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Modeling vibrational dephasing and energy relaxation of intramolecular
anharmonic modes for multidimensional infrared spectroscopies

Akihito Ishizakia� and Yoshitaka Tanimurab�

Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
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Starting from a system-bath Hamiltonian in a molecular coordinate representation, we examine an

applicability of a stochastic multilevel model for vibrational dephasing and energy relaxation in

multidimensional infrared spectroscopy. We consider an intramolecular anharmonic mode

nonlinearly coupled to a colored noise bath at finite temperature. The system-bath interaction is

assumed linear plus square in the system coordinate, but linear in the bath coordinates. The

square-linear system-bath interaction leads to dephasing due to the frequency fluctuation of system

vibration, while the linear-linear interaction contributes to energy relaxation and a part of dephasing

arises from anharmonicity. To clarify the role and origin of vibrational dephasing and energy

relaxation in the stochastic model, the system part is then transformed into an energy eigenstate

representation without using the rotating wave approximation. Two-dimensional �2D� infrared

spectra are then calculated by solving a low-temperature corrected quantum Fokker-Planck

�LTC-QFP� equation for a colored noise bath and by the stochastic theory. In motional narrowing

regime, the spectra from the stochastic model are quite different from those from the LTC-QFP. In

spectral diffusion regime, however, the 2D line shapes from the stochastic model resemble those

from the LTC-QFP besides the blueshifts caused by the dissipation from the colored noise bath. The

preconditions for validity of the stochastic theory for molecular vibrational motion are also

discussed. © 2006 American Institute of Physics. �DOI: 10.1063/1.2244558�

I. INTRODUCTION

Ultrafast nonlinear spectroscopy plays a pivotal role in

investigating inter- and intramolecular motions in complex

molecular systems.
1

Over the last decade, extensive

theoretical,
2–20

computational,
21–25

and experimental
26–35

ef-

forts have been made for multidimensional vibrational spec-

troscopy to have a variety of information for molecular mo-

tion and interactions.

Owing to recent technological progresses in the genera-

tion of stable ultrashort infrared �IR� laser pulses, third-order

spectroscopic experiments have been extended in the IR re-

gion and can, therefore, be utilized to investigate intramo-

lecular vibrational transition rather than electronic one. As an

intramolecular vibrational motion is sensitive to local fluc-

tuation of surroundings, it provides an important window to

insight into the structure and dynamics of complex mol-

ecules, solvents, and protein environments. While the line

shapes observed in IR absorption spectroscopy are broad-

ened due to static inhomogeneity, we can separate the con-

tribution of homogeneous vibrational motion, which contains

important microscopic dynamics, by third-order IR spectros-

copy such as an IR photon echo measurement.
36

Theoreti-

cally, static inhomogeneity has been treated by using the

slow modulation limit of the stochastic theory, and homoge-

neity by the fast modulation limit. However, there is also a

wide intermediate range of modulation times between the

inhomogeneous and homogeneous limits, which gives rise to

what is called vibrational spectral diffusion. The spectral dif-

fusion process was analyzed by means of three-pulse photon

echo measurement. Hamm et al.
37

performed the first femto-

second IR three-pulse echo experiment on a mode of the

azide ion N3
− in deuterium water. Employing the stochastic

theory of frequency fluctuation,
38,39

they quantified the mag-

nitudes and time scales of dynamic solvent fluctuations that

cause spectral diffusion. Hamm et al.
40

also achieved the first

two-dimensional infrared �2D-IR� measurement by means of

double-resonance or dynamic hole burning experiments on

the amide I bands of N-methylacetamide and small globular

peptides, and gained access to the detailed information on

the structures of peptides that could not be obtained from

linear absorption spectra. These works stimulated many ex-

perimental and theoretical studies
41–48

and sparked off the

pulsed Fourier transform 2D-IR spectroscopy by means of

the heterodyne-detected photon echo experiments.
49–52

Ob-

jects under study of 2D-IR spectroscopic experiments have

definitely spread very wide: conformation and conforma-

tional fluctuations of small peptides
53–57

and dipeptides,
58,59

conformational changes in proteins,
60–63

hydrogen-bonded

complexes,
64–67

and water dynamics.
68

In the immediate

past, heterodyned fifth-order 2D-IR measurements
69

were re-

ported on ions in glasses.
70,71

In this paper, we explore roles of vibrational dephasing

and energy relaxation involved in the multidimensional IR

spectroscopy to establish a reasonable system-bath model to

discuss these dissipative processes from a microscopic point

of view. To study vibrational dephasing, the stochastic theory

of transition frequencies was introduced
72

and intensively

used to analyze the signals from IR echo and 2D-IR spec-

troscopy. The stochastic model was extensively utilized in

a�
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the nuclear magnetic resonance �NMR� or electronically

resonant spectroscopy.
39

The character of spectroscopic ex-

periments is, however, different for vibrational and electronic

transitions. While the decay time of population in electroni-

cally excited state is invariably long compared with the

dephasing of optical transitions, that in vibrational excited

states is sometimes comparable to the time scale of vibra-

tional dephasing; the system relaxes toward the thermal equi-

librium on time scale comparable with the vibrational

dephasing. Nonetheless, the stochastic theory involves only

frequency fluctuations without any accounts of the contribu-

tions from temperature and dissipation. Then, the effects of

vibrational energy relaxation were sometimes included in a

phenomenological manner independently from the stochastic

theory. A simple one is a Bloch picture which accounts for

the effects of energy relaxation and dephasing by a longitu-

dinal relaxation time constant T1, a transversal relaxation

time constant T2, and a pure dephasing time T2
*, i.e., 1 /T2

=1/2T1+1/T2
*. The validity of such phenomenological ap-

proach is an open question, since such simple relation is

based on the assumption of a weak coupling or a white noise

bath within the rotating wave approximation �RWA�. The

stochastic theory and Bloch-Redfield theory also have inher-

ent difficulty to treat a finite temperature system.

To clarify the above-mentioned problems, here, we start

from a Hamiltonian consisting of an anharmonic molecular

system coupled to a heat bath. The bath degrees of freedom

are described by an ensemble of oscillators, which corre-

spond to optically inactive modes such as solvent modes.

The key to the relation between the coordinate and energy-

level pictures is on a form of a system-bath interaction. To

make our discussion more concrete, here, we denote the in-

teraction potential between the vibrational mode of interest

and the heat bath by F�q , �x j�� as a function of vibrational

coordinate q and the bath coordinates �x j�, where x j is the jth

bath coordinate. We assume that F�q , �x j�� can be expanded

in q as follows:

F�q,�x j�� =
1

1!
qF1��x j�� +

1

2!
q2F2��x j�� + ¯ . �1.1�

The second term in Eq. �1.1� alters the curvature of the po-

tential energy surface U�q� for vibrational motion in time for

the evolution of �x j�; hence, the system frequency is fluctu-

ated on a time scale of bath dynamics. The first term with the

linear dependence on q mainly gives rise to energy dissipa-

tion from the vibrational mode to the heat bath.
73,74

For an-

harmonic vibrational modes, the term also contributes to

dephasing, i.e., anharmonicity-induced dephasing, due to the

nonvanishing diagonal elements �v�q̂�v	�0 �v=0,1 ,2 , . . . �,
where �v	 and �v� are the vth energy eigenstate for modes and

its Hermitian conjugate, respectively.

Starting from the coordinate representation of the

system-bath interaction, we can identify the origin of vibra-

tional dephasing and energy relaxation in the energy-level

model. We calculate signals for coordinate model without

employing such approximation as the RWA and compare the

results with signals for an approximated expression of

energy-level models. We then check the validity of the ap-

proximated Hamiltonian for various strengths of the system-

bath coupling and temperatures. The major difficulty to cal-

culate signals for the system-bath Hamiltonian with

interaction potential �Eq. �1.1�� is on the derivation of the

equation of motion for a reduced density matrix. If tempera-

ture is high compared with vibrational excitation energy, one

can use the quantum Fokker-Planck equation for nearly Mar-

kovian noise bath.
75

The case we want to discuss here is,

however, the intramolecular vibrational modes, where the

temperature is much lower than vibrational excitation en-

ergy; therefore, the system is regarded as in a low tempera-

ture where the quantum description of the system becomes

important. For this purpose, we extended the quantum

Fokker-Planck equation and included low-temperature cor-

rection terms.
76

We show how one can handle low-

temperature system using this formalism. For the interaction

potential in Eq. �1.1�, we include terms up to the second

order in q and take into account only the linear dependence

on �x j�, i.e., F1��x j��=−vLL
 jc jx j and F2��x j��=−vSL
 jc jx j.

Integrating the reduced equation of motion, we calculate

2D-IR signals and discuss the importance of dissipative and

anharmonic effects which arise from the first term in Eq.

�1.1� by comparison to the resultants from the energy-level

picture with stochastic modulation.

This paper is organized as follows: In Sec. II we give a

brief review of nonlinear optical responses and the stochastic

theory. In Sec. III we introduce the quantum dissipative

equation applicable to a low-temperature coordinate system,

low-temperature corrected quantum Fokker-Planck �LTC-

QFP� equation to analyze vibrational dephasing and energy

relaxation in an intramolecular mode. In Sec. IV numerical

results are presented as 2D-IR correlation spectra and are

discussed. Finally, Sec. V is devoted to concluding remarks.

II. NONLINEAR RESPONSE FUNCTIONS

We consider a system consisting of a single intramolecu-

lar vibrational mode described by the Hamiltonian

Ĥ =
p̂2

2m
+ U�q̂� , �2.1�

where m, q, p, and U�q̂� denote the effective mass, the coor-

dinate, the conjugate momentum, and the potential of the

vibrational mode, respectively. Using the energy eigenstates

of the system ��v	� �v=0,1 , . . . ,vmax�, we can rewrite Eq.

�2.1� as

Ĥ = 

v=0

vmax

��
v
�v	�v� , �2.2�

where ��
v

is the energy of the vth eigenstate �v	. We intro-

duce transition frequencies between levels as � jk�� j −�k.

As we will show below, the primary contribution of 2D-IR

signals arises from the transitions between the lowest three

energy levels. Then, the anharmonicity of the mode is ex-

pressed as

�anh � �10 − �21. �2.3�

We assume that all other degrees of freedom, e.g., other in-

ternal modes or solvent modes, are optically inactive and
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treat as a heat bath. The Hamiltonian of the system plus bath

is denoted by Ĥtot.

The first-order IR response function R�1��t1� is defined

by
1

R�1��t1� =
i

�
���̂�t1�,�̂�0��	 , �2.4�

where �̂�t��e�i/��Ĥtot t��q̂�e−�i/��Ĥtot t is the Heisenberg repre-

sentation of the dipole-moment operator and �¯	

�Tr�¯�̂tot
eq�, with �̂tot

eq =e−�Ĥtot /Tr e−�Ĥtot. Using the hyper-

operator notations,

Ô� f̂ � Ô f̂ − f̂Ô, Ô� f̂ � Ô f̂ + f̂Ô �2.5�

for any operator Ô and operand operator f̂ , we can recast Eq.

�2.4� into

R�1��t1� = Tr���q̂�Ĝ�t1�
i

�
��q̂���̂tot

eq , �2.6�

where Ĝ�t� is the Liouville space propagator defined by

Ĝ�t� f̂ =e−�i/��Ĥtot t f̂e�i/��Ĥtot t for any operator f̂ .

For resonant 2D-IR experiments, we consider the three

pulses, tuned to the molecular vibration of interest, with

wave vectors k1, k2, and k3 which are sequentially applied to

samples. These pulses cross in a sample to generate a third-

order polarization, which radiates a signal field in the phase-

matched directions. The rephasing �echo� response detected

in the direction kI= +k3+k2−k1 is described by the follow-

ing correlation function:

RI
�3��t3,t2,t1�

= Tr��̂←Ĝ�t3�
i

�
�̂→

�
Ĝ�t2�

i

�
�̂→

�
Ĝ�t1�

i

�
�̂←

� �̂tot
eq , �2.7�

where �̂→ and �̂← are defined by

�̂→ � 

v

�v + 1	�
v+1,v�v� , �2.8a�

�̂← � 

v

�v	�
v,v+1�v + 1� , �2.8b�

with the abbreviation � j,k= �j���q̂�k�	. The nonrephasing �vir-

tual echo� response detected in the direction kII= +k3−k2

+k1 is described by

RII
�3��t3,t2,t1�

= Tr��̂←Ĝ�t3�
i

�
�̂→

�
Ĝ�t2�

i

�
�̂←

�
Ĝ�t1�

i

�
�̂→

� �̂tot
eq . �2.9�

Note that the directions of the subscript arrows in Eqs.

�2.7�–�2.9� correspond to those of the arrows depicted in

Fig. 1.

These expressions provide us an intuitive picture upon

the response function. For instance, the right-hand side of

Eq. �2.6� can be read from right to left as follows. The ther-

mal equilibrium state is modified by the first interaction with

a laser pulse via the dipole moment at time t=0, and then it

evolves in time for the interval t1 by the propagator Ĝ�t�.

Finally, the state of the system is probed at t= t1 through its

dipole moment. The third-order response functions �Eqs.

�2.7� and �2.9�� can also be read accordingly.

Many analyses of 2D-IR responses are based on the sto-

chastic approach, which has been extensively used in elec-

tronically resonant spectroscopy.
1,39

This theory assumes that

the bath induces Gaussian stochastic fluctuation ���
v
�t� on

the energy levels of the oscillator mode and replaces the total

Hamiltonian with neglecting any dissipation by the effective

Hamiltonian,

Ĥtot�t� = 

v=0

vmax

���
v

+ ��
v
�t���v	�v� . �2.10�

For intramolecular vibrational modes satisfying ���10 /2

	1, we can derive the expressions for the rephasing and

nonrephasing response functions as
1,37

RI
�3��t3,t2,t1� � � i

�
�3

e−i�10�t3−t1� � e−g�t3�−g�t1�+f�t3,t2,t1�

� �2�10
4 − �10

2 �21
2 ei�anht3� �2.11a�

and

RII
�3��t3,t2,t1� � � i

�
�3

e−i�10�t3+t1� � e−g�t3�−g�t1�−f�t3,t2,t1�

� �2�10
4 − �10

2 �21
2 ei�anht3� , �2.11b�

respectively. Here, g�t� is the line shape function defined as

g�t� � �
0

t

d
�
0




d
�C���
�� �2.12�

for the classical time correlation function of the vibrational

frequency,

FIG. 1. The double-sided Feynman diagrams contributing to the �a� rephas-

ing and �b� nonrephasing Liouville space pathways. The variables tn �n
=1,2 ,3� represent the delays between the three input pulses to generate a

third-order nonlinear polarization.

084501-3 Modeling vibrational dephasing J. Chem. Phys. 125, 084501 �2006�

Downloaded 19 Mar 2008 to 130.54.110.22. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp

A Self-archived copy inKyoto University Research Information Repositoryhttps://repository.kulib.kyoto-u.ac.jp



C���t� � ���10�t���10�0�	0, �2.13�

and f�t3 , t2 , t1� is the auxiliary function given by

f�t3,t2,t1� � g�t2� − g�t2 + t1� − g�t3 + t2� + g�t3 + t2 + t1� .

�2.14�

Due to this handiness, the stochastic approach has been

employed to study not only the electronic dephasing but also

vibrational dephasing. We should notice that the above-

mentioned formalism involves only frequency fluctuation

without any accounts of excited energy relaxation. In con-

trast with the electronic case, the vibrational modes in mol-

ecules strongly coupled to the bath modes that often relax

excitation energy on a time scale comparable with the vibra-

tional dephasing. In addition, as we will show in Sec. IV, if

the mode is anharmonic, the energy relaxation process also

induces vibrational dephasing, which may not be separated

from the other dephasing effects. The interplay between the

energy relaxation and dephasing is also nontrivial. To take

into account the effect of energy relaxation, one often em-

ploys a simple Bloch picture. However, it is an open question

that the phenomenological treatment of energy dissipation is

valid, because the Bloch picture assumes a white noise bath

and a weak system-bath coupling with the RWA. Such treat-

ment cannot overcome the difficulty inherent in the stochas-

tic approach; the stochastic theory itself does not account for

the dissipation and temperature effects, both of which cause

the energy relaxation toward the thermal equilibrium state.

Generally, the dissipation relaxes the system to a “dead”

state, while the fluctuation keeps the system “alive.”
77

The

balance between the fluctuation and dissipation is required to

have a thermal equilibrium state at long times �fluctuation-

dissipation theorem�. Hence, the stochastic theory without

indwelling the dissipation corresponds to the unphysical pic-

ture where the fluctuation continues to activate the system

toward the infinite temperature.
39

Experimental studies have indicated that the correlation

function of ��10�t� decays on �at least� two time scales,
37

an

ultrafast component on a several tens of femtoseconds time

scale and a slower diffusion-controlled component. The ul-

trafast component is typically discussed in the motional nar-

rowing limit. Then, Eq. �2.13� is assumed to be a sum of �at

least� two exponentials. In order to focus on the validity of

the employed stochastic model for the intramolecular vibra-

tions, hereafter, we assume that the fluctuation ��10�t� can be

described as a Markovian process, that is, Eq. �2.13� is a

single exponential decay form �Anderson-Kubo process�:

C���t� = �2e−�t, �2.15�

where � is the root-mean-squared amplitude of the fluctua-

tion ��10�t� and �−1 is their correlation time. The line shape

function g�t� is then be expressed as

g�t� =
�2

�2
��t + e−�t − 1� . �2.16�

We will use the above expression to obtain optical signals for

stochastic cases.

III. ANHARMONIC OSCILLATOR NONLINEARLY
COUPLED TO HEAT BATH: REDUCED EQUATION
OF MOTION APPROACH

To remedy the drawback of the stochastic theory men-

tioned in Sec. II, we consider an oscillator nonlinearly

coupled to a heat bath composed of harmonic oscillators. The

total Hamiltonian is expressed as

Ĥtot = Ĥ + 

j

� p̂ j
2

2m j

+
m j� j

2

2
�x̂ j −

c jV�q̂�

m j� j
2 �2� , �3.1�

where the parameters x̂ j, p̂ j, m j, and � j are the coordinate,

momentum, mass, and frequency of the jth bath oscillator,

respectively. In Eq. �3.1�, the system-bath interaction is ex-

pressed as F�q̂ , �x j��=V�q̂�
 jc jx̂ j, where V�q̂� is a function

whose dimension is the same as q̂. We have included the

counterterm 
 jc j
2V�q̂�2 /2m j� j

2 in Eq. �3.1� to maintain the

translational symmetry of the Hamiltonian for U�q̂�=0.
39,78

We expand V�q̂� up to the second order in q̂ as follows:

V�q̂� =
vLL

1!
q̂ +

vSL

2!
q̂2. �3.2�

In Eq. �3.1�, we refer to the terms proportional to vLL and vSL

as the linear-linear �LL� and square-linear �SL� couplings,

respectively. For anharmonic vibrational modes, the LL cou-

pling term deforms the potential curve and induces fre-

quency fluctuation.
79,80

The SL coupling
10,11,81,82

mainly

modulates the curvature of U�q� in accordance with the time

evolution of �x j�. Hence, the frequency in the present model

fluctuates on a time scale of bath dynamics based on two

distinct scenarios �see Fig. 2�.
The character of bath is specified by the spectral distri-

bution function J����
 j�c j
2 / �2m j� j�����−� j�. We consider

the nearly Gaussian-Markovian noise bath, whose distribu-

tion function is given by the Ohmic form with the Lorentzian

cutoff:
83

J��� =
m�



�2

�2 + �2
� , �3.3�

where � represents the width of the spectral distribution of

the bath modes and is related to the correlation time of the

FIG. 2. Schematic illustrations of effects of �a� the linear-linear �LL� and �b�
the square-linear �SL� system-bath couplings on an anharmonic potential.

The black lines represent the unperturbed potential, while the colored lines

the perturbed ones. LL coupling swings the position of the potential mini-

mum and deforms the potential, whereas SL coupling alters the curvature of

the potential. Hence, both couplings induce the frequency fluctuation. Note

that the LL and SL couplings mainly cause the one- and two-quantum tran-

sitions, respectively, as can be seen from the system-bath coupling ex-

pressed by the one-quantum creation and annihilation operators â+ and â−.
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noise induced by the bath: 
=�−1. This can be seen from the

symmetrized correlation function of the collective bath coor-

dinate,

X̂ � 

j

c jx̂ j . �3.4�

Within the condition of ��� /2�1, we have
39

1

2
�X̂�t�X̂�0� + X̂�0�X̂�t�	b �

m

�
��e−�t, �3.5�

where X̂�t� is the Heisenberg representation of X̂ and �¯	b is

the canonical thermal average with respect to the bath de-

grees of freedom. This indicates that the bath oscillators dis-

turb the system with the Gaussian-Markovian noise. Using

some characteristic frequency of the system �c, we introduce

the dimensionless coordinate Q̂� q̂�m�c /� and coefficients

VLL�vLL and VSL�vSL
�� /m�c and rewrite Eq. �3.2� as

V�q̂� =� �

m�c

�VLLQ̂ +
VSL

2
Q̂2� �� �

m�c

V�Q̂� . �3.6�

Here, we define the LL and SL coupling strengths by

�LL = VLL
2 �, �SL = VSL

2 � , �3.7�

respectively. Thus the effects of the system-bath interaction

can be characterized by a set of four parameters �, �LL, �SL,

and � for �c.

The reduced description of the system can be introduced

by tracing over the optically inactive bath degrees of free-

dom denoted by �x j� from the total density operator.
78,84,85

As

shown in Ref. 76, dynamics of the reduced density operator

for the system equation �3.1� with Eq. �3.3� is described by

the LTC-QFP equation expressed as

�

�t
�̂ j1,. . .,jK

�n� �t� = − �iL̂ + n� + 

k=1

K

�jk�k + �̂�̂k� + �̂��̂ j1,. . .,jK

�n� �t� − �̂�̂ j1,. . .,jK

�n+1� �t� − n��̂�̂ j1,. . .,jK

�n−1� �t�

− 

k=1

K

�̂�̂ j1,. . .,jk+1,. . .,jK

�n� �t� − 

k=1

K

jk�k�̂k�̂ j1,. . .,jk−1,. . .,jK

�n� �t� �3.8�

for non-negative integers n , j1 , . . . , jK, where we determine

the value of K so as to satisfy

�K � �c, �3.9�

for bosonic Matsubara frequencies �k=2k / ����. In Eq.

�3.8�, iL̂��i /��Ĥ� is the quantal Liouvillian of the system

and �̂, �̂, �̂k, and �̂ are the bath-induced relaxation opera-

tors defined by

�̂ �
i

�
V��q̂� , �3.10a�

�̂ � i
m�

��
�− i

���

2
V��q̂� +

���

2
cot����

2
�V��q̂�� ,

�3.10b�

�̂k � i
m�

��

2�2

�k
2 − �2

V��q̂� , �3.10c�

and

�̂ �
m�

��2�1 −
���

2
cot����

2
��V��q̂�V��q̂�

+ i
m�

��2

���

2
V��q̂�V��q̂� . �3.10d�

In Eq. �3.10d�, the second term is derived from the counter-

term mentioned above. Note that only �̂
0,. . .,0

�0� �t�= �̂�t� has a

physical meaning, and the other elements �̂
j1,. . .,jK

�n�
for

�n ; j1 , . . . , jK�� �0;0 , . . . ,0� are the auxiliary operators being

introduced for computational purposes only; the expression

of �
j1,. . .,jK

�n� �t� is given by the Appendix. The K+1 dimen-

sional hierarchy equations given by Eq. �3.8� continue to

infinity, which is not easy to solve numerically. To terminate

Eq. �3.8� at finite stages, we solve Eq. �3.8� formally as

�̂ j1,. . .,jK

�n� �t� = �
ti

t

dse−�iL̂+n�+
k=1
K �jk�k+�̂�̂k�+�̂��t−s��− �̂�̂ j1,. . .,jK

�n+1� �s� − n��̂�̂ j1,. . .,jK

�n−1� �s�

− 

k=1

K

�̂�̂ j1,. . .,jk+1,. . .,jK

�n� �s� − 

k=1

K

jk�k�̂k�̂ j1,. . .,jk−1,. . .,jK

�n� �s�� . �3.11�
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If n�+
k=1
K jk�k is large enough compared with �c, the kernel

of time integral can be replaced by Dirac’s delta function as

�n� + 

k=1

K

jk�k�e−�n�+
k=1
K

jk�k��t−s� � ��t − s� , �3.12�

and then Eq. �3.8� becomes

�

�t
�̂ j1,. . .,jK

�n� �t� � − �iL̂ + 

k=1

K

�̂�̂k + �̂��̂ j1,. . .,jK

�n� �t� , �3.13�

which works as the terminator for Eq. �3.8�. This termination

is valid for the integers n , j1 , . . . , jK, satisfying

N � n + 

k=1

K

jk �
�c

min��,�1�
, �3.14�

because n�+
k=1
K jk�k� �n+
k=1

K jk�min�� ,�1�. This termina-

tion is simple and easy to utilize in numerical calculations. In

practice, as demonstrated numerically in Ref. 76, we may

use the lower values of K and N which do not satisfy Eqs.

�3.9� and �3.14�, respectively. This formalism has applicabil-

ity to a low-temperature system ���c /2�1� strongly

coupled to the heat bath without employing RWA for the

system-bath interaction. Namely, Eq. �3.8� with Eqs. �3.10�
and �3.13� is free from the positivity problem,

86
where the

populations of the excited states calculated from the reduced

equations of motion such as the quantum master equation

and the Redfield equation without RWA become negative at

low temperatures. The advantage of Eq. �3.8� deserves ex-

plicit emphasis.

To calculate the optical responses �Eqs. �2.6� and �2.7��
from the equation of motion approach, we adapt the proce-

dure presented in Ref. 39. We first have to generate the initial

equilibrium state by integrating the equations of motion, Eqs.

�3.8� and �3.13�, until all hierarchical elements attain steady-

state values. To have the equilibrium state, we set a tempo-

rally initial condition for the integration by

�̂0,. . .,0
�0� �t = ti� =

exp�− �Ĥ�

Tr exp�− �Ĥ�
� �̂�can	, �3.15�

and �̂
j1,. . .,jK

�n� �t= ti�=0 for �n ; j1 , . . . , jK�� �0;0 , . . . ,0�. The

generated initial state is then modified by the first laser pulse

via the dipole operator as �i /����q̂���̂tot
eq . The perturbed den-

sity operator then evolves in time for the t1 period following

the equations of motion �Eqs. �3.8� and �3.13��. First-order

IR response function, Eq. �2.4�, is then obtained by calculat-

ing the trace of ��q̂�. The third-order IR response functions

�Eqs. �2.7� and �2.9�� can also be calculated in a similar

manner.

The connection between the present approach and the

stochastic approach can be seen as follows. When the tem-

perature effects and vibrational energy relaxation are ig-

nored, the LTC-QFP equation �Eq. �3.8�� reduces to

�

�t
�̂�n��t� = − �iL̂ + n���̂�n��t� −

i

�
Ŵ��̂�n+1��t�

− in
m��

��
Ŵ��̂�n−1��t� , �3.16�

where Ŵ is the adiabatic component of V�q̂� defined by

Ŵ � 

v

�v	�v�V�q̂��v	�v� . �3.17�

Equation �3.16� is the extension of the stochastic Liouville

equation
38,39

to a potential system �see Fig. 6�. The compari-

son between Eq. �3.16� and the original stochastic Liouville

equation tells us that the amplitude of the fluctuation ��10�t�
is expressed as

� = abs�Tr�Ŵ��1	�0���m��

��2 � �3.18a�

=abs�sgn� �LL

�SL

��Q11 − Q00�� �LL�

���c

+
1

2
�Q11

2 − Q00
2 �� �SL�

���c

� . �3.18b�

From Eq. �3.18�, we can estimate the amplitude of the fre-

quency fluctuation in the system in accordance with the LTC-

QFP �Eq. �3.8��.

IV. 2D-IR SPECTRA FOR MORSE SYSTEM
WITH LL+SL COUPLING

We present the numerical results for Morse potential de-

fined by

U�q̂� = De�1 − e−�q̂�2, �4.1�

where De denotes the dissociation energy. The vth eigenen-

ergy for the Hamiltonian with the potential Eq. �4.1� is ex-

pressed as

��
v

= ��c��v +
1

2
� −

�

2m�c

�2�v +
1

2
�2� , �4.2�

where �c=�2De�
2 /m. Then, the anharmonicity �anh��10

−�21 and the fundamental frequency �10 are given by �anh

=��2 /m and �10=�c−�anh, respectively. The fundamental

frequency and the anharmonicity of the system are set to be

�10=1600 cm−1 �2 /�10=20.8 fs� and �anh=16 cm−1

��anh /�10=0.01�, which are in the typical range for intramo-

lecular vibrational motion. We consider a room temperature

heat bath, T=300 K ����10=7.67�. To carry out calcula-

tions, we employ the lowest six energy eigenstates to repre-

sent the system. The fourth-order Runge-Kutta method is

used to numerically integrate the equation of motion. The

time step for the finite difference expression for ��̂
j1,. . .,jK

�n�
/�t

is �t= �1/ ��10�0.01. We chose the depth of the hierarchy

and the number of the Matsubara frequencies N=3–25 and
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K=1–4, respectively. The accuracy of the calculations is

checked by changing the number of the energy eigenstates

and the values of �t, N, and K. The dipole moment is as-

sumed to be ��q̂�=�1q̂, and we set �1=1 to calculate the

2D-IR signals. Under these conditions, we calculate 2D-IR

correlation spectrum
87

defined as

SC��3,�1;t2� � SR��3,− �1;t2� + SNR��3,�1;t2� , �4.3�

where

SR��3,�1;t2� � Im �
0

�

dt3ei�3t3�
0

�

dt1ei�1t1RI
�3��t3,t2,t1�

�4.4�

is 2D rephasing spectrum and

SNR��3,�1;t2� � Im �
0

�

dt3ei�3t3�
0

�

dt1ei�1t1RII
�3��t3,t2,t1�

�4.5�

is 2D nonrephasing spectrum.

A. Motional narrowing regime

Figure 3 presents 2D-IR correlation spectra

SC��3 ,�1 ; t2=0� for � /�10=0.5 ��−1=6.6 fs�. In the figure,

the panels �a� are calculated by integrating the LTC-QFP

equation, Eq. �3.8�, while the panels �b� by the stochastic

model, Eq. �2.11�. The system-bath coupling ��LL ,�SL� /�10

for panels �a� are chosen to be �i� �+0.05,0�, �ii� �0, +0.05�,
�iii� �+0.05, +0.05�, and �iv� �−0.05, +0.05�, respectively.

The parameters for the stochastic case shown in �b� are

evaluated from those in �a� using Eq. �3.18� and the values of

Q
vv

and Q
vv

2 ; for the present system, we have Q00=0.074,

Q11=0.226, Q00
2 =0.509, and Q11

2 =1.567. The amplitude of

frequency fluctuation � for each panel are calculated as �i�
13.7 cm−1 �� /�=0.01�, �ii� 48.1 cm−1 �� /�=0.06�, �iii�
61.8 cm−1 �� /�=0.08�, and �iv� 34.3 cm−1 �� /�=0.04�. As

seen from the gradient of the 2D line shapes, these are in the

motional narrowing regime without the inhomogeneity.

In this large � case, the spectra calculated by the LTC-

QFP equation are quite different from the stochastic results

due to energy relaxation missing in the stochastic approach.

The linewidth of the spectra from the stochastic approach

�b-i� is very small in this motional narrowing regime,

whereas the spectra from the LTC-QFP equation case �a-i�
are broad because vibrational dephasing is dominated by en-

ergy relaxation rather than elastic pure dephasing.

We now consider the SL coupling case ��a-ii� and �b-ii��.
As mentioned in Fig. 2, the SL coupling term, q̂2
 jc jx̂ j,

mainly induces the two-quantum transition as well as the

curvature modulation of the potential. The population relax-

ations 1→0 and 2→1 are almost prohibited, whereas the

relaxation 2→0 is allowed. �The one-quantum relaxations

are not completely prohibited because of the anharmonicity

of potential.� As a result, energy relaxation destroys only the

1–2 coherence. Hence, the positive-going peaks �1–2 transi-

tion� in the two panels are different, while the negative-going

peaks �0–1 transition� have similar characteristics.

Next, we discuss the difference between the +LL+SL

and −LL+SL coupling cases. As is evident from Eq. �3.18�,
the +LL+SL coupling reinforces the amplitude of frequency

fluctuation, while the −LL+SL coupling diminishes the am-

plitude. The amplitude of fluctuation affects the strength of

pure dephasing in the stochastic case. Therefore the line

shapes from the stochastic approach ��b-iii� and �b-iv�� are

different. The primary relaxation processes in the LTC-QFP

equation case shown in �a-iii� and �a-iv� are, however, energy

relaxation rather than pure dephasing; therefore, the profiles

in �a-iii� and �a-iv� are also different from those in �b-iii� and

�b-iv�. The difference between �a-iii� and �a-iv� is caused

FIG. 3. �Color� 2D-IR correlation spectra SC��3 ,�1 ; t2=0� of the Morse

oscillator ��10=1600 cm−1, �anh=16 cm−1� in the motional narrowing re-

gime. The spectra were calculated from �a� the LTC-QFP approach with Eq.

�3.8� and �b� the stochastic approach with Eq. �2.11� with the coupling

strength and the amplitude of fluctuation adjusted by Eq. �3.18�. The panels

from the top to bottom show the signals for �i� LL, �ii� SL, �iii� +LL+SL,

and �iv� −LL+SL system-bath coupling cases, respectively. The noise cor-

relation time is in the motional narrowing regime ��−1=6.6 fs�. The

negative-going peaks arise from the 0-1 transition, whereas the positive-

going peaks from the 1-2 transition.
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from the cross term contribution between the LL and SL

couplings.
18,82

To explain this, we consider the classical gen-

eralized Langevin equation �GLE� for the Hamiltonian equa-

tion �3.1�,74

�4.6�
where the fluctuation ��t� and the dissipation ��t� are related

by the fluctuation-dissipation theorem ���t���s�	0=m

���t−s� /�, in which �¯	0 denotes the statistical average.

For +LL+SL coupling V�q�= +vLLq+vSLq2 /2, the integral

kernel ��t−s�=V��qt���t−s�V��qs� in Eq. �4.6� is expressed

as

��t − s� = �vLL
2 +

vSL
2

4
qtqs���t − s� +

vLLvSL

2
�qt + qs���t − s� ,

�4.7�

whereas for −LL+SL coupling V�q�=−vLL+vSLq2 /2,

��t−s� is given by

��t − s� = �vLL
2 +

vSL
2

4
qtqs���t − s� −

vLLvSL

2
�qt + qs���t − s� .

�4.8�

The difference between Eqs. �4.7� and �4.8� is on the sign of

the term proportional to vLLvSL; the difference between the

panels �a-iii� and �a-iv� arises only from the cross term con-

tribution between the LL and SL couplings.

In the stochastic case �b�, the negative-going peaks �0–1

coherence� and the positive-going peaks �1–2 coherence� are

located on ��1 ,�3�= ��10 ,�10� and ��10 ,�10−�anh�, respec-

tively. In the LTC-QFP equation case �a�, however, we can

see that the spectral peak locations shift toward the upper

right. These 2D blueshifts arise purely from the dissipation

with the finite noise correlation time. To illustrate this, we

consider a harmonic potential U�q�=m�10
2 q2 /2 in the pres-

ence of only the LL coupling V�q�=q with the Markovian

noise bath ��t�=��e−�t and depict linear absorption spectra.

The analytic expression of the absorption spectrum �first-

order response� for this system is obtained as

I��� � Im �
0

�

dtei�t�− �
d

dt
�q�t�q�0�	0� �4.9a�

=
�10

2 �q�0�2	0���

��2 − �10
2 �2 + �2�2G����

, �4.9b�

with

G���� � ��2 − �10
2

��
− 1�2

. �4.9c�

If �→�, the result reduces to the white noise case with

G����→1. We show the linear absorption spectra calculated

for Markovian noise and white noise cases in Fig. 4. Here,

we set � /�10=0.5 and � /�10=0.05, which are the same val-

ues as in Fig. 3. As clearly seen from the figure, the dissipa-

tion with the finite noise correlation time causes the blueshift

of the spectral peak position. We cannot obtain such analytic

expression for the SL coupling case as Eq. �4.9b�. Notice,

however, that the SL coupling induces the dissipation involv-

ing two-quantum relaxation, and then causes the blueshift.

Since characters of 2D-IR spectra and linear absorption are

both determined from the time propagator as illustrated in

Eqs. �2.7� and �2.6�, the spectral peaks in 2D-IR spectra also

exhibit the blueshifts.

B. Spectral diffusion regime

Figure 5 presents 2D-IR correlation spectra

SC��3 ,�1 ; t2=0� for small �. In the figure, the panels �a� are

calculated by integrating the LTC-QFP equation �Eq. �3.8��,
while the panels �b� by the stochastic result �Eq. �2.11��. The

inverse noise correlation time is set to be � /�10=0.005

��−1=0.66 ps�. The system-bath coupling strengths

��LL ,�SL� /�10 for panels �a� are chosen to be �i� �+2,0�, �ii�
�0, +0.5�, �iii� �+2, +0.5�, and �iv� �−2, +0.5�, respectively.

As in the motional narrowing cases, we can evaluate the

amplitude of frequency fluctuation � for �b� as follows: �i�
8.7 cm−1 �� /�=1.1�, �ii� 15.2 cm−1 �� /�=1.9�, �iii�
23.9 cm−1 �� /�=3.0�, and �iv� 6.5 cm−1 �� /�=0.8�. As seen

from the profiles of the 2D line shapes, these are in the

spectral diffusion regime with moderate inhomogeneity.

In this small � case, the spectra calculated by the LTC-

QFP equation resemble those from the stochastic approach.

This similarity indicates that vibrational dephasing processes

in the present situation are dominated by elastic pure dephas-

ing rather than by energy relaxation; hence, the stochastic

theory is a good description for 2D line shapes. However,

compared with the cases in �b�, the peak positions for the

LTC-QFP equation case in �a� slightly shift toward the upper

right. The cause of the blueshifts is the dissipation with finite

noise correlation time, as mentioned in Sec. IV A. This fact

indicates that although the effect of vibrational energy relax-

ation in comparison to that of frequency fluctuation process

is small, still there exist effects of dissipation caused by the

system-bath coupling. The stochastic theory, which neglects

any dissipation, cannot explain the 2D blueshifts.

FIG. 4. Linear absorption spectra calculated from Eq. �4.9� for the Markov-

ian noise case ��=0.5�10� and the white noise case ��→��. We set the

system-bath coupling strength for both to �=0.05�10. The normalization of

each spectrum is such that the maximum of the spectrum for the Markovian

case is unity.
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C. Preconditions of stochastic theory for vibrational
dephasing

We now discuss the precondition of the the stochastic

theory to apply molecular vibrational motion. First we

should notice that the system can efficiently exchange energy

quanta with the bath, if there are bath modes whose frequen-

cies are similar to the characteristic frequency of the system

�c. If ���c, however, such bath modes are virtually nonex-

istent. If the condition �	�c is satisfied, the spectral distri-

bution Eq. �3.3� reduces to J��c���m� /��c, which sug-

gests that there are plenty of bath modes which can

efficiently exchange energy with the system oscillator. On

the contrary, when the condition ���c holds, we have

J��c���m� /��c�� /�c�
2�0, which indicates that the sys-

tem oscillator cannot readily exchange energy with the bath

modes, and therefore the bath modes can barely contribute to

the energy relaxation.

To estimate the strength of dissipation, we utilize the

correlation function of the collective bath coordinate �Eq.

�3.4��,

�X̂�t�X̂�0�	b � C��t� + iC��t� , �4.10�

where C��t� is the real part of �X̂�t�X̂�0�	b that relates to

fluctuation and C��t� is the imaginary part that relates to

dissipation.
39,83

For Eq. �3.3�, they are expressed as

C��t� �
m

�
��e−�t, �4.11�

C��t� = −
���

2

m

�
��e−�t, �4.12�

where we assumed that ��� /2�1 in Eq. �4.11�, and there-

fore we have

�C��t�

C��t�
� � 1. �4.13�

This indicates that the dissipation is negligible relative to the

fluctuation for ��� /2�1.

Summarizing two conditions, we have

� � �c, ���/2 � 1. �4.14�

As long as the above conditions are satisfied, the energy

relaxation plays a minor role compared with the elastic pure

dephasing, and the vibrational dephasing is dominated by the

pure dephasing caused by the frequency fluctuation rather

than the energy relaxation. In such cases, the stochastic

theory may be applied to analyze 2D line shapes although

the theory cannot account such dissipative effects as the

blueshifts.

V. CONCLUDING REMARKS

In this paper, we considered an anharmonic potential

system coupled to a colored noise bath with linear-linear

�LL� and square-linear �SL� system-bath interactions. For the

system, we introduced the low-temperature corrected quan-

tum Fokker-Planck �LTC-QFP� equation, which can describe

an anharmonic intramolecular vibration at temperature much

lower than vibrational excitation energy �a low-temperature

system�. It is noteworthy that the equation is based on the

vibrational coordinate and is not afflicted with the positivity

problem that occurs in a low-temperature system without the

rotating wave approximation, as opposed to the conventional

quantum master equation or Bloch-Redfield equation. By uti-

lizing the equation we calculated 2D-IR correlation spectra

for various system-bath parameters. Our formalism, LTC-

QFP equation, can treat a dissipation-dominant regime �Fig.

3� and a fluctuation-dominant regime �Fig. 5� in a unified

framework. We found the profiles of 2D-IR spectra change

dramatically with a form and strength of system-bath cou-

pling and a noise correlation time. In this anharmonic sys-

tem, the LL coupling leads to not only one-quantum relax-

ation but also the deformation of a potential curve, whereas

the SL coupling gives rise to a curvature modulation of the

potential curve in addition to two-quantum relaxation.

FIG. 5. �Color� 2D-IR correlation spectra SC��3 ,�1 ; t2=0� of the Morse

oscillator ��10=1600 cm−1, �anh=16 cm−1� in the spectral diffusion regime.

The spectra were calculated from �a� the LTC-QFP approach with Eq. �3.8�
and �b� the stochastic approach with Eq. �2.11�. The panels from the top to

bottom show the spectra for �i� LL, �ii� SL, �iii� +LL+SL, and �iv� −LL

+SL system-bath coupling cases, respectively. The inverse noise correlation

time is � /�10=0.005 ��−1=0.66 ps�. The negative-going peaks arise from

the 0-1 transition, whereas the positive-going peaks from the 1-2 transition.
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Through 2D-IR spectra, we clarify the details of the system-

bath coupling as follows: �1� the difference between one- and

two-quantum relaxations, �2� a cross term contribution be-

tween the LL and SL couplings, and �3� the interplay be-

tween the LL and SL mechanisms of frequency fluctuation

�Fig. 2�.
We also discussed the precondition for validity of the

stochastic approach. Since the stochastic theory breaks down

for a system where the energy relaxation is significant be-

cause the theory neglects any dissipative effects, we focus on

the case where energy dissipative effects can be ignored.

Then we found that if the noise correlation time 
=�−1 sat-

isfies the following two conditions, �a� ���c for the char-

acteristic frequency of the system oscillator �c and �b�
��� /2�1 for the inverse temperature �, we may disregard

energy dissipation processes in comparison with dephasing

processes �see Fig. 6�. Within the two conditions, the sto-

chastic theory can explain the line shapes of the multidimen-

sional vibrational spectra, regardless of the characteristic fre-

quency of the system such as ���c /2�1 or ���c /2�1�,
besides the blueshifts caused by the dissipation from colored

noise bath.

In this paper, we restricted our discussions to a single

anharmonic mode in a bath characterized by a single decay

constant �. Extension to multimodal anharmonic systems in

more realistic bath is left for future studies.
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APPENDIX: DERIVATION OF LOW-TEMPERATURE
CORRECTED QUANTUM FOKKER-PLANCK
EQUATION

In this appendix, we outline a derivation of the quantal

equation of motion for a reduced density matrix, which has

applicability to a low-temperature system ����c /2�1� that

can be used to analyze an intramolecular vibrational

mode.
39,76

The reduced density matrix element for the system is

expressed in the path integral form with the factorized initial

condition as

��q,q�;t� =� dqi� dqi�� Dq� Dq� exp� i

�
�S�q�

− S�q����FFV�q,q����qi,qi�;ti� . �A1�

Here, S�q� is the action of the system and FFV�q ,q�� is the

Feynman-Vernon influence functional given by
84

FFV�q,q�� = exp�−
1

�
�

0

�

d�J����
ti

t

ds�
ti

s

ds�V��s�

� �V��s��coth����

2
�cos���s − s���

− iV��s��sin���s − s�����
�exp�−

i

�
�

ti

t

ds��U�qs� − �U�qs���� , �A2�

where we have introduced the abbreviations V��t��V�qt�
−V�qt�� and V��t��V�qt�+V�qt��. The counterterm �U�q�
=�0

�d�J���V�q�2 /� found in Eq. �3.1� is taken into account

as the second exponential on the right-hand side of Eq. �A2�.
For the distribution Eq. �3.3�, we can rewrite Eq. �A2� as

FFV�q,q�� = exp��
ti

t

ds�
ti

s

ds���s���s��e−��s−s���
� �

k=1

�

exp��
ti

t

ds�
ti

s

ds���s��k�s���ke
−�k�s−s���

�exp�−
i

�
�

ti

t

ds
m��

2
V��s�V��s�� , �A3�

with

��t� �
i

�
V��t� , �A4�

��t� � i
m�

��
�− i

���

2
V��t� +

���

2
cot����

2
�V��t�� ,

�A5�

�k�t� � i
m�

��

2�2

�k
2 − �2

V��t� , �A6�

where �k=2k / ��� is a bosonic Matsubara frequency.

If we choose K so as to satisfy �K��c, the factor

e−�k�s−s�� in Eq. �A3� can be replaced by Dirac’s delta func-

tion as

�ke
−�k�s−s�� � ��s − s�� �k � K + 1� . �A7�

Thus, by choosing the relevant K, Eq. �A3� can be reduced to

FIG. 6. Applicability of various approaches. The low-temperature corrected

quantum Fokker-Planck �LTC-QFP� equation �Eq. �3.8�� reduces to the

Gaussian-Markovian quantum Fokker-Planck �GM-QFP� equation at high

temperature �Refs. 11, 39, 75, and 82�. When the two conditions ���c and

��� /2�1 are satisfied simultaneously, the LTC-QFP and GM-QFP agree

with the results from the stochastic theory besides the effects of blueshifts

due to the dissipation with the finite noise correlation time.
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FFV�q,q�� � exp�− �
ti

t

ds��s�e−�s�− �
ti

s

ds����s��e�s���
��

k=1

K

exp�− �
ti

t

ds��s�e−�ks�− �
ti

s

ds��k�k�s��e
�ks���

� �
k=K+1

�

exp��
ti

t

ds��s��k�s��exp�−
i

�
�

ti

t

ds
m��

2
V��s�V��s�� . �A8�

In order to derive the equation of motion, we introduce the auxiliary operator �̂
j1,. . .,jK

�n� �t� defined by its matrix element as

� j1,. . .,jK

�n� �q,q�;t� =� dqi� dqi�� Dq� Dq��e−�t�− �
ti

t

ds���s�e�s�n

��
k=1

K �e−�kt�− �
ti

t

ds�k�k�s�e�ks� jk

exp� i

�
�S�q� − S�q����FFV�q,q����qi,qi�;ti� �A9�

for non-negative integers n , j1 , . . . , jk. Note that only

�̂
0,. . .,0

�0� �t�= �̂�t� has a physical meaning, and the other ele-

ments �̂
j1,. . .,jK

�n�
for �n ; j1 , . . . , jK�� �0;0 , . . . ,0� are introduced

for computational purposes only. The differentiation of

�
j1,. . .,jK

�n� �q ,q� ; t� with respect to t gives rise to the factors

from the time differentiation of the left- and right-hand side

actions and the influence functional. The terms with these

factors constitute the hierarchy members of Eq. �A9� with

different n and �jk�. As a result, we obtain the hierarchy of

equations, Eq. �3.8�.
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