation in trnnsmission rate. 

Sufficient conditions for Stability 

For the remainder of our analysis. we focns on the case of constant transmis-

sion: JY(t) = ;3v, 81(t) ={JI. The T-pc·riodic DFS will be asympt.otically 

stable whenever 

1 {T ---- 1 
T Jo S(t)dt < Ro (:3.80a) 

(:3.80b) 

In Eq. (:; '-lili) ,\denotes the ftoquet mnltipliers, eigenvalues of Wreduce<l(T). 

where W reduced ( t) is fundamental matrix solution of the variational equation 

---- ----about the T-perimlic DFS (S(t). V(t)). The variational equation is )!;iV<~n by 

(;.) 

s(kT) = (1 - Pp"1" J s(kT-) 

v(kT) = v(kT-) + Ppulse s(kT-) 

s(kT-) = lim s(kT - c) 
e-+O+ 
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As there is 110 general a1mlytical method for computing the fundamental ma

trix solution of the non-autonomous eqnMion (:l ..., l) we compute the 0igcnval

ues of \ft re<luced (T) numerically. We define <l. non-linear map as the integration 

J
0
T of system (:U; I) using a fourth-order Runge Kut ta scheme with stepsize 

of ~ day. The T periodic DFS is the fixed point of this map. Beginning from 

a known solution (Rv = 0) or one obtai11<'d numerically from successive inte

grations of the map, we use the bifurcation and continuation analysis software 

CONTENT l.G [:22] to numerically conti1111c the T periodic DFS as a function 

of the systr-~m parameters and compute 1 l1e Floquet multipliers (\.' 1 1). \Ve 

subsequent!_\' investigate global stability 'ia simulation in MATLAB, using a 

fourth order adaptive stepsizc routine. 

So far. we have focused on the T-periodic DFS that we know exists. Our 

cuialysis do<'s no1 rule out the possibiiiJ,y of multiple coexisting period-T or 

period-kT disease free solutions, or more rnmplicated dynamics. We address 

these issues in our numerical analysis in t he next subsection. 

Uniqueness of Disease Free Solutions 

Pulse vaccination without transmission of vaccine virus (Rv = 0) has been 

well studied. In this case there exists a 11.u'ique T-periodic DFS which can be 

computed straightforwardly. Furthermor<'. for a given vaccination proportion 

of susccptibles (Ppulse in (:U i())) there exists a maximum pulsing period 'I'inax 

for which this DFS is globally asymptotinilly stable [10, ;HJ, :29]. The funda

mental idea that local stability of the T-pcriodic DFS in fact implies global 
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stability has been extended to SEIR typ<~ models with Gamma distributed 

latent and infectious periods [~. !l]. 

In the numerical analysis we now desnibe, we considered vaccine virus in 

the fairly large range 0 < Rv ~ 7. The hirth rate was fixed at v = 0.02yr-1 

and tlw vaccine virus infectious period W<t.s taken to be ,~ = 16 days, roughly 

corresponding to wild poliovirns [2]. For Rv ::; 5 and T = 1, 2, 3 years, the T

periodic DFS was computed via continual ion in CONTENT 1.5, and found t.o 

be always locally stable in the (S, V) plane (.: :-.:(il1). Subsequent simulations 

indicated that the computed DFS is likd.v the unique stable DFS in this 

parameter range. For T = 6 years, the same results hold for 0 < Rv -:;; 4. 

with a seemingly unique DFS that is locally asymptotically stable i11 the 

(S. V\ plam'. (We note that in their e:011tinuous OPV vaccination models .. 

Eichner and Hadder [ l'.2] con.sidered Ro = 12 and Rv = 3.) 

!:<or higher Rv, holding Rv fixed <111d varying the pulsing proportion 

(0 ~ Ppulse ~ 1) we observe a sequenC(' 111' limit point bifurcations resulting 

in bistability and hysteresis. As a two-pa.rameter bifurcation in (Ppulsc· Rv) 

space. t.his is manifested as a cusp bifurc<llion starting at Rv > 4. Figure , 1
; 

shows the rnexisting stable and unsta.hlc DFS in (S, V) space for T = 6, 

Rv = 7. The bifurcation parameter is th(· pulse vaccination proportion Ppulse 

while the vertical axis gives the proportion of the susceptible population 

immediately before the vaccination pulse. which we denote S(T-). The solid 

line denotes stable solution branches in ( S. V) space, while the dashed lines 

denote unstable branches. 
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Figure 3.6: Bifurcation diagrnm for thr /' = 6 periodic disease free solution 

in the (S. V) plane (Rv = 7, 'I~ = Hi days, v = 0.02). The bifurcation 

parameter is Ppulse, the pulse vaccinatirn 1 proportion. while the dependent 

parameter is S(T-), the proportion of .---11sceptibles immediately before tile 

vaccination pulse. The (S, V) stable soli1rion branches arc shown with solid 

lines, unstable branches with dashed Ii llCS. Black rectangles indicate the 

location of the limit point bifurcations. The system exhibits bistability and 

hysteresis in the narrow range 0.030 < p1,,i1se < 0.035. 
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There are two coexisting (S, V) stal >le DFSs in a narrow range of the 

proportion of susceptihles vaccinated (O.mO ~ Ppulse ~ 0.035). For smaller 

Rv this window is even narrower and cl(}ser to zero. The significance of the 

two coexisting DFSs is negligible in pract.ice. These coexisting solutions arc 

asymptotically stable in the (S, V) pla1w: however, to be stable in the full 

(S, VI) space (:uiO), condition (:U~l) must also be satisfied. For the range 

of Ppulse where there is bistability, comp11t ing the average level of susceptibles 

for each DFS ovrr the pulsing period T. <\lld enforcing the stability condition 

(: ·,-t\). we find numerically that 

l 1T --- 1 - S(t) dt ~ - <====> Rv ~Ro 
T 0 -R0 

(3.82) 

So. the coexisting (S, V) stable DFSs will be stable in the full (S, i/ !) space 

only if Rv ;::::: R 0 . Result (::>-') may be i11tnitively obvious as the parameter 

range of hist.ability occurs when Ppulse is very close to zero. For example, if 

a single vaccinated person were introduced into a population with no other 

vaccination, the wild virus could only be eradicated if Rv > R 0 . This is to 

say that the vaccine virus must out-compete the wild virus. Similarl\· for 

only a small amount of vaccination, the V<tccine virus must remain almost as 

competitive as the wild virus in order to M:hieve eradication. 

The attenuation process results in va.ccine virus reproduction unmlwrs 

Rv that are significantly lower than the wild virus R 0 ; hence, we expect the 

coexisting D FS to be unstable in the full sense of the model (:: 1 ;t.) for all 
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realistic parameters. Furt.herrnore, no hifnrcations-- cusp or otherwise - were 

detected for T = 1, 2, 3 years. Thus, we find that for realistic epidemiological 

parameters the full epidemiological systc~m exhibits at most one asymptoti

cally stable DFS. 

3.4 Control of Wild Virus Spread 

We now consider the control implications of the combination of pulse vaccina

tion and contact vaccination, which we \\-ill abbreviate to "PC vaccination" 

for convenience. We analyze our model ( 1 i) with two comparisons in mind, 

both related to the ability of contact vaccination to help control wild virus 

spread. 

3.4.1 Definitions and Terminology 

PC versus standard pulse vaccination 

Firstly. we wish to compare the efficac\' of PC vaccination to that of stan

dard pulsC' vaccination (i.e., pulse vaccin~il.ion in the absence of vaccine virus 

transmission). This comparison may be ;1<-hieved straightforwardly by exam

ining Ppu!se,crit, the threshold level of tlw pulse vaccination parameter Ppulse 

required for asymptotic stability of the DPS (note that Ppulse,crit depends on 

the pulse interval T). 

119 



Bradley G. Wagner- PhD Thesis Chapter 3 

For convenience, we define a normali:t,<~d critical pulse proportion as 

~ (R R ) _ P11111se,crit('Rv, Ro) 
Ppulse.crit V · 0 - . (O 'f) ) ' 

P1mlse,crit ' ''-O 
(3.83) 

which represents the value of Ppulse,crit normalized by the value of Ppulsc.crit 

in the absence of contact vaccination (R,· = 0). Therefore, definition (: " :) 

gives the critical pulse vaccination proportion as a proportion of the critical 

value under standard pulse vaccination. 

PC versus CC vaccination 

Sec:ondly, we wish to answer whether-in tl1e presence of contact vaccination--

pulse vaccination campaigns (i.e., PC vaccination) will be more or less effcc-

tive in controlling wild virus spread tha11 continuous vaccination campaigns 

(i.e .. CC vaccin<1.tion). This second qn<'stion is not as straightforward to 

answ<'r. as there are many ways to c01111 mre the continuous (: \) and pulse 

( ~ ii(;) vaccination models. 

One relevant measure of comparison is the critical effective pulse vacci-

nation proportion Peff,crit required to ensme stability of the DFS. V\'E' define 

the effective pulse vaccination proportion t.o be the number of successful vac-

cinations per pulsing period as a proportion of births over that same period. 

vaccinations per pulse interval T 
Pcff = ~~~~~~-v--

1
-.~~~~~~ (3.84) 

Definition (U-; l) is natural since in the c-<1.se of continuous vaccination it re-
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duces to the standard parameter p, the J Jroportion of newborns vaccinated. 

Thus, for continuous vaccination Peff,crit CcUl be computed analytically. while 

for pulse vaccination we compute it nurn<Tically. The critical values for con-

tinuous and pulse vaccination are given. respectively, by 

Peff,crit(Rv, Ro)= Pcrit ( 1 - ~~) continuous (3.85a) 

. . (R R ) = Ppulse.crit S(T-) 
Pcfl,cnt v, o vT pulse (3.85b) 

In Eq. (\.,-;'ti), S(T-) is the proportion ()J the population that is susceptible 

immediately before the vaccination pubc (in the T-periodic DFS with Prrnlse = 

Ppnlse.crit) · 

hi the absence of contact vaccinatio11 (Rv = 0) the value of Peff,crit is 

1ll fact equivalent for both continuous i111d pulse vaccination, independent 

of the vaccination period T [x, '.2<J]. Tl tis fact is illustrated in Figure ; -:-a 

which shows Peff.crit for Rv = 0 as a fn11ction of Ro for pulsing periods of 

T = 1, 2, 3, G years. The result is a single• curve Pcrit = ( 1 - ~o) as pwdicted 

byEq. (:~0~1a). 

Due to this equality it is useful to define normalized quantities to compare 

CC arni PC vaccination programs. We normalize by the value Pcrit· the value 

of Peff.crit when Rv = 0. We define Pcll.crit to be the normalized critical 

effective vaccination proportion which c<1n be expressed for continuous and 
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pulse vaccination programs respectively <ls 

Peff,crit(Rv, Ro)= 1 - ~ 

~ . (R -V _) = Peff.crit(Rv, Ro) 
Peff,cnt V' '~l . . (O 'TJ. ') 

Peff.cnt , I'\.-() 

Peff.crit(O, Ro) = Pcrit 

3.4.2 Numerical Results 

PC versus CC 

Chapter 3 

continuous ( ~3. 86a) 

pulse (3.86b) 

(3.86c) 

Figures:: '(a)-(d) show the normalized nitical effective vaccination propor-

tion Peff.crit as a function of Rv for wild viruses with R 0 = 6, 9, 14, 16. Vaccine 

virus reproduction numbers are conside1wl. in the range 0 ::; Rv ::; 4. The 

solid line in each figure represents Peff,crit for continuous vaccination given b_v 

the analytical expression (:; "' :i). 

It is apparent that. continuous vaccirn.t ion gives a lower bound for Peff.crit. 

Furthermore, we see that for the pulse vaccination strategies Peff,crit increases 

as both the pulsing period and Ro are increased. However, for annual pulsing, 

Peff,crit differs negligibly from the threshold ( '.. 0\ i") for continuous vaccination. 

The two curves are indistinguishable for R 0 = 6, and even for Ro = 16. Peff.crit 

values diffrr by less than 43. For bienni,11 pulses there is little difference be-

tween the pulse and the continuous vacci11ation value of Peff,crit> especially for 

lower Ro values. For Ro = 16, the biennial pulse and continuous vaccination 

curves differ maximally by less than 6%. For T = 6, the pulse and continuous 
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Figure 3. 7: (a) Critical effective vaccination proportion Peff,crit in the absence 

of contact vaccination (Rv = 0) as a i'1mction of wild virus reproduction 

basic reproduction number R 0 . For continuous vaccination as well as pulse 

vaccination the curve is given by Peff,cri1 = Pcrit = (1 - ~ 0 ) independent of 

the pulsing period T. (b) Critical pulse vaccination proportion Ppulse.crit in 

the absence of contact vaccination Rv = 0 as a function of wild virus basic 

reproduction number R 0 . Pulsing period:-.; of T = 1, 2, 6 years are considered. 

Ppulse,crit increases non-linearly with Ro- Note that higher T and Ro values 

necessitate vaccination of nearly all susccptibles. However, for annual and 

biennial pulses Ppulse,crit remains in a re<-tlistic range 

123 

20 



Bradley G. Wagner- PhD Thesis 

c 
0 
t 

g_1~ £ ! ' .. 
c o.9r · . -

.Q I .. ' , 

·~ 0.81 .. ~ ~. ~ • ' 

~ !' ;. ...... ·. 
Q) 0.7 ,;... -

·~ I ~·;.·;..;.,_ ........ 

& 0.6t ~~. 
UJ ~ ;.:., 

~ ~~ .. 
:¥ 0

·
5 

- - - Pulse period= 1 yr "~-
o · · · · Pulse period= 2 yrs ,;·~.... i 

15 0.4 - · Pulse period= 6 yrs ,;. · ,1 
~ 1 .::=-_Continuous Vaccinatio 
E0.3~---~ 

0 0 1 2 3 
z Vaccine Virus Basic Reproduction Number (Rv} 

.Q R
0
=14 

t 

8. ,,~---------

_I 

4 

.g ~~-~·.:.··.... i 

~ 0.91i ""'-'~·.:.·;,;·;,;·.:.·~· . 

~08 ~~:_: ... i 

~·, ~~j 
Q) O.h 
> : 
n I 
& o.6r 
UJ ' 

~ o.5f - - - Pulse period= 1 yr 

o I · · · · · Pulse period= 2 yrs 
al 0.4\ - ·· Pulse period= 6 yrs 

~ I -- Continuous Vaccinatior 
E 0.3 ' 
0 0 1 2 3 4 
z Vaccine Virus Basic Reproduction Number (Rv) 

Chapter 3 

a R =9 

l.:1~- ':;- .... ". 
~ '«.;.·~·.:..·,,, . - - ~ 

.H o.8~ - ;.; ~ - 1 
~ I ~-· - -1 g! o.7r ~- __ 

~o.6f ~-
j 0 - 5 ~ - - - Pulse period= 1 yr _JJj 
u I · · · · · Pulse period= 2 yrs 
al 0.4[ - - Pulse period= 6 yrs 1 

~ •
1 
--Continuous Vaccinati~ 

E 0.3 . 
0 0 1 2 3 4 
z Vaccine Virus Basic Reproduction Number (Rv) 

§ R
0
=16 

l 11~.,,-.=:::. -
£ i . ""'"·"'·:.: .:.. .. I 
c0.9r ---::~_.. i 
.* --..::..:_-~~: ·.. I 
·§ 0.8f ----.::..:. - :.: ~ 1 
u ' ~ 
al I 

~ 0.7' 
-~ I 

~ o.6r w ~ 
- I 

r3 0.5~ . :e ' - - - Pulse period= 1 yr 
o i Pulse period= 2 yrs 

al 0.4 j' Pulse period= 6 yrs 

~ , -- Continuous Vaccinatio 

g 0·
3o 1 2 3 4 

z Vaccine Virus Basic Reproduction Number (Rv) 

Figure 3.8: Normalized critical effective v;tccination proportion Peff,crit (:; ''. ;i 1) 

as a function of vaccine virus basic repu1duction number Rv for pulse and 

continuous vaccination campaigns across range of wild virus basic reproduc

tion values Ro. Continuous vaccination is optimal in the sense of Peff.crit given 

by Eq. (.: :--La). As the period of vaccina lion T and Ro are increased Pelf .crit 

increases. For relatively long vaccination periods and high values of R 0 there 

is little advantage as compared to standard vaccination, however for annual 

vaccine pulses there remains a significant 1tdvantage and negligible difference 

with the continuous vaccination curve. 
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vaccination results are similar for lower vrtlues of R 0 , but the values of ~ff.crit 

deviate greatly for higher Ro values. For no= 16 with T = 6, Peff,crit remains 

above 95% for Rv = 4, while for contint1ous vaccination it has dropped to 

80%. 

From an epi<lemiological standpoint.. the increase in ~ff,crit with pulsing 

period T and n0 in Figure :; "' can be <'xplained in a relatively straightfor

ward manner. As the pulsing period T a11d Ro are increased, the number of 

individuals that must be vaccinated in each pulse must also increase to keep 

the susceptible population below threshold level. Although pulse vaccination 

creates individuals infected with vaccine virus who can cause secondary im

muni7,ations, it is at the same time remo,·ing members from the susceptible 

class. depleting the reservoir of individnals for the newly immunized indi

viduals to vaccinate by contact. Therefore although there is a largm· pool 

of vaccine infectious individuals, each one is passing on the virus to fewer 

individuals. 

Thus, continuous vaccination is -- from the point of view of contact vac

cination - an optimal strategy, in that removing susceptibles continuously 

maximizes the benefit of contact vacein<ttion. We stress that we say op

timal only in the sense of contact immunization, as there are a variety of 

other reasons why pulse vaccination as <Lil overall strategy may be superior 

to continuous vaccination [28, :~UJ. 
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PC versus standard pulse vaccination 

It is useful to note that if S(T-) is indcp<mdent of Rv then Eqs. (. ! !' -; ) and 

(i '-'fi) straightforwardly imply that Prubc.crit = Peff.crit· For the parameter 

values considered in this work, we have s1'cn that S(T-) depends extremely 

weakly on Rv. Consequently, graphs I hat we have drawn as a function 

of Peff.crit differ negligibly from the corr<'sponding graphs as a function of 

Prnlse.crit; this equivalence is illustrated i11 Figure : ; · l which shows Prulse,crit 

(:; · J (a) and Peff.crit ( ;_' l(b) as a function of Rv for Ro = 12. At the scales 

represented there is no detectable differ<·11ce between the curves. 

Since the behaviour of Peff.crit and Ptrnlse,crit is practically equivalent, the 

discussion of Figure :L:' in section §:; 1 applies to Prulse.crit· Hence. we see 

that for pulse vaccination the critical puls(' vaccination proportion is bounded 

below by 

. ( Rv) Pr11lse,crit(Rv, Ro) 2 Prulsc.crir l 0, Ro) l - Ro ' (3.87) 

where Prulse,crit(O, Ro) is the critical puls<' vaccination proportion for stan-

dard pulse vaccination (no contact vacci11ation). Reiterating the statements 

of section § l 12, there is little differell('<' between the bounding curve for 

continuous vaccination and the one for annual vaccination pulses, but the 

difference increases as the pulsing period T is increased. 

Values of Prulse,crit(O, Ro) are shown in Figure :L7(b) for pulsing periods of 

1, 2 and 6 years. Notice that for T = 6 and Ro ~ 17 in the absence of contact 

vaccination nearly 100% of the susceptible population must be vaccinated in 
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Figure 3.9: Normalized critical dfectivc vaccination proportion Peff,crit (:; ;-,1,l 1) 

(a) and Normalized critical pulse vaccina1.ion proportion Ppulse.crit (:: :--.. ;) (b)as 

a function of vaccine virus basic reprodu('tion number (Rv) for a wild virus 

of Ro = 12 and a range of pulsing periods. Notice Ppulse.crit ~ Peff.cri1. This 

approximate equality holds across the range of childhood diseases 0 < Ro ~ 

30 and is a direct result of the fact that S(T-) though strongly dependent 

on Ro depends very weakly 011 Rv (:!' ) (::_,'\iil1). 
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every puls<~, which is unrealistic. Howev<'L for biennial and shorter pulsing 

periods, Ppulse,crit(O, 'Ro) lies in a realisti(' range. 

Dependence on Infectious Period 

The previous numerical results a..ssumed '' vaccine virus mean infectious pe

riod of -Y~· = 16 days, which corresponds approximately to the infectious 

period of wild poliovirus [2]. However, t Ii<' results we have described are in 

fact valid much more generally, demonstrnting only a very weak dependence 

on the length of infections period (for Rv fixed). Figure :; : 11 shows the 

normalized critical pulse vacci11ation prnportion Ppulse,crit, and the normal

ized critical effeC"tivc vaccination proportion Peff.crit as a function of Rv for 

annual pulse vaccination campaigns and vaccine virus infectious periods of 

'Y~· = 1 day, 16 days and-1 year. The wild virus reproduction number is set 

at R 0 = 1 G. The range of mean infections periods up to a year includes all 

childhood infections, of which most haw duration less than 1 month [1]. 

In Figure : ~ . ii( a). Ppulse.crit is indistinguishable for the three different 

mean infectious periods. again lying slightly above the line 1 - ~~. In Fig

ure : : i q(b), for the vaccine virus infections periods of 1 clay and 16 days, the 

Peff,crit values are indistinguishable from ca.ch other, as well as from th(' corre

sponding normalized curves Prulse,crit in Figure l. l ! l( a). For the much larger 

vaccine virus infectious period of 1 year. rhere is a slight decrease ( < 0.04) in 

Peff,crito in fact differing negligibly with p, ir.crit for the continuous vaccination 

model. 
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Figure 3.10: (a) Normalized critical cff<•(·rive vaccination proportion Peff.crit 

( \ "',) for an annual pulse vaccination campaign (Ro = 16) as a function 

of vaccine virus reproduction number R\ . Curves show a range of vaccine 

virus infectious 1)eriods _J__ from l dav t.o l vear. The curves for vaccine virus 
IV 'J . 

infectious periods of 1 day and 16 days <U<' indistinguishable, while for 1 year 

there is a slight decrease in Peff,crit differing negligibly with the continuous 

vaccination model (;:.'-lli,1). (b) Normali:;,ccl critical pulse vaccination propor

tion ]Jµulse,crit for annual pulse vaccinatioll campaigm; as a function of vaccine 

virus reproduction numbers; parameter values as in (a). For vaccine virus 

mean infectious periods ranging from 1 day to 1 year there is negligible dif

ference in Prmlse.crit· As well for mean vaccine virus infectious periods of 1 and 

16 days the curves of .P'ruise,crit are negligil J!y different from the corresponding 

curws for Ptoff.crit in (a) as explained in section - i. 
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Biologically, this decrease in Peff,crit for longer vaccine virus mean infec

tious periods is a result of the fact. that a longer period gives a higher prob

ability that an individual will still be wwcine infectious long after the pulse 

at which time susceptiblcs will have been replenished via births. This allows 

for the infectious individual to have a gn~ater number of secondary transmis

sions. Hmvever. this effect is noticeable (ltdy for very long infectious periods 

(as long as the pulsing period itself). for childhood diseases, we conclude 

that st.ability has no signi!icant dependcnn· on the vaccine virus infectious pe

riod. Since the stability threshold (:: 01 1 ) derived analytically is independent 

of the wild virus mean infectious period. we conclude that-like for contin

uous vaccination--for pulse vaccination the stability threshold depends m 

prnctice oHlv on the reproduction numbns Ro and Rv. 

3.5 Discussion 

'vVe invrstigated the phenornenon of co11t act vaccination in the use of live

attenuated virus vaccines. Specifically. W<' focused on the ability of contact 

vaccinatiou to reduce the critical vaccination proportion to control/eradicate 

the wild virus strain in comparison to vaccination with an inactiv1tted or 

dead vaccine. Most of our results are applicable to any live-attenuated virus 

vaccine system, but our primary focus w;-1s childhood infectious diseases. The 

use of the Oral Polio Vaccine ( OPV) wa." of particular interest as in this ca.se 

the practical benefit of contact vaccination has long been recognized. 
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We investigated rnoclcls of both cont i 1 mous and pulse vaccination under 

the assumption that the vaccine virus is stable with respect to back-mutation 

or reversion [:32]. In the case of continuous vaccination in a homogeneously 

mixed population, a very general control eriterion was established that de-

pends only on the reproduction numbers of the wild pathogenic (Ro) and 

vaccine viruses (Rv). If the proportion (p) of the population that is vacci-

nated before entering th(' susceptible p()( d satisfies 

( 
Rv) P ~ Pcrit 1 - Ro , (3.88) 

then the wild virus will be eradicated i11drpendent of the initial makeup of 

the population in terms of susceptible a11d infectious individuals. In expres

sion ( ·. ""-), Pcrit = ( 1 - ~o) represents 1 lie critical vaccination proportion _ 

in the absence of any contact vaccination (Rv = 0). This general crite-

rion is valid regardless of the number of infectious stages and the distribu-

tions of durations in the various stages. f< >r both the vaccine and pat.hogenic 

wild virus (§:; L:). Thus .. even if a vacci11(' virus and pathogenic wild virus 

have markedly different distributions of L1tent and/or infectious periods the 

threshold is unchanged, depending only 1 ill the virus reproduction numbers. 

Even for .Rv < 1, under which the vacci11c virus would naturally fade from 

the population upon cessation of vaccination, Eq. (:~ "·0) shows that there can 

be epidemiologically significant rcductio11 of the critical proportion (Figure 

:; .). I3elow this threshold level of vacci11ation it was shown that the virus 

131 



Bradley G. Wagner- PhD Thesis Chapter 3 

remains endemic in the population wit.Ii prevalence given by the analytical 

expression (:i 21) (i.e., that there is a glohally asymptotically stable endemic 

equilibrium). 

With respect to pulse vaccination. \\'c restricted attention to exponen

tially distributed infections periods for th(' vaccine and wild pathogenic virus. 

Many of our results are analogous to tl1osc obtained previously for contin

uous vaccination in simple contact vacciuation models. We calculated the 

threshold vaccination level for eradication: we expressed this in terms of the 

number of vaccinations as a proportio11 of births during a pulse interval. 

We refer to this quantity a.s Peff· This d<'finition facilitates comparison with 

_ continuous vaccination strategics a.s in 1 he continuous case Peff reduces to 

the i:;t.andard model parameter p (the proportion of vaccinated newborns). 

Furthermore, this quantity is of interest -,ince in the absence of contact vac

cination (Rv = O) both pulse and continuous vaccination campaigns predict. 

the same critical or threshold value of Peil for pathogen eradication, indepen

dent of the pulsing period [<". 2D]. 

Taking contact vaccination into account.. there are noticeable differences 

m the critical values of Peff between tlw pulse and continuous vaccination 

strategies. Our numerical results showed that for pulse vaccination with a 

vaccine virus of a given 'Rv > 0, the continuous vaccination strategy gives a 

lower bound on the critical effective vaccination proportion. In other words, 

continuous vaccination is optimal in th(· sense of maximizing the <~ffect of 

contact vaccination. Furthermore, the tl1rcshold value of Peff is seen to in-
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crease with increased pulsing period T a11d increased wild pathogenic vims 

reproduction number Ro. Biologically, Ll1is increase in Peff results from the 

fact that vaccination pulses simultaneously result in a sudden increase in the 

pool of vaccine virus infectious individua.ls and a sudden decrease of equal 

magnitude in the susceptible population. This decrease results in fewer sec

ondary vaccine virus transmissions for <';1ch individual, lowering the overall 

effect of contact vaccination. 

For pulsing periods of several yea.rs. ilie benefits of contact vaccination 

are significantly reduced; however, for ,~1 mmal pulsing the critical effective 

vaccination proportion remains very clos<' to the value for continuous strat

egy, cvc~n at relatively high R 0 values. Tl1is is particularly important in the 

context of OPV, as some form of annual pulse vaccination campaign is cur

rently in use in 55 countries around the world. [1] \Ve conclude that there is 

no significant decrease in the benefits of contact vaccination for annual pulse 

OPV campaigns, noting that there may also be other epidemiological [:52] as 

well as practical reasons for pursuing pnlse campaigns [2;-;, :HJ]. 

The pulse vaccination results were sl1own analytically to be independent 

of the length of wild vims infectious period, and numerically were demon

strated to have only weak dependence 011 the vaccine virus infectious period 

(and negligible dependence for infectious periods less than a month. which 

are characteristic of childhood diseases). We add that although the threshold 

vaccinatiou levels were computed in term,.; of local st.ability of the disease free 

solutfon, numerical simulations with randomized initial conditions indicate 
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these local results are in fact most likely trne globally, i.e., regardless of initial 

conditiont'. 

In previous work, based on a highly idealized model.. a simple threshold 

criterion was derived for eradication of \Nikl virus using live-attenuated virus 

vaccines ( 12]. Wr have shown that this same threshold (:\"~),which depends 

only on the basic reproduction numbers of the wild and vaccine \'iruscs, 

applies to much more general and more realistic models, and does not depend 

on initial conditions. 

Compared to use of an inactivated (11011-live) vaccme. even for low vac

cine virus reproduction numbers (Rv < I), there is a significant. reduction 

of threshold vaccination levels. Howewr. to assess the importance of con

t.act vaccination quantitatively for a giv<·11 pathogen, an estimate of Rv is 

required. Beyond anecdotal evidence and limited case studies [:27], there has 

been no empha..sis on the estimation of \·accine-virus reproduction numbers. 

Such estimation is extremely difficult as. short of performing detailed sern

logical studies, there is no way to distinguish immunity acquired from the 

wild or vaccine virus. 

The models that we have considered here assume that infection and vacci

nation (whether primary or contact) result. in complete and lifelong immunity. 

This i;-; an excellent approximation for most childhood diseases [l 7], but ·for 

other diseases more work is needed to address the role of partial anct decay

ing immunity. Firstly, the level of immu11ity provided by contact vacci1rntio11 

must be compared to primary vaccinatio11. Secondly, in cases where primary 
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immunization results in only partial or d«l'aying immunity, the role of contact 

vaccination in boosting immunity levels iweds to be addressed. In addition to 

contact vaccination of complete!.\' suscep1ihle individuals, boosting immunity 

levels in previously vaccinated individual:-; may be another significant benefit 

of live-attenuated virus vaccines. 

3.6 Appendix 

A standard result is that for any set of positive real numbers 

9i > 0, i = l, ... ,m, (3.89) 

t.lw arithmetic mean is greatcr than or cqnal to the geometric mean. i.0., 

1 m ''' l/m 

m 2=gi 2 (figi) (3.90) 

i=l 1=-I 

If rr:1 9i = 1, then it follows immediatcl\• that 

m 

m- L91 s: o. (3.91) 

i=l 

with equality if and only if gi = 1 for all t. 
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3. 7 Appendix 

It can be shown by a sequence of elementary arguments that for the disease 

free equilibri1tm 

S* 1 <-
- Ro 

From C; I - ' ) we have 

(3.92) 

S* = ~ + -
1
- - /~(1- -1 

)2 + _!!_ < -
1 

(:1.93a) 
2 2Rv V 4 Ro R, - Ro 

¢=::} ~ + - 1- - -1 :::; /,..-~-(1---_ 1 _)2_+_p_ (~t93h) 
2 2Rv R11 V 4 Ro · Rv 

We note that since Rv < Ro and R!i > 1 we have l + - 1
- - _l__ > O 

2 2Rv Ro · 

Therefore, we have 

(
1 1 1 ') 1 1 ') p 
-+---)-<-(l--1-+-
2 2Rv Ro · - 4 Rv Rv 

Rv Rv 1 
¢=:;.p>l--~---

- Ro.R6 Ro 

( 
1 ) 1 1 

{::=:=;> p?. 1 - - - Rv(- - -
2

) 

Rn Ro R 0 

{::=:=;> P?. (1 - ~) (1 -Rv) 
R() Ro 
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3.8 Appendix 

We utilize the following results proved in [ l]. Consider a system 

dx 
di = J(t, x), (3.95) 

6x = Lk(x) 

where 6x = x(T:) - x(T;;), and t E JR, k E .Z, x ED c JRn. The following 

conditions are also imposed, 

2. the function J : JR x D --+ ]Rn is contln1wus. 

3. The functions Lk(x) are continuous for x ED 

Furthermore a set V C D is defined to be canonical if it satisfies the 

following three properties: 

4. the dornain V is a bmmded convex sci 

5. the closure of V can be expressed by a finite number of inequalities 

(3.96) 

where <Pi : lRn --+ JR are smooth functions. 

6. if both x E fJV artd <Pi(x) = 0 then the Jacobian rnatri:i: 3 8 ~
1 (x) '/: 0 

The primary result we apply may br stated as follows HJ : 
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Theorem 1. Suppose the conditions I - u.re satisfied, the set V is canonicaL 

<l\(x+Lk(~c)) :S O,Vi,Vx EV and lastly the directional derivative of<l) along 

the fiow at the boundary; must satisfy 

8<I> 
ax

2

(x)f(t,x) :S 0 (t E R,x E 8V,i E a(x)) (3.97) 

where a(x) = {i: <I>i(x) = O} 

Then Eq. (:;.'ri) has a T-period'ic sofotio11 y(t) which is contained in V .for 

all t ER 

It should be noted that conditions ( · ;/) combined with the condition 

<I>i(x + Lk(x)) :S 0, Vi, Vx EV are equivalent to the property that tlw set V 

is positively invariant with respect to th(' system(:; 'l-1). 
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Symbol 

p 
j]I 

/JV 
rI 
,v 
EI 

EV 

B 

Ro 

Rv 

Pcrit 

s 
Ev 

Er 

v 
I 

R 

N 

Lorn 

LEE 

v 

µ 

Pp11lse 

T 

IJ!(t) 

Peff 

Peff,crit 

Peff,crit 

S(T-) 

Ppulse.crit 
~ 

Ppulse,crit 

D 

Table 3.1: Table of Notation 
Definition 

(continuous) vaccination proportion 

wild virus transmission rate 

vaccine virus transmission rate 

wild virus recovery rate 

vaccine virus recovery rate 

wild virus spocific death rate 

vaccine virus specific death rn te 

total birth rate 

wild virus basic reproduction 1mmber 

vaccine virus basic reproduction number 

critical (continuous) vaccination proportion Rv = 0 

susceptible c!; .. 1ss 

vaccine virus latent class 

wild virus latent class 

vaccine virus latent or infect.inns class 

wild virus latent or infectious class 

immune class 

total population size 

Lyapunov function for the disease free equilibrium 

Lyapunov function for the cwfomic equilibrium 

per capita birth rate 

per capita natural death rat<' 

pulse vaccination proportion 

period of pulse vaccination 

fundamental matrix solution 

effective vaccination proporti()n 

critical effective vaccination proportion 

normalized critical effective vaccination proportion 

proportion of susccptibles immediately before vaccination pulse 

critical pulse vaccination proportion 

normalized critical pulse vac('ination proportion 

open set 
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Chapter 4 

The Effects of Demographic 

Stochasticity in Pulse 

Vaccination Campaigns 

4.1 Introduction 

It has long been realized that demographic stochasticity can have important 

consequences for epidemiological systerns. f n the case of measles, a childhood 

disease characterized by a relatively higl 1 1 ransmission rate, field epich~miolo

gists have observed apparently random <'xtinctions or fade-outs, particularly 

for small isolated populations [11]. Such observations motivated sonw of the 

first mathematical discussions of the effects of stochasticity on pathogen per

sistence and recurrent epidemics by Bart lctt [7, /"\, 1 (J, !J, 1J] in the late 1950s. 
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Bartlett [8] introduced the important co1 wept of the critical comm'IJ,nity size 

(CCS). essentially the minimum population size for which a pathogen will 

persist in a community without reintrodnction. 

Bartlett employed a compartmental stochastic model allowing for im

migration of susceptible and infectious individuals but not deaths (either 

natural or disease specific) [(i, 7]. Developing a recursive approximation for 

the stationary distribution of the model. Bartlett derived a quantity similas 

to the mean time to extinction which he termed the " mean rec:urren('e time 

to zero infoctives " [1fl. 1 l]. The differ('11cc in terminology results frnm the 

fact that nse of stationary distributions necessitates the inclusion of some 

immigration of infectious individuals in 1 he model. To confirm the valid

ity of his model. Bartlett compared his theoretical results as well as those 

generated by Monte Carlo simulation 111<·t.hods to measles case notification 

data from England and the U.S.A [~. 1 )~. This work represents a milestone in 

understanding the importance of stochasticity in epidemiological dynamics. 

Bartlett's early work has been extend('d significantly, most notably with 

the introduction of the idea of quasi-stationary distributions for finite state 

continuous time Markov chains [18, -t>]. In the context of compartmental 

epidemiological models, much effort has l >cen focused on analytical approxi

mations of the quasi-stationary distribution [ 14, t-Jj, which may be thought 

of as the stochastic analogue of a detnministic endemic equilibrium in a 

differential equation model. There has hl~en particular interest in the com

putation of the mean and distributions f, 1r the time to stochastic extinction 
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of pathogens, as a function of populatiou si7'e [5, 44, lG, ;')2]. The dependence 

of the mean time to extinction on the population size is used to give a value 

for the CCS. Some recent work has explored the significance of the distribu

tion of latent and infectious periods on d iscase persistence at the population 

level (by analytical methods [;'i] and by direct simulation [ll]). 

The effects of demographic stochasti('ity on the outcomes of continuous 

varcination campaigns have been investigated previously [:Fi]. and analytical 

approximations of the CCS have been derived [:)] (in the large population 

limit) as a function of the proportion of the population that is vaccinated. 

The key approximation that is made is tltat the distribution of initial states 

is the quasistationary distribution; from this it follows that the time to ex

tinction is exponentially distributed [S, :->], and hence that the me;:1n time 

to extinction specifies the full distribution of times to extinction (from which 

the CCS can be inferred). This work shows--in the large population limit

that the CCS is inversely proportional t• l the square of the mean infectious 

period. 

The implications of stochasticity for pulse vaccination (whereby mass 

vaccination campaigns are undertaken at regular intervals) have yd to be 

significantly explored [:Hi]. Deterministic compartmental ordinary differen~ 

tial equation models of pulse vaccinatio11 for childhood diseases have been 

explored extensively [I, 17, 22, 19, 20, ,' ! , ,'!(), 'rn, )0]. In particular, these 

works establish that there is a critical pulse interval such that if a fixed pro

portion of susceptibles is vaccinated in each pulse, then the pathogen will 
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certainly be eradicated if the pulse interval is shorter than the critical length 

[20, 21, 49, 50]. The existence of this nitical pulse interval has also been 

proved for more general models, which indude waning of maternal immunity 

and realistically (Gamma) distributed latent and infectious periods [:20, :21]. 

In the deterministic setting, the threshold effective vaccination level ( num

ber of doses per unit time) required to <'llsure eradication has been prove11 

to be identical in the simplest (SIR) fn1 mework [ rn, :-JO] and- -based on nu

merical analysis --is conjectured to be identical more generally [21]. For 

vaccination below this threshold level. nnnplicated dynamics are possible. 

including deterministic- chaos for sufficirntly long pulse intervals [ l~Jl. In 

addition. the pulse vaccination model can exhibit parametric resonance (n~s

onant behaviour which appears when a control parameter exceeds a threshold 

value [JO]), which can have the counter-intuitive effect of increasing disease 

prevalence when decreasing the pulse i11t<Tval [17]. 

The stocha..stic: epidemic theory cited above makes clear that demographic 

stochasticity can lead to dynamics that are substantially different from the 

behaviour of deterministic models. Vv'i· are therefore motivated to i1n-es

tigate whether the conclusions drawn fr()m deterministic pulse vaccination 

models remain valid in the presence of a realistic amount of demographic 

stochasticity. With specific emphasis 011 measles vaccination, we employ a 

mix of computational and partially anah·tical techniques. Our analysis has 

considerable practical importance, because some form of pulse vaccination 

is currently carried out for measles and poliomyelitis in many developing 
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countries (typically in the form of annual national immunization days) [..:18]. 

4.1.1 Methods of Analysis 

Our analysis is based upon the standard Susceptible-Exposed-Infectious-

Recovered (SEIR) compartmental franwwork [:{, ;3:i]. In its deterministic 

form, the model can be represented by l lw following set of impulsive differ-

ential Eqs. [20]. 

dS () Loo ( , 
- = vN - -SI - µS - p 1 • S nT-)b(t - nT) 
dt !V pn '' 

n=O 

(4.1 a) 

dE /3 
- = -SI - (µ + (J)E 
dt N 

(4. lb) 

df 
dt = a- E - (µ + r) I (4.lc) 

dR = 1! + Ppnlse ~ S(nT-)(5\f - nT) - µR 
dt L..J 

n=O 

(4.lcl) 

8(nT-) = lirn S(nT - c) 
t:-+O+ 

(4.le) 

Here, N is the total population size. Incli\·iduals are born into the susceptible 

class at per capita rate v; regardless of disease status, individuals die at per 

capita rate p, where t is the average life-span (we ignore any disease-induced 

mortality). The fixed rates CJ and r implv that the latent and infectious peri

ods arc exponentially distributed with nwans l and l, respectively. Vaccina-
a r · 

tion occurs in pulses separated by time T: at each pulse, a proportion Ppulse 

of the susceptible population is vaccinated (and we assume that vaccination 
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confers lifelong immunity). Standard in('idence (f3Sl / N) is assumed, so the 

transmission rate is /3/.N. The model ( ) is phrased in terms of absolute 

number of individuals, but it can straightforwardly be phrased in terms of 

proportions of the population by scaling the state variables (S, E, I .. R) by 

The basic reproduction number-th(' average number of secondary infec-

tions resulting from a single infectious individual in a fully susceptible pop-

ulation, ·in the absence of vaccination-- is easily calculated [.J l] and found to 

be 

R _ ;3a 
0 

- ('y + v)la + v) · 
(4.2) 

-
Solutions of the deterministic model ( ; . ) eorrespond to the ensemble mean 

of the true stochastic system in the limit of large population size (N __, oo) 

[:3!), HJ). The differential equations in the deterministic model implicitly spec-

ify a stochastic model in which waiting ti111es for each system event arc expo-

nentially distributed with rates depend<·nt on the current state (S, E, I, R) 

of the system. The population is made np of discrete individuals and each 

stochastic event results in the transfer of <t finite number of individuals from 

one class to another. The transitions and rates associated with each event 

type are given in Table i. I. I. With the exception of vaccination, all events 

involve a single individual. The number of individuals who are vaccinated in 

a given pulse depends on the number of snsceptibles in the population at the 

event time. Note that, unlike the other events, the timing of vaccinations is 
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Event 

Birth 

Infection 

Infectious 

Recovery 

Natural death 

Vaccination 

Rate 

vN 

(~/N)IS 

<JE 

1! 
µX 

L~ 0 6(t - nT)PpulseS(nT-) 

Chapter 4 

Transition 

S - (S + 1), N - N + 1 

s- S-1, E - E + 1 

E - E - 1, I - I+ 1 

I - (I - 1) 

X - (X - 1), N - N - 1 

S -; S - lPpulseS J 

TableA.1: Event rates for the stochastic SEIR model with pulse vaccination. 

X refers to any of the state variables (S. r. for R). The notation lxJ denotes 

the largest integer less than or equal to .r. Note that the pulse vaccination 

term L~=l 5(t - nT)PpulseS(nT-) is detcnninistic with respect to time, with 

lPruiseS(nT-)J individuals vaccinated al l = nT, n = 0, 1. 2 ... 

deterministic, i.e., susceptible individuab are always vaccinated precisely at 

time t = nT (for n = 0, 1. 2, ... ). 

The Gillespie Algorithm 

We employ the standard Gillespie algori 1 hm [27] to simulate the stochastic 

process specified by Table I J. This <-ilgorithm is an iterative (or chain) 

Monte Carlo method used to comput0 true realizations of (discrete state 

space) continuous time Markov process<'S (for which future system states 

depend only on the current state). Reali:t.Htions are "true" in practice to the 

extent that our random number generators are truly random and generate 

data of the correct distribution. Each iteration of the algorithm has two 

steps, the first step selecting the time to I lie next event, and the second step 

selecting the event type. 
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The algorithm may be fully explai1wd as follows. At a fixed time t0 

consider a Markov system defined by n possible events (transitions). vVe 

assume the state of the system at tinw t0 is known. We denote the rate 

a..ssociated to each event as { ai }~ 1 . TlH·refore the probability of an event 

of type i occurring in time l:::.t is ail:::.t + 0(6t2
). We define two random 

variables: Te, the time to the next event (of any type), and le. the index of 

the next event (i.e., the type of event t.ll<1t occurs next). The algorithm is 

based on the computation of the distribnt ions for these two random variables. 

Following ['.Zi] we compute the distribution for Te. Using conditional 

probabilities for successive time interval:-; we may write 

In Eq. ( 1.: >) the first term represents the probability that there are no events 

in the time interval [t0 , t0 +t] while the scrnnd term represents the probability 

that there are no events in the time interval [to + t, t0 + t + 6t]. Rearranging 

Eq. ('I : \) we see that 

P(1~ > t + /\.~~ - P(T, > t) ~ P(T,. > t) (-ta,+ 0( L'.t)) ( 4.4) 

Taking limits as .6.t -7 0 in ( i l) yields the linear differential equation 

dP(Te > t) ( n ) 
dt = P(Te > t) - ~ ai . (4.5) 
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Solving Eq. (I. l) (noting P(1~ > 0) = I and P(T0 :S t) 1 - P(T0 > t:)) 

yields the distribution of Te 

(4.6) 

Eq. (I f1) establishes that Te is expO!l('JJtially distributed with parameter 

2:.:~ 1 ai. Using the distribution of Te tl1e probability that the next event 

occurs in the time interval [to + t 1 , t0 + l 1 + .6.t] and the event is of type j 

(i.e., I,) = j) may be calculated using colJClitional probabilities as 

P(Ie = j, Te E [t, t + .6.t]) = P(Te > t) (aj.6.t + 0(.6.t2
)) 

= e· :L;~ 1 a,t ( a
1
.6.t + 0(.6.t2

)) 

(4.7) 

As in the computations for Te dividing by .6.t and taking the limit in ( i :·) as 

.6.t _, 0 yic=:lds the probability density as:-;ociated to the distribution P(Te < 

t,Je = j) 

(4.8) 

The distribution of the random variabl<' fe may now be calculated by con-

dit.ioning the expression for P(Te :S t, le = j) on the time to the next event 

Te. Assuming the next event occurs in some arbitrary (measurable) set 
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AC (0, oo), the expression for this conditional probability is 

P(I = ·1r A)= P(J,. = j, Te EA) 
e J e E P(Te E A) 

OJ f A e- I.;~=1 a;tdt 

- ""'' a· J e- I.:~=1 a;tdt 
L.J1ocl i A 

n; 

Chapter 4 

(4.9) 

Notice there is no dependence on the till1c of the event. Since the set A is 

arbitrary. Eq. ( l.' ! ) implies that the index of the next event le and the time to 

th<' next. t'W'nt Te are independent rando111 variables. Thus, the distribution 

of le is simply 

(4.10) 

Using these results. the Gillespie algorithm can be performed through two 

independent steps: 

1. The time to the next event Te is cl1osen by selecting a variate from the 

exponential distribution with rate 2.:7=1 ai. 

2. The index of the next event le is selected by choosing a variate from 

the discrete distribution ( i.10). 

In practise. the two steps are most often achieved using a uniform random 

number generator on the unit interval a11d straightforward transformat.ions. 

We refer the reader to [:ti] for a complete discussion of implementation issues. 
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Event Rate Transition 

Infection BIS S ~ S - 1. I____, I+ 1 

Recovery /I I ----> I - I 

Table 4.2: Events rates and transitions for the SJ R epidemic model without 

vital dynamics. 

Moment Closure Models 

To complement our numerical analysis I lased on particular realizations of 

the underlying l\farkov process specified i11 Table ! : . '. we also considc:r dif-

ferential equations for tlte tirne-evolutio11 of the ensemble variances of the 

process. \1Vc derive these equations bas<'d on a moment-closure approxirna-

t . [!J i- ·1c· ")_, l·)J .ion~' .),o1J,.,1.~~,. 

To explain thE' derivation of tne monwnt evolution equations. we consider 

an oversimplified two-event-type model. For the more complicated model 

that we have actually investigated. the equations are derived in an identical 

manner, but the algebra is much messier. 

Consider a discrete-state, continuous-I ime Markov process with only two 

event types: infection and recovery (tlw .S'J R model without vital dynamics 

[.). ']) 
1)•) • The system is defined in Table . For this Markov process. given c-1 
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time t. the probability t.hat the system is in state (5. I) at time t + t::.t is 

P(5, I, t + t::.t) = i3(5 + l)(I - l)P(S + 1, I - l, t)t::.t 

+ 'YP(S, I+ 1. ()flt 

+ ?(5, I, t)(l - 35 I 6.t - 'Y6.t) + 0(6.t2
) 

(4.ll) 

The terms of Eq. ( I l : ) reprefient (in order) the probability of arriving at 

state ( S, I) by a single infection, singlr 1n:overy, or lack of any event in the 

time 6.t. The probability of arriving at tlw state (5, I) through multiple tran

sitions is incorporated into the 0(6.t2
) term. Regrouping terms in Eq. ( l. i : ) 

and shrinking tit to zero, we arrive at tlw differential equation 

dP(~~ I. t) = 3(5 + l)(I - l)P(S + l. I - l, t) 

+1(I- liP(S,I-1.t) 

- (!3!5 + r )P(S, I, t) 

(4.12) 

From Eq. ( ; l '.!) it is straightforward to < 1btain differential equations for the 

rnonwnt.s (of any ordl~r) of 5 and I by summing over all the system states, 

(4.13) 

where 0 denotes ensemble average and t.he sum is over the set { (5, I) : 5 2:: 

0. I 2:: 0, 0 :::; S + I :::; N}. 

In principle, substituting Eq. (1. l 2) into the LHS of Eq. ( 11: ;) specifies 
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the differential equations for the system moments (since the LHS of (I.!:\) can 

be expressed as a linear combination of powers of the two state variables). In 

practice, it is more convenient to look at 0 D Es for the moment (or cumulant) 

generating functions, t.hc expansion co<'fficients of which are the moments 

( cunmlants) of the system. The momenl ;tm! cumulant generating functions 

are defined, respectively, as 

M(81,Bs) = <10,1+BsS) 

K(Br,Bs) = lo0; (M). 

(4.14a) 

(4.14.b) 

As in Eq. ( i. I.;), the average in ( l. I : ) is taken across all possible states 

(S. I). Differential equations for the mo11H~nt (cumulant) generating function 

arc constrnc:ted completely analogously to Eq. (1. I :)~ The explicit moment 

equations np to second order for the SI H epidemic model (with vital dynam

ics) arc given in [12]. 

We nov\ return our attention to the SF IR pulse vaccination model. Using 

the methods just discussed we compute che moment equations. Following 

[42], to simplify analysis we ignore flunnations in the total populat.ion N. 

treating this term as deterministic. Also in:all from the discussion of Gillespie 

algorithm simulations tlrnt pulse vaccination is modelled as a deterministic 

process. We use (X), var(X) and cov( Y. Y) to denote the mean, variance 
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and covariance. Similarly the third order central moment is 

M3 (X, Y, Z) = ((X - (X))(V - (Y))(Z - (Z))). (4.15) 

For the sake of generality, we give the eqnations for a mixed vaccination cam-

paign in which there is both a pulse and continuous vaccination component 

with a proportion p of the population v;wcinated at birth and a proportion 

Prnlse of snsceptibles vaccinated in each pulse. The moment equations. up to 

second order, arc then give by t.he following expression: 

d (S) (3 , /3 
- = (1 - p)vN - µ (S) - -cm·(.'>. I) - - {S) (!) 

dt · N N 
x: 

- PrulseI:b(t - nT) (S(nr-)) _ (4.16a) 

n=O 

d(E) ;3 f3 
-----;ft= Ncov(S, I)+ JV (S) (I) - (11 +£Ji)(£) (4.16b) 

d (I) 
J:l = £J1 (E) - (µ + 11) (I) (4.16c) 

dv:t(S) = (1 - p)v N + µ (S) - 2µvar(S) + !cov(S, I) 

8 3 
+ N (S) (!) - 2 ,V ( (S) eov(S, I)+ var(S)E(I) + l\!I3 (S. I.!)) 

DC 

- Prutse(2 - Ppulse) L b(t - nT)var(S(nT-)) ( 4.16d) 

n=O 
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dvar(E) f3 
dt = (µ + O"r) ((E) - 2var(E)) + Ncov(S, I) 

(3 (3 
+ N (S) (I)+ 2 N ( (S) rnv(E,I) + cov(S, E) (!)) 

/3 + 2 NM3(S, E, I) (4.16e) 

dv~(I) = (µ+Ir) ( (!) - 2var(I)) + a
1 

( (E) + 2cov( E. I)) ( 4.16f) 

dcov(S, E) .3 
d = -(2v+O"r)cov(S.E)- ~ (rnv(S,I) + (S) (!)) 

t N 
/3 (3 

- N (S) cov(S, I)+ N (\·ctr(S) (!) - (S) cov(E,J)) 

- ~rcov(S, E) (!) - i (M3 (S, S, I)+ M3 (S, E, I)) 

00 

- Prulsc L o(i - nT)cov(S(nT-), E(nT-)) (4.16g) 

n=O 

dco\j:· !) = -(2µ + 11)cov(8. I) + O"rcn,·(S, E) - .~· ( (S) var(!)+ l\:I3(S I, I)) 

x 

- f31 (!) cov(S I) - Pru"'' L o(t - nT)cov(S(nT-), I(nT-)) 

dcov(E, I) 
dt = -(2µ + O"J +Ir )cov(E, I) -- a 1 ( (E) - var(E)) 

+ ~ ((S) var(!)+ cov(S. f) (!) + M3 (S, I,!)) 

dN 
- = (v- µ)N 
dt 

(4.16h) 

(4.16i) 

(4.16.i) 

Notice that the system of equations ( I. I· ) is not closed, as the rates of change 

of second order moments depend on third order moments. In general, the 

rates of change of the kth moments will depend on the (k + l)th (and if 

non-mass-action mixing were assumed tl1en there would be dependence on 
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higher order moments as well). In order to close the equations at some 

order. assumptions are typically imposc:d on the form of the distribution 

of states. We assume that t.he states of the system have a multivariate 

normal (MVN) distribution (i.e., at each t.irne poinL t.he distribution of states 

across all possible realizations is MVI';) \Vith this assumption, the s.vstern 

closes with moments no higher than scrn11d order, since t.hird order central 

moments vanish for the MVN distributio11 . The MVN moment closurr model 

is thus obtained by setting l'vh ( X, Y, Z) =' 0 in ( l. ! I'). MVN moment-closure 

approximations for the SEIR model wit !lout vaccination are consick~rcd in 

[ 1:2]. 

Moment c:Josure approximations allow ns to investigate the dependence of 

results on population size without resorting to direct simulation. However. as 

these methods assume the form of the e11;-;cmble distribution, they cannot. be 

used--- at least not directly-to estimate LI 1c time to extinction. Furthermore, 

as we are assuming normal distributions for non-negative state variables, we 

expect tha,t the approximation will bec0111c worse as the standard deviation 

becomes comparable in size to the mean. Numerically, breakdown is mani

fested by divergence of integrations of Eq. ( l. I 1 ;) • Such divergence has been 

noted for the standard MVN SfR and SUR models in [-+:2]. This breakdown 

is not specific to the MVN approximation; it has also been observed when 

analyzing a multivariate lognormal monwnt closure approximation [2-->]. Bi

modal distributions have been considered for simple two compartment SIS 

models [~HJ. In contrast to the MVN model, such methods involve imposi-
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tion of a non-trivial functional relationsl1ip between higher and lower order 

moments (as dictated by the distribution). 

In spite of the limitations imposed I >V specifying the ensemble distribu-

tions as MVN, our model docs provide useful indirect information about 

the probability of extinction. We make indirect inferences by examining the 

coefficient of variation (CV) of state variables; the CV of X is 

CV(X) = (T(X) . 
{X) . 

(-1.17) 

where a(·) denotes standar<l deviation n11d (-) denotes mean. If CV(XJ is 

of order unity then X is frequently near 1,ero. Com:equently, as CV ( E) and 

CV(!) approach unity, there will be a high probability of extinction or fade-

out. Unfortunately, as previously discuss(·cl. when the coefficient of variation 

approaches 1, the MVN approximation is more prone to error. Nevertheless. 

we will show in the following sections 1 l1at the MVN model makes useful 

predictions regarding stochastic extinctio11s for the pulse vaccination model. 

Some previous work has demonstrated l'v!VN models often provide good ap-

proximations of the mean and variance, even for true distributions that are 

known to he far from normal [:31]. 
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4.2 Results 

In the following sections we focus spe«ifically on vaccination for measles. 

Unless otherwise noted, we assume stan<Ltrd epidemiological parameters for 

measles (Ro = 17.5, mean latent period ~ = 8 days .. mean infectious perio<l 

~ = 5 days). Jn addition, we assume a birth rate v = 0.02yr- 1
, a constant 

transmission rate B (no temporal variation in {3), and identical rates of birth 

and death (v = µ). 

We begin by describing the results of many Gillespie simulations covering 

a range of population sizes and proportions vaccinated. These results are 

compared with the predictions of the MVN pulse SEIR model. We highlight 

the differences in measles extinction -prClbabilities predicted by continuons 

and pulse vaccination programs. We sh< 1w that demographic stoclrn,stic:it.:v 

leads to eradication thresholds that are 11mch lower than those predicted by 

the deterministic model ( I. l). for populntions of (at least) the size of large 

cities and small countries. 

4.2.1 Stochasticity and Pulse Vaccination 

Gillespie simulations 

Figure 1 ~. l shows the results of Gillespie simulations of the pulse SEIR vac

cination model for measles, with pulse intervals (from top to bottom) of 

T = 1. 2, 3. 6 years and an (initial) popubtion size of 10 million. As a. result 

of demographic stochasticity. the actual population size fluctuates about the 
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Figure 4.1: Prevalence time series for Gillespie simulations of the pulse S EI R 

model ( I ! ) in a population of 10 millio11. Initial conditions for are taken to 

be the globally asymptotically stable equilibrium of (I ) for a previously 

unvaccinated population. From top to \ iottom each row represents pulsing 

periods of 1. 2, 3 and 6 years, with puls<' vaccination proportions of Ppulse = 

0.05, 0.105. 0.17 and 0.30, respectively. For T = 1, 2, 3 years, these values 

correspond to Peff ~ 0.16 (L ! ""). Panels in column (a) show thirty sample 

realizations, while panels in column (b) give the mean of 1000 realizations. 

Dashed curves in (b) denote differences of one standard deviation, while the 

dotted curve gives the coefficient of varintion for the prevalence CV(E +I) 

( 1. I 7). Longer pulsing periods give rise t.o higher epidemic peaks and deeper 

epidemic trought:>. For T = 3 years, the :-:tandard deviation in the npidemic 

trough is comparable in size to the mean. indicating a potential for stochastic 

extinction. 
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initial values. The left panel gives a 12 yt·ar time series of measles prevalence 

( E + J) for 30 stochastic realizations. The right hand side shows the ensem

ble mean of 1000 realizations, with dashr·d lines indicating differences of one 

standard deviation. Note that the proportion of susceptibles vaccinated in 

each pulse (Ppulse) is different in each of the four pairs of panels in Figure 1 \, 

in order to keep constant the number of doses administered over the 12 year 

time period (facilitating a more useful cornparison among the different pulse 

intervals); we make this concept more piw·ise is section § I -~ ·_>. 

Tlw same set of initial conditions is used for each realization. namely the 

discrete state closest to the globally a.sylllptotically stable endemic equilib

rium [:~ 1, :38J of the deterministic model ( i I) in the absence of vaccination. 

The deterministic endemic equilibrium 111ay be thought of as the mean of the 

quasi-stationary distribution of the com$ponding stochastic model [2, 4]. 

From a biological perspective. these simulations amount to initiating a pulse 

vaccination program in a population wlwre measles is endemic and there has 

previously been a negligible level of vaccination. 

It is evident from Figure I I that for periods of 2, 3 and 6 years. pulse 

vaccination leads to substantially larger epidemic peaks. as well as deeper 

epidemic troughs. Though larger epidelllic peaks are an undesirable conse

quence. lower epidemic troughs may inc-rea.se the probability of stochastic 

eradications. The effect of lower troughs is particularly evident for T = ;3 

years. The standard deviation is of comparable size to the mean in the epi

demic troughs (as indicated by CV ( E +I)). implying that stochastic fadeouts 
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may be possible for slight increases in V<tU:ination proportion Ppulse . 

We further investigate the possibilitx of stochastic extinction in Figure 

L', which gives the probability of stochastic measles extinction within 12 

years of the introduction of p.. pulse vaccination campaign as a function of 

the pulse vaccination proportion Ppulse· Curves are shown for population 

sizes of 1, 5 and 10 million individuals, essentially representing small to large 

metropolitan populations. 

It is immediately apparent from Figm<' i 1 that eradication is achieved at 

feasible levels [:!·1] of pulse vaccination, h<'low 35 percent for each of the pulse 

intervals and population sizes considere< l. Systematic effects of demographic 

stochasticity are also clear in this figure: For fixed pulse intervals, the vac

cination level at which complete meas!<'-; eradication occurs increases with 

population size, and there is a substani ial narrowing of the range of Ppulse 

over which the probability of extinction rises from 0 to 1. For populations of 

10 million, we see threshold-type behaviour, with almost zero probability of 

extinction below the threshold and nearlv certain extinction beyond it. This 

feature is especially apparent for the 1. 2 and 3 year pulse intervals. 

Deterministically, one would expect t l 1c pulse vaccination proportion re

quired for eradication to increase with p1 tlse interval, but Figure i _ shows 

that stochastically this is not necessarily the case. There is a small increase 

in the required Ppulse as the pulse intervctl is increased from 1 to 2 years, but 

at 3 years the required proportion decreases noticeably. We will discuss this 

counter-intuitive result at length in §I . As alluded to in the discussion 

165 



Bradley G. Wagner- PhD Thesis 

~0.8 
:0 ro , 

{5 l 
~0.61 
. g I 
ro : 
'6 0.4 i 
ro I 

w i 
0.2\ 

I 
I 

1 year pulse 

-+-1 million 

- •- 5 million 
• 10 million 

0.1 0.2 0.3 
Pulse vaccination proportion 

1 
~ -+- 1 million 

1 - •- 5 million 
I • 10 million 

§o.sf 
.D . 
ro 
.D 
0 ' 

a. 0.6f 

·~ I 
.~ 0 41 

~ I 
0.2~ 

3 year pulse 

0.4 

I I 
o·--__,.......,~~--4 -~---~---, 
0 0.1 0.2 03 

Pulse vaccination proportion 
04 

1 
t -+- 1 million I 
: - •-5 million 

I • 10 million 

§o.sr 
.D ' 

1l i 
~0.6~ 
g i 
~ I 
'6 0.4[ 
cu \ 
w i 

o.2f 

Chapter 4 

2 year pulse 

... 
• I 

+. 
I 

0.1 0.2 
Pulse vaccination proportion 

i 

! - • - 5 million 
1 

[ -+- 1 million 

1

1 

i • 10 million 

~ O.Br 
·.o i 
2l I 

0 ' a. 0.6[ 
c 
.Q i 
(ii I 

'6 0.4 r 
~ ! 

0.2f 
! 

6 year pulse 

Figure 4.2: Probability of eradication witl1in 12 years of initiation of vaccina

tion for pulse vaccination with intervals of T = 1, 2, 3, 6 years and populations 

of N = l. 2, 10 million as a function of pulse vaccination proportion Ppulse, 

computed through Gillespie simulations based on Table 1 i. I. Required vac

cination levels for stochastic eradication a.re seen to increase with population 

size N, and there is a thresholding effect whereby the range of Ppulsc over 

which the probability of eradication chanp;es from 0 to 1 becomes extremely 

narrow. Eradication is achieved for a 3 y('ar pulse interval at a lower vaccina

tion proportion than for annual or biennial pulses, suggesting the d:vnarnics 

are non-trivially dependent on the length of pulse interval. 
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Figure 4.3: Probability of measles eradicMion within 12 years of initiation of 

annual pulse vaccination for Erlang (G<l.lllma) distributed latent and infec

tious periods Gamma(n, n1a), Gamma(n, ,,1J as a function of pulse vaccination 

proportion Ppulse· The bottom right pa11<~l shows the probability density for 

selected Erlang distributions with shape parameter n and a mean infectious 

period of 5 days. Eradication is seen to depend very weakly on changes in 

distribution. 
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of the prevalence time series, we will argue that (stochastically) eradication 

potential is strongly and non-trivially dependent of the length of pulse inter

val, not simply the pulse vaccination proportion or even the overall number 

of vaccinations in a given time period. 

Additionally, we note that behaviour is negligibly affected by the distribu

tion of the latent and infectious periods. We performed Gillespie simulations 

using more realistic Erlang distributed la.t<'nt and infectious periods [1xj with 

the identical mean. The eradication probability for annual pulse campaigns 

with Erlang distributed latent and infect.ions periods (both with the same 

shape parameter n) is given in Figure :. Note that n = 1 corresponds 

to tlw exponential distribution of the SEIR model. Results are prnctically 

identical, even for n = 40 which represc11ts very tightly focused distribution. 

MVN Model 

Many of the results of the pulse SEIR (; illespie simulations in the previous 

sections can be predicted-some albeit indirectly--using the MVN moment

closure approximation (!.I (i). 

Figure l I shows the 12 year prevalence time series for the MVN model 

( : . I l ;) for the identical pulse vaccination proportions (and initial conditions) 

depicted for the Gillespie algorithm simulations of Figure l. I. The solid <:urve 

denotes the mean, while dashed lines i11dicate differences of one standard 

deviation. The MVN model ca,ptures the epidemic peaks and troughs of the 

Gillespie simulations while giving comparable standard deviation values. 
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Figure 4.4: Prevalence (E+I) time seri(',-; for the pulse SEIR model as cal

culated by the MVN moment closure l!lodel ( 1.1 Ii). From top to bottom 

panels represent pulsing intervals T = 1 . 2. 3, 6 years and pulse vaccination 

proportions Ppulse = 0.05, 0.105, 0.17 and 0.20. Note these are the identical 

parameters as in the Gillespie simulati()11s of Figure !. : . Solid curves in

dicate the mean, while dashed curves illclicate differences of one standard 

deviation. Dotted curves give the coefficient of variation CV ( E + I) ( I : :) 

(right <ixis). The MVN model captures tlw epidemic peaks and troughs of the 

Gillespie simulations while giving comp;-nable standard deviation (coefficient 

of variation) values. 
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Figure 4.5: Coefficient of variation of di:-.ease prevalence, CV(E + I), as a 

function of pulse vaccination proportion predicted by the MVN pulse SEIR 

model ( l. ! f.) in a population of 10 million. Initial conditions correspond 

to the Gillespie simulations of Figure The dashed line indicates the 

maximum over a 12 year period from t.!1<~ initial pulse, while the solid line 

indicates the mean. The parameter range at which CV(E + I) increases 

towards unity, indicating a high probability of stochastic eradication, exhibits 

good agreement with the parameter region in which stochastic extinctions 

occur in the corresponding Gillespie algorithm simulations in Figure !...'.. 
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It is more instructive to look at the coefficient of variation for the preva

lence CV(E +I). If this value tends tmv<trds one, fluctuations in prevalence 

arc nearly as large as the mean, indicating a high probability of stochastic 

eradication. We compute the coefficielll of variation as a function of the 

pulse vaccination proportion Ppulse, payi11g particular attention to the values 

of Ppulse for which eradication is obserwd in the Gillespie algorithm simu

lations (Figure i 2). In fact, results show that the MVN model is able to 

successfully predict the parameter rang<'s for which extinctions are likely. 

Figurr :. -1 shows (<lS a fnnction of p11lse vaccination proportion Ppiilse) 

the coefficient of variation CV ( E + I) ( -) of disease prevalence, for pulse 

intervals of T = L 2, 3 and 6 years and '' population of N = 10 million in

dividuals. The initial conditions are the same as in our Gillespie simulations 

(Figure i l, 1.2). From the point of vicv\' of our moment-closure approxima

tion ( 1 l i 1). these initial conditions correspond to setting the initial variances 

and covariances to zero. since every reak':ation of the process begins in ex

actly the same state. 

The solid curve in Figure I .) shows t.l1e mean CV(E +I) over a 12 year 

period while the dashed curve correspo11ds to the maximum. The results 

accurately predict the parameter range i11 which stochastic extinctions are 

obserwd in the Gillespie simulations depicted in Figure : . 1. For each pulse 

interval T. as Ppulse is increased the CV increases. eventually approaching 

unity; at this point a high probability of extinction is expected (since fluc

tuations arc as large as the mean) and the MVN hypothesis itself begins 
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to break down as the true distribution 1 lf states becomes far from normal. 

Comparing the results to Figure i .·_!, we H'e that the parameter values where 

CV ( E + I) rapidly increases toward 1 correspond to the narrow range of 

Prntse at which extinctions are observed i11 the Gillespie simulations. Note. in 

particular, that the somewhat counter-intuitive result that a lower Prutse is 

required to achieve eradication for T = :l .vears (compared with T = l or 2 

years) is clearly 0vident in Figure ~. -1. Tltnc is a steep increase in CV ( E +I) 

to a value above 0.9 before Pr"tse = 0.19. <1t. which point the MVN model be

comes divergent as the hypothesis of a 11ormal distribution of states breaks 

down. 

4.2.2 Comparison of Pulse and Continuous Vaccina

tion 

Continuous vaccination targets individn:ds at the moment that thcv enter 

the susceptible population, whereas pub1' vaccination targets all susceptible 

indivi<luals, regardless of their age. Titus p is a proportion new recruits. 

whereas Prulse is a proportion of all susccpt.ibles. In order to make fair com

parisons between continuous and pulse \·accination. we need to use the same 

measure to assess both. 

One sensible metric is the number of <loses of vaccine administered per 

unit time. Equivalently, we consider the effective vaccination proportion, Pcff, 

which we define to be the average numh<'r of vaccinations per pulse interval 
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T, as a proportion of the input of new ,c;usceptibles (births) over the same 

period, i.e., 

VU') 
Peff = ,

1 
... ,ri r 

V :v 
(4.18) 

where V(T) is the average number of V<\('cinations per pulse interval T. For 

continuous vaccination, we have V(T) - pvTN for any time period T, so 

Peff = p. Note that for any type of vacci11ation program, Peff is directly pro-

portional to the cost of the campaign (ign( lring logistical issues and associated 

costs that differ among different strategi( ·.c;). 

Twclw~ year prevalence time series for a continuous vaccination campaign 

with Peff = 0.16 are given in Figure I r" \iote that t.his is approximately tile 

same value of Peff depicted for the 1, 2. and 3 year pulse interval Gillespie 

algorithm simulations in Figure ( 1.1 ). f 11 contrast to the pulse vaccination 

results the continuous vaccination modC'I does not exhibit substantial epi-

demic peaks or troughs and fluctuations in prevalence remain far less than 

the mean ( < 20%). 

It is instructive to compare the stocl1;.1stic eradication results for contin-

uous vaccination to the pulse results in !crrns of Peff· Figure i.-: gives the 

probability of eradication within 12 years of the initiation of either annual 

pulse or continuous vaccination campaig11s (as a function of Peff). 

The continuous vaccination model ex iii bits the same thresholding effect 

noted previously for pulse vaccination. I-I owever, even for populations of 5 or 

10 million, the continuous vaccination threshold approaches the deterministic 
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Figure 4.6: Prevalence time series for rnntinuous vaccination Gillespie al

gorithm simulations, p = Peff = 0.16, N = 10,000,000. Panel (a) shows 20 

realizations while panel (b) gives the mea11 for 1000 realizations. The bottom 

panels (a) and (c) give the same prevalcuce as in (b) and (d) respectively, 

but with a different prevalence scale (ve1tical axis). The scale in (a).(b) cor

responds to Figure ( i. '). Dashed lines i11 panels (b),(d) indicate differences 

of one standard deviation, while the dotkd curve in (d) gives the coefficient 

of variation CV(E +I) (\.Ii). In comparison to the 3 year pulse vaccination 

campaign for the same value of Peff ( Figmc l l), the continuous vaccination 

strategy does not result in large epidemi1· peaks and troughs. 
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Figure 4.7: Probability of measles eradic«1t.ion within 12 years of initiation of 

vaccination for pulse campaigns of T = 1. 2, 3, 6 years and continuous cam

paigns with populations of 1, 5, 10 million as a function effective vaccination 

Peff ( J ! ;;;). Results are computed through Gillespie simulations of ( l i) over 

1000 reafo~ations. Eradication occurs at ci significantly lower value of Peff for 

pulse vaccination campaigns. As population size increases, in the continuous 

vacci1rntion campaigns the eradication tl1rcshold approaches the determinis

tic threshold Pcrit = 1 - ~ ::::::; 0.94 indic<tt eel by the dashe<l vertical line. 
''-0 
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limit (denoted by the vertical line), 

1 
Petf -4 Pcrit = l - - · 

Ro 

Chapter 4 

(4.19) 

Deterministically, Pcrit is the critical vaccination proportion required for era<l-

ication. for both continuous and pulse v;1ccinat.ion [:20, SO]. For Ro = 17.5. 

Eq. ( i.l(J) yields an eradication threshold of Peff-::: 0.94. 

For the 1 year pulse vaccination camp<tign, we see in Figure !. ~ that the 

results are still far from deterministic .. with eradication almost certain for 

Peff < 0.8, even for populations of 10 111illion. For longer pulse intervals, 

the difference bet.ween the eradication thresholds for continuous and pulse 

vaccination campaigns becomes extreme}\' pronounced. 

4.2.3 Deep Troughs and the Pulse Interval Length 

For longer pulse intervals. we have observed a dramatic decrease in the cf-

fective vaccination proportion (Peff) that is required for eradication. The 

creation of deep troughs following vaccination pulses is the key to under-

standing why the effective vaccination proportion (Peff) required for eradi-

cation decreases as the pulse interval (1') is increased. In the deterministic 

limit, the disease fails to persist if and only if the total number of vaccina-

tions reaches a critical proportion of birth~. With a finite population size, the 

depth of the inter-epidemic trough can he more important than the overall 

number of individuals vaccinated (in tenns of increasing the probability of 
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Figure 4.8: Prevalence ( E +I) as a function of time as predicted by the MVN 

pulse SEIR model ( L l ( i) for (top panel) an annual pulse vaccination cam

paign with Peff = 0.17 (I Ix) (Ppulse = (J.05) and (bottom panel) a triennial 

pulse vaccination campaign with Peff = () 16 ( Ppulse = 0.17) in a population 

of N == 10 million. Timr is measured fron 1 the initiation of the pulse vaccina

tion campaign, and the population is assumed to be previously unvaccinated. 

Dashed horizontal lines indicate the rn<'an prevalence over the 12 v<:ar pe

riod. The 3 year pulse results in deeper troughs in prevalence (suggesting 

increased probability of stochastic extinction), as well as substantially larger 

peaks. However, the mean prevalence over the 12 year period for the two 

scenarios is equivalent. 
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extinction). 

Figure I."' shows the prevalence of infectious individuals as a function of 

time over the 12 year period from the initiation of vaccination for annual (a) 

and triennial (b) pulses both with Petr ~ 0.16 (Ppulse = 0.05, 0.17) in a pop

ulation of N = 10 million (using the MVN moment closure approximation 

(; lh)). The solid line represents the me1111 prevalence while the dashed lines 

denote differences of one standard devial ion. The horizontal line represents 

the time-av(~rage prevalence over the 12 year period. As previously discussed 

the triennial pulse exhibits significantly lctrger prevalence peaks and deeper 

troughs. However (for equivalent Pelf), the annual, triennial pulse, and con

tinuous strateg~· (not shown) exhibit tlw :-;ame time-average prevalence over 

the 12 year period. Thus in terms of eradication, the triennial pulse strategy 

is superior in achieving eradication without adversely affecting mean preva

lence despite its effect on increasing peak prevalence. 

In the case of the annual pulse, WC' see that vaccination is applied as 

prevalence is increasing, preventing the C'pidemic from reaching its full peak 

height, but at the same time resulting i11 higher troughs. In the cas<' of the 

triennial pulse the interval is long enoup,il that the epidemic has reached its 

maximum, and is descending rapidly into a trough. In this way vaC'.cination 

in the triennial pulse serves to deepen the epidemic troughs increasing the 

potential for stochastic extinction. 

The tendency for large amplitude oscillations in disease prevalence when 

the pulse vaccination level is below the deterministic eradication threshold 
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has been noted previously [ l 7, HJ], though the ramifications for stochastic 

extinction have not been explored befol'<'. Higher peaks in prevalence are 

clearly undesirable from a public health perspective, but the costs of these 

temporary spikes in prevalence must be 1 >alanced against reduction in mean 

prevalence (as compared to other strat.egies with equivalent Peff) and the 

higher probi:tbility of extinction. 

4.3 Discussion 

Previous work [20, rn, :-10] based on det<'rniinistic models has indicated that 

continuous vaccination and pulse vaccinai ion programs always incur the same 

cost (in terms of the number of vaccine doc;cs required to achieve eradication). 

In this work, we have shown that signifiuu1t differences arise when the effects 

of demographic stochasticity are considr'1«Xl. 

\Ne focused on measles vaecination n11d considered both continuous vac

cination and pulse vaccination (with pulse intervals of 1, 2, 3 and 6 years). 

We found that a given probability of erndication can be achieved using less 

vaccine if pulse vaccination is employed rather than continuous vaccination. 

and that less vaccine is generally required if a longer pulse interval is em

ployed (assuming the same number of vaccinations per unit time). These 

conclusions are valid for very large poplllations (up to at least 10 million). 

Furthermore, the proportion oft.he susceptible population that must be vac

cinated in each pulse is in a realistic ra11ge (less than 35% of susceptibles. 
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even for triennial pulses, whereas the ability to reach 70% of all children has 

been demonstrated in some cases [54]). 

The length of the pulse interval is as important as the magnitude of the 

pulse or the total number of vaceinations. Judicious choice of pulse intervals 

can serve to deepen troughs in disease prevalence, increasing the probability 

of stochastic fadeout. 

We compared the results of many exact realizations of stochastic epi

demics [:27] to a multivariate normal n1< nnent-closure approximation of the 

undcrlving process [42]. The two approaches yielded similar results, and we 

conclude that moment closure is an effc<tive tool for analyzing the stochas

tic effects of pulse vaccination programs on pathogen eradication. Moment 

closure models cannot directly yield the distributions of states in the param

eter range where pathogen extinction probability is high, but they accurately 

predict the parameter ranges in which stochastic extinctions are significant. 

Thus, these methods provide a useful wa\· t.o examine effects of demographic 

stochasticity without resorting to intensi vc computational simulations. 

Throughout this work, we have assnmed that the populations we are 

dealing with are isolated, and that trans111ission rates do not vary with time. 

In reality, populations are linked by migrntion and travel, which can lead to 

"rescue effects" [lu] whereby infection is transferred into a community where 

the pathogen has gone extinct. In addition, transmission rates for measles 

and other childhood infectious diseases tvpically vary seasonally [LI, X-1, n]. 

The present work represents a first step in the analysis of more realistic 
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situations which would include spatially linked populations as well as seasonal 

forcing. 

Pulse vaccination has previously bec11 suggested as a strategy to avoid 

rescue effects, as it might synchronize pr<'valence troughs in different spatial 

locations [2:), 2L 26, 2(), :36]. How well this might work in practice has yet 

to be determined. Continuous vaccinati(Jll programs have been shown both 

to increase and to decrease epidemic S\'J1chrony, depending on the disease 

in question [H]. If future work establish(~:-; that pulse vaccination does have 

the potential to synchronize prevalence trnughs, then our present analysis 

suggests that eradication efforts will be further enhanced by the stochastic 

advantage of vaccinating in pulses. 
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Conclusions 

In this work we dealt with a number of topics related to vaccination strat.e

gies for the eradication of childhood inr<'ctious disease. We proposed and 

analyzed ·'endgame" vaccination strategi<'S for poliomyelitis to allow for the 

worldwide cessation of vaccination. W<' investigated the dynamical effects 

of contact vaccination in the use of live-attenuated virus vaccines, whercbv 

vaccine recipients may pass on the vaccin<' virus to contacts resulting in sec

ondary immunizations. Lastly we look<'d at the stocha.stic implications of 

pulse vaccinations, in which mass vaccinations are performed at regular in

tervals (as opposed to continuously). Spl'('ifically we focused on the ability of 

pulse vaccination to cause stochastic ext.i11ctions in measles vaccination cam

paigns. The mathematical models emplnvr~d include standard SIR or SE! R 

[l~J] type compartmental differential equations models and their analogous 

representation as discrete state continuou:-; time Markov chains for finite pop-
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ulations. We employed a mix of analytiud and computational techniques. In 

our analysis of stochasticity we used dir<'ct simulation methods as well as 

moment closure approximation methods. In the analysis of compartmental 

differential equations models we employ<•<! such analytical techniques as the 

construction of Lyapunov functions [:)2] <ind the use of numerical bifurcation 

analysis routines [;~ l]. 

Our analysis of so called "endgame'" ;.;trategies for poliomyelitis vaccina

tion focused on the use of the Oral Polio Vaccine, the primary polio vaccine 

used in the developing world [2:)]. Tho11gh providing an effective immune 

response. this live-attenuated virus is µnietically unstable and may revert. 

back to virulence and transmissibility rc;.;1tlting in circulating vaccine dt'rived 

polioviruses [2~]. Through the use of a < i)mpartmental ordinary differential 

equation model, we assessed the risks a;.;sociated with reversion in continu

ous OPV vaccination programs. We estalilished that although the impact of 

reversion is not significant when the wild virus is endemic, it is significant. 

from the standpoint of the eventual cessation of vaccination (when the wild 

virus in nearly eradicated). \Ne proposed and analyzed transition strategies 

to achieve complete eradication and allow for the cessation of vaccination. 

These strategies include the use of the Inactivated Polio Vaccine (IPV), the 

use of strictly pulse-vaccination OPV, as well as a one time pulse vaccination 

with IPV. Using stochastic simulation met.hods we found that a one time IPV 

pulse may be feasible, while a strictly pnlse OPV campaign can be effective 

as long as a higher level of vaccination coverage is maintained. 
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We examined the benefits of contact u::tccination in lowering critical vac

cination thresholds for the eradication ol wild viruses. For continuous vac

cination programs, we established that thresholds are independent of the 

latent and infectious period distributio11s of both viruses, depending only 

on the reproduction numbers of both tl1t· wild and vaccine virus. Contact 

vaccination substantially lowers the (wild virus) critical vaccination propor

tion, even when the vaccine virus reprodttction number is below 1, in which 

case the vaccine virus fades from the population upon cessation of vaccina

tion. We also examined the effects of cont<1ct vaccination in pulse vaccination 

campaigns. Pulse vaccination leads to a decrease in the benefits of contact 

vaccination. However, we concluded that for annual pulse OPV vaccina,- _ 

tions this decrease is not significant. Tltis result is of practical importance 

since some form of annual pulse OPV campaign is conducted in 55 countries 

around the world [l], and the benefits nf contact vaccination in OPV use 

have long been empirically observed by ( ·pidemiologists [23]. 

For pulse measles vaccination campaiµ;ns we found that, for populations 

on the order of large cities or small countries, taking demographic stochastic

ity into account may lead to significant difl'crence,s with deterministic models. 

Particularly, we found that stochastic eradication is predicted for significantly 

lower levels of vaccination (in terms of total number of vaccinations) than 

for deterministic models or the equivalent stochastic model for continuous 

vaccination. The length of the pulse interval has a non-trivial effect on the 

eradication threshold. A pulse interval of :-;ufficient length to allow inter pulse 
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epidemics to reach their maximum peak licight can serve to deepen inter epi

demic troughs, significantly increasing t l 1c probability of stochastic extinc

tion. Though the deepening of troughs is accompanied by a corresponding 

increase in peak disease prevalence, the <Werage prevalence over the entire 

pulse interval differs negligibly from the ('ontinuous vaccination scenario (for 

the equivalent number of vaccinations). !11 light of recent results which show 

pulse vaccination may lw able to syndirnnize epidemic troughs in spatially 

coupled populations [L), 2G], our work suggests that there may be significant 

stochastic advantages to employing pulse vaccination strategies worldwide. 

A central theme of this thesis is that Nadication of infectious disease is a 

worldwid(' problem that requires well coordinated global solutions. In making 

public policy decisions a multitude of fact(1rs must be considered ranging from 

the specific characteristics of the vaccine to the timing of vaccinations. As 

we have illustrated in this work, consideration of such factors may be the 

difference between successful worldwide eradication and persistence of the 

pathogen. Mathematical models. both stnchastic and deterministic, can shed 

light on the relative importance of thes<' factors and allow us to formulate 

and assess strategies to overcome potential barriers. 
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