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Abstract

Experimental measurements that describe the dispersive
behavior of production samples of optical glasses are fit
with models of minimum complexity for the purpose of in
terpolation and extrapolation. Software to perform this

procedure on a regular basis is presented, and shown to dis
tinguish between models of inappropriate complexity. Two
degrees of freedom usually provide a statistically optimum

fit to the data contrary to the widespread practice of fit

ting a general, six term model to such measurements.

Using specially developed analysis tools, it is concluded
that annealing does not significantly change the partial dis
persion of the sample. Partial dispersion is established at

the time the ingredients are combined in a melt and is in
variant from one annealing to another. This is an important
result to consider when planning the fabrication of optical
systems whose prescription changes with changes in materi
al characteristics.
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I. Introduction

Description

As optical objectives become more complex with performance routinely expect

ed at or near the diffraction limit, competition is forcing companies to reduce material

costs, labor, and lead time required to manufacture them. The tolerance budget is di

rectly affected. Few companies can afford to specify extraordinarily tight tolerances

on optical components and subassemblies. While this practice will generally guarantee

a high percentage of good assemblies, it also increases material cost, labor, and fabri

cation time to an unacceptable level.

The optical shop is most efficient when fabricating to commercial manufactur

ing tolerances. Commercial parts often have too much variability to guarantee that

they will lead to diffraction-limited assemblies, however. Methods of compensating

for the use of these parts must be implemented if attractive delivery time and price are

to be attained. This compensation must take the form of adjustments to the optical

and mechanical designs to allow the use of these commercial-grade components to

create an objective that forms a perfect image. This analysis and adjustment must

often be done on an assembly-by-assembly basis.

Optical components depart from their nominal characteristics in two ways.

Power errors are those which result in rotationally symmetric image quality degrada

tions. Element surface curvatures, thicknesses, separations, and refractive indices all

cause varying degrees of symmetrical degradations since the power balance of the

objective is upset by their departure from nominal. The power balance can often be

restored by deliberately changing another source of power error to add an equal and

opposite amount. The offending parameter often goes uncorrected, in the true sense.

Asymmetrical image quality degradations those that are not rotationally

symmetric about the optical axis are the other symptom of optical component

departures from nominal. Surface cylindrical irregularity, element wedge or decenter,

and local refractive index gradients are but a partial list of potential sources. Most
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often, performance is restored by correcting the offender, though compensating

strategies are occasionally adopted.

This research has sought to characterize one cause of power errors: the depar

ture of the bulk refractive index of the optical component from its nominal, expected

value. When departures from nominal are small, compensation for the variation in

raw material refractive index is accomplished by changing airspaces. For departures

of greater magnitude, curve changes may be required. This adjustment, done prior to

fabrication, is referred to as the melt recomputation and may result in a production

nominal that is different from the design nominal. This is often repeated just prior to

assembly when all other characteristics of the components are known.

The melt recomputation is complicated by the dispersive nature of optical

glasses. Refractive index varies in a nonlinear fashion with wavelength. Figure 1

shows the dispersion function for two different optical glass types: SK-16 and F-2.

DISPERSION OF DIFFERENT OPTICAL GLASS TYPES
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Figure 1 Different Dispersions of SKI6 and F2 Glass Types
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Figure 2 Exaggerated Variations from Nominal Dispersion

Figure 2 shows, in exaggerated scale, three common changes of n(K) from

melt-to-melt and annealing-to-annealing for the same glass type. In practice, of

course, all three changes occur simultaneously, but one is often the dominant effect.

A shift or translation of the n(k) curve relative to nominal requires fewer compensat

ing changes to the optical design than a change in the functional form or shape of

n(k). Changes in the shape of n(k) almost always require element curvature changes;

any technique used for the melt recomputation should alert the optical designer to

changes in the shape of n(k) to allow a proper choice of variables and suggest possible

performance problems.

The nominal dispersive behavior of optical glasses has been well catalogued by

glass The values reported are the result of experimental

measurement of refractive index, n, at many wavelengths, X, averaged over many

melts. For objectives that are designed to operate over a range of wavelengths it is
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necessary for the optical designer to determine what the actual dispersion n{X) is for

every material in the optical path if maximum performance is to be attained.

It is often not possible to determine n at some X of interest by direct ex

perimentation due to the unavailability of suitable radiation sources. This implies that

the melt recomputation method must be able to reliably interpolate over experimental

data, smoothing experimental errors, and fitting with a nonlinear dispersion model.

Minimizing the amount of experimental data required for reliable interpolation is an

important goal since this problem is one encountered in a production situation, not an

academic one.

History

Modeling the dispersion of optical glass is a well studied topic. Most workers

have concentrated either upon extracting maximum accuracy in index over the widest

possible wavelength interval using the fewest possible coefficients, or upon developing
a power series model for dispersion on which a theoretical model of the dispersive

behavior of optical systems would be based.7 Some have also investigated or pro

posed suitable models for dispersion in regions of the spectrum where the manufactur

ers do not supply data, namely the short ultraviolet (UV)
region8

and the long infrared

OR).9

In order to study the dispersive nature of optical systems using aberration

coefficients it is necessary to express n{X) as a truncated power series. Standard

methods of series manipulation cannot be utilized, nor is derivative manipulation feas

ible,10 if another form is used. Buchdahl proposed a suitable
equation11

that was

based on an analysis of the two-term Hartmann model,

X-X
n = n0 +

a(O+b(D2

+
c(D3

+ -, Q) = . (1)
1 + _.jiA, - AqJ
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Robb and Mercado recently analyzed the Buchdahl model, Eq. (1), and have found

that, while it is not as accurate as the model adopted by the glass manufacturers, its

accuracy is to allow the theoretical modeling of the dispersive behavior of

optical systems without producing misleading results12.

The accuracy of alternative dispersion models is usually evaluated by com

paring the index predicted by the model in question with the index predicted by the

manufacturers'dispersion formula,13

2 a a \2 ^2 A3 ^4 ^5 (2)nl

= An+A,X + + + + .
vA

01 X2 X4 X6 Xs

This Laurent series, which can be derived from either the classical or quantum disper

sion
models,14is valid over the wavelength interval from 0.365 |im to 1.014 |im with

an index accuracy of 0.000005. Over the restricted range of 0.400 |im to 0.750 |im,

it is accurate to 0.000003. The six coefficients A0, A ..., A5 are determined by a

least squares fit to equation (2) of experimental data, averaged over many samples and

melts. It represents the
manufacturers'best estimate of the nominal dispersive charac

teristics of the glass type in question. A set of these six coefficients is supplied for

each of the more than 800 optical glass types currently availiable.

The importance of using least squares methods to determine the coefficients

from experimental data is often understated in the literature. Most model formulations

are polynomials. Exact fitting of a polynomial through data points that have ex

perimental error often introduces unsatisfactory oscillatory structure into the inter-

polant.15

When basing the coefficients on more experimental data points than there are

coefficients, a set of simultaneous
equations cannot be cast and solved; the least

Accuracy is reported as 0.000010 for the spectral region from 0.400 um to 0.700 um with

the series carried to order 2, and 0.000020 for the spectral region 0.365 um to 1.014 um with

the series carried to order 3.
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squares procedure is the only practical method. With more data points than parame

ters, its use results in the interpolant passing near each of the experimental data points,

but not necessarily passing through them, such that the sum of squared errors between

the observed and expected values is minimized. Buchdahl originally determined the

coefficients for Eq. (1) by solving simultaneous equations; Robb and Mercado have

shown that by using least squares techniques it is possible to reduce the index error by
a factor of five over the same interval.16

While the manufacturers' dispersion formula (2) is almost an order of mag

nitude more accurate than the Buchdahl model (1), this does not diminish the useful

ness of the latter. Equation (1) is suitable for the academic study of optical system

dispersion by orders, just as the other primary optical aberrations have been studied

(e.g., third-order spherical aberration, etc.); Eq. (2) is not suitable for this type of

study. But Eq. (2), and any other form that was derived from either the classical or

quantum theories of dispersion, has greater accuracy due to its physical basis. It is

intended to be used when designing and manufacturing an objective. Both approaches

are accurate enough for their intended applications.

Many other functional forms that have been proposed for dispersion modeling

have been summarized in the literature. Some are empirical while others are based on

the physical and chemical phenomena that give rise to the dispersive nature of optical

glasses. A short list follows:

Cauchy17

Conrady
18

_V-*- (3)0 X2 X4

_V- + (4)
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Hartmann 1-term19

n =
___ (5)

1.2

Hartmann 2-term20

(*-**)

"=A0+T-4LTT (fi)
(X-X.f-2

Hartmann 3-term21

n=A0+L- +
2 (7)

(a -a,) (a-Aj)

Lorentz-Lorenz22

2-l
^e2

4, A.
_i_ _....__

*

2+2 37tm v2-tf v2-v

Helmholtz23

^(l-K2) = 1 + 1 + - + i

+ - + ____ + .- (8)

+

*-;?___ *-!;?___
(9)

12 i2 12 t,2

A -

A[ A A;

Sellmeier24

A,a2 Al2

n2=l+_J + + __ + (10)
12 \2 \2 \2

A - Aj A - A

Kettler-Drude25'26

"2=^o+-r-LT + - +^4 + - (ID



Introduction

binomial27

n2

= -+A_lX2+A0+AlX-z+A2X-4+ -+AjX-2j+ - (12)

Herzberger (visible)28

n = AL2+BL + C+DX2, L= L_, a0 = 0.168 um (13)
A - Aq

29Herzberger (infrared)

n = AL2+BL + C +
DX2

+ EX4, L = L , a0 = 0.168 um (14)
A, Aq

The empirical equations, Eqs. (3) through (7), are surprisingly accurate over the

visible spectrum. All provide for one or more absorption bands by making index

approach at particular wavelengths, Aj, where the glass molecules resonate.

They differ in the location of these wavelengths and in how many absorption bands

are
provided.30'31

The Cauchy and Conrady forms provide for only one absorption band located

at a wavelength of zero. It can be shown that the index of refraction at a wavelength

of zero is unity,32 however, so one should not have high expectations for the perfor

mance of such models. Absorption bands are known to exist on both sides of the

visible region, one in the near UV and another in the far IR.33 The Hartmann

formulas, Eqs. (5) through (7), provide for one or more such absorption bands at

nonzero wavelengths and, consequently, are of improved accuracy.

The Hartmann models may, at first, seem especially well suited for situations

where little experimental information is available regarding the actual dispersion of a

Algebraically, these singularities are caused by formulating the model so that the denominator
of one or more terms goes to zero at A.j, making index approach infinity. In actuality, of

course, index does not become infinite at these wavelengths; it is only anomalies in the disper

sion curve that occur. But since little use of the optical material is made at or near these

absorption bands, the infinite index artifact of the algebraic formulation does not diminish the

usefulness of the models.

8
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sample. Instead of determining the absorption wavelengths with the other coefficients

by solving simultaneous equations or by least squares, they may simply be assigned

values that are realistic though, perhaps, not optimum. This reduces the number of

coefficients that must be determined from the scarce experimental data.

For example, if for Eq. (5) we assume Aq = 0.168 |im, which is the mean

absorption band central wavelength reported by
Herzberger,34 it can be rewritten

A0 = (A. -0.168 |_n) .
(I5)

Upon substituting one experimentally determined wavelength and index pair, say Ad

and nd, the coefficient A0 is found. A rough estimate of index at some other wave

length may then be performed.

As might be expected, such a simple-minded approach is of low reliability.

Suppose, for example, that two different glass types, each with the same nd but

different reciprocal relative dispersions, Vd, are compared with this approach. The

interpolated indices will be equal. Yet, as shown in Figure 1, their dispersions may be

very different.

Dispersion is reportedly determined by the chemical composition of the glass at

the time of the
melt.35 During annealing, stress is relieved, homogeneity is im

proved, and index is adjusted to within a specified tolerance from nominal at one

wavelength (usually Ad). But the effect of annealing on the reciprocal relative

dispersion, the so called Abbe number,

In the course of performing this research, it has been found that much better results are

obtained if the quantity (Jl-0.168um) is raised to the 0.012 power rather than the 1.2 power

when the wavelength units are microns. This is true even if the 0.168 um value is subsequent

ly allowed to vary during optimization of Eq. (5) to experimental data. Equation (6) benefits
from the same modification.
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Vd - __L , (16)
n-nc

is minor. The quantity d-l changes with annealing, but the principal dispersion, the

quantity nrnc, does not [see Appendix 1, page 74]. While there are any number of

combinations of nF and nc that could occur and keep the principal dispersion invariant

with annealing, with only a single experimental data point the optical designer must

assume that nF, nc, and nd have all changed by the same amount. The result is that

the actual n{X) curve is parallel to the nominal n0{X) curve, as shown by the translation

case in Figure
2*

An improvement in the interpolation accuracy over that provided by empirical

equations occurs when chemical and physical theory is used to suggest a dispersion

model. With the Lorentz-Lorenz series, Eq. (8), index is, in general, complex-val

although only the real terms are shown
here.36 The imaginary component be

comes significant in the region of an absorption band and may, for most practical situ

ations in the design and fabrication of optical objectives, be ignored. Note that Eq. (8)

is a function of frequency instead of wavelength, where x> = c/X and c = 3 x
108

m/s.

The Lorentz-Lorenz equation is the fundamental equation of classical dispersion

theory;37

e is the charge of an electron, m is the mass of an electron, N0 is Avoga-

dro's number, and the quantity A- is related to the strength of the absorption that

occurs at and about the frequency D-. One term is carried for each of the absorption

bands characteristic of the material. This equation may be simplified when not used

The experimental portion of this research will test this conclusion, which is based on the simple

analysis presented in Appendix 1, by determining whether samples (which are all from the

same melt but different annealings), all have n{X) curves which are parallel to one another

within experimental accuracy.

Ditchbum describes why the index must be complex in order to build a relationship that defines

the polarization vector of the wave in the dielectric (glass) as a function of the incident electric
field vector.

10
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to model dispersion near these absorption bands. The Sellmeier series, Eq. (10), re
sults.38'39

The Helmholtz series, Eq. (9), gives the real component of index as a function

of wavelength with or without absorption bands in its range. It, too, has one term for

each of the absorption bands that are characteristic of the material. The A coefficients

have the same interpretation as when using the Lorentz-Lorenz equation. Used in

ranges far from any absorption bands, the extinction coefficient, K, and the terms

multiplied by the damping coefficients, gj, of the atomic oscillators become negligibly

small reducing this equation, also, to the Sellmeier series, Eq.
(10).40

The Sellmeier series is the most frequently used formulation for dispersion

modeling. It is a valid approximation of both the classical Lorentz-Lorenz and

Helmholtz equations when the range is not in the neighborhood of an absorption

band.41 For the visible spectral range, this includes all materials that are visually

transparent. In the classical sense, the same number of terms are carried and the same

interpretation is given to the A; coefficients. When quantum mechanics is used as the

theoretical basis, Eqs. (8) through (10) are still valid, but the number of oscillators

(and thus the number of terms) is found to be infinite, and the Aj coefficients must be
given a different interpretation.42

Fortunately, acceptable accuracy in the interpolated index can usually be

obtained even when truncating the series after a reasonable number of terms,

AA2 A2X2 AX2

n2=\ + + + . (17)
t,2 }2 ^2 T,2 ^2 t,2

A Aj A A2 A A3

The same physical interpretation of Xj and Ay should not be extended to a truncated

Sellmeier series. While a 3-term formulation, Eq. (17), will often be more than

adequate as an interpolant following a least squares determination ofAv A2, A3, a,, A^,

and A3, one should not assume that absorption maxima occur at these three Xj, nor

11
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assume that the strengths of these absorption bands are proportional to the Aj coeffi
cients.43 All terms of the series are required for this interpretation. Also, it is

important to remember that none of the absorption bands may occur within or near the

range over which the Sellmeier series is defined for it to be valid.

It follows that the least squares solution for the truncated series, Eq. (17), will

be better if the a; parameters are determined rather than assigned values based on

experimental absorption data. This means that less precision will generally result if an

attempt is made to reduce the amount of experimental data required by assigning

known values to Xu Xj, and A3 followed by the determination ofA,, A2, and A3 by
linear least squares. This is unfortunate because Eq. (10), and truncated forms such as

Eq. (17), are awkward to solve with least squares due to their nonlinearity. The

Sellmeier forms can be linearized by clearing fractions so that standard linear least

squares may be used.44 But this transformation causes unequal weighting to be

applied to data of various values of X, which is difficult to defend. Least squares

solutions to transformed equations do not necessarily constitute a best fit solution to

the original untransformed case and should be avoided.

When the Kettler-Drude series, Eq. (11), is discussed in the literature it is

always presented separately from the Sellmeier series, Eq.
{10).45'46 Appendix 2

[page 75] shows that the two series are equivalent. When Eq. (11) is expanded with

the binomial theorem, Eq. (12)
results.47 Comparing Eqs. (2) and (12) reveals that

Eq. (2) is a special truncated case of Eq. (12), with the coefficients of Eq. (2) renum

bered to correspond to the
manufacturers'

usage.

The glass manufacturers have chosen this portion of the infinite series,

Eq. (12), to represent index over the wavelength range from 0.365 Mm to 1.014 Mm

with adequate accuracy. If more accuracy had been required in the ultraviolet than

Eq. (2) provides, more low-order terms in X would be included from Eq. (12) [i.e.,

a"10, a"12, etc.]. Similarly, if more accuracy were required in the infrared, more

high-order terms would be included [i.e., X , X , etc.].

12
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Herzberger has proposed Eqs. (13) and (14) to model dispersion in the visible

and infrared regions of the spectrum, respectively. The forms of the equations are

similar to truncated forms of the Sellmeier or Kettler-Drude equations,48 but the

Herzberger equations are linear in their coefficients.

Accuracy suffers from the necessary approximations that allow this simplifi

cation. Indeed, Eq. (13) is noted by its author49 to be an approximation of the

nonlinear form,

A. A,
n = !_ + i_

, (18)
A -

Aj X - X^

which is, itself, only an approximation of the Kettler-Drude series [note that Eq. (11)

yields n2, not n]. Herzberger later notes50 that a 5-coefficient truncated Sellmeier

series [e.g., Eq. (18) with a constant term added] provides a better fit over the entire

wavelength range from 0.58 Mm to 11.9 Mm than a piece-wise interpolant involving
three separate invocations of Eq. (14). Historically, computational ease appears to

have been a constraint that lead to this development. This is of less importance

currently.

In summary, equations (10), (11), and (12), each being based on the

Lorentz-Lorenz and Helmholtz equations, exhibit the same asymptotic behavior at

several Equation (12) doesn't just have one absorption band at a

wavelength of zero, as a casual inspection may suggest. Truncated versions of

Eq. (12), such as Eq. (2), approximate this behavior. It may be seen, then, that the

manufacturers choice of Eq. (2) has a good basis in theory and it may be expanded in

range in either direction as the need arises.

Further, although the form of the Sellmeier series is attractive since the Xj and
A- parameters have physical significance, this cannot be claimed for the truncated,

often-used, two- or three-term Sellmeier equations. No less information is conveyed

*

None may be used in the neighborhood of these absorption bands, however.

13
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by the truncated binomial expansion, Eq. (2), about the properties of the dispersive

material. It is also linear in its coefficients. With this in mind, there seems to be little

incentive to use anything but the form used by the manufacturers, Eq. (2).

Research

It is possible to increase the accuracy of a statement that is made about the ac

curacy of experimental data by the proper mathematical treatment of the data and

proper experiment
design.51 The primary purpose of this research was the develop

ment of a procedure that would allow optical designers to estimate refractive indices

of optical glasses to a much greater accuracy than previously attainable, thereby

enhancing the usefulness of their scarce experimental data.

The current state-of-the-art in fitting a curve to experimentally determined

index of refraction data involves the fitting of a general dispersion model. All coeffi

cients of the model are allowed as degrees of freedom.

The situation is similar to the following. Suppose that an experiment is

performed which tested some dependent variable y that was known to vary with some

independent variable x in a linear fashion. It would be incorrect for the analyst to fit

the resulting data to the general polynomial,

y =
A0+Alx+A2x2+AyK3

+ - , (19)

of which the linear model is a special case, with the expectation that the coefficients

of the high-order terms would be zero if the data truly described a linear relationship.

It is exactly this type of approach that is taken when fitting a general dispersion model

to experimental refractive index data, however.

It was
proposed52

that the nominal dispersion curve, 0(a), for the glass type

under test should be fit to experimental data, not the general dispersion model. The

curve should be allowed to translate or tilt without its shape changing. Thus, the

14
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complicated, nonlinear shape of n0(X) is both provided and maintained, which is intu

itively appealing since annealing is only supposed to translate the n0(X) curve in the

direction of the ordinate. It is not supposed to change its shape. If the general

dispersion model were fit to the data instead, it would be difficult to constrain the

resulting curve shape to be the same as n0{X).

Such a procedure has been committed to software and will be used to test the

following null hypothesis H0:

Annealing causes a simple translation of the nominal

curve, n0(X), in the direction of the ordinate, but does not

significantly alter the shape of the curve that is charact
eristic of the material.

Figure 3 Null Hypothesis, H0

Specifically, if it can be shown that samples have significantly different curve shapes,

even though they are known to be from the same melt (but different annealings), then

H0 must be rejected and the alternate hypothesis Hx accepted:

Annealing may significantly change the shape of the dis
persion curve, n(X), so that a simple translation of the

nominal curve, n0(X), in the direction of the ordinate does

not adequately explain the observed variation.

Figure 4 Alternate Hypothesis, Hx

The procedure allows more complicated departures of n{X) from n0(X) than a

simple translation, but it is important to know when a simple translation is inadequate.

When n(X) is allowed to change shape it may be necessary to alter the radius of

curvature on one or more optical elements in the objective to compensate. Simple

translations can usually be accommodated with simple airspace changes. The optical

designer should be aware of what departures n(X) has taken from n0{X) so that a

proper choice of variables may be made.
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II. Methods

When fabricating diffraction-limited objectives, optical glass is typically
purchased to a much more liberal tolerance than what is required for fabrication. For

example, when procuring the material it may be required that d be within 0.001000

of the catalog nominal, yet the actual index must often be known to 0.000010 for

successful fabrication of the objective. This large disparity between the accuracy

needed by the glass vendor, and that of the end user often makes it necessary for the

end user to have index of refraction measurement capability. Such was the case for

our Company. In sponsoring this research, Melles Griot has refurbished a spectro

meter that is capable of measuring refractive index to the fifth decimal place.

Experimental Equipment

A spectrometer is a precision instrument that is used to measure prism angles

and deviation angles of light which passes through a prism. Of prime importance in

any spectrometer is the circular reference scale which is divided into degrees, arc

minutes, or arc seconds. For this research, an old Gaertner LI23 spectrometer was

acquired. The steel reference scale is 7 inches in diameter and is engraved every 10

arc minutes. With the aid of its microscopes and filar eyepieces, it is able to measure

prism angle to 5 arc [see Appendix 3, page 76], minimum deviation angle

to 5 arc seconds, and, therefore, refractive index to 0.000025 [for n = 1.65; see

Appendix 4, page 85].

The spectrometer is shown in Figure 5. The sample is prepared in the shape of

a prism and placed on the platform above the rotation axis of the instrument.

Spectral lamps are placed at the slit aperture of the collimator, located to the right.

The radiation is collimated and passed through the prism sample. After emerging

from the sample, it is still collimated, though deviated by refraction. The observation

telescope is swung about its axis until the radiation enters its aperture whereupon the

The difference of two measurements of rotational position are required. Each is accurate to

2.5 arc seconds.

16



Methods

Figure 5 Gaertner LI23 Spectrometer

slit is now visible with the aid of the eyepiece. As the observation telescope is

pivoted, the two microscopes which permit viewing of the circular scale move with it.

By subtracting the scale reading obtained when the sample is in place, from the

reading obtained when the sample is withdrawn, the angular deviation of the radiation

due to the prism is determined. If the prism angle is measured carefully, and the

angle of incidence that the radiation makes with the prism face is known (directly or

indirectly), then the refractive index of the sample at the wavelength of the spectral

lamp may be determined [see page 33].

Various elemental spectral lamps are used as radiation sources. Each emits

characteristic line spectra at wavelengths known to high precision.53'54 Over the

wavelength interval of interest, a set of spectral lines is chosen and the test sequence

described above is performed. A table of refractive indices at these test wavelengths

results. These data are used as the basis of further analysis, in which experimental

errors are smoothed, and interpolation of index at wavelengths other than the test

wavelengths is allowed. Special software has been written to perform these analyses.
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Software

Two categories of software were written. The first assists with data acquisition

when operating the spectrometer; a Hewlett-Packard 41C programmable, hand-held

calculator is used. Actual analysis and curve-fitting is performed by a program written

in Fortran for the MS-DOS or VAX/VMS environment.

ATON Angle to Index; This HP-41C program is the front-end for the other
two programs. It provides the user interface for reducing the data from
the spectrometer to prism angles, minimum deviation angles, and

refractive index. It also shows the difference between microscope
readings of the divided circle so that potential reading errors can be
spotted.

Sad Spectrometer Angle and Difference; Takes the two microscope readings
of the divided circles, in degrees, minutes, and seconds, and determines
the average reading and the difference of this average with the last
average.

ADN Prism Angle A, Minimum Deviation Angle D, and Refractive Index N;
Written in the interchangeable solution format where you supply any
two of the parameters and the third is computed. Aton sets up A and

D as known parameters and N is solved for. As a stand-alone program,
ADN is useful for ranning what if? problems where prism angle A is
perturbed slightly and the effect on index N is noted.

When using the spectrometer, the data is reduced immediately from microscope

readings of the divided circle to prism angle and minimum deviation angles so that

ATON's diagnostics can be used to spot any potential misreading of the divided circle

or filar eyepieces. The design of the filar eyepieces makes reading errors of 1 arc

minute likely. Errors of 10 arc minutes are less likely, though possible. The diagnos

tics provided by these programs minimize the chance that erroneous data will go

undetected at the time of test. The Fortran-based analysis software Melt would detect

the erroneous data, but, if postponed until analysis, corrected data may be more

difficult to obtain. It is best to do some data checking as the experiment is being

performed.
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The task of the Fortran program

Melt is more complex. Figure 6 shows,

in the form of a flow chart, the general

procedure.

First, the experimental data are

read from files and/or the keyboard.

Commands that instruct Melt what to

do with the data are input. It then car

ries them out without further input.

For each data point, the experi

mental wavelength, observed refractive

index, experimental uncertainty that

should be assigned to the index, and the

nominal (expected) index is specified.

Of the four, only the first two are re

quired. Uncertainty, if specified, is used

to weight data in proportion to its preci

sion during curve-fitting. Any specified

nominal index is used in preference to

the calculated value thatMelt supplies.

See page 106 for the input data syntax.

After all input of data and corn-

Read setup file

Read sample specific file

Read keyboard

Resolve omitted nominal values

Adjust reported n

Compute weighting factors
Initialize simplex verticies

Trial solution
for next model In list

Fit best or specified model
Perform ANOVA
Write report
Write plot(s)

Update history files

Figure 6 Melt flowchart

mands, Melt fits the specified model to the experimental data and analyzes the

results. If the model relies on a nominal dispersion function n0{X) then the manufac

turers'

catalogues will be used to resolve any omissions that the user may have made

in providing nominal values. This is normally how the nominal indices are provided;

only when the experiment is performed at wavelengths where the
manufacturers'

dispersion formula is invalid, or when the material under test does not have coeffi

cients for n0(X) on file, are nominal indices explicitly stated.
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Over 30 different models and 4 different merit functions are provided. Some

models are composite functions of the manufacturers' nominal dispersion formula,

Eq. (2), and some do not involve a nominal dispersion model. The latter are provided

for completeness and convenience since Melt is also useful for creating a dispersion

model when one is not available in the literature. This is not the subject of this thesis,

however. This research relies on a known, nominal dispersion model. Over 20 such

models are provided.

The "goodness-of-fit" of the model to the experimental data is judged mathe

matically with a merit function. It measures the agreement between the data and the

model for a particular choice of parameters. Four different merit functions are pro

vided, each formulated so that small values represent close agreement between the data

and the model. Guidelines for using one in preference to another are given on

page 46.

Weighted sum of squares

->m_

(20)

Weighted sum of absolute

Jmax

nrn(xrW-Aj (21)

Weighted maximum deviation

/ = max Wj nj-nfXj; bvb2,...,bkJ (22)
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Chi-square

An

/-_
;=i

;-(a.; bvb2,...,bkJ
An

Methods

(23)

The term n;- is the observed response, and (a;; ft,, 62, ..., 6J is the model's response.

The w>7 factor is the weight assigned to the jth data point, and is equal to the reciprocal

relative An (the point with the smallest An in the data set has a weight of unity, and

all others have a smaller weight). Data points having the smallest stated uncertainty,
An,*

have the greatest potential for impacting the value of the merit function. The

model n{Xj, bv b2, ..., b^J is a function of wavelength a, and parametric in the coeffi

cients bx, b2, ..., b^ which MELT seeks to determine. This model may be linear or

highly nonlinear in these coefficients. Minimizing the value of the merit function

implies optimizing the model to the data.

The minimization method used by Melt is the downhill simplex

of Nelder & Mead.55'56 It does not require knowledge of derivatives only func

tion evaluations are required. It adapts to the function / being minimized by reflec

tion, extension, contraction, or shrinkage of the simplex in response to characteristics

of the surface.

A simplex is a geometric figure that has one more vertex than the space in

which it is defined has dimensions.57 On a plane, which is a two-dimensional space,

a simplex would be a triangle; in three-dimensional space it would be a tetrahedron.

The function / being minimized describes a surface. It is evaluated at the vertices of

the simplex. The vertices are ranked from best to worst, and the worst is replaced

with a better estimate by moving away from the high function value that it represents.

In this way, the simplex moves towards the function's minimum by moving away

*

Ideally, Arij is the standard deviation of the estimate of n}, a,,

**

Not to be confused with the simplex method of linear programming where both the function

being optimized, and the constraints, happen to be linear functions of the independent variables.
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from high values. Most other mmimization procedures attempt to move in the direc

tion of the minimum by moving in a straight line towards it,58
with the fastest algo

rithms of this type utilizing partial derivatives to point the way. But with this speed

comes the possibility of divergence. The simplex algorithm cannot diverge. Though

not the most efficient, requiring on the order of ;max2 storage and many more function

evaluations than most, its can easily outweigh its speed disadvantage for

jobs were the computational burden is small.

After the merit function / is nunimized, the difference between the optimized

model n{Xj, bx, b2, ..., b^J) and the experimental values n; is evaluated and summa

rized in tabular, graphical, and statistical form. If the fit of the model to the experi

mental data is judged by MELT and the analyst to be adequate, the indices that MELT

computes for the design wavelengths may then be used for the melt recomputation.

By considering the model that was required, the optical designer can often make a

better choice of variables: if it is known that the partial dispersion of the material has

deviated from its expected value, the designer may allow curve changes. Not knowing

this about the material, only airspace changes might have been allowed. This knowl

edge can save time and lead to a superior fabrication solution.

It cannot diverge. It is insensitive to initial values the solution does not need to be surround

ed or bracketed as with the golden section search, or Brent's method. Derivatives do not need

to be known or computed numerically, as with Marquardt's, Powell's, or other methods based
on the Newton-Raphson algorithm. Almost no special assumptions are made about the nonlin

ear function being minimized. It is not necessary to linearize it by variable transformations,
which can lead to undesirable weighting. Though not needed for this application, the function

being minimized may be formulated so that the simplex stays out of certain solution areas

[Olsson, p. 45 (ref. 58)]. This constrained optimization may be accomplished by adding a pen

alty term to the function, or by transformation of the bounded space into an unbounded one.
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To examine the behavior of a large number of samples, it was necessary to

write flexible software, sophisticated enough so that it is easily used in a production

environment. The results of many trials with different interpolation models are

summarized in this Section; greater detail is presented in Section IV.

The Effect of Annealing on Dispersion

No reason has been found to reject the null hypothesis H0 in favor of the

alternate hypothesis Hx [see page 15]. Multiple annealings of material from the same

melt have always been observed to have parallel dispersion functions n(X) that are

simply shifted in the direction of the ordinate n from one another.

This does not constitute proof of H0 but, rather, lack of disproof. As is often

the case, H0 is difficult to prove but easy to disprove with only a single counter-exam

ple. Such an example has not been encountered. Rejection of H0 is not required on

the basis of the data collected and reviewed.

Melt Makes Subtle Differentiations

Although H0 has not been disproven, this is not to say that all samples have

been observed to have their n(X) curve parallel to the nominal n0{X) curve. Indeed,

some have been different enough from their expected curve shape that they should be

classified as separate and distinct glass types! Spotting curve shape changes is

difficult without Melt. If the designer fails to realize that such a material is planned

for use in fabrication, an inappropriate choice of variables may be made during the

melt recomputation.

MELT has been instrumental in spotting substitutions of
"equivalent"

glass

types by well-meaning vendors. For example, Schott LaFN-2 and LaF-2 are consider

ed equivalent since their nd and Vd values are the same; the rate of change of index
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with wavelength, dn/dX, is LaFN-2 is called for in a fast, complicated, diffrac

tion-limited objective that is intended for usage at a laser wavelength and a nearby,

broad wavelength interval. The objective is particularly intolerant of changes in the

derivative of index with respect to wavelength, yet very tolerant of shifts of the

dispersion function n{X) in the direction of the ordinate n. The vendor's data sheet

indicated that the material was LaFN-2, though analysis performed by Melt clearly

indicates that it is LaF-2. If this had not been recognized, many hours may have been

wasted trying to perform the melt recomputation using ineffective variables.

Recommended Interpolation Model

The refractive index of optical glass is a very nonlinear function of wavelength.

Expressed as a function of frequency, x>, it is more linear. It should not be surprising,

then, that the simplest interpolation models are those which involve reciprocal

wavelength terms since frequency and wavelength have the reciprocal relationship

a =
, where c = 3.0xl08m/s . (24)

t)

Best results are obtained when a composite function is formed of the nominal

dispersion model for the material under test, n0{X), and one or more perturbation

terms. As recommended on page 13 of the Introduction section, the
manufacturers'

dispersion model, Eq. (2), is used as this nominal model. The perturbation terms

represent the departure of the actual material from the nominal material.

Comparing the relative partial dispersions of LaFN-2 and LaF-2 is also a useful method of

telling the two apart. It is not necessary to examine the derivative, dn/dX. The relative partial
dispersion Px y may be defined as

P =_____
x'y

%-"c

Both LaFN-2 and LaF-2 have the same principal dispersion p-nc, and the same n6 value, but

the dispersion between arbitrary wavelengths x and y is not the same.
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The least complex perturbation would be

n{X) = n0{X) + B1 (25)

which would simply translate the nominal model n0 in the direction of the ordinate n.

More complicated departures from nominal are possible; the following models are

recommended and should be applied in order of increasing complexity:

n(X) = n0(X)+Bl +^ (26)

n(X) = nQ(X)+Bl + ^l (27)
2A'

n(X) = n0(X)+Bl + ?i. (28)
A*3

n(A) =
n0(A)+_,+_2A2

+ f| (29)
X

The output from Melt can be used to decide when the model complexity should be

changed. Generally, the simpler the model the better. Allowing too many degrees of

freedom may lead to unwarranted changes in curve shape and should be avoided, as

discussed on page 14.
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Figure 7 Model Histogram at 95% Confidence Level

Melt should first be run using Eq.
(26)*

as the interpolation model. The

problem is then rerun using Eq.
(27)**

as the model; then Eq.
(28)***

is used (and

so on). To decide which is best, the value of the "F TEST FOR SIGNIFICANCE OF

THE REGRESSION TERMS EXCLUDING THE
MEAN" is examined. Beginning

with the least complex model, this F test will increase to a peak value as the optimum

interpolation model is reached, and then decline as the model becomes too complex.

If the F test is always increasing (never peaks), then more complexity may be

TheMelt command is MODEL 2.

The Melt command is MODEL 4.

TheMelt command is MODEL 24.
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necessary. If it is always decreasing, then the least complex model may be too

complex.

The computed value of the F test must always be greater than or equal to the

critical value of the F distribution. If it is not, then the term(s) are insignificant and

Eq.
(25)"

is indicated a single term representing the mean.

Melt may be run so that it examines a list of models and selects the best one

based on this It will display the merit function and F test values for each

one, and then perform the full analysis using the one chosen. This eliminates the need

for multiple runs and is the recommended mode of operation.

The histogram presented in Figure 7 summarizes how often a model has been

found to be optimum in a production situation. Models 4, 21, 19, and 2 all have two

degrees of freedom; model 26 has only one. Clearly, models of minimal complexity

are favored.

The Melt command is MODEL 26.

The Melt command to examine these models automatically is MODEL 2 4 24; an

arbitrary number of models may be listed in this fashion. If the F test is always less than

the critical value, then the analysis will be performed as if MODEL 26 had been specified.
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IV. Discussion

In the preceding two sections, an overview of the methods by which optical

materials are characterized has been offered, and the results of experiments using these

methods have been summarized. This section expands on these summaries.

Experimental Equipment

Refractometers may be broadly grouped into two categories: those which

measure by critical angle methods, and spectrometer methods which do not. Of these

two, the spectrometer is capable of the highest accuracy and Critical angle

methods generally involve less sample preparation and may be accomplished with

samples of minimal dimensions. Instruments whose design allows such methods are

indispensable tools for the nondestructive testing of work in progress, for the need to

quickly determine the index of refraction of small samples frequently arises.

The Pulfrich refractometer operates by critical angle measurement. It only

requires that a single surface of a small sample be polished flat. The specimen having

unknown index function n is placed in contact with a reference block having known

index function N such that n <N. Imperfect specimen polish can be accommodated

by introducing a liquid of slightly higher

index than N between the two. The arrange

ment is shown in Figure 8.

A diffuse source illuminates the

specimen such that some rays strike the

boundary of the specimen and the block at

grazing incidence. Such rays are refracted

at the critical angle into the block; their

angle of refraction into the medium of index

N may be no larger. The telescope is used

Figure 8 Pulfrich Refractometer

diffuse
monochromatic

source

n

W \

V/<t>

Telescope

*

Accuracy has to do with the closeness to the
"true"

value of the quantity measured; precision

refers to the closeness together of repeated measurements of the same quantity.
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to observe the source by looking through both media. A demarcation line is visible,

marking the critical angle boundary. On one side of this line, the field is bright; on

the other side, it is dark.

No rays may have angles of emergence greater than <)). The telescope is rota

ted to determine the angle at which the demarcation line occurs. This angle ((> is a

function of X, and, when several wavelengths are
used,59

n = \/^2-sin2<t)
(30)

gives the dispersion of the unknown material.

Use of Equation (30) requires that the angle, a, between the two faces of the

reference block be precisely 90. The error introduced if it is not varies with n and N,

and can be The general equation for n, of which Eq. (30) is a special

case, allows for circumstances where
90 is not an accurate value for a,60

n = sinay/V2-sin2(|) - cosa sin(j) .

(31)

A spectrometer may be operated in a manner which duplicates the function of a

Pulfrich refractometer. A previously measured prism having known dispersion func

tion N is used as the reference block, chosen such that n < N as before. The spec

trometer is used to measure a and <(> very accurately. Equation (31) yields the index

of the specimen, n. This may seem to be a poor utilization of the spectrometer's

potential, but production situations occur for which it is impossible to fabricate a

sample prism for normal analysis by spectroscopic means.

*

As an example: IfN is 1.74 and n is 1.58, a five arc second error in the angle a will cause a

0.000020 error in n; if n is 1.70, a five arc second error causes a 0.000090 error in n.
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The principle of operation of an Abbe refractometer is the same as that of a

Pulfrich. The demarcation line locates the rays entering the reference block at grazing

incidence and define an angle of emergence, <|). As before, dispersion N and angle a

of the reference block must be known. The design of the instrument makes it well

suited for the measurement of liquids. It is rarely used for high accuracy measurement

of solids.

Critical angle refractometers depend on correct positioning of the eyepiece

reticle on the demarcation line separating light and dark areas in the field of view.

This lack of symmetry contributes to a reduction in the accuracy that an observer can

attain. With a spectrometer, the eyepiece reticle is superimposed on an image of the

slit; the viewing symmetry allows for more accurate positioning.

Sample preparation difficulty is a serious drawback of the spectrometer. On a

relatively large specimen, two faces must be polished flat to high accuracy. Critical

angle measuring refractometers relax the sample preparation burden, but they rely

upon the knowledge of the dispersion function N to an accuracy at least five times

greater than that desired of n. For measurements into the 6th decimal place, the refer

ence block must have known dispersion characteristics to an accuracy measured in the

1th decimal place. This is a tall order indeed!

The Hilger-Chance refractometer

(sometimes called a
"V-block"

refractome

ter) was developed to avoid some of the

drawbacks of both the spectrometer and cri

tical angle measuring devices. This refrac

tometer still relies on the knowledge of the

dispersion function N of a reference block,

but a slit is observed by the telescope rather

than a demarcation line between light and

dark. The reference block is made from

Figure 9 V-block Refractometer

slit

, 1

specimen

\\A

Telescope

1 x undeviated path
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two prisms that were cut from the same material. Figure 9 indicates how they are

united to form a V-shaped chamber.

If a specimen having the same refractive index as the block were introduced

into the chamber, the ray path would be undeviated. Introducing a sample having a

different index deviates the path of the rays. The amount of this angular deviation is

used to compute the unknown index n,61

ViV2
+ cosY V-n = yAr + cosy y/v*2-cos2y , or

= 7V + ___-___
2 SN

( \
1 1

+

12
j

Ay'

(32)

(33)

Though it is possible, in principle, to use a single reference block, this is a poor

practice. It is best to have many V-block chambers available and, for testing a sample

having refractive index n, to choose the reference such that N = This reduces the

method's sensitivity to fabrication errors of the sample, particularly in achieving a
90

angle between the two faces. Index matching fluid may be used to accomodate an

imperfect right angle or unpolished surfaces.

As n > N, y >
90

and Ay 0. The series expansion for Eq. (32), shown as

Eq. (33), may be truncated after the third term if the reference is chosen so that

I n-N I < 0.000500 since Ay = 0.001 radian (further terms are 1 x 10"6).62

A spectrometer does not require a reference block that has known dispersion

properties; its measurements are absolute, rather than relative. Though the test is the

most intuitive of all the refractometry methods, it is also the most laborious to per

form. Figure 10 and Figure 11 show the test

Since the device is not measuring critical angle, it is not necessary that the sample index n be

less than the reference block index N.

A photograph of the spectrometer used for this research is shown in Figure 5 on page 16. The

unit is more fully described in Appendix 3.
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The prism sample is fabricated from

the material having unknown refractive in

dex n. Faces AB and AC are ground and

polished flat; face BC is riot used and may

be of arbitrary surface quality. The two

polished faces are separated by the prism

angle, a. A ray incident at face AB at angle

Ij traverses the prism and emerges from face

AC at an angle l2'. The angle D between

the initial and final directions of the ray is

the angle of deviation. It may be
Figure 10 Refraction through a Prism

shown63'64

that D is minimized when /, = I2 '. This is the so called minimum devia

tion condition where rays pass through the prism symmetrically. Minimum deviation

may be set to high precision with a spectrometer, which is one of the principal reasons

why it allows n to be determined to such high precision.

K>\ //
A /.

Eyepiece

Figure 11 Spectrometer Refractometer
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At minimum deviation, // - I2 = a/2, which immediately suggests that a sam

ple of half the size could be used by bisecting the full prism angle a, and by autocol-

limating off the new face so that the rays retrace their path.65 With such an auto-

collimating spectrometer, the angle of incidence /; is measured for each X. The dis

persion function n would then be described, using66

sin /,
" =

a
' (34)

sm
2

where a/2 is the measured prism angle. But Tilton67 builds a concrete case for

preferring minimum deviation spectrometry over the autocollimation approach based

on maximizing the tolerance of angular measurements. Minimum deviation spectrom

etry does not require the measurement of If, the geometry of the condition allows

Dmin to be measured instead, indirectly providing the angle of incidence. When at

minimum deviation, the general analytical formula describing the passage of a ray

through a prism reduces to the spectrometer
formula,6*

n =

sin __

a
sm

2

(35)

which is identical to Eq. (34) when it is recognized that

/, =
/'

-

DmiD + a
. (36)

l i i

The errors which occur in the practice of precise prism refractometry may be

classified into two categories: First, having to do with the prism sample and its
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relationship to the spectrometer; second,

having to do with the spectrometer only,

and its use as a goniometer. These two

sources will be considered in rum.

Total internal reflection will occur if

the prism angle is made too large. This

constraint may be expressed as

a < 2arcsin_
n

(37)

n a BC
1.4

71

23.2mm
1.5 67 22.1
1.6 64 21.2
1.7 61 20.3
1.8 58 19.4
1.9 56 18.8

\

20mm

'4 over <(>20

Figure 12 Prism Sample Dimensions

As this limit is approached, the intensity of the slit image will be greatly reduced, and

a serious increase in aberration will occur.

Less obvious are the constraints on angle measurement tolerance. The value

chosen for a has a strong influence on whether the full precision and accuracy of the

spectrometer are attained. By adhering to the careful sample design described below,

the full potential of the device may be realized.

Determination of index to 0.000010 accuracy requires that a and
__,

be

measured on the order of arc seconds. The tolerance can be relaxed on these angular

measurements, while minimizing the uncertainty in computed index, by optimum sam

ple design.
Tilton69 has performed the definitive error analysis of minimum devia

tion refractometry. Examination of the partial derivative of the spectrometer formula,

Eq. (35), with respect to prism angle a, and then with respect to deviation angle D (in

the neighborhood ofD^,
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. D
sm

dn 2

doc ~ ._2a

2sirr
2

, and (38)

cos

dn n

a +D

(39)
dD ~^ a+D ~ . a

2 tan 2sin-

leads to the conclusion that the optimum prism angle, a0, is a function of the sample's

index n. It may be expressed as

a0 = 2arctanl . (40)
n

The tolerance on the measurement of_; is relaxed slightly by fabricating a slightly

larger than Oq, but this will make the measurement of a more
difficult.*

Fabricating

the prism angle less than Oq also increases the difficulty in measuring a, and it makes

the measurement ofD^ more difficult too. As n increases, not only is it more impor

tant to adhere to Eq. (40), but the precise measurement of a is much more important

Such a strategy might be appropriate if precise determination of partial dispersions is desired,

even at the sacrifice of accuracy in the magnitude of n.

The data reported by Tilton (p. 921, reference 67) indicates, for example, that it is necessary to

measure a to 2.7 arc seconds if the impact on the computed index is to be less than

0.000010 for a prism having n of 1.5, fabricated with a of 45. If fabricated with a of
67.4

(=0,,), the measurement tolerance for a is increased to 3.3 arc seconds an increase of

almost 25%. For n of 1.75, a
45

value for a requires that a be measured to 1.7 arc

seconds; using a,, of 60, the tolerance is 2.0 arc seconly an 18% improvement.
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The last considerations for optimum sample design have to do with the size

and polish of the two faces. Figure 12 summarizes the optimum sample size require

ments.
Tilton70 has tested the presumption that larger prisms allow greater accuracy

and reports that no significant improvement in the pointing accuracy of the spectrome

ter was obtained by using prism face dimensions larger than those shown. Square

faces are strongly preferred to rectangular ones of the same area, however. The

magnitude of n is inconsequential.

The polish of the two faces is also generally recognized as "important". Again,
Tilton71 has quantified the finding them to be not as stringent as

widely held. If it is desired that the curvature contribute less than 0.000001 uncer

tainty in the computed index, and samples are of the dimensions shown in Figure 12,

a/4 surfaces are perfectly acceptable. Face curvature makes it necessary to decol-

limate the spectrometer's observation telescope during the measurement of the prism

angle, a. A compromise focus setting must be made it is not possible to optimize

the focus setting for each face. Polish is more important if the prism is not "well-

tabled," in Tilton's words. By this he means that the prism's two faces must be well

centered ( 0.1 mm) in the telescope's field. It is important to use the same region of

the faces for the autocollimation measurement of the prism angle a, and refraction an

gle _>_;. Any residual curvature of the prism faces will locally perturb the value of a

and influence the computed value of n. Appendix 5 [page 87] discusses the impact of

face curvature on the measured prism angle a in detail.

The direct contributions of the spectrometer to the uncertainty in the computed

index will now be considered. Closely related to the sample's face curvature is the

collimator's focus setting. If the collimator is set incorrectly, then the telescope must

be decollimated to compensate. This will reduce the accuracy to which a may be

The curvature which will cause a 0.000001 error in the computed index n is a function of the

magnitude of n. For a sample having an index of 1.5, and a of 67, the curvature must be

<, X/S over a 10 mm diameter (k = 0.5461 um; over 20 mm this would be X/2). For n of 1.75

and a of 60, the curvature must be < A./15 over 10 mm (X/4 over 20 mm).
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determined by autocollimation off faces AB

and AC. Further, collimation should be set

in the middle of the wavelength range that

is expected so that the impact of residual

longitudinal chromatic aberration of the

collimator is minimized (collimation will

vary with wavelength). The tolerances

given by
Tilton72

are within the capabili

ties of devices constructed with an //10

achromatic doublet, which would require a

reasonable 15 inch tube length to produce a

1.5 inch diameter
beam.*

Divided scale

-e2 = <t> = e,-p

P =
->1+e2)

Figure 13 Compensating Verniers

The design of the spectrometer makes it possible to eliminate a further source

of error that afflicts all goniometric devices. If the center of the divided circle is not

intersected by the rotational axis of the instrument, the angles read from the divided

circle will be erroneous. It is impossible, from a practical standpoint, to center the

scale with the bearing (at the time of manufacture) to the accuracy necessary for the

impact on the angular readings to be negligible. It is simple, however, to compensate

for the small, but inevitable decentration that is intrinsic with the device, or which

develops over time. Multiple microscopes are used to examine the divided scale in di

ametrically opposite
locations.**

Figure 13 shows the case where two are used,
180

To impact the computed index by + 0.000001 or less, Tilton recommends that the longitudinal

chromatic aberration of the collimator, A/c, be less than K times the square of the collimator's

focal length, fc. When expressed in units of millimeters, K ranges from 14 x
10"6 for n of

1.5 and a of 67, to 12 x 10~6 for n of 1.75 and a of 60.

Some spectrometers only have one measurement microscope, yet they are utilized for precision

experimentation. This practice seems contrary to well-established knowledge regarding such

instruments. The finest spectrometers for precision minimum-deviation refractometry possess

four measurement microscopes rather than two.
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apart. It can be shown73'74

that the simple average of the two readings is free of

error that would otherwise occur.

When readings to one arc second are required, consideration must be given to

the divided scale markings themselves. Engraving errors may be classified as periodic

(systematic) and accidental (irregular). For one arc second precision, these errors are

not negligible.

The periodic errors are usually low frequency and can be corrected by develop

ing a Fourier series that is based on the examination of a limited number of divisions.

Tilton75
should be consulted for additional information. High frequency, accidental

errors cannot be compensated for by applying a simple correction formula. It is

necessary to replicate the readings on various parts of the divided circle and include

all of the redundant readings in the data reduction. It will be shown [page 62] that

replicated data also serves as the basis for determining whether or not the interpolation

model is inadequate.

At least 20 sources of potential error exist when performing minimum-devia

tion refractometry. Many have limited impact on 6th place refractometry, leaving five

or fewer that restrict the precision and accuracy of the computed index. There are

fewer still that impede 5th place refractometry. All sources, except the prism orienta

tion at D^n, are equally likely to cause positive or negative error contributions to the

final index.

The error in the angle DMn will tend to be on the positive side rather than the

negative. This will cause positive error in the computed index. Specific types of

eyepieces and operating procedures may be employed to minimize this occurrence;

Appendix 3 [page 76] fully describes the particular spectrometer that was utilized and

its devices (both hardware and procedural) for minimizing error contributions to the

computed index.
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Software

Two categories of software were described on page 18 of the Methods Section.

Discussion of the supporting data acquisition software may be found in Appendix 6

[page 92]. The present section will discuss the analysis software named Melt.

An overview of MELT may be found in the Methods Section [page 19]. The

goal of the software is to provide highly accurate estimates of the refractive index n at

any arbitrary wavelength a. To this end, special attention is given to model selection

and curve fitting procedures.

The current state-of-the-art fits one of the general dispersion formulas reviewed

in the Introduction Section [pages 6, 8] to the experimental data. MELT avoids this

practice; it fits the nominal curve of the glass type under test to the experimental data

instead. This is desirable since it maintains the shape of the dispersion curve that is

characteristic of the material, n0(X), rather than allowing n{X) to freely take on any

curve shape that seemed to suit the data. In this way, the enormous amount of data

provided by the glass manufacturers is utilized instead of ignored.

Interpolation is preferred, but because of the low-order terms and few variables,

extrapolation may be performed with greater reliability than with other methods. A

small data set may be used to define a dispersion curve for the sample under test,

n{X), and still provide the complicated, nonlinear curve shape that is characteristic of

the material. Whether interpolating or extrapolating, it is important to have a measure

of the uncertainty in the estimate of n. MELT provides interval estimates as well as

point estimates so that the impact of the uncertainty in the data set on the computed

values of n may be seen at arbitrary X values of interest.

Output

Figure 14 shows an example of plotted output generated by MELT. Information

is displayed in several ways. The plot at the bottom of the page shows the nominal

dispersion function, n0(X), and the sample's dispersion function, n(X), as a solid line
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REFRACTOMETRY ANALYSIS
PART NUMBER: 31B65 MATERIAL FORM: BLOCK
PROJECT NUMBER: P-377 SUPPLIER: unspecified

MFGR GLASS: SCHOTT LAF2 MELT NUMBER: B-2002
LOT NAME: D ANNEAL NUMBER: D-415

MELLES GRIOT - ROCHESTER, NY 02-13-90

INTERPOLATED

DESIGN REFRACTIVE

WAVELENGTH INDEX

.632800 1.740543

.910000 1.729028

.948000 1.72B078

.991000 1.727093

1.047000 -1.72S92S

1.060000 1.72S669

1.064000 -1.72S992

N - NO + Bi + B2/W1_
1 . 35E+00 = CHI-SQUARE

5.0

_

~ 2.5

.0

3-2.5

S-5.0J

10.1

=: 5.

-H- -+

5 0.

E -s-l
_

_S-10>'

1.80

.-*

*r- **

*

1.78

UJ

2; 1.74

E
_1.72

1.70

1.68

tt X

" V DESIGN (99.09
* * EXPERIMENTAL

INTEHPOUTED

NOMINAL

-** vw

n g
1 1

.400

F'

.500

0
t 1 11

0.600

C C

.700 .BOO

WAVELENGTH (microns)

.900 1.000 1.100

Figure 14 Example of Plotted Output fromMelt {Sample 1)
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and dashed line, The locations of the experimental data points are

indicated with an
"*"

character. The "V" symbol indicates the location of the points

that are computed (interpolated or extrapolated) at the design wavelengths. The solid

and dashed lines are only drawn for the domain over which n0{X) is defined as a

reminder that estimates of n, at locations indicated by V, should be reviewed carefully

when made in regions where n0 is not
defined.**

In the upper right-hand comer, the numeric values are given for the points

labeled with V. Negative values for n indicate that the domain of n0 has been viola

ted. Values for n0 may be given at discrete locations in the input file, when such in

formation is available, for the nominal behavior of the glass type (this accounts for the

fact that the solid and dashed lines vanish for X > \, yet the tabulated value for

ni.06 um
*s positive rather than negative).

The plot in the middle of the page shows the difference between the sample's

dispersion and the nominal dispersion, n-n0. If the sample were identical to the nomi

nal, it would plot directly on the abscissa. If bom had identical partial dispersions, the

dashed line representing the sample would be parallel to the abscissa though, perhaps,

displaced vertically in the direction of the ordinate.

The plot at the top of Figure 14 shows the difference between the experimental

points (*) and the model representing the sample's dispersion,
"

It is desired

that these residuals appear random, and be of a magnitude that is the same as the

experimental uncertainties. If a trend (constant upward or downward slope), or some

This particular plot, and the printed output that is associated with it [Figure 15], is for a sample

of Schott LaF-2 glass. As mentioned on page 23, the supplier had reported that the material

was LaFN-2.

This kind of extrapolation is unreliable and should be avoided since the error in nQ may exceed

0.000005, and will directly impact the estimate of n.

Just as the middle plot may be thought of as the difference between the two lines in the plot

just below it, so too may the top plot be thought of as the difference between the
"*"

and the

dashed line in the plot just below it.
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REFRACTOMETRY ANALYSIS

PART NUMBER: 31865 MATERIAL FORM: BLOCK MODEL NUM: 4

PROJECT NUMBER : P-377 SUPPLIER: ur specified MFTYPE NUM: 4

MANUFACTURER: SCHOTT MELT NUMBER: B- 2002 ITERATIONS: 38

GLASS TYPE: LAF2 ANNEAL NUMBER: D- 415 MERIT: 1.4E+00

LOT NAME: D ANALYSIS DATE: 02 -13-90

ERROR

CONVERGENCE: 1.0E-04

+/- 99.0%

DESIGN INTERPOLATED NOMINAL FROM CONFIDENCE

WAVELENGTH INDEX INDEX NOMINAL INTERVALS

.632800 1.740543 1.740560 -.000017 .000022

.910000 1.729028 1.729016 .000012 .000024

.948000 1.728078 1.728064 .000014 .000025

.991000 1.727093 1.727076 .000016 .000026

1.047000 -1.725925 -1.725906 .000019
.000027

1.060000 1.725669 1.725650 .000019 .000028

1.064000 -1.725592 -1.725572 .000019 .000028

WARNING A negative value indicates that a domain violation has occurred

for the NOMINAL function. The error may exceed +/-
.000005.

+/- 99.0%

EXPERIMENTAL OBSERVED INTERPOLATED CONFIDENCE

WAVELENGTH INDEX INDEX RESIDUAL INTERVALS

.47999KF') 1.756603 1.756601 .000002 000024

.546074 (e) 1.747920 1.747920 .000000 000023

.587562(d)
1.743973 1.743976 -.000003 000023

.643847(C)
1.739810 1.739812 -.000002 000022

.706519(r)
1.736278 1.736275 .000003 000022

.852110(s)
1.730658 1.730657 .000001 000023

1.013980(t) 1.726600 1.726599 .000001 000026

ERROR STATED MERIT

EXPERIMENTAL OBSERVED NOMINAL FROM EXPERIMENTAL FUNCTION

WAVELENGTH INDEX INDEX NOMINAL UNCERTAINTY WEIGHT

.479991

(F' ) 1.756603 1.756659 -.000056 .000004 1.000000

.546074 (e) 1.747920 1.747956 -.000036 .000004 1.000000

.587562 (d) 1.743973 1.744001 -.000028 .000004 1.000000

.643847(C ) 1.739810 1.739827 -.000017 .000004 1.000000

.706519 (r) 1.736278 1.736281 -.000003 .000005 .800000

.852110 (s) 1.730658 1.730649 .000009 .000005 .800000

1.013980(t) 1.726600 1.726582 .000018 .000005 .800000

ANALYSIS

SOURCES

OF VARIANCE

RELATIVE SS DF MS=SS/DF

TOTAL (UNCORRECTED )

REGRESSION (DUE TO THE MEAN)

TOTAL (CORRECTED FOR THE MEAN)

REGRESSION (EXCLUDING THE MEAN)

RESIDUAL

1.000000 7

.364335 1 2.11948E-09

.635665 6 6.16319E-10

.631945 1 3.67627E-09

.003720 5 4.32842E-12

Figure 15 Example of Printed Output from Melt {Sample 1)
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other functional relationship (parabolic ones are common) appears to be present, then

the model used for n(X) is not valid. Randomness is tested by an analysis of variance,

described on page 50.

Ordinate scales on the top and middle plots are adjusted in magnitude to show

detail in the data, so attention should be paid to the labeling. In this example, al

though the partial dispersion is not the same as that of the nominal glass, note that the

range covered by the middle plot is 0.000100; the departure was important for the

intended usage of this material, but this is not to say that this lack of parallelism is an

indication of significant anomalous behavior for every application.

The vertical scale is not expanded or contracted on the bottom plot from one

sample to the next. A 0.14 range in n is always shown; the window is simply slid up

and down in magnitude. The abscissa may be either wavelength or frequency. Scal

ing is controlled through commands in the input file, or command entry from the key
board.

Error bars are shown when the ordinate scale is appropriate. For experimental

points (*), these bars represent the stated uncertainty in the reported index. For design

points (V), they are the interval estimates surrounding the point estimates. The printed

output may be consulted to determine the exact magnitude of these intervals.

Figure 15 shows the numeric data that is the basis of the plotted output of

Figure 14. The layout is similar in both. In the first table is the data for the upper

right-hand comer of the plot; in the next table is for the top plot; the third table of

Figure 15 contains the data for the middle and bottom plot of Figure 14. The analysis

of variance section of the output which follows is described on page 50.

Input

The input file that MELT reads to produce Figure 14 and Figure 15 is shown in

Figure 16. Melt's command interpreter recognizes the keywords and syntax given in

Appendix 7 [page 100]. Comments are preceded by a
"!"

character. The sample is

identified, the design X values are specified, the abscissa scaling is defined, and any
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default experimental uncertainty for n is given. Then the experimental data are

specified: Between the BEGIN DATA and END are records with the experimental X,

n, An, and n0 specified. If An is omitted for any X, the default value previously
defined is used. If n0 is omitted, the table between the BEGIN NOMINAL and END is

searched; the
manufacturers' dispersion formula is used if any n0 values remain

unresolved. Files of this type are created on a sample-by-sample basis.

Before reading this sample-specific file, a setup file is read. This file,

MELT.MEL, is shown in Figure 17 and Figure 18. It is from this file that any

installation-specific instructions are read, and the default operating characteristics are

set. Text describing each of the models is given between BEGIN FORMULAS and

END. The locations of supporting files are specified, defaults are established for print

ing and plotting, and then optimization controls are set. MELT will evaluate a list of

models, or use a specific model, depending on whether a list of model numbers is

! PN31865D.MEL - P/N 31860, Summer 1988 build.

PART NUMBER 31865
PROJECT NUMBER P-377

GLASS TYPE LAF2 ! (supplier's sheet said this was LAFN2)
LOT D

MELT B-2002
ANNEAL D-415

FORM BLOCK
MANUFACTURER SCHOTT
WAVELENGTHS 1.064 .948 .910 .991 1.060 1.047 ! ...the "design"

wavelengths.

MAX 1.1
MIN .4

! Schott "High-Precision Readings".

uncertainty .000005 ! Default experimental uncertainty if not explicitly stated.

BEGIN DATA ! wavelength, observed index [, index_uncertainty [, nominal_index ] ]
d 1.743973 4e-6
r 1.736278

s 1.730658
t 1.726600

e 1.747920 4e-6
"C " 1.739810 4e-6
"F"' 1.756603 4e-6
END DATA

begin nominal

1.5296 1.71824

1.060 1.72565

end nominal

Figure 16 Example Input file for Melt {Sample 1)
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entered with the MODEL command. Commands in the sample-specific file, or entered

from the keyboard, will supersede commands in this setup file. Command entry from

the keyboard is accepted after both the setup file and the sample-specific file are read.

! MELT.MEL

! Setup file for MELT. EXE

BEGIN FORMULAS

! The following lists the formulas which are coded into the program. Token #1
! is the model number that is selected with the MODEL keyword. The remainder

! of the line is token #2. WARNING: do not change the value of token #1 for a

! model since the program is not compiling the following lines. Changing the

! formula will have no computational effect; changing the model number will

! indicate that an undesired formula has been used during computation.

i One-term, one-coefficient models.
26 N = NO + Bl

; Two-term, two-coefficient models.
1 N = NO + Bl + B2*W

18 N = NO + SQRT( Bl + B2*W )
2 N = NO + Bl + B2/W

19 N = NO + SQRT( Bl + B2/W )
3 N = NO + Bl + B2*WA2

20 N = NO + SQRT( Bl + B2*WA2 )
4 N = NO + Bl + B2/WA2

21 N = NO + SQRT( Bl + B2/WA2 )

i Two-term, three-coefficient models.

22 N = NO + Bl + B2*WAB3

23 N = NO + SQRT( Bl + B2*WAB3 )
24 N = NO + Bl + B2/WAB3

25 N = NO + SQRT( Bl + B2/WAB3 )

1 Three-term, three-coefficient models.

17 N = NO + Bl + B2*W + B3/W

33 N = NO + SQRT( Bl + B2*W + B3/W )
5 N = NO + Bl + B2*W + B3*WA2

34 N = NO + SQRT( Bl + B2*W + B3*WA2 )
6 N = NO + Bl + B2/W + B3/WA2

35 N = NO + SQRT( Bl + B2/W + B3/W2 )
7 N = NO + Bl + B2*WA2 + B3*WA4

36 N = NO + SQRT( Bl + B2*WA2 + B3*WA4 )

8 N = NO + Bl + B2/WA2 + B3/WA4

37 N = NO + SQRT( Bl + B2/WA2 + B3/WA4 )

9 N = NO + Bl + B2*WA2 + B3/WA2

38 N = NO + SQRT( Bl + B2*WA2 + B3/WA2 )

; Sellmeier forms; 1- 2- and 3-term, 2- 4- and 6-coefficient .

11 N = NO + SQRT( B2*WA2/(WA2-B1A2) )
,,,*, ,

12
13

N = NO + SQRT( B3*WA2/(WA2-B1A2) + B4*WA2/ (WA2-B2A2) )

N = NO + SQRT( B4*WA2/(WA2-B1A2) + B5*WA2/ (WA2-B2A2) + B6*WA2/ (WA2-B3A2) )

i Six-term, six coefficient models.

32 N = NO + SQRT( Bl + B2*WA2 + B3/WA2 + B4/WA4 + B5/WA6 + B6/WA8 )

Figure 17 MELT.MEL Setup File for MELT, part 1
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! Forms not involving a known nominal model, NO.

! Manufacturers' 6-term, 6-coefficient form.
10 N = SQRT( Bl + B2*WA2 + B3/WA2 t B4/WA4 + B5/WA6 + B6/WA8 )

! Cauchy form.
27 N = Bl + B2/WA2 + B3/WA4

! Conrady form.
28 N = Bl + B2/W + B3/WA3.5

! Hartman 1, 2, and 3 term.
29 N = B1/(W-B2)AB3
30 N = Bl + B2/(W-B3)AB4
31 N = Bl + B2/(W-B4) + B3/ (W-B5)

! Sellmeier forms; 1- 2- and 3-term, 2- 4- and 6-coefficient .

14 N = SQRT( 1.0 + B2*WA2/(WA2-B1A2) )
15 N = SQRT( 1.0 + B3*WA2/(WA2-B1A2) + B4*WA2/ (WA2-B2A2) )
16 N = SQRT( 1.0 + B4*WA2/(WA2-B1A2) + B5*WA2/ (WA2-B2A2) + B6*WA2/ (WA2-B3A2) )

END FORMULAS

COMPANY 'MELLES GRIOT - ROCHESTER, NY'

MIN_WVL . 4
MAX_WVL .7

WAVELENGTH .6328 ! Always compute index at red HeNe for interferometer.
UNCERTAINTY .0001 ! Assume refractometry from United Lens.
CATALOG D:\SCIP\GLASDATA\ ! Files of coefficients for NO.
HISTORY YES ! Build a histogram of how frequently a model is "best"...
HISTORY FILE E:\THESIS\MELT\WORK\HISTORY.MEL ! ...in this file.
DEBUG NO ! Imbedded print commands turned on/off.

PLOTTER ON HP7470A ! No device name given, so will create a .PLT file.
PLOT WAVELENGTH ! ...rather than FREQUENCY.
PRINTER ON LPT1 ! PRINTER OFF if don't want a copy of what's on screen.

FFEND YES ! In a PC environment, end report with a form-feed.

! List of models to try; enter MODEL 0 from the keyboard to flush the list.
MODEL 1 18 2 19 3 20 4 21
MODEL 24 25 17 33 5 34 6 35 7 36 8 37 9 38 32
MODEL 11 12 13
MFTYPE 4 ! Chi-Square merit function.
CONVERGENCE 1 . 0E-4 ! Smaller values cause simplex optimization to work harder.
RISK .010 ! have MELT quote 99.0% confidence intervals.

Figure 18 MELT.MEL Setup File forMelt, part 2

Algorithms

The computational methods used to fit the model to the data were summarized

in the Methods Section. Optimizing the fit of the model to the experimental data

implies minimizing the merit function. Four different merit functions, Eq. (20)

through Eq. (23), are provided [page 20] and are selected using the MFTYPE com

mand. Each has advantages in certain situations:

MFTYPE 4 Chi-square (weighted sum of squared deviations): This is the

same as MFTYPE I, except that the weighting factors are not

relative. Here, the values are, as nearly as possible, the
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standard deviations of the experimental uncertainty in To
the extent that the An; values are normally distributed (Gaussian),
and independent, rriinimizing this merit function will give the

maximum likelihood estimates of the coefficients bv b2, ..., &*_,
of Eq. (23). There is only one

"correct"

model, and a statistical

universe of data sets drawn from it; the probability that this data
set could have been drawn from this model, with these coeffi

cients and uncertainties, is maximized by this criterion.

MFTYPE 3 Weighted maximum deviation: Minimizing this function is
appropriate when the data is known to be "exact" and it is
desired to fit an empirical equation for predictive purposes. This
can be useful for testing the usefulness of alternative models

when nominal data is substituted for experimental data.

MFTYPE 2 Weighted sum of absolute deviations: When the data set is sus
pected of containing using this merit function will

reduce their impact on the resulting solution. This facilitates the
identification of the offending point(s). They should then be
corrected or removed from the data set and the analysis repeated

with a more appropriate MFTYPE.

This is a robust technique that is meant for cases where the
Gaussian distribution is a poor approximation for the probability
of occurrence of An values.

MFTYPE I Weighted sum of squared deviations: Most often used when the

An values are not known (i.e., all weight factors are unity).
When they are known, MFTYPE 4 is equivalent and is able to

give additional information regarding the quality of the fit.

That is, they are equal to a,, which is to say that 68% of the time, the
"true"

value of n; will

fall within o} of the measured value; and 95% of the time, within 2o"y; 3o"; 99.7% of the

time; and so on.

The term outliers refers to experimental points that have apparent measurement errors that are

much larger in magnitude than the other points in the data set (digit transposition errors, wrong

spectral line used, etc.). Such points can spoil a least squares fit {MFTYPE 1 or MFTYPE 4),
which assumes a Gaussian distribution for An, since the probability of occurrence of large

errors is so small that the whole curve is distorted to try to bring the outliers, mistakenly, into

line (Press, p. 501, reference 56).
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The chi-square (%2) merit function is generally recommended. The worse the fit, the

larger the computed %2. The table value of the %2 distribution, with v = ymax *__

degrees of freedom, may be consulted to determine how large the computed value of

%2

may be before it is significant (i.e., not attributable to chance alone). Chi-square

interpretation is discussed further on page 65.

The downhill simplex algorithm [page 21] is employed to minimize the merit

function by the optimum selection of the model's coefficients {bx, b2, ..., b^). About

50% of the models which MELT may use are linear in these coefficients; the others

are While it is possible to transform most of the nonlinear models into

linear ones with some fairly straight forward variable changes, all the uncertainties

would need to be changed to maintain proper Using all models directly,

without any transformations, is advantageous since it avoids any questions about the

weighting and allows the direct comparison of the results of one model with the

results another. This strategy is not without drawbacks, however. Appendix 8

[page 108] fully discusses the alternate, matrix which provides certain

statistics that cannot be computed with the simplex algorithm.

Analysis of Variance

Determining which model to use is no small task. The one chosen may be too

complex, not complex enough, or of the wrong form entirely. The easiest way to

determine whether or not the model fits the data is to visually examine the plot of

residuals. An example has been presented [Figure 14, page 40] for which the model

fits the data well; the uppermost plot of residuals appears random, and is of the same

*

Nonlinear means that at least one of the derivatives of the model, with respect to one of its

coefficients 0nldbk) depends on at least one of the coefficients (i.e., is not constant).

**

If the data was of equal variance in the nonlinear problem, then it is of unequal variance in the

linear one and will require weighted least squares.

***

At revision 5.x, MELT does not perform optimization with the matrix approach of Appendix 8.
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REFRACTOMETRY ANALYSIS
PAHT NUMBER: 31B65 MATERIAL FORM: BLOCK
PROJECT NUMBER: P-377 SUPPLIER: unspecified

MFGR GLASS: SCHOTT LAFN2 MELT NUMBER: B-2002
LOT NAME: D ANNEAL NUMBER: D-415

MELLES GRIOT - ROCHESTER. NY 02-13-90

INTERPOLATED

DESIGN REFRACTIVE

WAVELENGTH INDEX

.632800 1.740529

.910000 1.729035

.948000 1.728093

.991000 1.727119

1.047000 -1.725966

1.060000 1.725610

1.064000 -1.725639
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._ _ _* v ?

v V v ? DESIGN (99.0X1
X * X X EXPERIMENTAL

INTERPOLATED
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-* ** vw
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WAVELENGTH (micronsj

Figure 19 Same as Figure 14, Except that n0(X) is LAFN2 (Sample 1)
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order of magnitude as the stated experimental uncertainties in the data set. The model

does not fit the same data well in Figure 19. A parabolic trend may be seen in the

plot of residuals and is indicative of either a bad n0{X) for the material under test (via

the GLASS command), or poorly chosen perturbation terms (via the MODEL com

mand). In this particular case, none of the models fit the data, leading to suspicion

that the nominal dispersion function, n0{X), was incorrect for this sample.

A quantitative measure is sometimes needed to describe how well the model

fits the data. Visual assessment of
"randomness,"

while convenient, is subjective.

Statistical measures are substituted for this visual appraisal whenever fine distinctions

are required, or when the assessment must be made by the computer.

Such a situation occurs when MELT is required to choose the best model from

a list: what constitutes "best"? Simply choosing the model which results in the

smallest merit function value may result in the use of a model having more complexity

than the data To ensure that this does not happen, an analysis of variance

(ANOVA) is performed. This analysis must be discussed before the comparison of

one model to another.

ANOVA seeks to determine whether or not the model describes, to a signif

icant degree, a real relationship between the It partitions the variation of

the data into categories: the total variation; that explained by a term in the model

representing the mean of the data; and that portion of the total variation which is

explained by a term, or terms, in the model other than the one that represents the

mean. This partitioning is performed in the sum of squares space using the following

equations:

Simply choosing a model with the same number of coefficients as
there are data points will

result in a perfect fit (zero residual) which, of course, is a
trivial result.

Unless there are replications (multiple readings of n at the same value of X) in the data set,

ANOVA must stop short of concluding whether any lack of significance is due to measurement

errors or to an inappropriate model. See page 62 for a discussion of replicated data.
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ANALYSIS OF VARIANCE

SOURCES RELATIVE SS DF MS=SS/DF

1.000000 7

.364335 1 2 11948E-09

.635665 6 6 16319E-10

.631945 1 3 67627E-09

.003720 5 4 32842E-12

TOTAL (UNCORRECTED)

REGRESSION (DUE TO THE MEAN)

TOTAL (CORRECTED FOR THE MEAN)

REGRESSION (EXCLUDING THE MEAN)

RESIDUAL

CORRELATION COEFFICIENT

DUE TO THE MEAN =
.3643

This implies that approximately 36.43% of the total variation in the
data is explained by a regression term representing the mean.

EXCLUDING THE MEAN =
.9941

This implies that approximately 99.41% of the remaining variation in
the data is explained by regression terms other than the mean.

F-TESTS FOR SIGNIFICANCE OF THE REGRESSION

DUE TO THE MEAN

F (observed) = REGRESSION_MS / TOTAL_MS = 3.439

F (critical) = F( 1, 6, .010)
= 13.75

F (observed) < F (critical) implies that a regression term represent

ing the mean does not explain a significant amount of the variation

in the data. This term should be rejected at this risk level.

EXCLUDING THE MEAN

F (observed) = REGRESSION_MS / RESIDUAL_MS = 849.3

F (critical) = F( 1, 5, .010)
= 16.26

F (observed) > F (critical) implies that a significant amount of

the remaining variation in the data is explained by regression

terms other than the mean. These terms should not be rejected.

MFTYPE Description
___?

1 WEIGHTED SUM-OF-SQUARED RESIDUALS

2 WEIGHTED SUM-OF-ABSOLUTE RESIDUALS

3 WEIGHTED MAXIMUM DEVIATION

> 4 CHI-SQUARE 1.353

CHI-SQUARE ANALYSIS

Guidelines for CHI-SQUARE:

Figure 20 ANOVA for Figure 14 and Figure 15 Data {Sample 1)
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J,max

7=0

/max

SSmean = wy2(i,.-n)* (42)
7=1

SScorrecteri - SS,ntal- SSmp (43)corrected total mean

regression corrected residual
^ '

/max
["

"|2

SSresidual = E W/V n(h> bVbV~>bk\
7=1

(45)

Inspection of Eq. (45) will reveal it to be the same as Eq. (20), the weighted sum of

squares merit function. Appendix 10 discusses the computation of the average term

that appears in Eq. (42). This term may be the simple average, or the weighted

average, depending on whether or not the weighting factors differ for any j.

Figure 20 [page 51] shows the ANOVA for the data presented in Figure 14 and

Figure 15. In the table at the top of the figure, the column labeled "relative SS" is

simply the sum of squares (defined by the five equations above) divided by
SStotal.*

The column labeled
"DF'

shows the degrees of freedom for each category. The mean

Actual sum of squares could be determined by simply multiplying MS and DF together.
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ANALYSIS

SOURCES

TOTAL (UNCORRECTED)

REGRESSION (DUE TO THE MEAN)

TOTAL (CORRECTED FOR THE MEAN)

REGRESSION (EXCLUDING THE MEAN)

RESIDUAL

CORRELATION COEFFICIENT

F V A R I A N C E

RELATIVE SS DF MS=SS/DF

1.000000 8

.998597 1 8 66440E-08

.001403 7 1 73945E-11

.001355 5 2 35067E-11

.000049 2 2 11385E-12

DUE TO THE MEAN =
.9986

This implies that approximately 99.86% of the total variation in the
data is explained by a regression term representing the mean.

EXCLUDING THE MEAN =
.9653

This implies that approximately 96.53% of the remaining variation in
the data is explained by regression terms other than the mean.

F-TESTS FOR SIGNIFICANCE OF THE REGRESSION

DUE TO THE MEAN

F (observed) = REGRESSION_MS / TOTAL_MS = 4981.

F (critical) = F( 1, 7, .010)
= 12.25

F (observed) > F (critical) implies that a significant amount of

variation in the data is explained by a regression term

representing the mean. This term should not be rejected.

EXCLUDING THE MEAN

F (observed) = REGRESSION_MS / RESIDUAL_MS = 11.12

F(critical) - F( 5, 2, .010)
= 99.30

F (observed) < F (critical) implies that regression terms other

than the mean do not explain a significant amount of the

remaining variation in the data. These terms should be rejected

at this risk level.

MFTYPE Description VALUE

1 WEIGHTED SUM-OF-SQUARED RESIDUALS

2 WEIGHTED SUM-OF-ABSOLUTE RESIDUALS

3 WEIGHTED MAXIMUM DEVIATION

> 4 CHI-SQUARE .1691

CHI-SQUARE ANALYSIS

Figure 21 ANOVA for a Model that is too Complex {Sample 2)
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square column label indicates how "MS" is computed: the sum of squares (not the

relative SS) is divided by the degrees of freedom.

In this example, the relative SS due to the term representing the mean is 0.364.

This means that 36.4% of the total variation is explained by this term. The relative SS

for all remaining terms is 0.632, meaning that they explain 63.2% of the total varia

tion. The correlation coefficient (often denoted R2) says the same thing, but in a

slightly different way. It is computed by dividing the regression SS by the preceding
total SS. This yields the same result for the regression SS due to the term represent

ing the mean. The correlation coefficient for the terms other than the mean indicates

what fraction of the of the remaining is explained by these terms. In this

example,
R2 is 0.994 (= 0.632 * 0.636), meaning that 99.4% of the remaining varia

tion in the data set is explained by model terms other than the one that represents the

mean.

The sum of squares indicate how much of the total variation in the data is

explained by the model, but it is the mean squares that are used to determine if the

explained variation is significant. In the limit as the number of degrees of freedom

becomes infinite, the mean square becomes the square of the standard deviation; it is

called the variance, a2. The ratio of one variance to another is called an F ratio. This

computed ratio is compared to the value of the F distribution to determine if the com

puted ratio is significant. An example will help to make this clear.

On page 51, in the section of the Melt output labeled "F TESTS FOR SIG

NIFICANCE OF THE
REGRESSION,"

two F tests are performed. The first deter

mines whether or not the term representing the mean is significant. To do this, the

ratio of the variance of the regression due to the mean is divided by the total variance.

If the two variances are significantly different from one another, this F ratio will be

That is, after the term representing the mean has explained some portion of it.
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greater than or equal to the critical value of the F
distribution.*

Here, the ratio

(3.439) is less than the critical value (Fj 6 01
= 13.75). The hypothesis, that the term

representing the mean is significant, is rejected.

In a similar fashion, the significance of the remaining terms of the regression is

tested. Now the question is whether or not the variance of these terms is significantly

different from the variance of the residual (i.e., once the terms have explained all of

the variation that they can). Continuing with the example of Figure 20, the computed

F ratio is much larger (849.3) than the critical value of the F distribution (Fj 5 01
=

16.26), giving no reason to reject the hypothesis that the terms other than the mean are

significant.

The example ANOVA in Figure 21 shows how to detect the usage of a model

that is too complex for the data. The F ratio for the term representing the mean

(4,981) is larger than the critical value (F17>01 = 12.25), so it is judged to be signifi

cant and is retained. The other terms are not, however. Compare the computed F

ratio (11.12) to the critical value {F52 01
= 99.30). There are five coefficients (degrees

of freedom) other than the mean, and two extra degrees of freedom once all coeffi

cients are applied; the greater the number of coefficients, or the fewer the number of

extra degrees of freedom, the higher the value of the F distribution and the more

difficult it is to pass the F test.

Figure 22 shows the plotted output from MELT for the ANOVA of Figure 21.

Note the high-order behavior in the middle plot in the wavelength neighborhood of

0.4 (xm. This type of visual assessment supports the numeric conclusion that the

model is more complex than the data will support.

Figure 23 shows the same data fit with the simplest of all models, Eq. (25)

[page 25]. The ANOVA gives a clear indication of when the model is too complex,

The F distribution's value, with the same number of degrees of freedom and RISK, is this crit

ical value. Melt computes the F distribution's value using an incomplete beta function (Press,

p. 169, reference 56). It is denoted as F0.
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REFRACTOMETRY ANALYSIS
PART NUMBER: 31869 MATERIAL FORM: BLOCK
PROJECT NUMBER: P-377 SUPPLIER: unspecified

MFGR GLASS: SCHOTT SFL56 MELT NUMBER: C1B79
LOT NAME: C ANNEAL NUMBER: MEG52

MELLES GRIOT - ROCHESTER. NY 02-12-90

DESIGN

WAVELENGTH

.632800

.910000

.948000

.991000

1.060000
1.064000

INTERPOLATED
REFRACTIVE

INDEX

1 . 778564

1.759443

1.757966

1 . 756457

1.754321
-1.754204

N - NO + SORT ( Bl + B2*W-f2 + B3/Wt2 + B4/Wt4 + B5/Wt6 + B6/Wt8 )
1.69E-01 - CHI-SQUARE

10.
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Figure 22 Plot for a Model that is too Complex {Sample 2)
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REFRACTOMETRY ANALYSIS
PART NUMBER: 31BB9 MATERIAL FORM: BLOCK

PROJECT NUMBER: P-377 SUPPLIER: unspecified

MFGR GLASS: SCHOTT SFL56 MELT NUMBER: C1679

LOT NAME: C ANNEAL NUMBER: MEG52

MELLES GRIOT - ROCHESTER. NY 02-13-90

DESIGN

WAVELENGTH

. 632800

.910000

.948000

.991000

1.060000

1.064000

INTERPOLATED

REFRACTIVE

INDEX
1.778565

1.759438

1.757961

1.756452

1.754316

-1.754199

N - NO + Bl

4.B7E+00 = CHI-SQUARE

ll I w\

v v V 7 DESIGN (99.01)
X X X EXPERIMENTAL

INTERPOLATED

NOMINAL

.700
-BOO

WAVELENGTH (microns)

1.100

Figure 23 Plot for a Model that is not Complex Jinough {Sample 2)
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but it does not warn that the model is not complex It is much more difficult

to determine the optimum model complexity than it is to ascertain that the model has

not become so complex that the data cannot support it.

Model Assessment

There are two situations that present themselves when assessing the fit and

modifying the model. The first is the case where nested models are being compared.

Non-nested models are compared otherwise. Each demands a different approach.

Nested models are those where the simpler forms are special cases of the most

complex form. For example, Eq. (27) is a special case of Eq. (29) [page 25];

furthermore, Eq. (25) is a nested model of both. Nested models are arrived at by

zeroing coefficients and allowing terms of the more complex model to vanish. The

simplest form that adequately fits the data is desired. Appendix 9 [page 1 14] de

scribes in detail how nested models are compared using a likelihood ratio
test.**

Non-nested models are more troublesome. About all that the field of statistics

offers is, "The model resulting in the smallest residual mean square, and the most ran

dom-looking residuals, should be chosen."76 "Random-looking" is a difficult evalua

tion to accomplish with software like Melt. In Figure 23, the merit function is an

order of magnitude worse than in Figure 22 and the residuals now show a trend (and

exceed the stated experimental uncertainties). A more complex model is called for,

but not as complex as in Figure 22. Just how much more complex is

In the course of performing this research, it was recognized that the quotient of

the F ratio (for terms other than the mean) and the critical value of the F distribution

Unless the data has been replicated [see page 62].

At revision 5.x, Melt does not perform nested model analysis according to Appendix 9.

In this particular case, the nested model assessment of Appendix 9 could have been

used since the model used for Figure 23 is a special case of the model used for

Figure 22 they are not different forms.
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(F0) was always large when a good fit was

obtained; when a poor fit resulted, the quo

tient was not as large. This observation

served as the basis of the selection criterion

that Melt uses to choose one model from a

set of possible models. Figure 24 shows the

strategy. When a list of models is supplied

to Melt (using one or more MODEL com

mands), the software does a trial solution

for each, noting the value of the ratio

F *- F0. The model having the highest ratio

too complex

Increasing Complexity

Figure 24 F + F0 Ratio

is selected as being optimum in the sense that it maximizes the margin between the

variation that is explained and how much should be explained if it were to be called
"significant."

After identifying the optimum model, the full analysis is performed.

In the dialogue shown in Figure 25, MELT is identifying MODEL 21 as the

optimum choice for the sample previously evaluated in Figure 22 and Figure 23; the

result is shown in Figure 26.

When no model results in the F -s- F0 ratio being greater than unity, then the

terms other than the mean are judged to be insignificant for all. In such an instance,
MELT will use MODEL 26 [see Eq. (25), page 25]. This may be indicative of a real

manifestation of annealing simple shifting of n0(X) in the direction of the ordin

ate or it may indicate a data error, or an error in the nominal function, nQ{X). Such a

result warrants close examination by the optical designer.

A few nested cases have been compared using this F + F0 ratio criterion and

the maximum likelihood test discussed in Appendix 9. The same model was selected

by both approaches. It is not known whether or not the two are generally equivalent

for the special case of nested models, or if
"cooperative"

examples were chosen. The

advantage, of course, is that the F + F0 ratio does not rely on all models being of the

same form. The list of models evaluated by MELT in Figure 25 are drawn from 3
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r 1.771259
s 1.762020
t 1.755710
END DATA

MEL> model

MEL> model

MEL> model

MEL> go

1 18 2 19 3 20 4 21
24 25 17 33 5 34 6 35
11 12 13

7 36 8 37 9 38 32

WARNING Nominal index computed from the glass table may be in error by more

than +/-
.000005 for wavelength 1.0640. The valid range

is .3650 to 1.0140.

EL ITERATIONS

1 42
18 72
2 42

19 78
3 36

20 65
4 42

21 75
24 129
25 119
17 66
33 106
5 69

34 86
6 79

35 115
7 101

36 104

8 70
37 112

9 66
38 110
32 348
11 64
12 90

13 161

MERIT

8.39E-01
8.91E-01
4.16E-01
4.28E-01
1.19E+00
1.25E+00
4.24E-01
4.08E-01
4.01E-01
3.98E-01
3.81E-01
3.70E-01
3.01E-01
8.91E-01
4.04E-01
4.01E-01

2.79E-01
2.84E-01
3.75E-01
3.80E-01

4.20E-01

4.08E-01

1.69E-01

4.99E-01

6.43E-01
4.22E-01

F-TEST FOR TERMS OTHER THAN THE MEAN

COMPUTED CRITICAL RATIO

28 826
26 813
64 273
62 317
18 469
17 368
62 953
65 610
27 900
28 122
29 480
30 421
38 010
11 172
27 642
27 884
41 126
40 336
30 002
29 520
26 .478
27 .338
11 .120
52 .619
8 .766
4.212

13 745
13 745
13 745
13 745
13 745
13 745
13 745
13 745
13 274
13 274
13 274
13 274
13 274
13 274
13 274
13 274
13 274
13 .274
13 .274
13 .274
13 .274

13 .274
99 .299
13 .745
16 .694

99 .299

10
95
68
53
34
26

4.58
4.77
2.10
2.12
2.22
2.29
2.86
.84

2.08
10
10
04
26
22
99

2.06
.11

3.83
.53

.04

MODEL 21, using 2 out of 8 degrees-of-freedom, is optimum.

REFRACTOMETRY ANALYSIS

PART NUMBER: 31869

PROJECT NUMBER: P-377

MANUFACTURER : SCHOTT

GLASS TYPE: SFL56

LOT NAME: C

MATERIAL FORM: BLOCK

SUPPLIER: unspecified

MELT NUMBER: C1879

ANNEAL NUMBER: MEG52

ANALYSIS DATE: 02-13-90

MODEL NUM: 21
MFTYPE NUM: 4
ITERATIONS: 75
MERIT: 4.1E-01
CONVERGENCE: 1.0E-04

Figure 25 Melt Searching for the Optimum Model {Sample 2)

broad groups, with many nested forms within
each. Melt's criterion appears to be

insensitive to changes in the form of the model, making it useful for ranking in non-
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REFRACTOMETRY ANALYSIS
PART NUMBER: 31869 MATERIAL FORM: BLOCK
PROJECT NUMBER: P-377 SUPPLIER: unspecified

MFGR GLASS: SCHOTT SFL56 MELT NUMBER: C1879
LOT NAME: C ANNEAL NUMBER: MEG52

MELLES GRIOT - ROCHESTER, NY 02-13-90

DESIGN

WAVELENGTH

.632800

.910000

.948000

.991000

1.060000
1.064000

INTERPOLATED
REFRACTIVE

INDEX

1.77S564

1.759443

1 . 757966

1.756457

1.754322
-1.754205

N = NO + SQRT( Bl + B2/Wt2 )
4.08E-01 = CHI-SQUARE

5.0

~ 2.5
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3:

_
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1&-5.0
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1.82
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! 1.76

1.74

1.72
1
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F'.500
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4600 .700

-Hp- rH-

v v v v DESIGN (99. OS
* * X X EXPERIMENTAL

INTERPOLATED

NOMINAL

.800 .900 1.000 1.100

wavelength (microns)

Figure 26 Plot for a Model that is Judged
"Optimum"

by Melt (Sample 2)
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nested

In addition to the possibilities that the model may be too complex, or not com

plex enough, the model may just be the wrong form. This can be exceedingly difficult

to determine if there are not replications made of the experimental data points.

Replicated data can also help diagnose instances where the model is of insufficient

complexity, a situation that ANOVA is unable to detect otherwise.

Replications

In the ANOVAs presented so far, the SStotal is partitioned into categories

[page 52], yielding SSresiduaI once the model has been fit to the data. This residual

consists of error in the measurements, and lack-of-fit of the model to the data. Only
by replicating the data is it possible to further partition SSresidual into these two

additional categories. In the absence of replications, SSerror and SSlof remain confound

ed as SSresiduaI. Only subjective tests (trend in the residual?) of model adequacy may

be performed if SSlof cannot be separated from SSerror.

Replications are multiple readings of n at the same value of X,. These are not

simply duplicate measurements, where the scale readings are double checked in the

course of a single experimental procedure. Instead, replications ideally involve the

preparation of two (or more) samples of the same material and repetition of the experi

mental These independent measurements are treated as nearly alike as

possible. Any measurement differences that are observed are attributed to chance and

untested
factors,77

and collectively referred to as "experimental error." It is not

necessary to replicate at each X in the data set, nor is it necessary that each point be

replicated the same number of times.

It is sensitive to a change in the space of the function's range. When some models map to

-space, and others map to n2-space, the selection criterion has been found to be unreliable.

Useful information regarding the experimental error inherent in the measurement process is gar

nered even by repeating the experiment with a single sample, though the influence of sample

preparation errors (like curved prism faces, etc.) remain confounded.
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Replications do not contribute to expanding the model to cover a larger do

main, nor do they reduce the interval between data points. The tendency is to dis

count their importance and concentrate on taking data at more separate and distinct
values of X, rather than spend precious experimental time repeating measurements at X

values for which data has already been collected. This is misplaced frugality, howev

er, for replications provide increased sensitivity to a poor model without having to
increase the inherent precision or accuracy of the experimental equipment. This is

numerical leverage!

For
./max

unique Xj values, and ijmax replications for each Xj (each denoted njt),

the partitioning in sum of squares space may be continued from Eq. (45) as follows:

-'max j.max

sseror = EE -!(;,-"/ (46)
j=\ 1=1

SS, f = SS , SS (47)lof residual error v '

As before, Appendix 10 discusses the use of the simple versus weighted average.

An example will help to show the utility of having replications in the data set.

Figure 27 shows an ANOVA where the term representing the mean is significant, and

the other terms are also significant (see the F tests for significance of the regression);

by all indications, the regression is significant and should be accepted. Replicate data

allows error to be partitioned from lack-of-fit and, by forming an F ratio of the vari

ance for lack-of-fit to the variance for experimental error, the significance of the lack-

of-fit may be judged with respect to the errors in the measurements. Here, the lack-

of-fit is found to be implying that the model should be rejected (even

The computed F ratio is 15.01 (= MSlof + MSem)r), which is greater than the critical value

(F10 12 01
= 4.296) so lack-of-fit is judged

"significant"

compared to the error.
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TOTAL (UNCORRECTED)

REGRESSION (DDE TO THE MEAN)

TOTAL (CORRECTED FOR THE MEAN)

REGRESSION (EXCLUDING THE MEAN)

RESIDUAL

ERROR

LACK-OF-FIT

CORRELATION COEFFICIENT

OF V A R I A N C E

RELATIVE SS DF MS=SS/DF

1.000000 24

.637562 1 4 86092E-07

.362438 23 1 20144E-08

.344065 1 2 62323E-07

.018374 22 6 36757E-10

.001360 12 8 64340E-11

.017013 10 1 29715E-09

DUE TO THE MEAN =
.6376

This implies that approximately 63.76% of the total variation in the

data is explained by a regression term representing the mean.

EXCLUDING THE MEAN =
.9493

This implies that approximately 94.93% of the remaining variation in

the data is explained by regression terms other than the mean.

F-TESTS FOR SIGNIFICANCE OF THE REGRESSION

DUE TO THE MEAN

F (observed) = REGRESSION_MS / TOTAL_MS = 40.46

F (critical) = F( 1, 23, .010)
= 7.881

F (observed) > F (critical) implies that a significant amount of

variation in the data is explained by a regression term

representing the mean. This term should not be rejected.

EXCLUDING THE MEAN

F (observed) = REGRESSION_MS / RESIDUAL_MS = 412.0

F (critical) = F< 1, 22, .010)
= 7.945

F (observed) > F (critical) implies that a significant amount of

the remaining variation in the data is explained by regression

terms other than the mean. These terms should not be rejected.

F-TEST FOR SIGNIFICANT LACK-OF-FIT

F (observed) = LOF_MS / ERROR_MS = 15.01

F (critical) = F( 10, 12, .010)
= 4.296

F (observed) > F (critical) implies that the lack-of-fit of the

model to the data is significant compared to the errors in the

measurements and that the model should be rejected.

Figure 27 ANOVA for a Model which is of the Wrong Form {Sample 3)
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though the other F tests show that the regression terms are "significant"). Had the

data set contained replications which had a greater variance (greater range of values),

then the lack-of-fit would have been less significant compared to these larger errors

and the chance of model rejection lessened. Experimental precision, not accuracy,

allowed the model to be diagnosed as inadequate.

Appendix 1 1 presents a full Melt analysis involving the same replicated data

which was used for Figure 27. MODEL 4 was used for the analysis presented in

Figure 27; MELT identifies MODEL 24 as optimum in Appendix 11.

Chi-square

Comparing the value of the chi-square merit function, %2, to the value of the
%2

distribution gives yet another indication of whether the model fits the data. The smal

ler the %2, the better the fit. The probability Q that the observed
%2

could even be

larger than its current value, and still be attributable only to chance (i.e., %2 may be

larger even for the correct model), may be defined78
as an incomplete gamma func

tion,

f \

v
X2

T

(
i

\

r

' X
n

I2;

i

Q *> =
(48)

where v is the number of degrees of freedom in the residual,
%2 is the observed chi-

square (merit function value), and T is the gamma function. The closer Q is to unity,

the more probable that the model is correct.

If Q is very small, then the errors are unlikely to be due to chance. It is more

likely that the model is wrong, or the stated experimental uncertainties are underes

timatedthey should really be larger. Truly wrong models will often result in
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Q 10"3; it is reasonable for real-world experimental data, using the correct model,

to result in Q > 10"1; Q ~ 1.0 is an indication that the stated experimental uncertain

ties are overestimated they should be smaller or possibly that the data is not the

result of
experiment.79An example chi-square analysis, for the data presented in

Figure 27, may be found on page 123 in Appendix 11.

As the number of degrees of freedom v becomes large, the
%2 distribution

becomes normally distributed with a mean of v. This suggests a goal of
%2

= v. If the

computed value of
%2 is smaller than v, the stated experimental uncertainties may be

too large (i.e., too conservative); too large a value of chi-square may simply indicate

a poor fit, or that the stated Arc; values are too small. When the other goodness-of-fit

measures are used, comparing
x2

to v is an excellent way to refine the estimates of the

experimental uncertainties, An;.
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Results

The null hypothesis [Figure 3, page 15] has been tested by watching for

significantly different "Error From Nominal"
when samples of the same melt,

but different annealings, are encountered. "Significant"
means that the curve shapes

are different. Simple vertical displacements from one another are insignificant; H0
assumes such an occurrence to be an expected result of annealing differences.

On the next pages, Figure 28 and Figure 29 summarize the characteristics of

two annealings of Ohara SFL6 glass.80

Comparing the middle plots of each Figure

reveals that the two curves are displaced from one another, and, more importantly,

they are not quite the same shape. To determine if the difference in shape is signifi

cant the two Figures are shifted vertically, with respect to one another, until the

middle plots intersect at X = 550 nm. The index at X = 450 nm (450) would be

0.000053 ( 0.000074) lower for anneal #314 (Figure 29) than for #313; n650 would

be 0.000030 ( 0.000070) higher for anneal #314 than for #313. These differences are

smaller than the 95% confidence intervals (shown in parenthesis) so the difference is

judged to be insignificant at this risk
level.**

Such results do not prove H0. All that can be said is that they do not disprove

it. A single counter example is all that would be necessary to reject H0 in favor of Hx.

Only 3 sets of have been encountered in 2 years of normal production at

our plant with which to test H0. On the basis of the data collected and reviewed so

far, it is not necessary to reject H0 in favor ofHv It is possible that a larger sampling

would have resulted in a different conclusion.

*

The middle plot generated by Melt [see Figure 14, page 40].

**

The intervals would be even larger if quoted to 99% confidence. Melt output that accompa

nies the summaries presented in Figure 28 and Figure 29 may be found in Appendix 12.

***

The two Ohara SFL6 examples shown here were drawn from a set of 15 different annealings of

the same melt. Other sets involving Ohara SFL03, and Schott ZKN7 were also evaluated. The

latter sets showed less variation between annealings than the example presented here.
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REFRACTOMETRY ANALYSIS
PART NUMBER: OG-3710

PROJECT NUMBER: unspecified

MFGR GLASS: OHARA SFL6

LOT NAME: unspecified

MATERIAL FORM:
SUPPLIER:
MELT NUMBER:
ANNEAL NUMBER:

PRESSINGS
OHARA-USA
J506B22

313

MELLES GRIOT - ROCHESTER. NY 02-19-90

INTERPOLATED

DESIGN REFRACTIVE

WAVELENGTH INDEX

.450000

.550000

.632800

.650000

1.840963

1.811991

1.799006

1.796970

5.0

~ 2.5

3 -o

-2.5

S-5.IM

5.0

2.5

5 -0

-2.5

-5.0J

.400

N NO + Bl + B2/Wt2

1.78E-01 = CHI-SQUARE

-*-

*- -v-*

v v v V DESIGN (95.OX)
* X * * EXPERIMENTAL

INTERPOLATED

NOMINAL

WAVELENGTH (microns)

Figure 28 Plot Showing Characteristics of Anneal #313 {Sample 4)
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REFRACTOMETRY ANALYSIS
PART NUMBER: OG-3710 MATERIAL FORM
PROJECT NUMBER: unspecified SUPPLIER:
MFGR GLASS: OHARA SFL6 MELT NUMBER:
LOT NAME: unspecified ANNEAL NUMBER:

PRESSINGS
OHARA-USA
J506B22
314

DESIGN
WAVELENGTH

. 450000

. 550000
. 632800
.650000

INTERPOLATED
REFRACTIVE

INDEX

1 . 840640
1.811721
1 . 79B762
1 .796730

Figure 29 Plot Showing Characteristics of Anneal #314 (Sample 5)
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Approximately 200 samples have

been analyzed by Melt in the two years

that it has been in use. From this broad

sampling of many glass types and melts, it

is possible to report which interpolation

models are used most frequently. This in

formation can be used to restrict the search

list (Melt's MODEL command), or as a

starting point in hand calculations.

The confidence level (Melt's RISK

command) impacts how often a model is

100-

80-

20-

1 1 1 1 1

12 3 4 5 6

Degrees of Freedom

Figure 30 Complexity Frequency

judged to be "best." Figure 7 [page 26] shows the relative frequency that models are

identified by Melt as being optimum at a 95% confidence level {RISK .05);

Figure 31 shows the same study conducted at the 99% confidence level. As the confi

dence of our conclusions is raised, the complexity of the model that can be defended

c
0)

_

50

40

30

20

10

Figure 31 Model Histogram at 99% Confidence Level
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is lowered. Figure 30 summarizes the frequency that models having 1, 2 and 3 de

grees of freedom are identified as optimum, with the confidence level as a parameter.

As 100% confidence in our conclusion is approached, the use of the simplest perturba

tion model [Eq. (25), page 25] becomes more and more likely. Models with 3 or

more degrees of freedom become less probable. Those with 2 occur most often, and

60% of the time regardless of the confidence level. MODEL 4 is the most frequently

occurring model having two degrees of freedom [Eq. (27), page 25].
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Annealing Effect on Dispersion

The observed variation of dispersion, from one annealing to another of samples

from the same melt, is insignificant compared to the experimental errors in the meas

urements. No reason has been found to believe that different annealings of the same

melt may have different partial dispersion properties. The principal annealing effect

has been observed to be a simple shift of the n(X) curve in the direction of the ordin

ate, n. Different partial dispersions have been observed from one melt to another of

the same glass type, however.

Interpolation Model

When fitting an equation to experimentally determined refractive index data,

optimum results are most often obtained by using a model that has only two degrees

of freedom. When an interpolation model of this complexity does not fit the data

well, it is most likely that a simpler model will be optimum a single term represent

ing a shift of the nominal curve. A more complex model is sometimes required, but

rarely are more than three degrees of freedom warranted. This is a fundamentally

different approach than is often taken. Fitting a general dispersion model, with up to

six degrees of freedom, can seldom be defended on the basis of test statistics when the

glass type under test has an expected
"nominal" dispersion function.

Suggestions for Further Work

Refractive index data should be reported at standard conditions of temperature,

pressure, and humidity. If the experiment cannot be performed under these conditions,

then the data should be corrected to report what would have occurred had standard en

vironmental conditions prevailed. Of the three, temperature is the most important.

Depending on the glass type, the wavelength, and the magnitude of the temperature,

An due to temperature change ranges from -0.000007/C (FK51) to +0.000017/C
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(SF11 and SF6) in the vicinity of 20C. If the laboratory varies by 5C, this can

obviously be a problem for 5th place refractometry. Not only is the absolute magni

tude of the data compromised, but so too is the partial dispersion since the temperature

coefficients are functions of wavelength. Melt should be modified to take these tem

perature coefficients of refractive index into

Implementation of the more conventional matrix approach, described in Appen

dix 8, would be advantageous for a couple reasons. For models that can be linearized

by a simple squaring variable transformation, multiple linear regression can yield es

timates of the standard errors of the model coefficients. The simplex algorithm is not

able to provide such estimates. Since all the dependent variable data is nearly the

same magnitude, this transformation would not have impacted the weighting too sev

erely. If the standard errors were made available, coefficients that do not significantly

impact the solution could be more easily spotted, making model assessment and mod

ification simpler to perform.

Even if the model were not easily linearized, the matrix approach could still be

used to generate starting points for final coefficient optimization by the simplex

method. As with all nonlinear algorithms, starting
"guesses" for the unknown coef

ficients are necessary. This is a difficult problem, generally, and can impact the

solution that is obtained if local extremes exist in the multidimensional space that the

merit function defines.

Finally, if the matrix algorithm were implemented in MELT to augment the

simplex routine, it would be possible to examine a greater number of models by using
the nested model assessment of Appendix 9. A model with six degrees of freedom

has 63 unique combinations of terms. It is not feasible to perform trial solutions for

all of them in a production environment where decisions must be made quickly.

This is more an effort of software development than research, requiring access to data files con

taining the dn/dT coefficients for every glass type from every manufacturer. Optical Research

Associates (Pasadena, CA) will be contacted to determine if Melt can gain access to the binary
data files that have been built for their CODE

V

optical design software.
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VI. Appendices

Appendix 1: Principal Dispersion Invariance with Annealing

Principal dispersion is the quantity nF-nc. When the Abbe number, Vd
[Eq. (16)], changes due to annealing the following example shows that the change is

due to a change in the quantity nd-l, not the quantity nF-nc:

For Schott LAK-N16 annealed 1C per
hour:81

And = -.001400 (which is -0.08% of nominal)

AVd = -.10 (which is -0.2% of nominal)

A(d-1) = -.001400 (which is -0.2% of nominal)

therefore,

A(nF-/ic) = 0.0

given that

vd = ("d-l)/(%-"c) (16)
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Appendix 2: Equivalency of Sellmeier & Kettler-Drude Series

Beginning with the Sellmeier series, Eq. (10), a substitution of an identity is

made that ultimately leads to the Kettler-Drude series, Eq. (11):

Proof:

Sellmeier

AX2

n2

= 1 + 1 + + 1 +

X - Aj X ~ Xj
( \ (

Kettler-Drude

= 1+Aj 1 + .

X\

A Aj
+ -+A. 1 + .

X2-X2t

= \+A,+
AA
x2-x2

+ +A.+ .

''
X2-X2t

AXX\
AX2

= l+Al + -+A! + - + ___ + + __-__ + .

;

X2-X\
X2-X2

_,
B

=
_0+ !_ + +

X - Aj X ~ Xj

Since
_0

= l+Aj+A2 + -+i4;. + -, and

Bj =
AyX2

fox j*0,

And

A -At

= 1 + .

X Xi
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Appendix 3: Gaertner LI23 Spectrometer

The instrument shown in Figure 5 [page 16] was acquired by Melles Griot with

the help ofMr. Novak. The manufacturer reports that it is approximately 50 years
old.82 It was in good overall condition when aquired, though the divided circle was

in poor shape: the scale was so tarnished that it was unreadable. This required

immediate attention since the divided circle is of prime importance to any spectrome

ter.

Accuracy

The L123 spectrometer utilizes two microscopes to view the divided circle.

They are
180

opposed to one another so that errors caused by the residual eccentricity
and ellipticity of the divided circle, with respect to the axis of rotation, are eliminat

ed83 [see page 37].

The divided circle is marked with a division every 10 arc minutes. Each

microscope is equipped with a filar eyepiece which further divides the 10 arc minute

distance between engravings. There is one division every 1 arc minute in the filar

eyepiece. The knob of each eyepiece is also divided, with one scale division every 5

arc seconds. As it is possible to estimate between divisions, the accuracy in determin

ing the spectrometer's rotational setting is at

least 2.5 arc seconds. Appendix 4 shows

that this provides the instrument with the

ability to determine refractive index to

0.000020 for samples of index 1.5, and

0.000031 for samples of index 1.8.

Refurbishment

The filar eyepieces were so gummed-

up that they were unusable. Both had to be

Figure 32 Filar Eyepiece
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disassembled and lubricated. Both microscope assemblies required disassembly,

cleaning, and magnification adjustment.

The delicate nature of the divided scale complicated the tarnish situation. The

scale must be touched to clean it, but to touch it risks damaging it. The 10 arc minute

divisions are so lightly engraved that use of even the finest abrasive was out of the

question. A metal cleaner by the trade name of
"Flitz"

was used. It is not abrasive,

nor does it have a strong pH. "Birchwood-Casey Blue & Rust Remover", which is a

mild solution of phosphoric acid, was used on areas of the scale where a stronger

cleaner was required. Great care must be exercised to neutralize the acid solution

before the delicate scale divisions are etched away. These operations were performed

under a stereo microscope.

Deficiencies

The LI23 is not of an optimal design for refractometry. When measuringD^

of a
60

sample, having an index of 1.8, one of the two divided circle microscopes

was inaccessible. A right angle viewfinder was adapted to the filar eyepiece to elimi

nate this flaw.

More serious is the poorly chosen placement of the divided circle. This

170 mm diameter angular scale is attached to the underside of the prism table instead

of being buried deep within the instrument's
base."

As the prism table is rotated, so

does the divided circle. This makes the measurement of Z),^ much more tedious than

it would have been had the divided circle remained stationary with prism table rota

tion. To determine >_;, two angular measurements are made: the telescope is swung

into position to measure the undeviated ray path, and then into a second position to

measure the path of the rays deviated by the refraction of the prism. The angle Dmin is

obtained by subtraction of these two measurements. The design of the LI23 makes it

*

The design of the instrument allows the operator to touch the delicate scale during routine

operation. A protective cover needs to be fabricated to protect it from soiling by finger prints.
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necessary to repeat the measurement of the undeviated ray path for every A since the

prism table must be rotated to a different position. If the divided circle were not

attached to the prism table, a single measurement of the undeviated ray path could be

made and used for all A. This flaw seriously impacts the operating cost in a commer

cial setting.

Longhurst84
and Tilton recommend measuring 2Dndn by setting up the mini

mum deviation condition twice. The sample is placed on the prism table so that the

spectrometer's axis intersects its center. After measuring the path of the rays deviated

refraction, the prism table is rotated so that rays from the collimator are incident on

the other face. The measurement is repeated; subtraction of the two yields twice the

minimum deviation angle, 2Dmin. No direct measurement of the undeviated ray path is

made. Further, two regions of the divided scale are used, and the orientation of the

sample for minimum deviation is repeated. These practices increase the precision of

the resulting data.

It is not possible to measure 2D_jn with the L123 since the divided scale is

attached to the bottom of the prism table. The more direct approach of measuring the

deviated and undeviated ray paths must be exercised. The same number of scale read

ings must be made using either method, but the latter only involves setting the prism

up once for minimum deviation.

The Gauss eyepiece on the observa

tion telescope was inadequate for autocol-

limation off the prism faces (to determine

a). An Abbe-Lamont autocollimating eye

piece is used
instead.85 It has two reticle

lines that intersect at
30 in the center of the

field of view. An object is introduced from

slightly off-axis; the return image will also

be slightly off-axis, but on the other side of

the reticle intersection point. Both may be Fjgure 33 Abbe-Lamont Eyepiece
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adjusted to be off-axis by the same amount to high accuracy by rotating the sample or

the telescope. The lOx magnification of the eyepiece is barely adequate, however. No

higher magnification is available from the manufacturer, and the tube diameter is non

standard making the introduction of a 20-25x eyepiece difficult to accomplish.

Sources

The visible spectral range is well covered by 3 elements: Cd, He, and Hg.

Using only those lines listed below having Fraunhofer designations results in seven

data points with approximately 50 nm between each. The full list was used for the

example presented in Appendix 11.

Spectral Lines for the Visible Spectrum

Wavelength Fraunhofer Element Visual Appearance

0.404656 nm h Hg Deep Violet

0.435834 um g Hg Blue

0.467815 um Cd Blue

0.479991 ^m
F' Cd Cyan

0.508582 um Cd Green

0.546074 |im e Hg Lime Green

0.576959 um Hg Yellow

0.579065 ujn Hg Yellow

0.587562 \im d He Orange

0.643847 |im C Cd Red

0.667815 nm He Bright Red

0.706519 |im r He Dim Red
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It is difficult to see the h- and r-lines due to the low human visual response at these

wavelengths. Caution should be exercised when using the Hg lamp: an ultraviolet cut

off filter must be used to prevent damage to the eye by invisible UV emission.

Adjustment & Operational Procedure

The following guidelines should be followed when operating the Gaertner LI23

as a refractometer:

Eyepiece Focus

Focus the Abbe-Lamont eyepiece on the reticles.

Telescope Focus

Autocollimate off of a prism, or any convenient auxiliary mirror, that is known

to be flat to A/8 or better, and adjust the focus of the telescope so that the

return image of the reticle is sharp.

Collimator Focus

Remove the auxiliary mirror and rotate the telescope so that it views the image

of the slit as projected by the collimator. Adjust the collimator focus until the

slit image is sharp at the same time that the eyepiece reticle is sharp.

Telescope Perpendicularity with Prism Table Axis

Place a plane parallel piece of glass on the prism table approximately vertical

(parallel to the rotation axis of the spectrometer). The reticle image should be

visible when autocollimating off of either face of the plane parallel plate.

Adjust the prism table tilt and the tilt of the telescope (perpendicular to the

prism table plane) so that the reticle image is the same regardless of prism

table rotation. This must be done iteratively. It is not a permanent adjustment

and must be repeated periodically. Proceed as follows:
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(a) Center the image of the reticle reflected by the first face; (b) Rotate
the prism table 180 the image reflected from the second face will be
at a different height in the field; (c) Adjust the prism table leveling
screws to reduce the error by 1/2, and men adjust the telescope tilt so

that the reticles are now centered; (d) Rotate the prism table another
180

and repeat the procedure until the reticle image remains centered
regardless of prism table rotation.

Collimator Axis Parallelism to the Telescope

The height of the collimator, relative to the telescope, is not sensitive. It may
be judged visually by sighting along the prism table surface to first the tele
scope and then the collimator. Adjust the collimator so that it is at the same
height as the telescope.

To adjust the collimator's tilt, move the step aperture on the slit assembly to its
smallest dimension and make the slit reasonably narrow. Remove the plane
parallel plate from the prism table and set the telescope

180 from the collima

tor.

Adjust the collimator tilt, in the plane perpendicular to the prism table plane, so

that the image of the slit is centered in the field of view.

Prism Table Tilt for Sample Prism

The two polished faces need to be parallel to the spectrometer's rotation axis.

If the base of the prism is not pre

cisely perpendicular to the polished

faces, the prism table must be tilted

to compensate.

Wax the prism sample to the prism

table so that one face approximately
intersects the rotation axis and so

that the faces are perpendicular to a

line drawn between the prism table

adjustment screws. In the diagram

to the right, line AC intersects XY at

a right angle, as does BC intersect

XZ perpendicularly. Faces AC and

BC are polished; AB is fine ground. Figure 34 Sample Adjustment
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Rotate the prism table, or the telescope, to autocollimate off of face AC and

use the prism table adjustment screw at X (or Y) to adjust the tilt of the prism

so that the reticle is centered.

Rotate to autocollimate off of face BC and use the screw at Z to adjust. Do
not use the screw at X. Repeat until the return image remains centered.

The method just described is more linear than an alternate procedure which be
gins by centering the prism above the rotation axis of the spectrometer. Fewer
iterations will be required to converge on a solution for the tilt of the prism
table when following this method.

Measurement of the Prism Angle

Autocollimate off of each of the polished faces of the prism sample and record

the readings on a data sheet, like the one shown on the next page. The divided
circle is examined twice for each prism face, first with the microscope desig
nated as "1", and then with "2". These data are recorded in the boxes of the

same name. It is not important that the two readings differ by precisely 180.

When making measurements of the divided circle with the filar eyepieces,
proceed as follows:

Move the filar eyepiece pointer so that it is superimposed on the zero

minute point in the visual field. Read the pointer on the knob (it

probably will not read zero seconds); note where zero is. If the knob

is pointed to 20 seconds, then the 25 second point on the knob would

be 5 seconds; 15 would be 55 seconds from the previous arc minute.

This practice is necessary in order to resolve any ambiguity that arises

when taking data since it is often difficult to assess whether or not the

pointer is before the minute mark or after. When close to the minute

mark, the knob graduations must be consulted to know for certain what

the minute reading is. Errors in the data of one arc minute are easily
made if this procedure is not followed.

Use the HP-41C program Aton [Appendix 6, page 92] to fill-in the data sheet

boxes labeled
"AVG" (average). After both scale readings for the second face

have been input,
"DIF"

(difference) is also displayed. It is convenient to write

the quantity 6,-62-180 in the empty space between the boxes labeled "1" and
"2" (this quantity should be nearly the same for all measurements if no scale

reading errors have been made). Press the A-key to save the angle (displayed

as "DIF') as the prism angle, a.
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Refractometry Data

Date: Glass:

Part Num:

Lot:

Melt:

Prism Angle
Anneal:

Face 1

Face 2

1

AVG

2

DIF

1

AVG

2

Spectral Data

D

Undev.

1

AVG

2

DIF

1

AVG

2

Computed n: Expected n: = bn:
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Data reduction with the HP-41C program should not be postponed. It is best to
compute all angles as the experiment is performed so that potential scale read

ing errors may be spotted and corrected.

It is also good practice to repeat this measurement, at the conclusion of the

session, to further refine the estimate of Appendix 4 [page 85] shows that
uncertainty in a has a much greater impact on the computed index than uncer

tainty in Dmin.

Measurement of the Minimum Deviation Angle

Install the desired spectral lamp and rotate the prism and observation telescope

into positions for minimum deviation refraction through the sample. Following
refraction, the source spectra will be dispersed into separate lines. Identify the
line of interest.

While watching the image of the slit with the telescope, use the tangent screw

adjustment on the prism table and rotate the prism table to the position where

the image of the slit slows down, stops, and then goes the other way. This is

the minimum deviation position.

Center the reticle of the Abbe-Lamont telescope eyepiece on the slit image.

Read the divided scale with the two measurement microscopes and their filar

eyepieces. Record the raw scale readings in the boxes labeled
"1"

and "2", as
done for the measurement of a, and then use Aton to compute

"AVG"
and

"DIF". The latter value is _>min;
press the B-key to save it.

As before, watch for unusual values for the quantity 0,-62-18O. When the

same region of the divided scale is continually used, this quantity should

remain fairly constant. A large difference from previous values may be

indicative of a scale reading error.

Computed Index

All that remains is to press the C-key. Aton will pass to Adn, which will

compute n using the spectrometer formula, Eq. (35).

If a better estimate of a becomes available after the raw angular data is reduced to n with

ATON, the Melt command ANGLE may be used to recompute the experimental values of n

based on the new value of a. The values of n are not affected equally by such a change in a.
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Appendix 4: Index Uncertainty due to Angular Uncertainty
Appendix 3 indicates that the Gaertner LI23 is able to measure angles to 2.5

arc seconds. The prism angle a is the difference of two such readings, so the uncer

tainty in a is 5.0 arc seconds. Two readings are also made and subtracted for _>min;

it has an uncertainty of 5.0 arc seconds as well.

It is presently of interest to determine how this angular uncertainty propagates

into uncertainty in the computed index n. For 5th place refractometry, the main

contributions are:

uncertainty in the prism angle a due to goniometric limitations;

uncertainty in the prism angle due to prism face curvature (Appendix 5
discusses localized changes in a, and how prism placement on the

spectrometer's prism table changes the effect on computed index);

uncertainty in the measurement of the angle of minimum deviation,
Anin-

Error Propagation of Angular Measurement Uncertainty into An

Sample index, n 1.4 1.5 1.6 1.7 1.8 1.9

Prism Angle, a 71 67 64 61 58 56

Min. Deviation, _ min

3746'37.6" 4446'6.1" 5157'42.0" 5816'6.0" 6332'16.2" 7015'1.0"

An for Act of 5" +0.000012 0.000015 0.000019 0.000023 0.000027 0.000032

AnforADminof5" 0.000012 0.000012 0.000012 0.000012 0.000012 0.000012

An for Prism Face Curvature
of X/4 (X = 0.5461 nm) over

20 mm Causing Act (Prism
Positioned*

to 1 mm)

0.000004 0.000005 0.000006 0.000008 0.000009 0.000011

Combined An (RSS) 0.000017 0.000020 0.000023 0.000027 0.000031 0.000036

"Positioned"

means that the prism is placed on the prism table such that the same region of

each face is used for the measurement of _ min
as for the measurement of a. For placement

errors larger than 1.0 mm, An may exceed the value shown since Act may be relatively large

with the polish specification of A/4.
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Appendix 4: uncertainty

If the polish of the prism faces were allowed to be worse than the X/A value

given above, finding a compromise focus position for the telescope to allow the accur

ate measurement of a by autocollimation could be difficult; one face might be con

vex, and the other concave. For this reason, the polish specification is held to X/A

over 20 mm, and the accuracy with which the prism is centered on the prism table is

relaxed. For 5th place refractometry, positioning is required to only 1 mm rather

than 0.1 mm.

While it is possible that all components of An could take on their extreme val

ues and add unfavorably to cause a combined An equal to the sum of the absolute val

ues of the individual effects, this is not likely to occur. It is more probable that the

combined uncertainty will be of a magnitude given by the root sum of squares (RSS)

combination of all
components,86

a"rss ^A 2 (52)

NJ k=l

86



Appendix 5: prism curvature

Appendix 5: Sample Curvature Effect on Measured Prism Angle a

The spectrometer projects a collimated image of the slit into the space occupied

by the prism sample. In the plane of the refraction, this collimated beam is narrow;

in the orthogonal plane, parallel to the spectrometer's rotation axis, the beam is the

same width as the collimator output aperture. The beam is narrow in the direction of

the refraction since the slit is relatively wide in comparison to the wavelength of the

illuminating radiation.

Diffraction of radiation through a slit is described by the well-known equa

tion,87

/ = I0 __. , where
P2

(53)
a Tld . A
p = SU10K

X

In the far field, the intensity drops to zero for values of P that are integer multiples of

K. To capture the central lobe of this pattern, which contains most of the energy, it is

necessary that the collimator accept at least 90, the value of 0 to the first zero

(where P = n). This is not a difficult constraint to meet. Usually, the problem is

one of under-filling, rather than over-filling, the aperture of the collimator.

The narrower the slit width d, the larger the angle 90. A typical slit width in a

spectrometer is 150 ]im. At a wavelength of 0.5461 um, 0O would be 12.5 minutes of

arc
(J/135).*

This under-fills an f/10 collimator severely. If it has a 25.4 mm output

aperture, the collimated beam dimensions in prism-space will be 25.4 mm x 1.8 mm.

The limited size of the beam in the direction of refraction will make the computed

value of n vulnerable to localized differences in the prism angle a. It is very impor

tant that the same region of the faces be used during the determination of>_; as was

used in the measurement of the prism angle a.

As a rule-of-thumb, the //number that the central lobe is diffracted into is approximately equal

to the slit width in microns (when X = 0.500 |im).
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Appendix 5: prism curvature

Prism sample face curvature can give

rise to a localized change in the prism an

gle, as exaggerated in Figure 35; rx, is not

the same as av This change in angle, Aoc,

may be quantified in terms of the face cur

vature.

To the optician, spherical departure

from flatness is best expressed in terms of

the sagittal distance z from a tangent plane

to the surface. This distance z is most often
Figure 35 Curved Prism Faces

expressed m units of wavelengths, and is

called the
"sag"

of the surface. It may be computed as88

z = rsign(r)y
r2-y2

,

(54)

though this may numerically fail for r2 y2. Alternatively, with c = 1/r, the
"-"

root

may expanded into the
series89

z = y2c\ly4c\h3y6c\l-3-5y*c\ (55)
21!! 222! 233! 244!

which, in the limit as y or c approach zero, reduces to simply

z=l (56)

The angle of incidence at a spherical surface, for a ray parallel to the axis of

the surface, is given by
sin/ = yc .

(^7)
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Rearranging Eq. (56) and substituting it in place of yc in Eq. (57) yields an expression
for the angle of incidence based on the spherical sagittal departure z from a plane, a

distance y from the point of tangency,

sin/ = _ . (58)
y

Finally, the sine of / is equal to / itself (units of radians) as Z->0, reducing the expres

sion to

/=__.. (59)
y

The sagittal departure z is often expressed in units of wavelengths (z = mX). For m
"waves"

of departure from a plane, the angle of incidence at a spherical surface is

therefore given by

/=__.._____ . (60)
y y

This result is different by a factor of two from that obtained recently by
Tentori & Lerma,90

where they report the localized change in angle of incidence to

be

j =
z
=

mX
^ (61)

y y

a consequence of their linear model that uses the slope of a chord between the pole of

the sphere, and the point of intersection of the ray with the surface, to approximate the

derivitive. The slope of a tangent line to a sphere is fundamentally different from the

slope of a chord to the same point, even in the limit as the chord length approaches

zero. The chord model under-estimates the slope by a factor of two.

If the prism face is flat to A/8 over a 20 mm diameter at 0.5461 |im, this

means that the sagittal distance z from the tangent plane to the surface is 0.068 (im at

v of 10 mm. Equation (60) reveals that a 2.8 arc second change in a should be
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expected across the 20 mm
diameter.*

Larger or smaller values of z would simply

scale this value of Aoc: X/A over 20 mm would result in Act of 5.6 arc seconds, for

example.

There are two prism faces, not one. If both are slightly convex X/S over a

20 mm diameter at 0.5461 |Xm then Act is twice the value calculated for one surface

by eq. (60). If one face is convex and the other is concave, equal magnitudes of

departure from flatness will tend to cancel. This difference in surface curvature makes

it more difficult to find a single focus setting for the observation telescope with which

to autocollimate off the faces, however, so this is no remedy for prism sample face

flatness concerns.

A combination of strategies is necessary to overcome the impact of face curva

ture on the computed index. It is not feasible to polish the faces flat enough that a

random placement of the prism sample in the collimator beam will affect n by an in

significant amount. For example, a sample having n of 1.5 and a of
67 that has been

polished flat to X/S (X = 0.5461 |im) over a 10 mm diameter will have a Act of 1 arc

minutes from each 20 mm surface. If both faces are convex by this amount, this

would mean that a is 67 2 arc minutes, depending on where the prism is placed on

the prism
table!**

Care must be exercised to avoid using different regions of the

prism face for the measurement of a and _>_,. Careful placement of the sample on

the prism table [page 36], to approximately 0.1 mm, is necessary for 6th place

refractometry. Fortunately, 1 mm is sufficient for 5th place work. This is not a

difficult constraint to meet.

For prism samples having n of 1.5 to 1.8, it is recommend that the faces be

polished flat to X/A over a 20 mm diameter (X = 0.5461 um), and that the samples be

*

Tentori & Lerma's results would have been 1.4 arc seconds for the same values of X, z,

and v.

**

The computed index n is 1.500000 0.000360, by Eq. (35).
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positioned on the spectrometer's prism table so that the same region of the face is

used for the measurement of a as for D_jn to an accuracy of 1 mm [page 85].
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Appendix 6: Data Acquisition Software for HP-41C

This section assumes a familiarity with the 41C, and HP's RPN keyboard logic.

The program Aton calls the other two routines, Sad and Adn. To run ATON, simply

execute it from the keyboard: XEQ Aton. A listing for Aton is shown on page 95.

Angular input, and output, is in "hours, minutes, and
seconds"(HMS). The

format is "hh.mmsscc," where "hh" is the number of hours (degrees),
"mm" is the

number of minutes,
"ss"

the number of seconds, and
"cc"

the fractional seconds. For

example, 61.04593 would represent the angle
614'59.3"

of

ATON displays the following prompt above the keys labeled A, B, ... E:

A D N? 01 0;

A B C D E

a b d e

Prompt

Keys: do/save

Keys: delete

To compute n, the C-key is pressed. Before n may be computed, however, the prism

angle must be saved by pressing the A-key, and the minimum deviation angle must be

saved by pressing the B-key.

The prism angle is computed by keying in the divided scale reading from the

first microscope and pressing the D-key, and then keying the scale reading from the

second and pressing the E-key. Pressing the D- and E-keys saves the values; when

both have been entered, the computation may proceed.
"AVG" is displayed for the

form shown on page 83.

The process is repeated for the other prism face, keying in the two angles and

pressing the D- and E-keys. Now that two sets of readings have been entered,
"DIF'

is displayed by ATON too. This is the prism angle, a, in HMS notation. Press the

A-key to save it.

See the HP-41C manual for more information.
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Values that have been saved may be deleted by pressing the second function of

the key. For example, to delete an erroneous entry that was just made for 0j by
pressing the D-key, press the d-key (the "gold" key followed by the D-key).

The same procedure is followed to compute the minimum deviation angle.

After entering two sets of readings for 0j and 02, "DIF' is again displayed. This is

D^ in HMS notation. Press the B-key to save it.

Now that Aton has saved the value of a and Z)^, n may be computed by

pressing the C-key. This passes control to the program Adn. Pressing R/S at Adn's

prompt returns control back to Aton.

Adn is written in the interchangeable solution format, where all but one of the

parameters is supplied (by keying the value and pressing the key under the prompt)

and the missing one is computed. What if? questions are easily answered with such a

routine. The spectrometer formula is simply rearranged to provide solutions for a and

n. Successive approximation is used to solve for Dmin if it is the missing parameter.

Adn is listed on page 96.

The remainder of the routines in this Appendix are subroutines called by ATON

and Adn:

Sad Passed raw scale readings from the two microscopes, and the last aver

age (of the previous readings). Returns the average of the two scale

readings (less 180), and the difference between this average and the

last average. All angles are in HMS.

HMS/ Division of angles in HMS.

HMS* Multiplication of angles in HMS.

TOL The display format of the calculator is used to determine the tolerance

on iterative solutions (to Z)^ in this case). If 6 places after the decimal

are displayed, then TOL returns 1 x 10"6, for example.

Out Displays output at the LCD or printer, depending on hardware.
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MLSOL Solution to f(x) = 0 by modified linear interpolation.91 The tolerance

on the approximation (from a prior call to Tol), two guesses, and the

name of the function being solved are passed.

X3 Linear interpolation is performed. Two points are passed. X3 returns

the value of x for which it predicts that y will equal zero.

$CM Command processor; this routine provides the saving, deleting, and
pointer logic for the interchangeable solution class of programs to which

Aton and Adn belong. On entry, the prompt and the number of para

meters is passed. On return, the tolerance (from a call to TOL), and the
pointer to the missing parameter are passed back. Synthetic instructions

are to pass the subroutine return stack around the keyboard
input.92

"Synthetic"

refers to the fact that the IflMlC's keyboard logic will prevent the entry of some

of the instructions used in this subroutine (such as
"RCL

f'
and "STO b"). Synthetic instruc

tions are used to save the return stack from destruction by the keyboard entry ofXEQ A

through XEQ e. This allows control to be passed back to the caller following this keyboard

intervention, which is normally impossible.
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61+LBL -PTOH-

62 CLX
63 STO Bb

64 STO 67

65 XOF

86 SF 67
87 SF 21
88 SF 27
09+LBL 14

16 FIX 5
11 -fl D H? n i2"

12 PROMPT

13 CF 85
14 GTO 12
15+LBL fl

16 STO 86
17 SF 86
18 CF 65
19 GTO 14
28+LBL a

21 CF 88

22 GTO 14

23+LBL B
24 STO 81
25 SF 81
26 CF 65
27 GTO 14
28+LBL b

29 CF 01
38 GTO 14
31+LBL C
32 FIX 6
33 XEQ "TOL"

34 XEQ "ABN"

35 CF 65
36 SF 21
37 GTO 14

33+LBL D
39 STO 63

46 SF 03
41 GTO 13

42+LBL d
43 CF 83
44 GTO 14

45+LBL E
46 STO 64

47 SF 64

48 GTO 13
49*LBL e

50 CF 84
_____

84
14

51 GTO 14
52+LBL 13
53 FC? 83
54 GTO 14

55 FC?

56 GTO
57 RCL 63
58 RCL 84

59 X>?

68 XOY
61 HMS-

62 flBV

63 FC 55
64 CF 21
65 -i-2="

66 ARCL X
67 HVIEW
68 188

69 XOY

78 HHS-

71 SF 21
72 --188=

73 flRCL X
74 RVIEU

75 RCL 85

76 RCL 04

77 RCL 83

78 XEQ "SAB"

79 STO 65

88 -AVG=-

81 flRCL X

82 AVIEK

83 FC? 65

84 GTO 13

85 XOY

86 -DIF-"

87 flRCL X

83 flVIEH

89 GTO 12
98+LBL 13

91 SF 85
92H.BL 12

93 CF 03

94 CF 84

95 GTO 14

96 .END.
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01+LBL "ABN"

02+LBL 14
83 -2

84 FC? 87
85 GTO 15

66 CHS
67 GTO 12
88*LBL 15
89 "fl B N"

16 XEQ "$CR"

11 X<8?
12 GTO i3
13+LBL 12
14 STO 89
15 GTO INB X
16+LBL 88
17 RCL 81

18 HR
19 2
26 /

21 EHTERt

22 SIN

23 RCL 02
24 RCL Z
25 COS
26
27 f

28 ATAN
29 ST+ X
30 HMS
31 GTO 89

32+LBL 81

33 38
34 ENTERt
"Jt; 75J-j iJ

36 RCL 18
37 "EE"

38 CF 21
39 XEQ

HLSOL-

48 HAS

41 CLB
42 FS? 85
43 SF 21
44 GTO 09
45+LBL 02

46 XEQ 82
47 GTO 09
48+LBL "EE"

49 HMS
58 STO 01

51 XEQ 02

52 RCL 02
53
54 RTN
55+LBL 82
56 RCL 88
57 RCL 81

58 HHS+

59 HR
66 2
61 /

62 SIN

63 RCL 88
64 HR
65 2
66

/'

67 SIN
68 /

69 RTN
78+LBL 13
71 FS? 87
72 RTN
73 GTO 14

74+LBL 89
75 ABV
76 STO INB 89

77 .882

78 STO 89
79 "A"

86 XEQ 08
81 "D-

32 XEQ 03
83 "N"

84+LBL 08
85 FC? INB 89
86 SF 21
87 RCL INB 89
83 XEQ "OUT"

89 ISG 89

98 RTN
91 2
92 GTO 15

93 .END.

96



Appendix 6: HP41C

81+LBL "SAB"

62 HHS+

93 366
84 X>Y?
85 GTO 13
66 2
87 /

88 HHS-

89 GTO 12

18*LBL 13

11 2
12 /

13 HilSt

14*LBL 12

15 2
16 XEQ "HHS/"

17 EHTERt

18 EHTERt

19 RCL T
26 HHS-

21 XOY
22 .END.

81+LBL "HHS*"

82 XEQ 01
03 ST* Y

84 GTO 88
65*LBL

"HMS/"

66 XEQ 81

87 ST/ Y
63LBL 08

09 HHS
16 XOY

11 HHS
12 STO L
13 CLX
14 RCL T
15 RBN

16 XO L

17 RTN

1S+LBL 01

19 XOY

20 HR
21 XOY

22 HR
23 EHB

B1H.BL

82 "F="

83 XES "FHT"

04 ARCL X

05 AVIEH

06 CF 21
07 FS? 85
83 SF 21
89 EHB

81*LBL "X3"

82 ST- Z
83 XOY
04 ST- T
85 XOY

86 RBN
87 RBN
88
89 *

10
11 END
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6ULBL "HLSOL"

02 ASTC 11
03 STO 14

84 RDH
85 STO 13
06 XOY
87 STO 12
88 XEQ INB 11

89 STO 15
18 STO 16
11 RCL 13
12 XEQ INB 11

13 STO 17
14*LBL 15
15 RCL 12
16 RCL 16
17 RCL 13
18 RCL 17

19 XEQ "X3"

28 STO 13
21 VIEW X
22 XEQ IND 11

23 STO 19
24 SIGh
25 RCL 16
26 SIGt
27

X*Y'

28 GTO 14

29 RCL 18

38 STO 12
31 RCL 19

32 STO 16

33 SIGh
34 RCL 15

35 SIGh1
36 x*r>

37 GTO 13
33 2
39 ST/ 17

48 GTO 13
41+LBL 14
42 RCL 13
43 STO 13
44 RCL 19
45 STO 17
46 SIG*

47 RCL 15

48 SIGf

49 x*r
56 GTO 13

51 2
52 ST/ 16
53+LBL 13
54 RCL 14
55 RCL 19
56 STO 15
57 BBS
58 X>Y?
59 GTO 15
68 RCL 18
61 END

euLBL -ten-

02 BSTO 18
03 ASHF
04 ASTO 11
85+LBL 14

86 STO 89

07 X>8">

68 GTO 15
69 CHS
18 STO 89
11 CF 68
12 CF 61
13 CF 62
14 CF 83

15 CF 84

16 CF 85
17 FS? 21

18 SF 65
19+LBL 15
20 SF 86
21 CF 21
22 CF 22
23 SF 27
24 CLA
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25 ARCL 10
26 ARCL 11
27 AVI EH
28 RCL a

29 STO \

38 RCL b
31 FC?C 86
32 GTO 18

33 STO C
34 CLST
35 STOP
36 -1

37 FS? 65
33 SF 21
39 RTN
48+LBL a

41 CF 80
42 GTO
43+LBL
44 CF 01

45 GTO 11
46+LBL c

47 CF 62
48 GTO
49+LBL
58 CF 63

11
b

11
d

51 GTO 11

52+LBL c

53 CF 84

54 GTO 11
55+LBL A
56 6
57 GTO 12
58+LBL B
59 1
66 GTO 12
61*LBL C
62 2
63 GTO 12
64+LBL D
65 3
66 GTO 12

67+LBL E
68 4
69*LBL 12
76 XOY

71 SF INB Y
72 FS?C 22
73 STO INB Y
74*LBL 11

75 RCL \

76 STO a

77 RCL [
78 STO b
79+LBL 18
88 CLST
81 RCL 69
82 I E3
07 J
GO '

84 0
85 EHTERt
86 1
87 FS? 85
88 SF 21
89+LBL 89
98 FS? INB Z
91 ST+ Y

92 ISG Z
93 GTO 89
94 CLX
95 RCL 89
96 X*Y?
97 GTO 15
98 CF 27
99 XEQ "TOL"

188 STO 18
181 RCL 89
162*LBL 88
183 FC? INB X
164 RTN
185 BSE X
186 GTO 68
167 .EHB.
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Appendix 7: MELT User's Manual

MELT uses data describing the refractive behavior of a sample of optical glass

and fits a dispersion curve to it using nonlinear least squares techniques. This

dispersion curve is used to estimate the refractive index at the design wavelengths of

an optical system.

Syntax Rules

MELT parses input into "tokens"

that are separated by delimiters. Spaces, a

tab, comma, or slash may act as a delimiter. There are three types of tokens: text,

real, and integer. There are different rules for each.

Any character is valid in a text string. If text strings contain multiple words,

the string should be enclosed by quotes (single or double) so that the individual words

are not treated as separate and distinct tokens. If the string contains a quote, then the

other type of quote character should be used to surround the entire string.

Real-valued tokens (floating-point numbers) may not contain any alphabetic

character other than
"E"

or
"D" (for exponential notation, e.g. 1.5e-5). The parser

supports double-precision reals, but most are rounded to single-precision after parsing.

Integer tokens are parsed as reals and then truncated to integers.

Comments may be placed anywhere in Melt files by preceding them with the

"!"
character. All text following this character is ignored by the command parser.

Files and Locations

MELT.EXE Executable file. Must either be in the current directory or in the

operating system's search path.

MELT.ERR Text file containing error code message text. Located in current

directory.

input.MEL Sample-specific file ofMelt commands [see Figure 16, page 44,
for an example]. Created with any text editor. The full path

name (or a simple filename if in the current directory) is the first
command line argument.
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MELT.MEL Setup file containing sample-unspecific Melt commands [see
Figure 17, page 44]. Located in current directory.

HISTORY.MEL Text file keeping track of how frequently a particular model is
used. Default location is in the current directory. The filename
and location may be changed by using the HISTORY FILE
command.

MELTHIST.TXT Text file keeping track of what model was used for each
"input.MEL" file.

SCHOTT.TXT Text file containing the manufacturer's coefficients A0, Ax, ..., A5
in column-oriented Fortran "1A6,F9.7,5E13.7" format. This file
is selected by specifying

"SCHOTT"
with the MANUFACTUR

ER command (which is the default if none is specified). The file
is located in the directory given by the CATALOG command.

OHARA.TXT Used instead of SCHOTT.TXT ifMANUFACTURER OHARA is
specified.

HOYA.TXT Used instead of SCHOTT.TXT ifMANUFACTURER HOYA is
specified.

SOVIREL.TXT Used instead of SCHOTT.TXT ifMANUFACTURER SOVIREL
is specified.

CHANCE.TXT Used instead of SCHOTT.TXT if MANUFACTURER CHANCE
is specified.

FKl 2 .9240937E -02 .8744977E -02 .2146362E
-03-

-04 -06

FK3 2 .8686857E -02 .9140119E -02
-03-

-06 -06

FK5 2 .9557201E -02 .8991523E -02
-03-

-05 -06

FK51 2 .5365879E -02 .7743655E -02
-03-

-05 -06

FK52 2 -02 .8107489E -02
-03-

-05 -06

PK1 2 -01 -01
-03-

-06 -06

PK2 2 -01 -01
-03-

-04 -05

PK3 2 -01 -01
-03-

.
8919032E--05 -06

PK50 2 -02 -02
-03- -04 -06

PSK2 2 -01 -01
-03- -06 -06

PSK3 2 3768193- -01 -01 -03
-05-

-06

PSK50 2 3946348- -02 -01
-03-

-05 -06

PSK52 2 5342699- -01 -01
-03-

-04 -05

PSK53 2 5852417- -02 -01
-03- 04 -06

BK1 2 2513742- -02 -01
-03-

-04 -06

BK3 2 2184519- -01 -02
03- -05 -06

BK6 2 3125058- 9539879E--02 -01 -03 05 -06

BK7 2 2718929- 1010808E- 01 -01
-03- 05 -06

UBK7 2 2715621- 9857157E- 02 -01 03 05 -07

BK8 2 2804948- 9419053E- 02 -01 04
-04-

-06

BK10 2 2177191- 1024866E- 01 02 -03-

-05 -06

BK13 2 2839390- 1014860E- 01 -01 -03 05 -06

Figure 36 Partial Listing of SCHOTT.TXT
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When the READ command is used to insert a file's contents, the current direc

tory is searched. If it is not found, the directory specified with the CATALOG com

mand is searched. The file type ".MEL" is assumed if not specified. It is convenient

to create files of nominal index data (for X outside the range of the
manufacturers'

dispersion formula) in a subdirectory of the CATALOG directory. For example, if

CATALOG D:\SCIP\GLASDATA\ is specified, the command READ NOMINADLAF2

will insert the file "D:\SCIP\GLASDATA\NOMINAL\LAF2.MEL"
at that point,

assuming that
"LAF2.MEL" does not exist in the current directory.

! LAF2.MEL

BEGIN NOMINAL ! From Schott catalog
1.5296 1.71824
1.060 1.72565

END

Figure 37 D:\SCIP\GLASDATA\NOMINAL\LAF2.MEL

Command Syntax

When Melt is invoked, the name of the sample-specific file is given on the

command line. See Appendix 1 1 for a sample Melt analysis.

The minimum abbreviation for each of the following commands is given in

capital letters. Values in square brackets are optional. String lengths are given in

parenthesis:
"text(30)"

means a 30-character text string, for example. When multiple

arguments of the same type are allowed, as in a list, the maximum number is given in

parenthesis:
"real(7)"

means that seven floating-point numbers may be given with

each separated by a delimiter.

Replicated experimental data may be reported, where there are multiple data

points which have the same wavelength. The data will be sorted so that all points

with the same wavelength are grouped together.
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MELT Commands Providing Sample Identification & Description

Nouns Value Description and Defaults

PARt_number text(12) Part number that will be made from this material (optional).

PROject_number text(12) Project number that the part is associated with (optional).

GLAss_name text(12)
Name of the glass type under test. If the manufacturer's data dispersion formula
is used to supply the nominal indices, then GLASS_NAME must be specified. Be
aware that all glass names must be expressed in 6 characters or less.

MANufacturer text(12)

Name of the manufacturer: SCHOTT (the default), OHARA, etc. Used to form
the filenames SCHOTT.TXT, OHARA.TXT, etc., when the manufacturer's

dispersion constants are required to compute the nominal index. Use "SPECIAL"

for material like SILICA or DYNASIL.

MFGr text(12) Synonym for MANUFACTURER.

MELt_number text(12) The manufacturer's melt number (optional).

ANNeal_number text(12) The manufacturer's or supplier's anneal number (optional).

SUPplier text(12) Name of the supplier (optional).

VENdor text(12) Synonym for SUPPUER.

MATerial_form text(12) Form of the material: BLOCK, PRESSINGS, etc. (optional).

LOT_name text(12) The name or number assigned to this lot of glass (optional).

COMpany_name text(30) The name of your company (optional).

TEMperature real
Permits the temperature (C) at which the data was acquired to be recorded in the

file, but no use is made of this information as of revision 5.x ofMelt.

PREssure real

Permits the barometric pressure (mm Hg) at which the data was acquired to be

recorded in the file, but no use is made of this information as of revision 5.x of

Melt.

Melt Commands Controlling Input and Output

Noun/Verb Qualifiers Description and Defaults

CATalog text(63)

Drive and directory where SCHOTT.TXT, OHARA.TXT,
etc., may be found. By default, the current directory is
searched if these files are needed.

PLOt ON

HP7470A

HP7475A

HP7550A
[device(63)]

Enables plotting and sets the plot routines to output instruc

tions for the specified plotter. The optional device specifi

cation allows output to be sent directly to a device port. If

omitted, a file of plot commands is created in the same

directory as the file "input.MEL"

with the name base name

and different type:
"input.PLT'

PLOt OFF Turns plotting off (the default).
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Melt Commands Controlling Input and Output

Noun/Verb Qualifiers Description and Defaults

PLOt Wvl Just plot as a function of wavelength (default).

PLOt Freq Just plot as a function of frequency.

PLOt Wvl Freq Plot both by wavelength and by frequency.

PRInter ON
device

or

pathname

Send a copy of what was sent to the screen to the specified

device or file.

PRInter OFF No printed output (default).

SHOrt [Yes] Omit the chi-square analysis output and list of models from
the printed output

SHOrt No Include the full analysis (default).

FFEnd [Yes]
In a personal computer environment, the printed report
should be followed by a form-feed. This is not needed or
desired in a VAX/VMS environment

HIStory [Yes] Turn history file updating on.

HIStory No Turn history file updating off (default).

HIStory File pathname
Change the name or location of the history file (from HIS-

TORY.MEL in the current directory).

BATch [Yes]
Do not read the keyboard after MELT.MEL and
"input.MEL" have been read an implicit GO.

BATch No Reset to interactive (default).

BATch Check
Same as BATCH YES, except that the computations are
skipped syntax check only.

QUIt Abort back to the operating system.

END
If in the middle of a loop, the loop is terminated (see BE

GIN DATA and END DATA, etc.). If not in the middle of a

loop, then END is equivalent to GO.

GO Terminates keyboard entry and begins the computation.

REAd pathname

Inserts the contents of the specified file as if it had occurred

at the point where the READ was encountered. Nested

READ statements are illegal. See page 102.
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Melt Commands for Recording Experimental Results

Noun/Verb Qualifiers Description and Defaults

BEGin [DATa] Experimental (observed) data follows, one data point per
record, until END. Recorded in a sample-specific file.

BEGin NOMinal
Nominal (expected) data follows, one data point per record
until END. Usually put in an auxiliary file that is inserted

using the READ command.

BEGin FORmulas Model number to text translation follows, one model per
record until END. Usually put in MELT.MEL setup file.

BEGin fflStory

Historical data follows, one model per record until END.

Usually put in the file HISTORY.MEL, or some other

auxiliary file that is specified using the HISTORY FILE
command.

END [previous]

Ends the list that was started with the BEGIN command. If

in the middle of the experimental data list then END is
equivalent to END DATA; etc. When an END is not pend

ing for any list, END is equivalent to GO.

END DATa Explicitly BVT>s the DATA list

END NOMinal Explicitly ENDs the NOMINAL list

END FORmulas Explicitly ENDs the FORMULAS list.

END fflStory Explicitly ENDs the HISTORY list

ANGle old_angle new_angle

Changes the experimental data due to better information

about the prism angle a becoming available. Both "old"

and
"new"

are in HMS notation. For example, 60.26595

means 6026'59.5". This avoids having to use the HP41C
programs to recompute n if the prism angle is remeasured.

UNCertainty real

When some, but not all, experimental data points between

BEGIN DATA and END DATA include experimental un

certainties in n. this value is used as the default for points

where it is not given. There is no default for this default

If some points include uncertainties, then either all points

must, or this default must be nonzero.

ERRor_bar real Synonym for UNCERTAINTY.

FORMULAS Syntax Between BEGIN and END

Token #1 Token #2 Description and Defaults

model number text(72)

Token #1 is an integer. All text following the first token is taken to be token #2,
even if it is not enclosed in quotes. Token #2 shows the arithmetic formula used

as the model number that is given as token #1. WARNING: Melt is not compil

ing these formulas. They are just being taken as a text string.
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DATA Syntax Between BEGIN and END

Token #1 Token #2 Token #3 Token #4 Description and Defaults

explicit

wavelength

observed

index
[index

uncertainty]

[expected

index]

This option explicitly gives the wavelength X (in units
of microns), and the observed (experimental) index n.

The experimental uncertainty in index, An, is optionally
given as token #3, and the nominal index may be given

(optionally) as token #4. If token #3 is not given (or

zero), and the experimental uncertainty is needed for

weighting, then the value given by the UNCERTAINTY
command is used. If the expected index is given, the
manufacturer's dispersion formula will not be used'the
stated value will be used instead. All four tokens are
reals.

symbolic

wavelength

observed

index

[index

uncertainty]

[expected

index]

Same as the previous option, except that the first token
is alphabetic. This alphabetic token may be any of the

following, representing the standard Fraunhofer wave
lengths: i, h, g, F', F, e, d, D, C, C, r, s, t Note that

those involving a single quote must be enclosed by
double quotes (e.g., F' is expressed as "F"').

symbolic

dispersion

observed

dispersion

[index

uncertainty
of unknown]

[expected

index of

unknown]

Dispersion is the difference in index from one wave

length to another. Here, the wavelength and index are

specified indirectly as a difference from some prior data
point For example, if XA and /id have already been

given,
"d-C"

as token #1 is used to indicate that token
#2 is to be interpreted as nd-n0 allowing nc to be deter

mined. In this case, nc is the
"unknown" index. Some

vendors report refractometry data in this way so this
specification makes data entry from their data sheets

simple.

symbolic

departure
from

nominal

observed

departure

from
nominal

[index

uncertainty]

[expected

index]

Some manufacturers (e.g., Ohara) report refractometry
data as a departure from the nominal that is defined by
the dispersion formula. To indicate that token #2 is to
be interpreted in this way, the symbolic wavelength

designation of token #1 is specified as a difference with
itself. For example,

"d-d"
as token #1 means that token

#2 is to be interpreted as n(\,)-n0(Xd). Similarly for "C-
C", and so on.

NOMINAL Syntax Between BEGIN and END

Token #1 Token #2 Description and Defaults

explicit

wavelength

expected

index

This option explicitly gives the wavelength (in microns) and the index of refrac

tion reported by the manufacturer's catalog as the
"expected"

value at this wave

length. Values specified in this list will supersede any expected values that are

based on the manufacturer's dispersion formula. This is primarily used to specify
nominal values for wavelengths outside the domain of the dispersion formula.

symbolic

wavelength

expected

index

Same as above, except that one of the Fraunhofer designations is used as token #1

instead of a numeric wavelength.
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HISTORY Syntax Between BEGIN and END

Token #1

model number

Token #2

occurrences

Description and Defaults

Both tokens are integers. Token #2 is just a cumulative count of how often the

model number (token #1) was used since the history file was begun. Useful for

building a histogram.

MELT Commands Controlling Computational Modes & Methods

Noun Value Description and Defaults

WVL real(7)

Wavelengths, either explicitly given in microns or as symbolic Fraunhofer

designations, where the refractive index of the sample is desired. Multiple WVL

commands may be used to build a list, or up to 7 may be listed on a single line.

Explicit numeric values may be mixed with symbolic alphabetic values.

WAVelengths real(7) Synonym for WVL.

DESign_wvl real(7) Synonym for WVL.

INDex real(7)

Expected (nominal) indices for the wavelengths in the WVL list. By default, the
manufacturer's dispersion formula is used. The INDEX list supersedes the results

of evaluating the dispersion formula and must be used to specify the expected

index for elements of the WVL list that are outside the domain of the dispersion

formula. The INDEX list may be built with multiple commands, or up to 7

indices may be specified on one line. The order of entry must correspond to the

order of entry used for the WVL specification. If the interpolation model does not

rely on a known (expected) index, the INDEX specification may be omitted.

MTN_wvl real Beginning of the plotting interval. Default is 0.400 urn.

MAX_wvl real End of the plotting interval. Default is 0.700 urn.

CONvergence real
Tolerance on merit function values at the simplex vertices. Default is 0.0001;
smaller values make the algorithm work harder to find the minimum.

RISk real
Controls the width of the computed confidence intervals. Default is 0.05 for 5%

risk (95% confidence). Smaller values cause the confidence intervals to be wider.

MFType integer
1 = Weighted sum of squared residuals (the default); 2 = Weighted sum of

absolute deviations; 3 = Weighted maximum deviation; 4 = Chi-square. See

page 46 for a discussion of when to use one type instead of another.

MODel integer(list)

Models are hard-coded and are selected by number. If only a single model

number is given, it is simply used. If multiple model numbers are given, all are

tried and the
"best" is selected according to the criterion described on page 59.

The list may be built by specifying an arbitrary number of model numbers on a
line (80 characters per line maximum) and/or by specifying an arbitrary number of
MODEL commands. If model number

"0" is encountered in the list, the list is

flushed. MODEL 4 is the default The list of models may be found in the file

MELT.MEL, which is shown in Figure 17 and Figure 18 [page 44 and 45].
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Appendix 8: Matrix Algebra Approach

A matrix algebra approach could be used if the models were always linear in

their coefficients, or
"transformably" linear. Just such a method is multiple linear

regression. More than is given up by using the simplex algorithm rather than

this more traditional approach: as for all nonlinear methods, the simplex algorithm

requires initial starting
"guesses" for the unknown coefficients bk, and the standard

error of the coefficients (and other statistics) cannot be computed. The latter has

proven to be a serious drawback in assessing the resulting fit and in modifying the

model.

Most regression texts present a discussion of the standard error of the coeffi

cients, denoted "se^)", but some93 only cover the topic for the special case of a

simple linear model, y = mx + b, giving results in a form that yields no clue as to how

to extend the concept for more complex models. The general case is presently of in

terest; it requires a matrix approach to adequately describe it.

First, just why is se(Z^) of interest anyway? Suppose MODEL 32 is requested

ofMelt. This model is:

n{X) = nQ(X) ,1 +^ + __ + _i + __ + __ <62)

y\
X2 X4 X6 X"

If it is assumed that all these terms are unnecessary, which is very likely, which ones

should be omitted? There are 63 unique of terms; clearly, all cannot

*

Multiple linear regression is not an iterative process, like the simplex algorithm is. The

solution is obtained by solving a single matrix equation. The simplex algorithm uses successive

approximation to perform a multi-dimensional search for the optimum coefficients; zeroing in

on them is like spiraling down a hole with sides of varying steepness (the better the model, the

steeper the sides). Hundreds of iterations can be required to find the same solution that the

matrix approach can find directly.

**

For six terms, taken one at a time, there are 6 different combinations; 15 combinations when

taken 2 at a time; 20 when taken 3 at a time; 15 when taken 4 at a time; 6 taken 5 at a time;

and 1 taken 6 at a time.
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be attempted. By computing a t-ratio for each coefficient, those on which the solution

does not rely heavily may be identified.

h =

seN
(63)

When the value of the t-ratio is on the order of unity, or less, then the uncertainty in

the value of bk is as large, or larger, than bk itself. Intuitively, then, it makes sense to

attempt a new solution, this time omitting such coefficients from the model. General

ly, the simpler the model the better.

Xb = y, where

X =

xu xn X\k

X2\ x22 X1k
'"nm

*31 *32 *3*_.

Xj ,
*max

X 2
-'max

" Xi k
'max max

*1
fr,

6 =

(64)

J =

ma)

>2

>3

^
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But how are these se(frt) values computed? The problem needs to be cast into

the matrix
notation94

given by Eq. (64). Multiplying both sides of the equation by
Xr

yields the normal equations for the linear least squares problem,

XTy = {xTx)b .

<65>

To solve for the coefficient vector b, both sides are multiplied by the inverse of the

square matrix
XrX:*

b = {XTxYlXTy .

(66)

The standard error of the kth coefficient, bk, is a function of the Ath diagonal term of

the
(XTX)_1

matrix, and the standard deviation of the values of y about

(67)
*M = syA K- Ii)"1 fat

Neither of these equations are used in practice due to the numerical instability in

volved in the matrix inversion; X is typically poorly conditioned (nearly singular), so

it must be decomposed into factors which are better behaved and, preferably, easily

invertible. A more numerically-stable approach will now be described.

Matrix X, with dimensions ;max x fcmax (where ;max>max), may factored and

rewritten as the product of three matrices,

x =
UWVT

,
(68)

*

**

This direct method is not recommended from a numerical stability standpoint. A more stable

method, to be discussed later, is equivalent.

This is denoted s . It is a measure of the variation in the calculated values of y that is still

unexplained by the regression and may be computed as the square root of the residual mean

square:

Syx ~ VMSresidual
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where U is a jmax x kmax column-orthogonal matrix;

W 1S a ^max x ^max diagonal matrix with positive or zero elements; and

Vr is the transpose of a kmax x kmax orthogonal matrix.

The inverse of X may be written as the product of the inverses of the factors of X,
even if X is not square,95

x-1
= V diag

( \
1 UT

, (69)

since V is orthogonal, its inverse is simply its transpose, V;

W is diagonal, so its inverse is a diagonal matrix whose elements are
reciprocals of the elements ofW; and

U is orthogonal, its inverse is simply its transpose, VT.

This procedure is called singular value decomposition (SVD). It is extremely stable,

solving problems that cause Gaussian elimination, or LU decomposition to fail. Em

bodying many of the recommendations made by reference
76,96'*

SVD furthermore

allows column degeneracies in X to be recognized and SVD allows for

the identification of linear combinations of variables that do not contribute to the

Such as Householder reduction to a bidiagonal form, diagonalization by the QR decomposition
procedure with shifts.

Press (1986, pp. 54-58, reference 56) describes how the elements of diagonal matrix W"1
should

be examined, and adjusted:

The reciprocal of the condition number of a matrix is the ratio of the smallest element of W"1

(i.e., smallest l/wk) to the largest. If zero, then the matrix is singular. If nearly zero, then the

matrix is ill-conditioned. "Nearly"
zero means smaller than the floating point precision of the

computer (say, 1 x 10"6 for Fortran REAL*4, or 1 x 10"12 for REAL*8). The largest element of
W should be found, and then all other elements tested against the product of this element and

the floating point precision. If any are found to be smaller than this factor, they should be
replaced by zero. And, additionally, when computing

W"1

by taking the reciprocals of the ele
ments ofW, any elements which are zero in W are to be zero in W"1, not infinity.
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reduction of %2. Removing such variables can reduce the standard error of the other

coefficients significantly, and only increase %2

slightly.

Now the standard error of the Mi coefficient may be calculated.97

se (*.) =
N

'max

E
V

w.

(70)

It is proper to quote the coefficients as "bk se(bk)". They are also used to compute

the t-ratio of Eq. (63) so that coefficients which are not crucial to the model may be

identified and eliminated in further analyses.

Finally, what exactly is this matrix X? If, for example, it is desired to fit

MODEL 32 [Eq. (62)] by this approach, how should the matrix be cast? Writing

dn(X) for the quantity n(X)-n0(X), and squaring both sides, transforms Eq. (62) into

Mr -,?*'??? (71)
X2 X4 X6 X*

which is linear in its coefficients bv fr,, ..., b6. For;max data points (Xj, n), each

having experimental uncertainty An/ and k^ unknown matrix X is

written as shown by Eq. (72). Vector b in this equation is simply unknown coef

ficients. Vector y, having dimension ;max, consists of the transformed experimental

data. Equation (64) is rewritten as follows to fit Eq. (62) to experimental data.

The quantity S/i,- also has an uncertainty equal to An,,

In this example, kmax = 6.
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Aj A.j
-4

K
-6

An1 Anx Anx Ant Anx Anx

1 A tf K' ^ tf
An2 An2 An2 An2 An2 An2

1 A ^ tf X? X?
An,

An.

An,

*mi

An, An, An, An,

-2

An.
Jm

An. An. An.

bnx
An,

V V

fa }
on2

An,
V

l )
(% \
on3

An,
V )

(% ^
on4
An.

V A)
(x ^
on5
Anc

V 5
J

fa ^

8n6
An,

2

2

2

2

2

2

(72)

The An values are replaced by unity if no estimate of the experimental uncertainty is

available.

Since all values for the dependent variable, n, are of the same order of

magnitude, the weighting errors that would have occurred under this squaring
trans

form may have been negligible. In hindsight, it seems reasonable that the solution for

the transformed problem could have been used as a good starting point for final

optimization with the nonlinear algorithm. In addition, the ability to compute se(fr^)

would greatly simplify the process of evaluating alternate, nested forms of the chosen

model.
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Appendix 9: Nested Model Assessment

Nested models are those which are special cases of other, more complex

expressions. It is desirable to determine the simplest form involving the fewest

coefficients that adequately represents the data. Allowing too many coefficients may

lead to unwarranted changes in curve shape.

To decide whether the extra degrees of freedom are significant, in going from a

"partial"

model to a
"full"

one, the variance explained by these
"extra"

coefficients is

compared to the variance that remains when the full model is used,

p =
MSextra (73)
MS.'full

If this calculated F ratio is less than the critical value,

F = F , (74)
"to-1 v vfi.ll- risk

then the partial model is retained. If greater, then the extra terms are significant and

the partial model is rejected in favor of the full model.

This additional partitioning is also done in sum of squares space, just as with a

standard ANOVA. For the two models in question, the SSresidual is computed accord

ing to Eq. (45), the smaller-valued one being SS^ and the larger SSpartial. The extra

complexity of the full model explains more of
the variation, and is quantified as

SSextra = SSpaitial-SSftlI1 . (75)

The number of degrees of freedom associated with SSextra is denoted DFextra, computed

by subtraction,
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DFextra = DFpartiaI- DFfuU , (76)

and the mean squares are computed as the ratio of the sum of squares to the degrees

of freedom,

SS,
MS^ =

____ , and
DF
-^full

SS
MS ,

=
pmM

(77)

partial
^p
partial

An example using Sample 2 will now be presented to illustrate nested model

analysis. This sample has been previously analyzed, finding MODEL 32 to be too

complex [Figure 21, page 53, and Figure 22, page 56], MODEL 26 to be too simple

[Figure 23, page 56], and MODEL 21 to be optimum [Figure 26, page 60].

First, considerMODEL 32 [Eq. (62), page 108] to be the
"full"

model, and

MODEL 21,

n(X) = n0(X) + 2

to be the
"partial"

one. The standard ANOVA reports are consulted to obtain the

following:

MODEL 32

SS-sjdual = 4.228 x
10"12

- ssraU
DFLJL

residual

MSresidual

= 2
= 6.140 x

10"13

= DFful]
= MSfiU1

MODEL 21

SSfesiduaj
DF̂

residual

MSresidua]

= 1.020 x
10"11

= 6
= 1.700 x

10-12

= sspardal
- DF"*

partial

= MSPartial

EXTRA

SSextra
DF^

extra

MSextra

= SSpartial " SSfuU
= DFpartial ' DFfuU
= SSextra ~ Urgxtfa

= 5.974 x
10"12

= 4
= 1.494 x

10"12
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TEST

^computed = MSextra - MS^u = 0.707

^critical = ^4,2,.01 = 99.25

^computed < ^critical so me variance accounted for by the extra complexity,

in going from the partial model to the full model, is not significant.

Keep the partial model.

The nested model analysis agrees with Melt's assessment that MODEL 21 is pre

ferred to MODEL 32.

Now repeat the analysis, this time testing MODEL 21 as the
"full"

model and

MODEL 26 [Eq. (25), page 25] as the
"partial"

expression:

MODEL 21

SSresidual = 1-020 x 10-11
= SS^

DFresidual = 6
,

_ DFfull
MSresidual = 1.700 x

10-12
= MSM

MODEL 26

SS-^., = 1-218 x
lO"10

= SSDresidual
~ 1,1 A lw ~ ^partial

DFresiduai =7 = Drpartial
MSresidual = 1.740 x

lO"11
= MSpartial

EXTRA

SSextra = SSpartial - SSM = 1.116 xlO10

DFextra = DFpartial - DF^ =1

MSextra = SSextra + DFextra = 1.116 xlO"10

TEST

F = MSpvtra +MS = 65.62
r computed 1Ti-extra lull

F ,
= /_,, = 13.75

r critical 4.2..01

/r > Fcriticai so the variance accounted for by the extra complexity,

ingoing from'the partial model to the full model, is significant. The

partial model should be rejected in favor of the full model.

This also agrees with the appraisal made by Melt, selecting MODEL 21 in favor of

MODEL 26.
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Appendix 10: Weighted Average in Sum of Squares Partitioning
When the Wj weighting factors of Eq. (42) are not the same for all ;, then the

simple average,

-

S"y'
(79)

n =
__

is replaced by the weighted average. This weighted average is computed by adding a

correction term to the simple average, as follows:

n = n +

/max

E(nrnf-wj(nrnf (8fJ)

h

In a similar way, where Eq. (46) calls for the simple average of the replicated

measurements at some Xj,

j,max

_

** (81)
n. _

,

j.max

the presence of different weights, wjt, makes it necessary to use the weighted average

instead:

n
j
= nj + _i

Z(njrnj)2-Wknjrnj)2

(82)

j,max
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Appendix 11: Example Melt Analysis with Replicated Data

The replicated data in the following example (Sample 3) was acquired by the

Author using the Gaertner LI23 spectrometer. On page 125 is a plot summarizing the

fit of the optimum model to this data.

N:\MELTDATA> MELT TEST4.MEL
[<MELT >-REV5.71]
! MELT.MEL

! Setup file for MELT. EXE

BEGIN FORMULAS

The following lists the formulas which are coded into the program. Token #1
is the model number that is selected with the MODEL keyword. The remainder

of the line is token #2. WARNING: do not change the value of token #1 for a

model since the program is not compiling the following lines . Changing the

formula will have no computational effect; changing the model number will

indicate that an undesired formula has been used during computation.

! One-term, one-coefficient models.
26 N = NO + Bl

! Two-term, two-coefficient models.
1 N = NO + Bl + B2*W

18 N = NO + SQRT( Bl + B2*W )
2 N = NO + Bl + B2/W

19 N = NO + SQRT( Bl + B2/W )
3 N = NO + Bl + B2*WA2

20 N = NO + SQRT( Bl + B2*WA2 )
4 N = NO + Bl + B2/WA2

21 N = NO + SQRT( Bl + B2/WA2 )

! Two-term, three-coefficient models.

22 N = NO + Bl + B2*WAB3

23 N = NO + SQRT( Bl + B2*WAB3 )
24 N = NO + Bl + B2/WB3

25 N = NO + SQRT( Bl + B2/WB3 )

! Three-term, three-coefficient models .

17 N = NO + Bl + B2*W + B3/W

33 N = NO + SQRT( Bl + B2*W + B3/W )
5 N = NO + Bl + B2*W + B3*WA2

34 N = NO + SQRT( Bl + B2*W + B3*WA2 )
6 N = NO + Bl + B2/W + B3/WA2

35 N = NO + SQRT( Bl + B2/W + B3/WA2 )
7 N = NO + Bl + B2*WA2 + B3*WA4

36 N = NO + SQRT( Bl + B2*WA2 + B3*WA4 )
8 N = NO + Bl + B2/WA2 + B3/WA4

37 N = NO + SQRT( Bl + B2/WA2 + B3/WA4 )

9 N = NO + Bl + B2*WA2 + B3/WA2

38 N = NO + SQRT( Bl + B2*WA2 + B3/VT2 )

i Sellmeier forms; 1- 2- and 3-term, 2- 4- and 6-coefficient .

11 N = NO + SQRT( B2*WA2/(WA2-B1A2) )
12 N = NO + SQRTf B3*WA2/ <WA2-B1A2> + B4*WA2/ (WA2-B2A2) )

13 N = NO + SQRT( B4*WA2/ <WA2-B1A2) + B5*WA2/ <WA2-B2A2) + B6*WA2/ <WA2-B3A2)

i six-term, six coefficient models.

32 N = NO + SQRT( Bl + B2*WA2 + B3/WA2 + B4/WM + B5/WA6 + B6/WA8 )

! Forms not involving a known nominal model, NO.

Manufacturers' 6-term, 6-coefficient form.
nK/MA, , nc/MAR ,

N = SQRT( Bl + B2*W2 + B3/W2 + B4/W4 + B5/W6 + B6/VT8 )
10

27
Cauchy form.
N = Bl + B2/WA2 + B3/WA4
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28
Conrady form.
N Bl + B2/W + B3/WA3.5

! Hartman 1, 2, and 3 term.
29 N = B1/(W-B2)AB3
30 N = Bl + B2/(W-B3)AB4
34 N = Bl + B2/(W-B4) + B3/(W-B5)

! Sellmeier forms; I- 2- and 3-term, 2- 4- and 6-coefficient .

14 N = SQRT( 1.0 + B2*WA2/(WA2-B1A2) )
15 N = SQRT( 1.0 + B3*WA2/(WA2-B1A2) + B4*WA2/ (WA2-B2A2) )
16 N = SQRT( 1.0 + B4*WA2/ (WA2-B1A2) + B5*WA2/ (WA2-B2A2) + B6*WA2/ (WA2-B3A2

END FORMULAS

COMPANY 'MELLES GRIOT - ROCHESTER, NY'

MIN_WVL
MAX_WVL
UNCERTAINTY

CATALOG
WVL
DEBUG
PLOTTER
PLOT
PRINTER
MODEL
MODEL

MODEL
MFTYPE

.4

.7

.0001 ! Assume refractometry from United Lens.

D:\SCIP\GLASDATA\
.6328 ! Always compute index for HeNe for Zygo.

NO
ON HP7470A
WAVELENGTH

OFF
1 18 2 19 3
24 25 17 33
11 12 13
4

21
6 35 7 36 8 37 9 38 32

CONVERGENCE 1.0E-4

RISK .010

FFEND YES

Chi-Square
smaller values cause simplex optimization to work harder

have MELT quote 99.0% confidence intervals

In a PC environment, end report with a form-feed.

HISTORY FILE E:\THESIS\MELT\WORK\HISTORY.MEL

HISTORY YES

! TEST4.MEL

31872PART_NUMBER

LOT B
PROJECT_NUMBER P-377

GLASSJTYPE
MANUFACTURER

SUPPLIER
WAVELENGTHS

MELT L2115A

ANNEAL MEG55

FORM BLOCK

MFTYPE

uncertainty
WVL D F C
MAX .750

MIN .400

f?nisDdata was gathered on 4-15-89 by DS on the Gaertner L123

SFL6
SCHOTT

UNITED

000010

h

g
,.F,

"C
.5085822

.4678149

d 1
.667815

r 1.791533

e 1.812983

.576959
1

.579065
1

865016
847478
830007

797901
1.821652

1.834203

805541

! .000050 couldn't see the X target too dim.

Cd green line

Cd blue line

1.795234

807257

.806911

He red line

! Hg yellow

! Hg yellow

! This data contrived to plan example of -plicated data-^ ^ & ^

i d-ist^buttonf m^^r^d^O^OlO (HP41C
"GN" with pi-3 as the seed, .

h 1.865021

g 1.847469
F' 1.830030
C' " 1.797897
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.5085822 1.821655 !

.4678149 1.834197 !
d 1.805551
.667815 1.795245
r 1.791560
e 1.813003
.576959 1.807253
.579065 1.806908

END DATA

ANGLE 60..21007 60.21282

MEL> go

Cd green line
! Cd blue line

! He red line

! Hg yellow

! Hg yellow

made an error reading the angle

W7ARNING The OBSERVED INDEX was altered to compensate for the change

in prism angle from 60.21007 to 60.21282 degrees (HMS).

EXPERIMENTAL
WAVELENGTH

DEVIATION ANGLE
RADIANS HMS

OBSERVED INDEX
NEW OLD CHANGE

.404656(h) 1 .377094 78 .54060 1 .864848 1..865016 .000168

.404656(h) 1 .377108 78..54089 1 .864853 1..865021 .000168

.435834(g) 1 .328065 76..05332 1 .847315 1..847478 .000163

.435834(g) 1 .328041 76..05281 1 .847306 1..847469 .000163

.467815 1 .292870 74..04335 1 .834044 1..834203 .000159

.467815 1 .292854 74..04303 1 .834038 1..834197 .000159

.479991

(F' ) 1 .282048 73 .27214 1..829849 1..830007 .000158

.479991

(F' ) 1 .282107 73..27336 1..829872 1 .830030 .000158

.508582 1 .260907 72..14407 1..821499 1..821655 .000156

.508582 1 .260899 72..14392 1..821496 1..821652 .000156

.546074(e) 1 .239481 71..01013 1..812830 1..812983 .000153

.546074(e) 1 .239530 71..01113 1..812850 1..813003 .000153

.576959 1 .225608 70..13199 1 .807105 1..807257 .000152

.576959 1 .225599 70..13178 1..807101 1..807253 .000152

.579065 1 .224777 70..10283 1..806759 1..806911 .000152

.579065 1 .224769 70..10268 1..806756 1..806908 .000152

.587562(d) 1 .221491 69..59107 1 .805390 1..805541 .000151

.587562(d) 1 .221515 69..59156 1 .805400 1..805551 .000151

.643847(C) 1 .203380 68..56549 1 .797752 1..797901 .000149

.643847(C) 1 .203370 68..56529 1 .797748 1..797897 .000149

.667815 1 .197138 68..35274 1..795085 1..795234 .000149

.667815 1 .197164 68..35328 1 .795096 1..795245 .000149

.706519(r) 1 .188544 68..05548 1 .791385 1..791533 .000148

.706519(r) 1 .188606 68 .06077 1..791412 1..791560 .000148

MODEL ITERATIONS MERIT

F-TEST FOR TERMS OTHER THAN THE MEAN

COMPUTED CRITICAL RATIO

1 29 5.22E+02 94.573 7.945 11.90

18 69 5.90E+01 1008.652 7.945 126.95

2 29 2.40E+02 231.232 7.945 29.10

19 64 4.63E+01 1291.581 7.945 162.56

3 32 6.89E+02 66.198 7.945 8.33

20 61 9.29E+01 632.120 7.945 79.56

4 32 1.40E+02 411.967 7.945 51.85

21 68 6.16E+01 964.284 7.945 121.36

24 197 2.54E+01 1133.424 5.780 196.08

25 656 4.96E+01 574.503 5.780 99.39

17 105 4.71E+01 605.964 5.780 104.83

33 86 4.33E+01 659.558 5.780 114.10

5 81 8.49E+01 331.442 5.780 57.34

34 83 5.90E+01 481.401 5.780 83.28

6 80 3.19E+01 898.141 5.780 155.38

35 109 4.36E+01 654.785 5.780 113.28

7 86 1.44E+02 191.077 5.780 33.06

36 90 4.38E+01 651.144 5.780 112.65

8 52 2.61E+01 1098.874 5.780 190.10

37 123 4.63E+01 616.834 5.780 106.71

9 68 4.17E+01 685.967 5.780 118.67

38 95 5.53E+01 514.293 5.780 88.97

32 237 3.65E+01 268.994 4.248 63.32

11 46 2.76E+03 -.001 7.945 .00

12 84 7.96E+01 224.880 4.938 45.54
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13 241 4.34E+01 225.499 4.248

MODEL 24, using 3 out of 24 degrees-of-f reedom, is optimum.

REFRACTOMETRY ANALYSIS

53.09

PART NUMBER: 31872 MiVTERIAL FORM : BLOCK MODEL NUM: 24
PROJECT NUMBER : P-377 SUPPLIER: UNITED MFTYPE NUM: 4
MANUFACTURER: SCHOTT MELT NUMBER: L2115A ITERATIONS: 197
GLASS TYPE: SFL6 ANNEAL NUMBER : MEG55 MERIT: 2.5E+01
LOT NAME: B ANALYSIS DATE : 02-17-90 CONVERGENCE : 1 . 0E - 0 4

ERROR +/- 99.0%
DESIGN INTERPOLATED NOMINAL FROM CONFIDENCE

WAVELENGTH INDEX INDEX NOMINAL INTERVALS

.486133(F) 1.827909 1.827798 .000111 .000066

.589294 (D, 1.805118 1.804909 .000209 .000066

.632800 1.799062 1.798835 .000228 .000067

.656272(C) 1.796325 1.796090 .000235

+/

.000067

- 99.0%
EXPERIMENTAL OBSERVED INTERPOLATED CONFIDENCE
WAVELENGTH INDEX INDEX RESIDUAL INTERVALS

.404656(h) 1.864848 1.864852 -.000004 .000069

.404656(h) 1.864853 1.864852 .000001 .000069

.435834(g) 1.847315 1.847312 .000004 .000068

.435834(g) 1.847306 1.847312 -.000005 .000068

.467815 1.834044 1.834033 .000011 .000067

.467815 1.834038 1.834033 .000005 .000067

. 479991 (F' ) 1.829849 1.829863 -.000014 .000066

.47999KF') 1.829872 1.829863 .000009 .000066

.508582 1.821499 1.821499 .000000 .000066

.508582 1.821496 1.821499 -.000003 .000066

.546074(e) 1.812830 1.812833 -.000004 .000066

.546074(e) 1.812850 1.812833 .000016 .000066

.576959 1.807105 1.807120 -.000014 .000066

.576959 1.807101 1.807120 -.000018 .000066

.579065 1.806759 1.806768 -.000008 .000066

.579065 1.806756 1.806768 -.000011 .000066

.587562(d) 1.805390 1.805391 -.000001 .000066

.587562(d) 1.805400 1.805391 .000009 .000066

.643847(C) 1.797752 1.797734 .000018 .000067

.643847(C) 1.797748 1.797734 .000014 .000067

.667815 1.795085 1.795090 -.000005 .000068

.667815 1.795096 1.795090 .000006 .000068

.706519(r) 1.791385 1.791402 -.000017 .000069

.706519(r) 1.791412 1.791402 .000010

ERROR STATED

.000069

MERIT

EXPERIMENTAL OBSERVED NOMINAL FROM EXPERIMENTAL FUNCTION

WAVELENGTH INDEX INDEX 1NOMINAL UNCERTAINTY WEIGHT

.404656(h)
1.864848 1 .864973 .000125 .000010 1.000000

.404656(h)
1.864853 1 .864973 .000120 .000010 1.000000

.435834 (g) 1.847315 1 .847314 .000002 .000010 1.000000

.435834(g)
1.847306 1 .847314 .000007 .000010 1.000000

.467815
1.834044 1 .833955 .000089 .000010 1.000000

.467815
1.834038 1 .833955 .000083 .000010 1.000000

. 479991 (F') 1.829849 1..829762 .000087 .000010 1.000000

.47999KF')
1.829872 1 .829762 .000110 .000010 1.000000

.508582
1.821499 1..821356 .000143 .000010 1.000000

.508582
1.821496 1..821356 .000140 .000010 1.000000

.546074 (e) 1.812830 1 .812653 .000177 .000010 1.000000

.546074 (e) 1.812850 1..812653 .000197 .000010 1.000000

.576959
1.807105 1..806918 .000188 .000010 1.000000

.576959
1.807101 1 .806918 .000184 .000010 1.000000

.579065
1.806759 1..806564 .000195 .000010 1.000000

.579065
1.806756 1 .806564 .000192 .000010 1.000000

.587562(d)
1.805390 1 .805182 .000207 .000010 1.000000
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.587562(d) 1.805400 1.805182 .000217 .000010 1.000000

.643847 (C ) 1.797752 1.797503 .000249 .000010 1.000000

.643847 (C ) 1.797748 1.797503 .000245 .000010 1.000000

.667815 1.795085 1.794852 .000233 .000010 1.000000

.667815 1.795096 1.794852 .000244 .000010 1.000000

.706519(r) 1.791385 1.791156 .000229 .000010 1.000000

.706519(r) 1.791412 1.791156 .000256 .000010 1.000000

WARNING - The OBSERVED INDEX was altered to compensate for the change
xn prxsm angle from 60.21007 to 60.21282 degrees (HMS).

EXPERIMENTAL DEVIATION smptc

WAVELENGTH 1RADIANS HMS NEW OLD CHANGE

.404656(h) 1 .377094 78 .54060 1 .864848 1 .865016 .000168

.404656(h) 1 .377108 78 .54089 1 .864853 1 .865021 .000168

.435834(g) 1 .328065 76 .05332 1 .847315 1 .847478 .000163

.435834(g) 1 .328041 76 .05281 1 .847306 1 .847469 .000163

.467815 1 .292870 74 .04335 1 .834044 1 .834203 .000159

.467815 1 .292854 74 .04303 1 .834038 1 .834197 .000159

. 479991 (F' ) 1 .282048 73 .27214 1 .829849 1 .830007 .000158

.479991
(F' ) 1 .282107 73 .27336 1 .829872 1 .830030 .000158

.508582 1 .260907 72..14407 1 .821499 1 .821655 .000156

.508582 1 .260899 72..14392 1 .821496 1 .821652 .000156

.546074(e) 1 .239481 71..01013 1..812830 1 .812983 .000153

.546074(e) 1..239530 71..01113 1 .812850 1 .813003 .000153

.576959 1..225608 70..13199 1..807105 1 .807257 .000152

.576959 1..225599 70.,13178 1..807101 1 .807253 .000152

.579065 1..224777 70..10283 1,.806759 1..806911 .000152

.579065 1,.224769 70..10268 1.,806756 1 .806908 .000152

.587562(d) 1,.221491 69.,59107 1.,805390 1,.805541 .000151

.587562(d) 1..221515 69..59156 1..805400 1,.805551 .000151

.643847(C) 1..203380 68..56549 1,,797752 1,,797901 .000149

.643847(C) 1..203370 68..56529 1.,797748 1,,797897 .000149

.667815 1,,197138 68..35274 1.,795085 1,,795234 .000149

.667815 1,.197164 68. 35328 1.,795096 1,,795245 .000149

.706519(r) 1..188544 68. 05548 1.,791385 1.,791533 .000148

.706519(r) 1..188606 68. 06077 1..791412 1.,791560 .000148

ANALYSIS O F VARIANCE

SOURCES

TOTAL (UNCORRECTED)

REGRESSION (DUE TO THE MEAN)

TOTAL (CORRECTED FOR THE MEAN)

REGRESSION (EXCLUDING THE MEAN)

RESIDUAL

ERROR

LACK-OF-FIT

RELATIVE SS DF

24

MS=SS/DF

1.000000

.637562 1 4 .86092E-07

.362438 23 1 .20144E-08

.359112 2 1,.36898E-07

.003327 21 1,.20782E-10

.001360 12 8,.64340E-11

.001966 9 1,66578E-10

CORRELATION COEFFICIENT

DUE TO THE MEAN .6376

This implies that approximately 63.76% of the total variation in the

data is explained by a regression term representing the mean.

EXCLUDING THE MEAN .9908

This implies that approximately 99.08% of the remaining variation in
the data is explained by regression terms other than the mean.
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F-TESTS FOR SIGNIFICANCE OF THE REGRESSION

DUE TO THE MEAN

F (observed) = REGRESSION_MS / TOTAL_MS = 40.46

F (critical) = F( 1, 23, .010)
= 7.881

F (observed) > F (critical) implies that a significant amount of
variation in the data is explained by a regression term

representing the mean. This term should not be rejected.

EXCLUDING THE MEAN

F (Observed) = REGRESSION_MS / RESIDUAL_MS = 1133.

F(critical) = F( 2, 21, .010)
= 5.780

F (observed) > F (critical) implies that a significant amount of

the remaining variation in the data is explained by regression

terms other than the mean. These terms should not be rejected.

F-TEST FOR SIGNIFICANT LACK-OF-FIT

F (observed) = LOF_MS / ERROR_MS = 1.927

F (critical) = F( 9, 12, .010)
= 4.388

F (observed) < F (critical) implies that the lack-of-fit of the
model to the data is insignificant compared to the errors in the

measurements. The model does not need to be rejected.

MFTYPE Description VALUE

1 WEIGHTED SUM-OF-SQUARED RESIDUALS
2 WEIGHTED SUM-OF-ABSOLUTE RESIDUALS
3 WEIGHTED MAXIMUM DEVIATION

> 4 CHI-SQUARE 25.36

CHI-SQUARE ANALYSIS

Guidelines for CHI-SQUARE:

The better the fit, the lower the CHI-SQUARE. The more statistically
significant the fit, the closer the probability Q will be to 1.0

For a
"moderately" good fit, CHI-SQUARE should be approximately equal to

the number of degrees-of-freedom. Here, the ratio of degrees-of-freedom

to CHI-SQUARE is .828 ; the goal is unity.

Guidelines for Q:

The probability, Q, that CHI-SQUARE for the correct model could be even

larger if the residual variation is really due only to chance is .232

q > o.9 Possibly non-experimental data (fit is too good to be
the result of experiment) , or grossly over estimated

uncertainties (too conservative) .

q > o.l Reasonable for real-world data when the model is correct,

especially if the uncertainties are not normally
distributed (an abundance of outlier points may have

resulted) . If always on this order of magnitude, then

the uncertainties may be slightly under estimated, the

model may be marginal, or the uncertainties may be

inherently skewed or otherwise non-normal.

Q 0.001 Indicates that the model is wrong, or the uncertainties
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MODEL Formula

are grossly under estimated.

26 N = NO +

1 N = NO +

18 N = NO +

2 N = NO +

19 N = NO +

3 N = NO +

20 N = NO +

4 N = NO +

21 N = NO +

22 N = NO +

23 N = NO +

>24 N = NO +

25 N = NO +

17 N = NO +

33 N = NO +

5 N = NO +

34 N = NO +

6 N = NO +

35 N = NO +

7 N = NO +

36 N = NO +

8 N = NO +

37 N = NO +

9 N = NO +

38 N = NO +

11 N = NO +

12 N = NO +

13 N = NO +

32 N = NO +

10 N =

27 N =

28 N =

29 N =

30 N =

31 N =

14 N = SQRT

15 N = SQRT

16 N = SQRT

Bl
Bl + B2*W

SQRT( Bl + B2*W )
Bl + B2/W

SQRT( Bl + B2/W )
Bl + B2*WA2

SQRT( Bl + B2*WA2 )
Bl + B2/WA2

SQRT( Bl + B2/WA2 )
Bl + B2*WAB3
SQRT( Bl + B2*WAB3 )
Bl + B2/WAB3

SQRT( Bl + B2/WAB3 )
Bl + B2*W + B3/W

SQRT( Bl + B2*W + B3/W )
Bl + B2*W + B3*WA2

SQRT( Bl + B2*W + B3*WA2 )
Bl + B2/W + B3/WA2

SQRT( Bl + B2/W + B3/WA2 )
Bl + B2*WA2 + B3*WA4

SQRT( Bl + B2*WA2 + B3*WA4 )
Bl + B2/WA2 + B3/WA4

SQRT( Bl + B2/WA2 + B3/WA4 )
Bl + B2*WA2 + B3/WA2

SQRT( Bl + B2*WA2 + B3/WA2 )
SQRT( B2*WA2/(WA2-B1A2) )
SQRT( B3*WA2/(WA2-B1A2) + B4*WA2/ (WA2-B2A2) )
SQRT( B4*WA2/(WA2-B1A2) + B5*WA2/ (WA2-B2A2) + B6*WA2/ (WA2-B3A2)

SQRT( Bl + B2*WA2 + B3/WA2 + B4/WA4 + B5/WA6 + B6/WA8 )
SQRT( Bl + B2*WA2 + B3/WA2 + B4/WA4 + B5/WA6 + B6/WA8 )
Bl + B2/WA2 + B3/WA4

Bl + B2/W + B3/WA3.5

B1/(W-B2) AB3
Bl + B2/(W-B3) AB4
Bl + B2/(W-B4) + B3/(W-B5)

( 1.0 + B2*WA2/(WA2-B1A2) )
(10+ B3*WA2/(WA2-B1A2) + B4*WA2/ (WA2-B2A2) )
10+ B4*WA2/(WA2-B1A2) + B5*WA2/ (WA2-B2A2) + B6*WA2/ (WA2-B3A2)

Model Coefficients

Bl = 2.725444E-04

B2 = -4.880877E-06

B3 = 4.851608E+00

[<MELT >-REV5.71]

Updating history file MELTHIST.TXT. . .

Sending plotter instructions to TEST4.PLT for HP7470A

Updating history file E:\THESIS\MELT\WORK\HISTORY.MEL.

N : \MELTDATA>
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REFRACTOMETRY ANALYSIS
PART NUMBER: 31B72 MATERIAL FORM: BLOCK
PROJECT NUMBER: P-377 SUPPLIER: UNITED
MFGR GLASS: SCHOTT SFL6 MELT NUMBER: L2115A
LOT NAME: B ANNEAL NUMBER: MEG55

MELLES GRIOT - ROCHESTER. NY 02-17-90

INTERPOLATED
DESIGN REFRACTIVE

WAVELENGTH INDEX

.486133

. 589294
. 632800
. 656272

1 . 627909
1.805118
1.799062
1.796325

u

-; 5.
<

j

J
S o.
f
_

I"

5-io.

5.0

2.5

N - NO + Bl + B2/W-TB3
2.54E+01 - CHI-SQUARE

I*. 4

:-2.5

>

j-5.0

1.89

1.87

.jM-'I

-*-

-# .

.*
--W-+
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v v v v DESIBN (99.08
K * * * EXPEBIHENTAL

INTERPOLATED
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1.77-1
C C

.400 .450 .500 .550 .600 .650 .700
.750

mVELENSTH (microns)

Figure 38 Plotted Output for Preceding Sample Melt Run (Sample 3)
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Appendix 12: Melt Output for Figure 28 & Figure 29

The Melt output which follows corresponds to the plotted output presented in

Figure 28 [page 68] in the Discussion section for Sample 4.

REFRACTOMETRY ANALYSIS

PART NUMBER: OG-3710 MATERIAL FORM : PRESSINGS MODEL NUM: 4
PROJECT NUMBER : unspecified SUPPLIER: OHARA-USA MFTYPE NUM: 4
MANUFACTURER: OHARA MELT NUMBER: J506822 ITERATIONS: 40
GLASS TYPE: SFL6 ANNEAL NUMBER : 313 MERIT: 1.8E-01
LOT NAME: unspecified ANALYSIS DATE : 02-19-90

ERROR

CONVERGENCE: 1.0E-04

+/- 95.0%
DESIGN INTERPOLATED NOMINAL FROM CONFIDENCE

WAVELENGTH INDEX INDEX NOMINAL INTERVALS

.450000 1.840963 1.840864 .000099 .000016

.550000 1.811991 1.811849 .000142 .000014

.632800 1.799006 1.798843 .000164 .000016

.650000 1.796970 1.796803 .000167 .000017

+/- 95.0%
EXPERIMENTAL OBSERVED INTERPOLATED CONFIDENCE
WAVELENGTH INDEX INDEX RESIDUAL INTERVALS

.435834(g) 1.847333 1.847334 -.000001 .000016

.486133(F) 1.827882 1.827880 .000002 .000015

.587562(d) 1.805331 1.805334 -.000003 .000015

.656272(C) 1.796272 1.796270 .000002

ERROR

.000017

STATED MERIT
EXPERIMENTAL OBSERVED NOMINAL FROM EXPERIMENTAL FUNCTION
WAVELENGTH INDEX INDEX NOMINAL UNCERTAINTY WEIGHT

.435834(g) 1.847333 1.847243 .000090 .000010 1.000000

.486133(F) 1.827882 1.827762 .000120 .000010 1.000000

.587562(d) 1.805331 1.805181 .000150 .000010 1.000000

.656272(C) 1.796272 1.796102 .000170 .000010 1.000000

ANALYSIS O F VARIANCE

SOURCES

TOTAL (UNCORRECTED)

REGRESSION (DUE TO THE MEAN)

TOTAL (CORRECTED FOR THE MEAN)

REGRESSION (EXCLUDING THE MEAN)

RESIDUAL

RELATIVE SS DF

4

MS=SS/DF

1.000000

.950312 1 7 02262E-08

.049688 3 1,.22396E-09

.049447 1 3,.65402E-09

.000242 2 8,.92460E-12

CORRELATION COEFFICIENT

DUE TO THE MEAN .9503

This implies that approximately 95.03% of the total variation in the

data is explained by a regression term representing the mean.
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EXCLUDING THE MEAN =
.9951

This implies that approximately 99.51% of the remaining variation in
the data is explained by regression terms other than the mean.

F-TESTS FOR SIGNIFICANCE OF THE REGRESSION

DUE TO THE MEAN

F (observed) = REGRESSION_MS / TOTAL_MS = 57.38

F(critical) = F( 1, 3, .050)
= 10.13

F (observed) > F (critical) implies that a significant amount of

variation in the data is explained by a regression term

representing the mean. This term should not be rejected.

EXCLUDING THE MEAN

F (observed) = REGRESS ION_MS / RESIDUAL_MS = 409.4

F (critical) = F( 1, 2, .050)
= 18.51

F (observed) > F (critical) implies that a significant amount of

the remaining variation in the data is explained by regression

terms other than the mean. These terms should not be rejected.

MFTYPE Description VALUE

1 WEIGHTED SUM-OF-SQUARED RESIDUALS
2 WEIGHTED SUM-OF -ABSOLUTE RESIDUALS
3 WEIGHTED MAXIMUM DEVIATION

-> 4 CHI-SQUARE .1785

CHI-SQUARE ANALYSIS

Guidelines for CHI-SQUARE:

The better the fit, the lower the CHI-SQUARE. The more statistically
significant the fit, the closer the probability Q will be to 1.0

For a
"moderately" good fit, CHI-SQUARE should be approximately equal to

the number of degrees-of-freedom. Here, the ratio of degrees-of-freedom

to CHI-SQUARE is 11.2 the goal is unity.

Guidelines for Q:

The probability, Q, that CHI-SQUARE for the correct model could be even

larger if the residual variation is really due only to chance is .915

q > o.9 Possibly non-experimental data (fit is too good to be

the result of experiment) , or grossly over estimated

uncertainties (too conservative) .

q > o.l Reasonable for real-world data when the model is correct,

especially if the uncertainties are not normally
distributed (an abundance of outlier points may have

resulted) . If always on this order of magnitude, then

the uncertainties may be slightly under estimated, the

model may be marginal, or the uncertainties may be

inherently skewed or otherwise non-normal.

Q 0.001 Indicates that the model is wrong, or the uncertainties

are grossly under estimated.
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The Melt output which follows corresponds to the plotted output presented in

Figure 29 [page 68] in the Discussion section for Sample 5.

REFRACTOMETRY ANALYSIS

PART NUMBER: OG-3710
PROJECT NUMBER: unspecified
MANUFACTURER : OHARA
GLASS TYPE: SFL6
LOT NAME: unspecified

MATERIAL FORM: PRESSINGS
SUPPLIER: OHARA-USA
MELT NUMBER: J506822
ANNEAL NUMBER: 314
ANALYSIS DATE: 02-19-90

MODEL NUM: 4
MFTYPE NUM: 4
ITERATIONS: 34
MERIT: 2.4E+00
CONVERGENCE: 1.0E-04

DESIGN
WAVELENGTH

INTERPOLATED
INDEX

NOMINAL
INDEX

ERROR
FROM

NOMINAL

+/- 95.0%
CONFIDENCE
INTERVALS

.450000

.550000

.632800

.650000

1.840640
1.811721
1.798762
1.796730

1.840864
1.811849
1.798843
1.796803

-.000224

-.000128

-.000081

-.000073

.000058

.000053

.000058

.000060

EXPERIMENTAL
WAVELENGTH

OBSERVED
INDEX

INTERPOLATED
INDEX RESIDUAL

+/- 95.0%
CONFIDENCE
INTERVALS

.435834 (g)

.486133(F)

.587562(d)

.656272(C)

1.846993
1.827592
1.805071
1.796032

1.847000
1.827579
1.805076
1.796031

-.000007

.000013

-.000006

.000000

.000060

.000055

.000054

.000061

EXPERIMENTAL
WAVELENGTH

OBSERVED
INDEX

NOMINAL
INDEX

ERROR STATED MERIT
FROM EXPERIMENTAL FUNCTION

NOMINAL UNCERTAINTY WEIGHT

.435834(g)

.486133(F)

.587562(d)

.656272(C)

1.846993
1.827592
1.805071
1.796032

1
1
1
1

.847243

.827762

.805181

.796102

-.000250

-.000170

-.000110

-.000070

.000010 1.000000

.000010 1.000000

.000010 1.000000

.000010 1.000000

ANALYSIS O F VARIANCE

SOURCES

TOTAL (UNCORRECTED )

REGRESSION (DUE TO THE MEAN)

TOTAL (CORRECTED FOR THE MEAN)

REGRESSION (EXCLUDING THE MEAN)

RESIDUAL

RELATIVE SS DF MS=SS/DF

1.000000 4

.830268 1 8 .99941E-08

.169732 3 6,.13251E-09

.167536 1 1,.81595E-08

.002196 2 1,19035E-10

CORRELATION COEFFICIENT

DUE TO THE MEAN =
.8303

This implies that approximately 83.03% of the total variation in the

data is explained by a regression term representing the mean.

EXCLUDING THE MEAN =
.9871

This implies that approximately 98.71% of the remaining variation in

the data is explained by regression terms other than the mean.
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F-TESTS FOR SIGNIFICANCE OF THE REGRESSION

DUE TO THE MEAN

F (observed) = REGRESSION_MS / TOTAL_MS = 14.67

F (critical) = F( 1, 3, .050)
= 10.13

F (observed) > F (critical) implies that a significant amount of

variation in the data is explained by a regression term

representing the mean. This term should not be rejected.

EXCLUDING THE MEAN

F (observed) = REGRESSION_MS / RESIDUAL_MS = 152.6

F (critical) = F( 1, 2, .050)
= 18.51

F (observed) > F (critical) implies that a significant amount of

the remaining variation in the data is explained by regression

terms other than the mean. These terms should not be rejected.

MFTYPE Description VALUE

1 WEIGHTED SUM-OF-SQUARED RESIDUALS
2 WEIGHTED SUM-OF-ABSOLUTE RESIDUALS
3 WEIGHTED MAXIMUM DEVIATION

-> 4 CHI-SQUARE 2.381

CHI-SQUARE ANALYSIS

Guidelines for CHI-SQUARE:

The better the fit, the lower the CHI-SQUARE. The more statistically
significant the fit, the closer the probability Q will be to 1.0

For a
"moderately" good fit, CHI-SQUARE should be approximately equal to

the number of degrees-of-freedom. Here, the ratio of degrees-of-freedom

to CHI-SQUARE is .840 ; the goal is unity.

Guidelines for Q:

The probability, Q, that CHI-SQUARE for the correct model could be even

larger if the residual variation is really due only to chance is .304

q > o.9 Possibly non-experimental data (fit is too good to be

the result of experiment), or grossly over estimated

uncertainties (too conservative) .

q > o.l Reasonable for real-world data when the model is correct,

especially if the uncertainties are not normally
distributed (an abundance of outlier points may have

resulted) . If always on this order of magnitude, then

the uncertainties may be slightly under estimated, the

model may be marginal, or the uncertainties may be

inherently skewed or otherwise non-normal.

Q 0.001 Indicates that the model is wrong, or the uncertainties

are grossly under estimated.
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Appendix 13: Melt Program Listing
Those modules listed below, with an

"*"

following their names, are listed in
this Appendix (though uncommented to save space). Those with "pltlib" are from a

custom plot library (written by the Author); "lib" indicates elements of the Author's

custom math and statistics libraries; "nrlib"

modules are elements distributed with

Numerical Recipes.9* The balance of the routines, with no designation following
their names, are special routines written specifically for Melt and are not part of any

general library. Listing all modules would double or triple the size of this disertation.

Contact the Author if further information is desired.

ABSDIR pltlib IP1IP2 pltlib SILICA

ABSOLE pltlib IVTOR pltlib SIZE pltlib

ADDTON LENSTR lib SORT2D lib

ADN LINTYP pltlib SORT2DR4 lib

AMOEBA nrlib LTJUST lib SPACES pltlib

AMOEBAO lib MELT * SPAWN lib

ANOVA lib MERTTF SPEED pltlib

BETACF nrlib NEWSUF lib STRAIT pltlib

BETAI nrlib NOCRLF lib SUBIND lib

BOLD pltlib NOMDAT SYMOFF pltlib

CINTER lib NOMIND SYMON pltlib

CMDARG lib P1P2 pltlib SYSDAT lib

DEG lib PARSEC lib SYSDEL lib

DIASIZ pltlib PARSER lib TEXT pltlib

DMODEL PARSFILE lib TPOSE4 lib

DNEWTN lib PENDN pltlib TRIANG pltlib

ENDPLT pltlib PENUP pltlib TTABLE lib

ERRBAR pltlib PLOT1 UM2HZ lib

FTnND PLOT2 UPCASE lib

FTABLE lib PLOTDN pltlib USERDATA *

GAMMLN nrlib PLOTUP pltlib VSQRT lib

GAMMQ nrlib POST * WINDOW pltlib

GCF nrlib PREFTT * XAXIS pltlib

GETSYM RAD lib XTIC pltlib

GSER nrlib RELATV pltlib XYSCAL pltlib

HMS2HR lib REPORT YAXIS pltlib

HR2HMS lib REVPRT lib

HZ2UM lib SCHOTT

TNTT pltlib SELECT pltlib
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PROGRAM MELT
CHARACTER* 6 PROGNAME
CHARACTER* 6
CHARACTER* 4
CHARACTER* 1
PARAMETER
REAL*4
REAL*4
REAL*4
INTEGER* 4
INTEGER*4
PARAMETER
EXTERNAL
INTEGER*2
INTEGER*2

$ INCLUDE
$ INCLUDE
$ INCLUDE
$ INCLUDE
$ INCLUDE
$ INCLUDE
$ INCLUDE

REVLEV

CERR
REVLEV
KBELL
(PROGNAME = 'MELT
MERITF, AMOEBAO
TEMPI, TEMP2, TEMP3, TEMP4, FCOMP
FRATIO, BEST_FRATIO
BEST_MODEL, LOOP
CONSTANT
(CONSTANT=26)
MERITF

I, J
LENSTR

'5.71' )

FCRIT

'SYMBOLB.FTN'

'SYMBOLC.FTN'

'SYMBOLG.FTN'

'COMMONA.FTN'

'COMMONB.FTN'

'COMMONF.FTN'

'COMMONG.FTN'

VERTEX,REAL*4 VERTEX, MFVCT
REAL* 4 WORK
DIMENSION VERTEX (IBMAX, IBMAX+1) , MFVCT (IBMAX+1)
DIMENSION WORK (IBMAX* (IBMAX+1) )
KBELL = CHAR(7)
DEBUG =

.FALSE.

IERR = NO_ERROR
OPTNAM = PROGNAME
OPTREV = REVLEV
CALL REVPRT (INT2 (KOUT) , PROGNAME, REVLEV)
CALL SYSDAT (I8DATE, INT2 (8) )
OPEN (IFILE3,STATUS='NEW ,

FORM= ' UNFORMATTED ' )
CALL PREFIT (VERTEX)
IF (IERR .EQ. NO_ERROR) THEN

IF (MODLIST .EQ. 0) THEN
WRITE (IFILE3) MODEL
MODLIST = 1

197

ENDIF
REWIND IFILE3
IF (MODLIST .GT.

FORMAT (2 (/) ,T43, '

229
239

1) WRITE (KOUT, 197)
'F-TEST FOR TERMS OTHER THAN THE MEAN',/,

IX, 'MODEL'
,2X,

' ITERATIONS'
,T30,

'MERIT'
,T43,

'COMPUTED'
,T57,

'CRITICAL'
, T7
4,' RATIO'

,/,lX)

DO 259 LOOP=l, MODLIST

READ (IFILE3) MODEL

CALL DMODEL (VERTEX, B)
IDF = IPTS NUM_B

IF (IDF .GT. 0) THEN
DO 239 J=2, NUM_B+1

DO 229 1=1, NUM_B

VERTEX (I, J) =0.0
CONTINUE

CONTINUE
MERIT = AMOEBAO (VERTEX,MFVCT, IBMAX, NUM_B, IBMAX+1,

CONVERGENCE, MERITF, NUMITR, B, WORK)
IF (ICOM .EQ. COMPUTE_INDEX_ERROR) THEN

CALL ANOVA (-1, NUM_B, IPTS, WVL, ERRN, TERMS,
WEIGHT, RISK, FCOMP, FCRIT,
TEMPI, TEMP2, TEMP3, TEMP4)

ELSE IF (ICOM .EQ. COMPUTE_INDEX ) THEN

CALL ANOVA (-1, NUM_B, IPTS, WVL, OBSN, TERMS,
WEIGHT, RISK, FCOMP, FCRIT,
TEMPI, TEMP2, TEMP3, TEMP4)

END IF
IF (FCRIT .NE. 0.0) THEN

FRATIO = FCOMP/FCRIT

ELSE
FRATIO =0.0

END IF
IF (MODLIST .GT. 1) THEN

WRITE (KOUT, 241) MODEL, NUMITR, MERIT, FCOMP,
FCRIT, FRATIO
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241 FORMAT (2X, 14, 6X, 16, 7X, 1PE9 . 2, 2X, 2 (5X, 0PF9 . 3) , 5X,
+ F9.2)

ENDIF
IF (LOOP .GT. 1) THEN

IF (FRATIO .GT. BEST_FRATIO) THEN
BEST_MODEL = MODEL
BEST_FRATIO = FRATIO

ENDIF
ELSE

BEST_MODEL = MODEL
BEST_FRATIO = FRATIO

ENDIF
ELSE

IF (MODLIST .GT. 1) THEN
WRITE (KOUT, 223) MODEL

223 FORMAT (IX, 'WARNING - Skipping MODEL', 14,' due ',
+ 'to insufficient degrees-of-freedom.')

ELSE
IERR = NO_DEGREES OF FREEDOM

ENDIF
ENDIF

259 CONTINUE
IF (IERR .EQ. NO_ERROR) THEN

IF (BEST_FRATIO .LT. 1.0 .AND.

+ MODLIST .GT. 1) BEST_MODEL=CONSTANT
IF (MODEL .NE. BEST_MODEL) THEN

MODEL = BEST_MODEL
CALL DMODEL (VERTEX, B)
IDF = IPTS NUM_B
WRITE (KOUT, 273) MODEL, NUM_B, IPTS

273 FORMAT (/, IX, 'MODEL'
,14, ', using'

, 13, '
out of, 13,

+ ' degrees-of-freedom, is optimum. ',/, IX)
IF (MODEL .EQ. CONSTANT) WRITE (KOUT, 275)

275 FORMAT (IX, 'WARNING - Review data carefully. Failure',
+ ' to obtain a good fit may be due',/,
+ 11X, 'to erronous data. Look for ',
+ 'unexpected RESIDUAL values .',/, IX)

MERIT = AMOEBAO (VERTEX, MFVCT, IBMAX, NUM_B, IBMAX+1,
+ CONVERGENCE, MERITF, NUMITR, B, WORK)

ENDIF
ENDIF

ENDIF
CLOSE (IFILE3,STATUS= ' DELETE ' )
IF (IERR .EQ. NO_ERROR) THEN

CALL POST
ENDIF
IF (IERR .NE. NO_ERROR) THEN

WRITE (CERR, 901) IERR

901 FORMAT (16)
CALL LTJUST(CERR)
OPEN (IFILE3,FILE='MELT.ERR'

,
STATUS=' OLD' )

CALL PARSFILE (INT2 (IFILE3) , INT2 (1) , CERR (1 :LENSTR (CERR) ) ,

+ INT2 (2 ), CATALOG)
IF (IERR .LT. 200) THEN

WRITE (KOUT ,911) CATALOG ( 1 : LENSTR (CATALOG ) ) , KBELL

911 FORMAT (IX, A, 1A1)
ELSE

WRITE (KOUT, 911) CATALOG (1 :LENSTR (CATALOG) )
ENDIF

ENDIF
STOP ' '

END
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SUBROUTINE PREFIT (VERTEX)
CHARACTER* 4 I1A4
REAL*8 N_OF D, N OF D MINUS OLD N, DN BY DD
EXTERNAL N OF D, N OF D MINUS OLD N, DN BY DD
INTEGER*2 LENSTR
INTEGER*2 I, J
INTEGER* 4 1 4TEMP
REAL*4 RTEMP
REAL*4 HMS2HR, HR2HMS
REAL*8 RAD, DEG, DPTEMP
REAL* 4 SUBIND
LOGICAL*2 INVALID, FOUND
CHARACTER* 1 BLANK, KBELL, KFF
CHARACTER* 80 I1A80
PARAMETER (BLANK = ' ' )

$ INCLUDE ' SYMBOLA FTN'

$ INCLUDE ' SYMBOLB FTN'

$ INCLUDE ' SYMBOLC FTN'

$ INCLUDE ' SYMBOLG FTN'

$ INCLUDE ' COMMONA FTN'

$ INCLUDE ' COMMONB FTN'

$ INCLUDE ' COMMONC FTN'

$ INCLUDE ' COMMONE FTN'

$ INCLUDE ' COMMONF FTN'

$ INCLUDE ' COMMONG FTN'

$ INCLUDE ' COMMONH FTN'

$ INCLUDE ' COMMONJ FTN'

REAL* 4 VERTEX
DIMENSION VERTEX (IBMAX, IBMAX+1)
KBELL CHAR (7)
KFF CHAR (12)
PART NUMBER = NULL
PROJECT NUMBER = NULL
GLASS TYPE = NULL
MFGR = NULL
SUPPLIER = NULL
MELT NUMBER = NULL
ANNEAL NUMBER = NULL
FORM = NULL
COMPANY = BLANK

CATALOG = BLANK
MIN WVL = 0.400
MAX WVL = 0.700
DEFAULT ERR BAR= 0.0
NUM DESIGN WVL = 0
CONVERGENCE = 1.0E-4

MODEL = 4
MFTYPE = WEIGHTED SUM OF SQUARED

IPTS = 0
NOM IPTS = 0
NUMMOD = 0
OLD ANGLE = 0.0
NEW ANGLE = 0.0
RISK = 0.05
LOT NAME = NULL
SHORT =

.FALSE.

TEMPERATURE = 0.0
PRESSURE = 0.0

PLOTTER =
.FALSE.

PLOT WVL =
.TRUE.

PLOT FRQ =
.FALSE.

FF END =
.FALSE.

MODLIST = 0
HAVE HISTORY =

.FALSE.

UPDATE HISTORY =
.FALSE.

FNAME3 = 'HISTORY.MEL'

FNAME1 =
'MELT.MEL'

BATCH =
.FALSE.

CHECK =
.FALSE.

A0 = 1.D0

Al = l.D-2

A2 = l.D-2

A3 = l.D-3

A4 = l.D-4

A5 = l.D-5

DO 105 1=1, MAXMOD
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HISTORY (1,1) = 0
HISTORY (I, 2) = INT4(I)

105 CONTINUE
INQUIRE (FILE='MELT.MEL'

, EXIST=FOUND)
IF (FOUND) THEN

IERR = NO_ERROR
OPEN (IFILE1,FILE='MELT.MEL'

,
STATUS=' OLD' )

CALL USERDATA (IFILE1)
CLOSE (IFILE1,STATUS='KEEP' )
IF (IERR .NE. NO ERROR) RETURN

ENDIF
IERR = NO_ERROR
CALL CMDARG (1, FNAME1, I4TEMP)
IF (I4TEMP .GT. 0) THEN

OPEN (IFILE1,FILE=FNAME1,STATUS='0LD' )
CALL USERDATA (IFILE1)
CLOSE (IFILE1,STATUS='KEEP' )

ENDIF
IF (IERR .NE. NO_ERROR) RETURN
WRITE (KOUT, 109)

109 FORMAT (IX)
IF (.NOT. BATCH) THEN

CALL USERDATA (KEYB)
IF (IERR .NE. NO_ERROR) RETURN
WRITE (KOUT, 109)

ELSE
IF (CHECK) THEN

IERR = QUIT_SPECIFIED
RETURN

ENDIF
ENDIF
IF (NOM_IPTS .GT. 1) THEN

CALL SORT2DR4 (NOMINAL, MAX_NOM_IPTS, NOM IPTS, 2, 2)
ENDIF
COMPUTE_EXPN =

.FALSE.

IF (NUM_DESIGN_WVL .GT. 0) THEN
DO 139 1=1, NUM_DESIGN_WVL
IF (DESIGN_EXPN(I) .EQ. 0.0) THEN
IF (NOM_IPTS .GT. 0) THEN
DO 135 J=l, NOM_IPTS
IF (ABS(1.0-NOM_WVL(J)/DESIGN_WVL(I) ) .LT.le-4) GOTO 136

135 CONTINUE
COMPUTE_EXPN =

.TRUE.

GOTO 138
136 DESIGN_EXPN(I) = NOM_EXPN(J)

ELSE
COMPUTE_EXPN =

.TRUE.

ENDIF
ENDIF

138 CONTINUE

139 CONTINUE
ENDIF
DO 14 9 1=1, IPTS
IF (EXPN(I) .EQ. 0.0 .AND. NOM_IPTS .GT. 0) THEN

IF (NOM_IPTS .GT. 0) THEN

DO 145 J=l, NOM_IPTS
IF (ABS(1.0-NOM_WVL(J)/WVL(I) ) .LT. le-4) GOTO 146

145 CONTINUE
COMPUTE_EXPN =

.TRUE.

GOTO 148
146 EXPN(I) = NOM_EXPN(J)

ELSE
COMPUTE_EXPN =

. TRUE .

ENDIF

ENDIF
148 CONTINUE
149 CONTINUE

IF (NUM DESIGN WVL .GT. 1) THEN

CALL SORT2DR4 (DESIGN, MAX_DESIGN_WVL, NUM_DESIGN_WVL, 3, 2)
I =1

150 I =1+1

IF (I .LE. NUM DESIGN_WVL) THEN

IF (DESIGN_WVL(I) .EQ. DESIGN_WVL (1-1) ) THEN

DO 157 J=I, NUM_DESIGN_WVL

DESIGN_WVL(J-1) = DESIGN_WVL(J)
DESIGN_EXPN(J-1)= DESIGN_EXPN ( J)
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157 CONTINUE
NUM_DESIGN_WVL = NUM DESIGN WVL 1

ENDIF
GOTO 150

ENDIF
ENDIF
CALL DMODEL (VERTEX, B)
IF (.NOT. COMPUTE_EXPN) GOTO 400
IF (MFGR .EQ. BLANK) THEN

WRITE (KOUT, 181) KBELL
181 FORMAT (IX, 'WARNING - No manufacturer specified, SCHOTT used.',

2 1A1)
MFGR = 'SCHOTT'

I1A80 = CATALOG (1:LENSTR(CATALOG ) ) // 'SCHOTT'

ELSE
I1A80 = CATALOG (1:LENSTR (CATALOG) ) // MFGR (1 :LENSTR (MFGR) )

ENDIF
INVALID =

.FALSE.

182 CALL NEWSUF (I1A80, ' TXT' )
INQUIRE (FILE=I1A80,EXIST=FOUND)
IF (FOUND) THEN

OPEN (IFILE1,FILE=I1A80,STATUS='OLD' )
IERR = NO_ERROR
CALL NOMDAT (IFILE1)
CLOSE (IFILE1,STATUS='KEEP' )
IF (IERR .NE. NO_ERROR) THEN

IF (ICOM .EQ. COMPUTE_INDEX_ERROR) RETURN
IF (ICOM .EQ. COMPUTE_SQUARED_INDEX_ERROR) RETURN

ELSE
CALL DMODEL (VERTEX, B)

ENDIF
ELSE

IF (.NOT. INVALID) THEN

WRITE (KOUT, 185) MFGR (1:LENSTR (MFGR) )
185 FORMAT (IX, 'ERROR - Unrecognized manufacturer C,A,').')

ENDIF
WRITE (KOUT, 187) I1A80 (1 :LENSTR (I1A80) ) , KBELL

187 FORMAT (IX, 'ERROR File not found ('
, A, 1A1, ' ) .

' )
IF (INVALID) THEN

IERR = INVALID_MFGR

RETURN
ENDIF
INVALID =

.TRUE.

WRITE (KOUT, 189)
189 FORMAT (IX, 'WARNING - SCHOTT catalog used.')

MFGR =
'SCHOTT'

I1A80 = CATALOG (1:LENSTR (CATALOG) ) // 'SCHOTT'

GOTO 182
ENDIF

400 DO 409 J=l, IPTS
IF (IACT(J) .EQ. 1) OBSN(J)=EXPN(J)+OBSN(J)

409 CONTINUE

CALL SORT2DR4 (EXPERIMENTAL, MAXPTS, IPTS, 4, 4)
OPEN (IFILE2,STATUS='NEW )
IF (OLD ANGLE .NE. 0.0) THEN

WRITE (KOUT, 115) KBELL, OLD_ANGLE, NEW_ANGLE

WRITE (IFILE2,115) KFF, OLD_ANGLE, NEW_ANGLE

115 FORMAT ( IX, 1A1,/, IX, 'WARNING - The OBSERVED INDEX was ',
+ 'altered to compensate for the change',/,

+
11X,' in prism angle

from'
,F9.5,

' to',F9.5,' degrees '.

+ ' (HMS) .',/,/,
+ IX, '

EXPERIMENTAL'

, T23, ' DEVIATION
ANGLE'

, T43,
+ 7 ('-'),' OBSERVED INDEX ',7 ('-'),/,
+ 2X, ' WAVELENGTH'

, T22 ,
' RADIANS'

, T37, ' HMS'
, T48 ,

' NEW'

,

+ T59, 'OLD'
CHANGE' )

WRITE (KOUT, 109)
WRITE (IFILE2,109)
DO 129 1=1, IPTS

RTEMP = HMS2HR(OLD_ANGLE)
PRISMA = RAD (DBLE (RTEMP ) )
OLD_N = DBLE (OBSN ( I ) )
DPTEMP = RAD (45. DO)
CALL DNEWTN (N_OF_D_MINUS_OLD_N,

+ DN_BY_DD,
+ DPTEMP,
+ 1.0D-7,
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+ 5.0D-7,
+ 100,
+ IERR)

IF (IERR .EQ. -1) THEN
WRITE (KOUT, 125)

125 FORMAT (IX, 'ERROR Unable to adjust data for new

+ 'prism angle. ' )
IERR = MAX_ITER_EXCEEDED
CLOSE (IFILE2, STATUS=' DELETE' )
RETURN

ELSEIF (IERR .EQ. 1) THEN
IERR = NO_ERROR

ELSEIF (IERR .EQ. 2) THEN
IERR = NO_ERROR

ENDIF
PRISMA = RAD (DBLE (HMS2HR (NEW_ANGLE) ) )
OBSN ( I ) = SNGL (N_OF_D (DPTEMP ) )
CALL GETSYM (WVL (I) , I1A4 )
WRITE (KOUT, 127) WVL (I), I1A4, SNGL (DPTEMP) ,

+ HR2HMS (SNGL (DEG (DPTEMP) )) ,

+ OBSN (I), OLD_N, OBSN(I)-SNGL(OLD_N)
WRITE (IFILE2,127) WVL (I), I1A4, SNGL (DPTEMP) ,

+ HR2HMS(SNGL(DEG(DPTEMP) ) ) ,

+ OBSN (I), OLD_N, OBSN(I)-SNGL(OLD_N)
127 FORMAT(1X,F10.6,1A4,T20,F9.6,T31,F9.5,3(2X,F9.6) )
129 CONTINUE

WRITE (KOUT, 109)
WRITE (IFILE2,109)

ENDIF
RTEMP = DEFAULT_ERR_BAR

DO 417 1=1, IPTS
OBSN2(I) = OBSN(I)**2

IF (OBSN(I) .EQ. 0.0 .OR. EXPN(I) .EQ. 0.0) THEN

ERRN(I) = 0.0

ERRN2(I) = 0.0
ELSE

ERRN(I) = SUBIND(OBSNd) ,EXPN(I) )
ERRN2(I) = OBSN2(I) EXPN(I)**2

ENDIF
IF (ERROR_BAR(I) .EQ. 0.0) ERROR_BAR ( I ) =DEFAULT_ERR_BAR
IF (ERROR_BAR(I) .LT. RTEMP) RTEMP=ERROR_BAR(I)

417 CONTINUE

DO 517 1=1, IPTS
IF (RTEMP .NE. 0.0) THEN

WEIGHT ( I ) = ERROR_BAR ( I ) /RTEMP

ELSE

WEIGHT(I) = 1.0
ENDIF

517 CONTINUE

RETURN
END
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SUBROUTINE POST
CHARACTER* 1 BLANK, IFF
PARAMETER (BLANK=' ' )
REAL*4 FITIND, NOMIND
REAL*4 CINTER
REAL* 4 DELWVL
REAL*4 TEMPI, TEMP2, TEMP3, TEMP4
REAL*4 SUBIND
INTEGER*2 LENSTR
INTEGER* 4 I, J, K
LOGICAL*2 FOUND
LOGICAL*4 L4TEMP

$ INCLUDE: ' SYMBOLB.FTN'

$ INCLUDE: ' SYMBOLC.FTN'

$ INCLUDE: ' SYMBOLG.FTN'

$ INCLUDE: ' COMMONA.FTN'

$ INCLUDE: ' COMMONB.FTN'

$ INCLUDE : ' COMMONF . FTN '

$ INCLUDE :
' COMMONG . FTN '

$ INCLUDE: ' COMMONH.FTN'

$INCLUDE: ' COMMONI
IFF = CHAR(12)
WRITE (IFILE2,115) IFF

115 FORMAT (IX, 1A1)
IF (IMEAN .EQ. 0) THEN

J = NUM_B
ELSE

J = NUM_B
ENDIF
IF (ICOM .EQ. COMPUTE_INDEX_ERROR) THEN

CALL ANOVA (IFILE2, J,
"

IPTS, WVL, ERRN, TERMS, WEIGHT,
+ RISK, TEMPI, TEMP2, TEMP3, TEMP4, RSQ, SDEV)
ELSEIF (ICOM .EQ. COMPUTE_SQUARED_INDEX_ERROR) THEN

CALL ANOVA (IFILE2, J, IPTS, WVL, ERRN2, TERMS, WEIGHT,
+ RISK, TEMPI, TEMP2, TEMP3, TEMP4, RSQ, SDEV)
ELSEIF (ICOM .EQ. COMPUTE_INDEX) THEN

CALL ANOVA (IFILE2, J, IPTS, WVL, OBSN, TERMS, WEIGHT,
+ RISK, TEMPI, TEMP2, TEMP3, TEMP4, RSQ, SDEV)
ELSE

CALL ANOVA (IFILE2, J, IPTS, WVL, OBSN2, TERMS, WEIGHT,
+ RISK, TEMPI, TEMP2, TEMP3, TEMP4, RSQ, SDEV)
ENDIF
DO 239 1=1, IPTS

COMPUTED(I) = FITIND (WVL (I) )
IF (IERR -NE. NO_ERROR) RETURN

RESIDUAL (I) = SUBIND (OBSN (I) , COMPUTED (I) )
239 CONTINUE

DO 259 1=1, NUM_DESIGN_WVL

DESIGN_N(I) = FITIND (DESIGN_WVL (I) )
IF (IERR .NE. NO_ERROR) RETURN

DESIGN ERROR BAR(I) = CINTER (RISK, DESIGN_WVL (I) ,

+
~

WVL, SDEV, IPTS, NUM_B)
259 CONTINUE

L4TEMP = SHORT

IF (SHORT) SHORT=. FALSE.

REWIND IFILE2

CALL REPORT (KOUT)
SHORT = L4TEMP

IF (PRINTER) THEN

WRITE (KOUT, 321)
321 FORMAT (/, IX, 'Sending copy to PRINTER device or file . . -')

REWIND IFILE2

CALL REPORT (IPRT)
IF (FF_END) WRITE (IPRT, 115) IFF

ENDIF
CLOSE (IFILE2,

STATUS=' DELETE' )
WRITE (KOUT, 606)

'MELTHIST.TXT'

INQUIRE
(FILE='MELTHIST.TXT'. EXIST=FOUND)

IF (FOUND) THEN

OPEN (IFILE3,FILE='MELTHIST.TXT',STATUS='OLD',ACCESS='APPEND'i

ELSE
OPEN ( IFILE3,

FILE='MELTHIST .

TXT'
,
STATUS=' NEW' )

WRITE (IFILE3,721) MODEL, FNAME1 (1 : LENSTR (FNAME1) )

721 FORMAT (13, 2X, A)
CLOSE (IFILE3,STATUS='KEEP')
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NUM_INTERP_WVL = 0
DELWVL = (MAX_WVL-MIN_WVL) /FLOAT (INTERP MAX)
DO 515 1=1, INTERP_MAX

J = NUM_INTERP_WVL + 1
INTERP_WVL(J) = MIN_WVL + DELWVL*FLOAT (1-1)
INTERP_EXPN(J) = NOMIND(INTERP_WVL(J) )
IF (INTERP_EXPN(J) .GT. 0.0) THEN

INTERP_OBSN(J) = FITIND (INTERP_WVL (J) )
INTERP_ERRN(J) = SUBIND (INTERP_OBSN (J) , INTERP_EXPN ( J) )
NUM_INTERP_WVL = NUM_INTERP_WVL + 1

ENDIF
515 CONTINUE

IF (PLOTTER) THEN
IF (PLOTTER_DEV .EQ. BLANK) THEN

CALL NEWSUF (FNAME1, ' PLT' )
INQUIRE (FILE=FNAMEl,EXIST=FOUND)
IF (FOUND) CALL SYSDEL (FNAME1)
PLOTTER_DEV = FNAME1

ENDIF
CALL UPCASE (PLOTTERJTYPE)
CALL UPCASE (PLOTTER_DEV)
WRITE (KOUT, 521) PLOTTER_DEV(l :LENSTR (PLOTTER_DEV) ) ,

+ PLOTTERJTYPE

521 FORMAT (/, IX, 'Sending plotter instructions to ',A, ' for ',1A8,
+ '...')

IF (PLOTTER_DEV .EQ.

'LPT2'
.OR. PLOTTER_DEV .EQ. 'LPT3') THEN

OPEN (IPLOT, FILE=PLOTTER_DEV,
STATUS=' OLD' )

ELSE
OPEN (IPLOT, FILE=PLOTTER_DEV, STATUS=' UNKNOWN' )

ENDIF
IF (PLOT_WVL) CALL PLOT1 (PLOTTERJTYPE)
IF (PLOT_FRQ) CALL PLOT2 (PLOTTERJTYPE)
CLOSE (IPLOT,

STATUS=' KEEP ' )
ENDIF
IF (UPDATE_HISTORY) THEN

WRITE (KOUT, 606) FNAME3 (1 :LENSTR (FNAME3) )
606 FORMAT (/, IX, 'Updating history file ',A,'. . .')

INQUIRE (FILE=FNAME3, EXIST=FOUND)
IF (.NOT. HAVE_HISTORY) THEN

IF (FOUND) THEN
OPEN

(IFILE3,FILE=FNAME3,STATUS='OLD' )
CALL USERDATA (-IFILE3)
CLOSE (IFILE3,

STATUS=' DELETE' )
ENDIF

ELSE
IF (FOUND) CALL SYSDEL (FNAME3)

ENDIF
HISTORY (MODEL, 1)= HISTORY (MODEL, 1) + 1

K =0

DO 619 1=1, MAXMOD

K = K + HISTORY (1,1)
619 CONTINUE

CALL SORT2D (HISTORY, MAXMOD, MAXMOD, 2, 2)
OPEN (IFILE3,FILE=FNAME3,STATUS='NEW )
WRITE (IFILE3,621) K

621 FORMAT ('BEGIN HISTORY
!',I6,' samples ,/,

+ '!MODEL COUNT
PERCENT' )

DO 639 I=MAXMOD, 1, -1

WRITE (IFILE3,625) (HISTORY (I, J) , J=2, 1, -1) ,

+

l
FLOAT (HISTORY (1,1)) /FLOAT (K)*100.0

625 FORMAT (16, IX, 16,
IX,' !',F6.1)

639 CONTINUE

WRITE (IFILE3,649)

649 FORMATCEND HISTORY')

CLOSE <IFILE3,STATUS='KEEP')

ENDIF

RETURN

END
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SUBROUTINE USERDATA (KINPAS)
CHARACTER*! KBELL, BLANK
CHARACTER* 1 CTRLZ
PARAMETER (BLANK=' ' )
CHARACTER* 2 I1A2, J1A2
CHARACTER*3 KEYWORDS, 11A3
CHARACTER* 5 I1A5
CHARACTER*80 I1A80
L0GICAL*2 INVALID, DATA LOOP
L0GICAL*2 NOMINAL LOOP
LOGICAL*2 FORMULAS LOOP
LOGICAL*2 HISTORY LOOP
L0GICAL*2 FOUND
INTEGER*2 I, MAX KEYWORDS, USERKEY, J, K Kl, K2
INTEGER*2 LENSTR
INTEGER* 4 KIN, KINOLD, KINPAS
INTEGER*2 IRTN, J LOOP, J LIMIT
REAL*8 DPREAL
PARAMETER (MAX KEYWORDS=40)
DIMENSION KEYWORDS (MAX KEYWORDS) , USERKEY (MAX_ KEYWORDS

$ INCLUDE ' SYMBOLB FTN'

$ INCLUDE ' SYMBOLG FTN'

$ INCLUDE ' COMMONA FTN'

$ INCLUDE ' COMMONB FTN'

$ INCLUDE ' COMMOND FTN'

$ INCLUDE ' COMMONE FTN'

$ INCLUDE ' COMMONF FTN'

$ INCLUDE ' COMMONG FTN'

$ INCLUDE ' COMMONH FTN'

DATA KEYWORDS / 'PAR', 'PRO', ' GLA'
,

'MAN'
, 'MFC .

'MEL'
.

ANN'
,

2 'WVL', 'WAV, 'BEG'
,

'END'
,

'MAX'
,
'MIN'

,
SUP'

.

3 'VEN'. 'UNC. 'ERR'
,

' COM'
,
'FOR'

,
'DES'

,
IND'

,

4 'REA', 'CAT', 'PLO'
.

'DEB'
.
'CON'

,
'MFT'

,
MOD'

,

5 'PRI', 'ANG', 'RIS'
,
'LOT'

.
'SHO'

. 'GO '
. QUI',

6 'TEM'. 'PRE', 'FFE'
,
'HIS'

,
'BAT'

DATA USERKEY / 1, 2, 3, 4, 4, 5, 6,
2 -8, -8, -1, -2, 102, 101, 7,
3 7, 103, 103, -3, 8 -8, -9,

4 -4, -5, -6, -7, 104 -10, -11,

5 -12, 205, 107, 9, -13 -14, -15,

6 108, 109, -16, -17, -18

KBELL = CHAR(7)
CTRLZ = CHAR(26)
KIN = IABS (KINPAS)
KINOLD = -1

DATA LOOP =
.FALSE.

COMPUTE EXPN =
.FALSE.

FORMULAS LOOP =
.FALSE.

HISTORY LOOP =
.FALSE.

100 IF (KIN .EQ. KEYB) CALL NOCRLF ( ' MEL> ' )
READ (KIN,101,END=300) I1A80

101 FORMAT (1A80)
J = INDEX ( I1A80, CTRLZ)
IF (J .EQ. 1) THEN

GOTO 300
ELSEIF (J .GT. 1) THEN

I1A80 = I1A80(1:J-1)
ENDIF

K = LENSTR ( I 1A80)
IF (KIN .NE. KEYB .AND. KINPAS .GE. 0) THEN

IF (K .GT. 0) THEN

WRITE (KOUT, 103) I1A80(1:K)

103 FORMAT (IX, A)
ELSE

WRITE (KOUT, 103)
ENDIF

ENDIF
K = INDEX

(I1A80,' !')
IF (K .GT. 1) THEN

I1A80 = I1A80(1:K-1)
ELSEIF (K .EQ. 1) THEN

GOTO 100
ENDIF

CALL PARSEC (1, I1A80, BLANK, I1A3)
IF (I1A3 .EQ. BLANK) GOTO 100

CALL UPCASE (I1A3)
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DO 119 1=1, MAX_KEYWORDS
IF (I1A3 .EQ. KEYWORDS (I)) GOTO 130

119 CONTINUE
IF (DATA_LOOP) GOTO 400
IF (NOMINAL_LOOP) GOTO 500
IF (FORMULAS_LOOP) GOTO 600
IF (HISTORY_LOOP) GOTO 700
WRITE (KOUT, 121) I1A3, KBELL

121 FORMAT (IX, 'WARNING - Unrecognized keyword ('
, 1A3, 1A1, ' ) , entire

'

2 'line disgarded.')
GOTO 100

130 IF (USERKEY (I) .LT. 0) THEN
IF (USERKEY (I) .EQ. -1) THEN

CALL PARSEC (2, I1A80, 'DAT', I1A3)
CALL UPCASE (I1A3)
IF (I1A3 .EQ. 'DAT') THEN

DATA_LOOP =
.TRUE.

ELSEIF (I1A3 .EQ.
' NOM' ) THEN

NOMINAL_LOOP=
.TRUE.

ELSEIF (I1A3 .EQ. 'FOR') THEN
FORMULASJJOOP= .TRUE.

ELSEIF (I1A3 .EQ. 'HIS') THEN
HISTORY_LOOP =

.TRUE.

ELSE
WRITE (KOUT, 137) I1A3, KBELL

137 FORMAT (IX, 'WARNING - Unrecognized qualifier C,1A3,
2 1A1, '

. entire line disgarded.')
ENDIF

ELSEIF (USERKEY (I) .EQ. -2) THEN

CALL PARSEC (2, I1A80, BLANK, I1A3)
CALL UPCASE (I1A3)
IF (I1A3 .EQ. BLANK .AND. DATA_LOOP)

I1A3='DAT'

IF (I1A3 .EQ. BLANK .AND. NOMINALJjOOP ) IlA3='NOM'

IF (I1A3 .EQ. BLANK .AND. FORMULASJ.OOP ) IlA3='FOR'

IF (I1A3 .EQ. BLANK .AND. HISTORY_LOOP)
I1A3='HIS'

IF (I1A3 .EQ. 'DAT') THEN
DATA_LOOP =

.FALSE.

ELSEIF (I1A3 .EQ. 'NOM') THEN
NOMINAL_LOOP=

.FALSE.

ELSEIF (I1A3 -EQ. 'FOR') THEN
FORMULAS_LOOP=

.FALSE.

ELSEIF (I1A3 .EQ. 'HIS') THEN

HISTORY_LOOP =
.FALSE.

ELSEIF (I1A3 .EQ. BLANK) THEN

GOTO 300
ELSE

WRITE (KOUT, 137) I1A3, KBELL

ENDIF

ELSEIF (USERKEY (I) .EQ. -3) THEN

CALL PARSEC (2, I1A80, BLANK, COMPANY)
ELSEIF (USERKEY (I) .EQ. -4) THEN

Kl =1

CALL PARSEC (2, I1A80, BLANK, I1A80)
FNAME2 = I1A80

152 IF (FNAME2 .NE. BLANK) THEN

INQUIRE (FILE=FNAME2,EXIST=FOUND)

IF (FOUND) THEN

IF (KIN .NE. IFILE2) THEN

KINOLD = KIN

KIN = IFILE2

OPEN
(KIN,FILE=FNAME2,STATUS='OLD')

ELSE
WRITE (KOUT, 155) KBELL

155 FORMAT (IX, 'WARNING - Unable to nest READ ,

+ 'statements. Entire line disgarded. ' ,

+ IAD
ENDIF

ELSE

156 Kl = Kl + 1
IF (Kl .EQ. 2) THEN

IF (CATALOG .EQ. BLANK) GOTO 156

FNAME2 = CATALOG (1:LENSTR (CATALOG)) //

+ I1A80(1:LENSTR(I1A80))

ELSEIF (Kl .EQ. 3) THEN

FNAME2 = I1A80

CALL NEWSUF (FNAME2, '
MEL' )
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ELSEIF (Kl .EQ. 4) THEN
FNAME2 = CATALOG (1: LENSTR (CATALOG) ) //

+ I1A80(1:LENSTR(I1A80) )
CALL NEWSUF (FNAME2, ' MEL' )

ELSE
WRITE (KOUT, 157) I1A80 (1 :LENSTR (I1A80) ) , KBELL

157 FORMAT (IX, 'ERROR - File not found C,A, 1A1,
2 ').')

IERR = FILE NOT FOUND
RETURN

ENDIF
WRITE (KOUT, 1571) FNAME2 (1 : LENSTR (FNAME2) )

1571 FORMAT (IX, 'WARNING Not found. Trying READ ',A)
GOTO 152

ENDIF
ELSE

WRITE (KOUT, 159) KBELL
159 FORMAT (IX, 'WARNING - Filename not specified, entire ',

2 'line disgarded. ', 1A1)
ENDIF

ELSEIF (USERKEY (I) .EQ. -5) THEN
CALL PARSEC (2, I1A80, BLANK, CATALOG)

ELSEIF (USERKEY (I) .EQ. -6) THEN
CALL PARSEC (2, I1A80, BLANK, I1A3)
CALL UPCASE (I1A3)
IF (I1A3 .EQ. 'OFF') THEN

PLOTTER =
.FALSE.

ELSEIF (I1A3 .EQ. 'ON') THEN
PLOTTER =

.TRUE.

CALL PARSEC (3, I1A80, BLANK, PLOTTERJTYPE)
CALL PARSEC (4, I1A80, BLANK, PLOTTERJOEV)

ELSE
PLOT_WVL =

.FALSE.

PLOT_FRQ =
.FALSE.

IF (I1A3(1:1) .EQ. 'W') PLOT_WVL=
. TRUE .

IF (I1A3(1:1) .EQ. 'F') PLOT_FRQ=
. TRUE .

CALL PARSEC (3, I1A80, BLANK, I1A3)
CALL UPCASE (I1A3)
IF (I1A3(1:1) .EQ. 'W') PLOT_WVL=

. TRUE .

IF (I1A3(1:1) .EQ. 'F') PLOT_FRQ=
. TRUE .

ENDIF
ELSEIF (USERKEY (I) .EQ. -7) THEN

CALL PARSEC (2, I1A80, 'NO', I1A2)
CALL UPCASE (I1A2)
DEBUG =

.FALSE.

IF (I1A2(1:1) .EQ. 'Y') DEBUG=.TRUE.

IF (I1A2(1:1) .EQ. 'T') DEBUG=.TRUE.

ELSEIF (USERKEY (I) .EQ. -8) THEN

DO 187 J=l, MAX_DESIGN_WVL-NUM_DESIGN_WVL

CALL PARSER (J+l, I1A80, 0.D0, DPREAL, INVALID)
IF (INVALID) THEN

CALL PARSEC (J+l, I1A80, BLANK, I1A2)
DO 183 K=l, MAX_LINES

IF (I1A2.EQ.SPECTRAL_LINE_NAMES(K) ) GOTO 186

183 CONTINUE
WRITE (KOUT, 185) I1A2, KBELL

185 FORMAT (/, IX, 'WARNING - Unrecognized symbolic ',
+ 'wavelength specification (',1A2,1A1,

+ '), remainder of line disgarded.')
GOTO 100

186 DPREAL = DBLE(SPECTRAL_LINE_VALUES(K) )
ENDIF
IF (DPREAL .LE. 0.D0) GOTO 190

NUM DESIGN_WVL = NUM_DESIGN_WVL + 1

DESIGN_WVL(NUM_DESIGN_WVL) = SNGL (DPREAL)

187 CONTINUE

ELSEIF (USERKEY (I) .EQ. -9) THEN

DO 1087 J=l, MAX_DESIGN_OBSN-NUM_DESIGN_OBSN

CALL PARSER (J+l, I1A80, 0.D0, DPREAL, INVALID)

IF (INVALID) GOTO 900
K = USERKEY (I) - USERKEY (I) /100*100 +

2 NUMJOESIGNJOBSN

IF (DPREAL .LE. O.D0) GOTO 190
NUM_DESIGN_OBSN = NUM_DESIGN_OBSN + 1

DESIGNJSXPN (NUMJOESIGNJOBSN) = SNGL (DPREAL)

1087 CONTINUE
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-999. DO, DPREAL, INVALID)

K .EQ. 2) ) THEN

,
STATUS='NEW'

0) .OR. (J .GT. MAXMOD)) THEN
= ILLEGAL MODEL NUMBER

ELSEIF (USERKEY (I) .EQ. -10) THEN
CALL PARSER (2, I1A80, 1.D0, DPREAL, INVALID)IF (INVALID) GOTO 900
MFTYPE = IFIX (SNGL (DPREAL))

ELSEIF (USERKEY (I) .EQ. -11) THEN
K =2

1088 CONTINUE
CALL PARSER (INT4(K), I1A80,
IF (INVALID) GOTO 900
J = IFIX (SNGL (DPREAL) )
IF (J .EQ. 0 .OR. (J .EQ. -999 .AND.

CLOSE (IFILE3, STATUS=' DELETE' )
OPEN (IFILE3,FORM=' UNFORMATTED'

MODLIST = 0
ELSEIF (J .EQ. -999) THEN

GOTO 190
ELSE

IF ((J .LT.

IERR
RETURN

ELSE
MODLIST = MODLIST + 1
MODEL = INT4 (J)
WRITE (IFILE3) MODEL

ENDIF
ENDIF
K = K + 1
GOTO 1088

ELSEIF (USERKEY (I) .EQ. -12) THEN
CALL PARSEC (2, I1A80, BLANK, I1A3)
CALL UPCASE (I1A3)
IF (I1A3 -EQ. 'OFF') THEN

IF (PRINTER) CLOSE (IPRT)
PRINTER =

.FALSE.

ELSEIF (I1A3 .EQ. 'ON') THEN
IF (PRINTER) CLOSE (IPRT)
CALL PARSEC (3, I1A80, BLANK, I1A80)
CALL UPCASE (I1A80)
IF (I1A80 .EQ.

'LPT2'
.OR. I1A80 -EQ. 'LPT3') THEN

(IPRT, FILE=I1A80, STATUS=' OLD' )OPEN
ELSE

OPEN
ENDIF
PRINTER

(IPRT, FILE=I1A80, STATUS=' UNKNOWN'

.TRUE.

ELSE
WRITE (KOUT, 137) I1A3, KBELL

ENDIF
ELSEIF (USERKEY (I) .EQ. -13) THEN

CALL PARSEC (2, I1A80, 'YES', I1A2)
CALL UPCASE (I1A2)
SHORT =

.FALSE.

IF (I1A2(1:1) .EQ. 'Y') SHORT=.TRUE.
IF (I1A2(1:1) .EQ.

' T' ) SHORT=.TRUE.
ELSEIF (USERKEY (I) .EQ. -14) THEN

GOTO 300
ELSEIF (USERKEY (I) .EQ. -15) THEN

IERR = QUITJ3PECIFIED

RETURN
ELSEIF (USERKEY (I) .EQ. -16) THEN

CALL PARSEC (2, I1A80, 'YES'. I1A2)
CALL UPCASE (I1A2)
FF_END =

.FALSE.

IF (I1A2(1:1) .EQ.

'Y'

IF (I1A2(1:1) .EQ.

'T'

ELSEIF (USERKEY (I) .EQ. -17) THEN

CALL PARSEC (2, I1A80, 'YES', I1A2)
CALL UPCASE (I1A2)
IF (I1A2(1:1) .EQ. 'Y

UPDATE_HISTORY =

ELSEIF (I1A2(1:1) .EQ

CALL PARSEC (3, I1A80, FNAME3, FNAME3)
ELSE

UPDATEJdISTORY =
.FALSE.

ENDIF
ELSEIF (USERKEY (I) .EQ. -18) THEN

CALL PARSEC (2, I1A80, 'YES', I1A2)

FF_END=
. TRUE .

FF END=.TRUE.

.OR. I1A2(1:1)
. TRUE .

'F') THEN

EQ. 'T') THEN
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1) .EQ. 'Y';' BATCH=
. TRUE .

1) .EQ. 'T'Ji BATCH=
. TRUE .

1) .eq. 'c;i THEN
=

.TRUE.

=
.TRUE.

CALL UPCASE (I1A2)
BATCH =

.FALSE.

CHECK =
.FALSE.

IF (I1A2(1:
IF (I1A2(1:
IF (I1A2(1:

BATCH
CHECK

ENDIF
ENDIF

ELSEIF (USERKEY (I) .LE. 100) THEN
CALL PARSEC (2, I1A80, BLANK, USERCHAR (USERKEY (I) ) )

ELSEIF (USERKEY (I) .GT. 100) THEN
DO 195 K=l, USERKEY (I) /100

CALL PARSER (K+l, I1A80, 0.D0, DPREAL, INVALID)
IF (INVALID) GOTO 900
J = USERKEY (I) USERKEY (I) /100*100 + K - 1
USERREAL(J) = SNGL (DPREAL)

195 CONTINUE
190 ENDIF

GOTO 100
300 IF (KIN .EQ. IFILE2) THEN

CLOSE (KIN, STATUS=' KEEP' )
KIN = KINOLD
KINOLD = -1

GOTO 100
ENDIF
RETURN

400 J_LOOP = IPTS
J_LIMIT = MAXPTS
ASSIGN 410 TO IRTN
GOTO 420

410 IPTS = J_LOOP
GOTO 100

420 IF (J_LOOP .LT. J_LIMIT) THEN
J = J_LOOP + 1
IF (DATA_LOOP) THEN
CALL PARSER (4, I1A80, 0.D0, DPREAL, INVALID)
IF (.NOT. INVALID) EXPN(J) = SNGL (DPREAL)
CALL PARSER (3, I1A80, 0.D0, DPREAL, INVALID)
IF (.NOT. INVALID) ERROR_BAR(J) = SNGL (DPREAL)
ENDIF
CALL PARSER (2, I1A80, 0.D0, DPREAL, INVALID)
IF (INVALID) GOTO 900
IF (DATA_LOOP) THEN

OBSN (J) = SNGL (DPREAL)
IACT(J) = 0

ENDIF
IF (NOMINAL_LOOP) NOM_EXPN ( J) = SNGL (DPREAL)
CALL PARSER (1, I1A80, 0.D0, DPREAL, INVALID)
IF (INVALID) THEN

CALL PARSEC (1, I1A80, BLANK, I1A5)
K = INDEX (I1A5, '-' )
IF (K .GT. 0) THEN

I1A2 = I1A5(1:K-1)
J1A2 = I1A5(K+1:LENSTR(I1A5))

DO 423 K=l, MAX LINES
IF (I1A2 .EQ. SPECTRAL_LINE_NAMES (K) ) GOTO 428

423 CONTINUE

WRITE (KOUT, 185) I1A2, KBELL

GOTO IRTN

428 Kl = K

DO 433 K=l, MAX_LINES

IF (J1A2 .EQ.
SPECTRAL_LINE_NAMES (K) ) GOTO 438

433 CONTINUE

WRITE (KOUT, 185) J1A2, KBELL

GOTO IRTN

438 K2 = K
IF (DATA_LOOP .AND. Kl .NE. K2) THEN

DO 443 K=l, J LOOP

IF (ABSd.O-WVL(K) /SPECTRAL LINE_VALUES (Kl) )
2 .LE. 0.005) THEN

WVL (J) = SPECTRALJ,INE_VALUES (K2 )
OBSN (J) = OBSN(K) - OBSN (J)
IF (EXPN(J) .NE. 0.0) EXPN(J)=EXPN(K)-EXPN(J)

GOTO 448
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443

543

445

448

449

548

473

ELSEIF (ABS (1 . 0-WVL (K) /SPECTRAL_LINE_VALUES (K2) )
.LE. 0.005) THEN

WVL (J) = SPECTRAL_LINE VALUES (Kl)
OBSN (J) = OBSN(K) + OBSN (J)
IF (EXPN(J) .NE. 0.0) EXPN(J)=EXPN(K)+EXPN(J)
GOTO 448

ENDIF
CONTINUE

ELSEIF (DATA_LOOP .AND. Kl .EQ. K2) THEN
WVL(J) = SPECTRAL LINE VALUES (Kl)
IACT(J) =1

~

GOTO 548
ELSEIF (NOMINALJ^OOP ) THEN
DO 543 K=l, J_LOOP

IF (ABS (1 . 0-NOMJJVL (K) /SPECTRAL_LINE_VALUES (Kl) )
.LE. 0.005) THEN

NOM_WVL(J) = SPECTRALJ,INE_VALUES(K2)
NOM_EXPN(J) = NOM EXPN (K) NOM EXPN(J)
GOTO 548

ELSEIF (ABS(1.0-NOM_WVL(K)/
SPECTRAL_LINE_VALUES(K2) ) .LE. 0.005) THEN

NOMJWVL(J) = SPECTRAL_LINE_VALUES(K1)
NOM_EXPN(J) = NOM EXPN (K) + NOM EXPN (J)
GOTO 548

ENDIF
CONTINUE

ENDIF
WRITE (KOUT, 445) KBELL
FORMAT (IX, 'WARNING - Neither symbolic wavelength ',

'specified previously, entire line ',
'disgarded.'

,1A1)

GOTO IRTN
IF (EXPN (J) .NE. 0.0 .AND. COMPUTE_EXPN) THEN

WRITE (KOUT, 44 9) KBELL
FORMAT (IX, 'WARNING Unable to evaluate user-',

'
specified expected index differences ,

/, IX, 'since some previous entries do not',
' have expected index specified. ', 1A1)

GOTO IRTN
ENDIF
CONTINUE

ELSE
I1A2 = I1A5(1:2)
DO 473 K=l, MAX_LINES

IF (I1A2 .EQ. SPECTRAL_LINE_NAMES (K) ) GOTO 478
CONTINUE

I1A2, KBELL

WVL (J) = SPECTRAL_LINE_VALUES (K)
NOM WVL (J) = SPECTRAL LINE VALUES (K)

(DATA_LOOP) WVL (J)
(NOMINAL LOOP) NOM WVL (J)

SNGL (DPREAL)
SNGL (DPREAL)

.AND. EXPN (J) .EQ. 0.0) COMPUTE_EXPN

WRITE (KOUT, 185)
GOTO IRTN

478 IF (DATA_LOOP)
IF (NOMINAL_LOOP

ENDIF
ELSE

IF
IF

ENDIF
IF (DATA_LOOP
J_LOOP = J

ELSE
WRITE (KOUT, 491) J_LIMIT, KBELL

491 FORMAT (IX, 'WARNING - Array dimensions exceeded, ', 13, 1A1
2 'points maximum. Entire line disgarded.')
ENDIF
GOTO IRTN

500 J_LOOP = NOM_IPTS

J_LIMIT = MAX_NOM_IPTS
ASSIGN 510 TO IRTN
GOTO 420

510 NOM_IPTS = J_LOOP
GOTO 100

600 J = NUMMOD + 1
CALL PARSER (1, I1A80, 0.D0, DPREAL, INVALID)
IF (INVALID) GOTO 900
K = IFIX (SNGL (DPREAL) )
IF (K .GT. 0 .AND. K .LE. MAXMOD) THEN

NUMMOD = J
MODTAG(J) = K

TRUE.
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CALL PARSEC (-2, I1A80, BLANK, FORMULAS (K) )
ELSE

IERR = ILLEGAL_MODEL_NUMBER

ENDIF
GOTO 100

700 CALL PARSER (1, I1A80, 0.D0, DPREAL, INVALID)
IF (INVALID) GOTO 900
J = IFIX (SNGL (DPREAL) )
IF (J .GT. 0 .AND. J .LE. MAXMOD) THEN

CALL PARSER (2, I1A80, 0.D0, DPREAL, INVALID)
IF (INVALID) GOTO 900
K = IFIX (SNGL (DPREAL) )
HISTORY (J, 1)= INT4(K)
HISTORY (J, 2)= INT4 (J)
HAVE_HISTORY=

.TRUE.

ELSE
IERR = ILLEGAL MODEL NUMBER
RETURN

ENDIF
GOTO 100

900 WRITE (KOUT, 901) KBELL
901 FORMAT (/, IX, 'WARNING - Real-valued token expected, unable to

2 'parse.'
,1A1)

GOTO 100
END
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