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Abstract

Analytical and finite element electromechanical models that take into

account the fact that the piezoelectric sheet does not cover the whole sub-

strate beam are developed. A linear analysis of the analytical model is per-

formed to determine the optimal load resistance. The analytical and finite

element models are validated with experimental measurements. The results

show that the analytical model that takes into account the fact that the

piezoelectric patch does not cover the whole beam predicts accurately the

experimental measurements. The finite element results yield a slight dis-

crepancy in the global frequency and a slight overestimation in the value of

the harvested power at resonance. On the other hand, using an approximate

analytical model based on mode shapes of the full covered beam leads to

erroneous results and overestimation of the global frequency as well as the
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level of harvested power. In order to design enhanced piezoelectric energy

harvesters that can generate energy at low frequency excitations, further

analysis is performed to investigate the effects of varying the length of the

piezoelectric material on the natural frequency and the performance of the

harvester. The results show that there is a compromise between the length

of the piezoelectric material, the electrical load resistance, and the available

excitation frequency. By quantifying this compromise, we optimize the per-

formance of beam-mass systems to efficiently harvest energy from a specified

low-frequency of the ambient vibrations.

Keywords: Energy harvesting, Piezoelectric material, Low-frequency,

Distributed-parameter model, Finite element analysis.

1. Introduction

Different structural systems for energy harvesting from ambient or aeroe-

lastic vibrations have been proposed (Erturk et al., 2010; Sousa et al., 2010;

Abdelkefi et al., 2012a; Daqaq, 2012; Abdelkefi et al., 2012b, 2013). These

systems vary from simple beam and beam-mass systems to more complex

structures, such as zigzag and spiral systems (Karami and Inman, 2011).

The purpose for these variations is to enable harvesting energy at specific

frequencies. One advantage for using unimorph piezoelectric beam-mass sys-

tems for energy harvesting from ambient vibrations is their simple config-

uration and design and optimal performance. An issue, however, has been

the accurate modeling of these simple devices which is required for efficient

design. Such modeling is required because when operating in their linear

regime, piezoelectric beam-mass harvesters will only be able to efficiently

2
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harvest energy over a narrow range of frequencies. Missing this range of fre-

quencies will result in significantly reduced harvested power. Roundy and

Wright (2005) and DuToil et al. (2005) modeled a piezoelectric cantilever

beam as a mass-spring-damper system. Such a model is limited to the fun-

damental frequency of the structure and does not account for the effects of

the dynamic mode shapes on the electrical response of the harvester. The

effect of the spring mass (distributed mass) was not considered in the forcing

amplitude. This assumption fails in cases where the proof mass is small.

Erturk and Inman (2008) showed that the use of the traditional form of the

lumped-parameter model leads to erroneous results for both transverse and

longitudinal cantilevered beams under base vibrations. They showed that

the predicted response can be underestimated when using the conventional

effective mass of cantilevered beams or bars. This is particularly true when

there is a small or no tip mass. As such, they introduced correction factors

to improve the prediction capability of lumped models for harmonic base

excitation for both transverse and longitudinal vibrations. Improved models

that are based on the Galerkin discretization were used in different stud-

ies (Erturk and Inman, 2008, 2009; Abdelkefi et al., 2011, 2012c; Masana

and Daqaq, 2011; Ben Ayed et al., 2013). This method is more accurate

in comparison to the lumped-parameter models. This approach takes into

consideration the effects of the dynamic mode shapes, strain distribution and

higher vibration modes on the electromechanical response of the harvester.

A common problem, when basing a reduced-order model for piezoelectric

energy harvesters on the Galerkin approximation, is the determination of

the mode shapes and natural frequencies. The classical mode shapes of a

3
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fully-covered piezoelectric cantilever beam is usually assumed for experiments

where the piezoelectric material does not cover the whole substrate beam

(Song et al., 2009, 2010; Masana and Daqaq, 2011; Alamin et al., 2012;

Hobeck and Inman, 2012). In this work, we improve the prediction capability

by deriving an analytical electromechanical model of a beam-mass energy

harvester with a piezoelectric patch that does not cover the whole substrate

beam. The exact mode shapes and natural frequencies using the derived

analytical model, approximate analytical model (determined by assuming a

fully-covered beam), and finite element analysis results are compared with

experimental measurements. Furthermore, linear analysis of the analytical

models is performed to investigate the effects of the load resistance on the

fundamental global frequency and the harvester’s response. The validation

of the different methods is performed through comparison with experimental

measurements. To design enhanced harvesters that can generate energy at

low frequency excitations, a parametric study is conducted to investigate the

effects of varying the length of the piezoelectric material on the mode shapes,

natural frequencies, and the performance of the harvester.

2. Representation of the used models and experimental setup

2.1. Analytical models

2.1.1. Global electromechanical modeling

We consider the problem of harvesting energy from a directly excited uni-

morph piezoelectric cantilever beam with a tip mass. The cantilever beams

consist of aluminum and piezoelectric layers and is subjected to direct ex-

citation, as shown in Figure 1. The piezoelectric layers are bounded by

4
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two-in-plane electrodes of negligible thicknesses connected to an electrical

load resistance. These electrodes are assumed to be perfectly conductive and

cover the entire piezoelectric surface. We assume that the thickness of the

beam is small compared to its length so that the shear deformation and ro-

tary inertia can be neglected. The clamped end of the beam is subjected to

a transverse harmonic displacement Y (t) = Y0cos(Ωt).

Figure 1: A schematic of the piezoelectric energy harvester under direct excitation

By modeling this bi-layered cantilever beam as an Euler-Bernoulli beam,

the partial differential equation governing its relative transverse vibration

v = v(x, t) when subjected to direct excitation is written as

∂2M(x,t)
∂x2 + ca

∂v(x,t)
∂t

+m∂2v(x,t)
∂t2

= −[m+Mtδ(x− L)]∂
2Y (t)
∂t2

+MtLc
dδ(x−L)

dx
∂2Y (t)
∂t2

(1)

where δ(x) is the Dirac delta function, L is the length of the substrate beam,

Lc is half the the length of the tip mass, ca is the viscous air damping co-

efficient, m is the mass of the beam per unit length, Mt is the tip mass,

and M(x, t) is the internal moment which has three components (Erturk and

Inman, 2008). The first of these components is the resistance to bending and

5
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is given by EI ∂2v(x,t)
∂x2 . The second component is due to strain rate damping

effect and is represented by csI
∂3v(x,t)
∂x2∂t

. The third component is the contri-

bution of the unimorph piezoelectric layer. This contribution is represented

by ϑp(H(x − L1) −H(x − L2))V (t) where H(x) is the Heaviside step func-

tion, V (t) is the generated voltage, L1 is the distance from the left end of

cantilever beam to the starting location of the piezoelectric layer, L2 is the

distance from the left end of cantilever beam to the ending location of the

piezoelectric layer and ϑp is the piezoelectric coupling term. This term is

given by (Erturk and Inman, 2008; Abdelkefi et al., 2011, 2012c)

ϑp = −e31b2 (y1 + y2)

2
(2)

where e31 = Epd31 is the piezoelectric stress coefficient, b2 is the width of the

piezoelectric layer and y1 and y2 are the positions of the layers with respect

to the neutral axis, as shown in Figure 2, ȳ = (hp+hs)Ephp

2(Ephp+Eshs)
+ hs

2
and are related

as follows:

y0 = −ȳ , y1 = hs − ȳ , y2 = (hs + hp)− ȳ

where hs and hp are the thicknesses of the aluminum and piezoelectric layers,

respectively. Es and Ep are the respective Young’s Modulus of these layers.

Figure 2: Neutral axis position.

6
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Substituting the momentM(x, t) in equation (1) by its three components,

the governing equation of motion of the electromechanical system is written

as

EI ∂4v(x,t)
∂x4 + csI

∂5v(x,t)
∂x4∂t

+ ca
∂v(x,t)

∂t
+m∂2v(x,t)

∂t2
+ (dδ(x−L1)

dx
− dδ(x−L2)

dx
)ϑpV (t)

= −[m+Mtδ(x− L)]∂
2Y (t)
∂t2

+MtLc
dδ(x−L)

dx
∂2Y (t)
∂t2

(3)

where the stiffness EI and mass of the beam per unit length m are given by:

EI = EI1=
1
12
b1Eshs

3 and m = m1=b1ρshs for 0 ≤ x < L1 or

L2 < x ≤ L

and

EI = EI2=
1
3
Esb (y

3
1 − y30) +

1
3
Epb (y

3
2 − y31) and m = m2=b1ρshs +

b2ρphp for L1 ≤ x ≤ L2

where ρs and ρp are the densities of the aluminum and piezoelectric layers,

respectively.

To relate the mechanical and electrical components, we use the Gauss law

(IEEE, 1987)
d

dt

∫
A

D.n dA =
d

dt

∫
A

D3 dA =
V

R
(4)

where D is the electric displacement vector and n is the normal vector to the

plane of the beam. The electric displacement component D3 is given by the

following relation (Erturk and Inman, 2009):

D3(x, t) = e31ε11(x, t) + εs33E3 (5)

where ε11 is the axial strain component in the aluminum and piezoelectric

layers and is given by ε11(x, y, t) = −y ∂2v(x,t)
∂x2 , εs33 is the permittivity com-

ponent at constant strain. Substituting (5) into (4), we obtain the equation

governing the strain-voltage relation (Erturk and Inman, 2008):

7
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−e31 (y1 + y2)

2
b2

∫ L2

L1

∂3v(x, t)

∂t∂x2
dx− εs33b2(L2 − L1)

hp

dV (t)

dt
=

V (t)

R
(6)

2.1.2. Eigenvalue problem analysis

To perform the linear analysis, we discretize the system using the Galerkin

procedure which requires the exact mode shapes of the structure. These mode

shapes are determined by dropping the damping, forcing, and polarization

from equation (3), and letting v(x, t) = φ(x)eiωt. Because the piezoelectric

layer does not cover the whole cantilever beam, we divide the mode shape

into three different regions:

φ(x) = φ1(x) for 0 ≤ x < L1

φ(x) = φ2(x) for L1 ≤ x ≤ L2

φ(x) = φ3(x) for L2 < x ≤ L

The resulting eigenvalue problem for each region is given by

EI1φ
iv
1 −m1ω

2φ1 = 0 (7)

EI2φ
iv
2 −m2ω

2φ2 = 0 (8)

EI1φ
iv
3 −m1ω

2φ3 = 0 (9)

8
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with the boundary conditions

φ1(0) = 0 , φ1
′(0) = 0 , φ1(L1) = φ2(L1); (10)

φ1
′(L1) = φ2

′(L1) , EI1φ1
′′(L1) = EI2φ2

′′(L1) (11)

EI1φ1
′′′(L1) = EI2φ2

′′′(L1) , φ2(L2) = φ3(L2) , φ2
′(L2) = φ3

′(L2) (12)

EI2φ2
′′(L2) = EI1φ3

′′(L2) , EI2φ2
′′′(L2) = EI1φ3

′′′(L2) (13)

EI1φ3
′′(L)− ω2MtLcφ3(L)− ω2(It +MtL

2
c)φ3

′(L) = 0 (14)

EI1φ3
′′′(L) + ω2Mtφ3(L) + ω2MtLcφ3

′(L) = 0 (15)

where It is the rotary inertia of the tip mass Mt at its center and Lc is half of

the length of the tip mass. The mode shapes for the three different regions

are then written as

φ1(x) = A1 sin β1x+B1 cos β1x+ C1 sinh β1x+D1 cosh β1x (16)

φ2(x) = A2 sin β2x+B2 cos β2x+ C2 sinh β2x+D2 cosh β2x (17)

φ3(x) = A3 sin β1x+B3 cos β1x+ C3 sinh β1x+D3 cosh β1x (18)

where the coefficients of β1 and β2 are related by β1 = 4

√
EI2m1

EI1m2
β2. Normal-

izing the eigenfunctions using the following orthogonality conditions yields

the relation between the different coefficients in (10)-(15):

9
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∫ L1

0
φ1s(x)m1φ1r(x)dx+

∫ L2

L1
φ2s(x)m2φ2r(x)dx (19)

+
∫ L3

L2
φ3s(x)m1φ3r(x)dx+ φ3s(L)Mtφ3r(L) + φ3

′
s(L)(It +MtL

2
c)φ3

′
r(L)

+φ3s(L)MtLcφ3
′
r(L) + φ3

′
s(L)MtLcφ3r(L) = δrs∫ L1

0
d2φ1s(x)

dx2 EI1
d2φ1r(x)

dx2 dx+
∫ L2

L1

d2φ2s(x)
dx2 EI2

d2φ2r(x)
dx2 dx (20)

+
∫ L

L2

d2φ3s(x)
dx2 EI1

d2φ3r(x)
dx2 dx = δrsω

2
r

where s and r are used to represent the vibration modes and δrs is the

Kronecker delta, defined as unity when s is equal r and zero otherwise.

To derive a model of the considered energy harvester, we express the

displacement v(x, t) using the Galerkin procedure in the form

v(x, t) =
∞∑
i=1

φji(x)qi(t) (21)

where j=1,2,3 depending on the value of x, qi(t) are the modal coordinates

and φji(x) are the mode shapes. Substituting equation (21) into equations

(3) and (6) and considering one mode in the Galerkin approach, we obtain

the following coupled equations of motions:

q̈(t) + 2ξωq̇(t) + ω2q(t) + χV (t) = f(t) (22)

CpV̇ (t) + V (t)
R
− χq̇(t) = 0 (23)

where ξ is the mechanical damping ratio (measured experimentally), ω is

the fundamental natural frequency of the structure, the coefficients χ and

Cp are the piezoelectric coupling term and the capacitance of the harvester

10
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which are given by χ = (φ′2(L2) − φ′2(L1))ϑp and Cp =
εs33b2(L2−L1)

hp
. f(t) is

the forcing term of the first mode which is given by: f(t) = a[m1

∫ L1

0
φ1(x)dx

+m2

∫ L2

L1
φ2(x)dx+m1

∫ L

L2
φ3(x)dx+Mtφ3(L)+MtLcφ3

′(L)]cos(Ωt) = Facos(Ωt),

where a = Y0Ω
2 is the base excitation and F = m1

∫ L1

0
φ1(x)dx+m2

∫ L2

L1
φ2(x)dx+

m1

∫ L

L2
φ3(x)dx+Mtφ3(L) +MtLcφ3

′(L).

To determine closed form expressions for the tip deflection and the gen-

erated voltage, we assume that the base excitation can be expressed by

Y = Y0e
iΩt, where Ω is the excitation frequency, and that q = QeiΩt and

V = V0e
iΩt. Equations (22) and (23) can then be written in the form

⎡
⎣ ω2 − Ω2 + 2iξΩ χ

−iχΩ 1
R
+ iΩCp

⎤
⎦
⎡
⎣ Q

V0

⎤
⎦ = Ω2Y0

⎡
⎣ F

0

⎤
⎦ , (24)

The solution is obtained for the tip displacement v(L, t) = φ3(L)Re(QeiΩt)

and the generated voltage V is determined by taking only the real part of

the solution of Equation (24) (V = Re(V0e
iΩt)) since we are assuming that

Y (t) = Y0 cos(Ωt) which is the real part of the considered excitation. Finally,

the electrical harvested power is computed as P = V 2

R
.

To demonstrate the importance of considering different regions in the

determination of the mode shapes, we consider another analytical model that

is based on the classical mode shapes of a unimorph piezoelectric cantilever

beam (fully covered). In this analysis, we determine the mode shapes of a

fully covered piezoelectric cantilever beam and then we use the orthogonality

conditions presented in equations (19) and (20) to normalize the equations

of motion. We will refer to this model as approximate model.

11
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2.2. Finite element electromechanical modeling

A finite element model was also developed to investigate the performance

of the proposed piezoelectric energy harvester. The commercial software AN-

SYS was used to analyze this model as shown in Figure 3. In this electrome-

chanical model, 3D 20-node structural solid element SOLID186 was applied

for the aluminum beam and proof mass. Moreover, 3D 20-node coupled-

field solid element SOLID226 was applied for the piezoelectric sheet. The

voltage degree of freedom on the top and bottom surfaces were coupled to

provide uniform electrical potentials and, thus, to emulate the electrodes of

the piezoelectric sheet. First, the electrodes of the piezoelectric sheet were

disconnected from the resistor and modal analysis was performed. The elec-

trical potential of the bottom electrode of the piezoelectric sheet was set to

zero. This analysis gives the open global frequency. Then, both electrodes

were set to zero. This analysis provides the short global frequency. Subse-

quently, the two electrodes of the piezoelectric sheet were connected to the

resistor by coupling the voltage degree of freedom of the electrodes and the

two node of the resistor element, as shown in Figure 3. Instead of applying

the displacement at the clamped boundary, a corresponding acceleration field

due to base excitation was applied to the harvester. Harmonic analysis was

then performed to obtain the steady-state power output.

2.3. Experimental setup

A prototype of the piezoelectric energy harvester was devised and tested.

The experimental setup is shown in Figure 4. The harvester was composed of

an aluminum cantilever beam bonded with a piezoelectric Macro Fiber Com-

posite (MFC) at its root and a proof mass was attached to its free end. The

12
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Figure 3: Finite element representation of the piezoelectric energy harvester

center of the proof mass was exactly located at the free end of the cantilever.

The parameters of the devised piezoelectric energy harvester are given in

Table 1. The sinusoidal drive signal was generated from a function generator

and amplified before it was fed to the seismic shaker. An accelerometer was

used to monitor the acceleration of the shaker, which was kept constant at

1m/s2 during the slow sinusoidal sweep performed by tuning the amplifier.

The harvester delivers its power to a resistor R. A current DAQ card was

used to log the root mean square value of current, Irms. The average power

delivered to the resistor was calculated by:

Pavg = I2rmsR (25)
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Table 1: Physical and geometric properties of the cantilever beam and the tip body

Es Aluminum Young’s Modulus (GN/m2) 69.5

Ep Piezoelectric material (MFC) Young’s Modulus (GN/m2) 30.336

ρs Aluminum density (kg/m3) 2700

ρp Piezoelectric material density (kg/m3) 5440

L Length of the beam (mm) 62.5

L1 Left of the beam to starting of the piezoelectric layer (mm) 0

L2 Left of the beam to ending of the piezoelectric layer (mm) 28

b1 Width of the aluminum layer (mm) 10

b2 Width of the piezoelectric layer (mm) 7

hs Aluminum layer thickness (mm) 0.6

hp Piezoelectric layer thickness (mm) 0.2

Mt Tip mass (g) 4.64

Lstruc Length of the tip mass (mm) 15

bstruc Thickness of the tip mass (mm) 9.4

d31 Strain coefficient of piezoelectric layer (pC/N) −170
εs33 Permittivity component at constant strain (nF/m) 12.653

ξ Mechanical damping ratio 0.00878
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Figure 4: Experimental setup

3. Linear analysis and determination of the optimum load resis-

tance

3.1. Effects of the load resistance on the natural frequency and damping

The effects of the electrical load resistance on the natural frequency and

damping of the harvester are determined from a linear analysis of the coupled

electromechanical problem. Introducing the following state variables:

X =

⎡
⎢⎢⎢⎣

X1

X2

X3

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

q

q̇

V

⎤
⎥⎥⎥⎦ , (26)

the equations of motion are rewritten as

Ẋ1 = X2 (27)

Ẋ2 = −2ξωX2 − ω2X1 − χX3 (28)
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Ẋ3 = − 1

RCp

X3 +
χ

Cp

X2 (29)

Clearly, these equations have the form

Ẋ = BX (30)

where

B =

⎡
⎢⎢⎢⎣

0 1 0

−ω2 −2ξω −χ
0 χ

Cp
− 1

RCp

⎤
⎥⎥⎥⎦ .

The matrix B has a set of three eigenvalues λi, i = 1, 2, 3. The first two eigen-

values are similar to those of a pure beam-mass system in the absence of the

piezoelectricity effect. The third eigenvalue λ3 is a result of the electrome-

chanical coupling and is always real and negative. The first two eigenvalues

are complex conjugates (λ2 = λ1). The real part of these eigenvalues repre-

sents the electromechanical damping coefficient and the positive imaginary

part corresponds to the global frequency of the coupled system.

Inspecting the matrix B, we note that the electrical load resistance has

an effect on the overall damping and frequency of the system. Figure 5(a)

shows the variation of the global frequency with the electrical load resistance.

The global frequency is approximately equal to 175.2 rad/s (27.88 Hz) when

the load resistance is set equal to 102 Ω; we refer to this frequency as the

short global frequency. Increasing the load resistance results in an increase

in the global frequency to a value near 176.4 rad/s (28.07 Hz) when the

load resistance is near R = 108 Ω; we refer to this frequency as the open

global frequency. The significant increase from 175.2 rad/s to 176.4 rad/s

takes place when the load resistance is increased from near 105 Ω to near
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Figure 5: Variations of the (a) global natural frequency and (b) global coupled damping

with the electrical load resistance when L2=28 mm (experiment prototype).

106 Ω. As for the electromechanical damping, inspecting Figure 5(b), we

note that the electromechanical damping is maximum for specific values of

the load resistance. The region of load resistance over which the electrome-

chanical damping is relatively high coincides with the region over which a

significant increase in the global frequency occurs. Away from this region,

the electromechanical damping coefficient is relatively smaller.

3.2. Determination of the optimum load resistance

Based on the derived analytical model, we plot respectively in Figures

6(a), (b), and (c) the frequency-response curves of the displacement, gener-

ated voltage, and harvested power when varying the load resistance. The

variations of the tip displacement with the load resistance is negligible with

minimum values obtained when the load resistance is in the range between

105 Ω and 106 Ω, as shown in Figure 6(a). This is expected because the

17

Page 17 of 72

http://mc.manuscriptcentral.com/jimss

Journal of Intelligent Material Systems and Structures

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

22 24 26 28 30 32 34
0.1

1

5

Frequency (Hz)

D
is

pl
ac

em
en

t (
m

m
)

R=102Ω

R=103Ω

R=104Ω

R=105Ω

R=106Ω

R=107Ω

(a)

22 24 26 28 30 32 34
10−4

10−3

10−2

10−1

100

101

102

Frequency(Hz)

V
ol

ta
ge

 o
ut

pu
t (

V
)

R=102Ω

R=103Ω

R=104Ω

R=105Ω

R=106Ω

R=107Ω

(b)

22 24 26 28 30 32 34
10−4

10−2

100

102

Frequency (Hz)

H
ar

ve
st

ed
 p

ow
er

 (μ
W

)

R=102Ω
R=103Ω
R=104Ω
R=105Ω
R=106Ω
R=107Ω

(c)

Figure 6: Frequency-response curves of the (a) tip displacement, (b) generated voltage,

and (c) harvested power for different values of the electrical load resistance when L2=28

mm and when arms = 1 m/s2.
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global electromechanical damping is maximum in this range. Furthermore,

inspecting Figure 6(b), we note that increasing the load resistance is accom-

panied by an increase in the generated voltage and a slight shift in the global

frequency. On the other hand, increasing the load resistance is not accom-

panied with an increase in the harvested power, as shown in Figure 6(c).

These results are more clear in the plotted curves of Figure 7 which show

the tip displacement, generated voltage, and harvested power for the short-

and open-circuit configurations. The short- and open-circuit configurations

are defined by matching the excitation frequency Ω with the short and open

global frequencies, respectively. As mentioned above, minimum values of the

tip displacement are obtained when the global damping is maximized, as

shown in Figure 7(a). These minimum displacement values are obtained for

load resistance values between 105 Ω and 106 Ω for both short- and open-

circuit configurations. In the lower range (R < 104 Ω) and higher range

(R > 107 Ω), the variation of the tip displacement with the load resistance is

relatively small. It follows from Figure 7(b) that the generated voltage always

increases when the load resistance is increased and then reaches a constant

value for both configurations. However, there is an optimum value of the

load resistance for which the harvested power is maximized. This optimum

value depends on the considered configuration and is larger in the case of the

open-circuit configuration. We also note that maximum levels of harvested

power are accompanied with minimum levels of the tip displacement which

occur when the load resistance is between 105 Ω and 106 Ω. More accurately,

maximum levels of harvested power are obtained when the electrical load

resistance is almost equal to 4× 105 Ω.
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Figure 7: (a) Tip displacement, (b) generated voltage, and (c) harvested power when

L2=28 mm and when arms = 1m/s2 for the short- and open-circuit configurations.
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4. Experimental measurements and models validation

A comparison of the short and open global frequencies obtained from the

analytical and finite element analysis with the experimental measurements

is presented in Table 2. The values show that the short and open global fre-

quencies of the derived analytical model and finite element electromechanical

model are in good agreement (< 3%) with the experimental results. On the

other hand, there is a discrepancy in the short and open frequencies obtained

by using the approximate model and experimental measurements. In fact,

the approximated model overestimates the values of these two global frequen-

cies. This overestimation can lead to erroneous results when performing the

frequency-response analysis and short and open-circuit configurations or if

an approximate model is used to design an energy harvester.

Table 2: Short and open global frequencies: comparisons between different models and

experimental measurements.

Short frequency (Hz) % difference Open frequency (Hz) % difference

Experiment 27.8 – 28 –

Derived model 27.88 0.29 28.07 0.25

Approximated model 28.31 1.8 29 3.6

FEA (ANSYS) 27.79 0.035 27.97 0.11

In Figure 8, we plot the frequency-response curves of the average har-

vested power as obtained from the different models and the experimental

measurements when the load resistance is set equal to the optimal value

(R=4 × 105Ω) and when the root mean square of the base acceleration is

set equal to 1 m/s2. The plots show that the derived analytical model ac-
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Figure 8: Comparisons of the frequency-response curves between the used models and

experimental measurements when arms = 1m/s2.

curately predicts the experimental measurements. The finite element results

are generally in good agreement. There is a small discrepancy in the global

frequency of the harvester and slight overestimation of the value of the har-

vested power at resonance. On the other hand, the approximated analytical

model overestimates both the global frequency and the level of harvested

power.

Figure 9 shows variations of the average harvested power with the load

resistance as predicted from the analytical models and finite element model,

and measured experimentally. The analytical derived model and finite elec-

tromechanical model accurately predict the response of the harvester for both

the short- and open-circuit configurations. On the other hand, the analytical

approximate model significantly underestimates or overestimates the power

level over a broad range of the resistance values. The above comparisons and

validations show that the analytically derived and finite element electrome-
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Figure 9: Comparisons of the short- and open-circuit configurations between the used

models and experimental measurements when arms = 1 m/s2.

chanical models give more accurate results when compared to the analytical

approximate model. Because the use of the analytical derived model is more

flexible and computationally inexpensive than the finite element model, we

will use it in the following section to design enhanced piezoelectric energy

harvesters with smaller volumes that have higher power densities.

5. Piezoelectric material length effects on the behavior of the har-

vester: Tunability

5.1. Effects of the piezoelectric material length on the natural frequencies and

mode shapes

One of the most interesting parameters that can affect the performance of

the harvester is the length of the attached piezoelectric material. Changing

this length results in a variation in the capacitance of the harvester, the

piezoelectric coupling, the natural frequency, the mode shape, and the forcing
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term. Consequently, all associated terms in equations (22) and (23) will be

changed and new analyses must be performed. We start by determining

the effects of varying the length of the piezoelectric material on the natural

frequency and associated mode shape. This investigation is performed for

two different system parameters. The first one has the same parameters as

those of the experimental prototype except for the length of the piezoelectric

sheet (L2) which is varied systematically. We refer to this configuration as

the first energy harvesting system. In the second configuration, we change

the length of the aluminum beam to 70 mm, the thickness and width of the

piezoelectric sheet to 0.356 mm and 1 cm, respectively, and the tip mass to

4.52 g. We refer to this configuration as the second energy harvesting system.

Figure 10(a) shows variations of the natural frequency of these two sys-

tems with the length of the piezoelectric sheet. The plots show that de-

creasing the length of the piezoelectric material results in a decrease in the

value of the natural frequency for both systems. This is beneficial in terms of

managing low frequency excitations for piezoelectric energy harvesters and

enhancing their power densities. Furthermore, there is an optimum value

of the piezoelectric length beyond which the natural frequency could not be

increased significantly. This value is near 53 mm for the first system and 60

mm for the second system. However, for small length values of the piezoelec-

tric sheet, the rate of variation of the natural frequency with L2 is important.

Based on this analysis and depending on the available excitation frequency,

the harvester can be passively tuned to match its natural frequency to the

available excitation frequency. Figures 10(b) and 10(c) show variations of the

first mode shape with the length of the piezoelectric sheet for both systems,
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Figure 10: Variations of the (a) structural natural frequency and (b,c) mode shapes with

the length of the piezoelectric material for the first and second systems.
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respectively. The plots show that there is a significant change in the mode

shape when varying the length of the piezoelectric sheet. The difference

between the mode shapes varies depending on this length.

5.2. Effects of the piezoelectric material length on the performance of the

harvester

The plots in Figures 11 and 12 show the frequency-response curves of

the harvested power when varying the length of the piezoelectric material

for different values of the electrical load resistance. The plots show that

the level of the harvested power is significantly affected by the length of the

piezoelectric sheet as well as the load resistance. The frequency-response

curves of the first system when the length of the piezoelectric sheet is set

equal to 50 mm and 60 mm are very close to each other. In addition, for

the same system and when R = 105 Ω and R = 106 Ω, the maximum

(resonant) values of the harvested power are very close when the length

of the piezoelectric sheet is set equal to 30 mm, 40 mm, 50 mm, and 60

mm. In the second system, the same behavior is observed. Furthermore, for

both systems, there is a compromise between the length of the piezoelectric

material, the electrical load resistance, and the available excitation frequency

that leads to maximum levels of harvested energy.

To investigate more this compromise, we plot in Figures 13 and 14 vari-

ations of the resonant average harvested power with the load resistance and

length of the piezoelectric material and for both systems, respectively. It

follows from Figures 13(a) and 14(a) that there is an optimum value of the

load resistance for which the resonant value of the harvested power is maxi-

mized for all considered piezoelectric lengths. We note also that this region is
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Figure 11: Variations of the average harvested power with the length of the piezoelectric

material for different load resistances and for the first system when arms = 1 m/s2.
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(e) R = 106Ω
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(f) R = 107Ω

Figure 12: Variations of the harvested power with the length of the piezoelectric

material for different load resistances and for the second system when arms = 1 m/s2.
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almost the same for both systems. In the first system, increasing the length

of the piezoelectric material is accompanied with an increase in the value of

the resonant harvested power. The rate of increase of the harvested power is

important when the length of the piezoelectric sheet is increased from 5 mm

to 30 mm. Beyond 30 mm, this rate becomes very small, as shown in Figure

13(b). In the second system, increasing the length of the piezoelectric sheet

is followed by an increase in the average harvested power and then stabilizes

at higher piezoelectric length values. In addition, the rate of increase of the

harvested power is significantly affected by the length of the piezoelectric

sheet when its length is between 5 mm and 20 mm. At higher values, the

variation rate of the harvested power becomes very small. Consequently, we

can conclude that depending on the excitation frequency, an enhanced har-

vester can be designed by changing the length of the piezoelectric material

and the electrical load resistance.

5.3. Effects of the length of the piezoelectric sheet on the short- and open-

circuit configurations

As mentioned above, the length of the piezoelectric sheets affects the

natural frequency, the mode shape, the capacitance of the harvester, and

the piezoelectric coupling. Because the values of the short and open global

frequencies depend on the harvester’s parameters, we present in Table 3

the values of these frequencies for both systems and for different lengths of

the piezoelectric sheet. We note that the difference between the open and

short frequencies is negligible for small values of the piezoelectric material

length. Furthermore, increasing the length of the piezoelectric material is

accompanied with an increase in the difference between these frequencies.
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Figure 13: Variations of the resonant average harvested power with (a) the load

resistance and for different piezoelectric lengths and (b) the length of the piezoelectric

material for different load resistances when arms = 1 m/s2 and for the first system.
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Figure 14: Variations of the resonant average harvested power with (a) the load

resistance and for different piezoelectric lengths and (b) the length of the piezoelectric

material for different load resistances when arms = 1 m/s2 and for the second system.
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Table 3: Short and open global frequencies for different lengths of the piezoelectric sheet

and for both systems.

L2(mm) ws(Hz) (first) wo(Hz) (first) ws(Hz) (second) wo(Hz) (second)

5 24.75 24.756 22.033 22.037

10 25.561 25.586 23.385 23.402

20 26.989 27.086 26.161 26.247

30 28.079 28.286 28.822 29.042

40 28.785 29.112 31.039 31.453

50 29.124 29.552 32.509 33.129

60 29.165 29.656 33.12 33.897

70 – – 33.011 33.863

We plot in Figures 15(a) and (b) the average harvested power using short-

and open-circuit configurations of both the first and second systems. We note

that the short- and open-circuit configurations when L2 = 10 mm are the

same. This is expected because the short and open frequencies are almost

the same, as shown in Table 3. In addition, increasing the length of the

piezoelectric sheet is accompanied with a significant distinction between the

short- and open-circuit configurations. For L2 = 40 mm and L2 = 60 mm,

we note that, depending on the region of the considered load resistance and

the short- or open-circuit configuration, the average harvested power can be

higher when L2 = 40 mm or higher when L2 = 60 mm. For example, when

the load resistance is set equal to 103 Ω and for the short-circuit configuration,

the average value of the harvested power is higher when L2 = 60 mm than

L2 = 40 mm. On the other hand, when changing the value of the load

resistance to 107Ω, the average value of the harvested power is higher when
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Figure 15: Variations in the average harvested power using short- and open-circuit

configurations for different length of the piezoelectric material and for (a) the first

system and (b) the second system and when arms = 1 m/s2.

L2 = 40mm than L2 = 60 mm. We conclude that depending on the available

excitation frequency, there is a compromise between the load resistance and

the length of the piezoelectric sheet to get enhanced levels of harvested power.

6. Conclusions

We have developed analytical and finite element electromechanical models

that take into account the fact that the piezoelectric sheet does not cover the

whole substrate beam of a beam-mass energy harvester. In addition, we

used the approximate electromechanical model that is based on the classical

mode shapes (fully-covered beam) in the Galerkin discretization. A linear

analysis of the derived analytical model was performed to determine the

optimal load resistance. By comparing results from the derived analytical
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models and finite element analysis results with experimental measurements,

we determined that a model which uses mode shapes that are based on the

length of the piezoelectric sheet are better suited than approximate models

that are based on a fully covered beam to predict the performance of the

harvester. The results showed that the finite element results gives a slight

discrepancy in the global frequency of the harvester and harvested power at

resonance. In orde to design enhanced piezoelectric energy harvesters that

can generate energy at low frequency excitations, a parametric study based

on the analytical derived model was then performed to investigate the effects

of the length of the piezoelectric sheet on the natural frequency and level

of harvested power. The results showed that depending on the available

low excitation frequency an enhanced piezoelectric energy harvester can be

tuned and optimized by changing the length of the piezoelectric sheet and

load resistance.
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