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Abstract

The way in which a viral infection spreads within a host is a complex process that is not well 

understood. Different viruses, such as human immunodeficiency virus type 1 and hepatitis C virus, 

have evolved different strategies, including direct cell-to-cell transmission and cell-free 

transmission, to spread within a host. To what extent these two modes of transmission are 

exploited in vivo is still unknown. Mathematical modeling has been an essential tool to get a better 

systematic and quantitative understanding of viral processes that are difficult to discern through 

strictly experimental approaches. In this review, we discuss recent attempts that combine 

experimental data and mathematical modeling in order to determine and quantify viral 

transmission modes. We also discuss the current challenges for a systems-level understanding of 

viral spread, and we highlight the promises and challenges that novel experimental techniques and 

data will bring to the field.
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INTRODUCTION

There are an estimated 1031 different viruses on Earth (1) that have each evolved strategies 

to invade a host and establish infection. After an infectious viral particle has crossed the first 

barrier of a host (e.g., skin, epithelial tissue), its ability to successfully spread within a tissue 

depends on finding appropriate target cells in which to efficiently replicate and transmit viral 

progeny, and on bypassing or modulating counteracting host responses.

Virus particles represent efficiently structured pathogens mainly consisting of viral genetic 

material and a protective coat. They need to enter host cells and hijack their molecular 

machinery in order to replicate. To cross the cellular membrane, different viruses have found 
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different strategies, sometimes involving the complex interaction of several cell surface 

receptors: For example, in human immunodeficiency virus type 1 (HIV-1) infection, viral 

glycoproteins on the viral envelope interact with the cell surface proteins CD4 and the CCR5 

or CXCR4 receptor on T lymphocytes to mediate viral entry (2). For hepatitis C virus 

(HCV), a cascade of receptor interactions is needed for infection of hepatocytes. This 

cascade starts with the virus interacting with scavenger receptor class B type I (SR-BI) (3) 

and then tetraspanin CD81 (4), which forms complexes with the tight junction proteins 

claudin 1 and/or occludin and the Niemann-Pick C1–like 1 (NPC1L1) receptor (5–7). For 

hepatitis B virus and hepatitis D virus, the human sodium/taurocholate cotransporting 

polypeptide (hNTCP) and glypican 5 have recently been identified as required host entry 

factors (8, 9). Other viruses use other host cell receptors. Interestingly, some pathogens, such 

as HIV-1 and HCV, have found ways to vary their receptor dependencies by using alternative 

receptors or alternative entry pathways in parallel (10, 11).

The interactions of virion surface proteins with cell surface molecules characterize cell-free 

viral transmission events. Although cell-free transmission strategies enhance viral spread by 

allowing diffusing virions to infect distant cells, they also have some disadvantages, as freely 

diffusing virions can be subject to antibody neutralization as well as antibody-mediated 

opsonization and phagocytosis (12–14).

Direct cell-to-cell transmission of intact virions or viral genetic material is another means of 

transmitting viral infection and involves contacts between infected and uninfected cells. 

Many viruses that are pathogenic for humans, including HIV-1 and HCV, are capable of 

spreading by cell-to-cell transmission (15, 16). Several mechanisms of cell-to-cell spread 

have been described, including membrane fusion, the formation of virological synapses, the 

use of tight junction proteins, and the formation of long-ranging nanotubes (reviewed in 15, 

17). Although cell-free transmission via diffusing virions is important for the initialization of 

infection, cell-to-cell transmission seems to be much more potent in mediating viral spread; 

for example, for HIV-1, the efficiency of spread is estimated at 10-fold to 18,000-fold 

greater for cell-to-cell transmission than for cell-free infection (18–20). The robustness of 

transmission of infection, the shielding of viral particles from neutralizing antibodies and 

phagocytosis, and the ability to transmit multiple viral genomes contribute to this greater 

efficiency. Some estimates in the literature suggest that as many as 102–103 virions can be 

simultaneously transmitted through a single synapse (18, 21).

Due to this high multiplicity of infection, Sigal et al. (12) argued that antiretroviral agents 

that act intracellularly, such as the reverse transcriptase inhibitor tenofovir, should have 

reduced activity in blocking cell-to-cell infection, and they verified this hypothesis in vitro. 

For a simple argument as to why one might expect this to be true, consider a situation in 

which a single virion has a probability p of infecting a cell. Then, assuming virions act 

independently, if n virions enter a cell, the probability that at least one of them successfully 

infects is PI = 1 − (1 − p)n. To be more explicit, if p = 0.1, then with one virion entering the 

probability of infection is 10% and with 100 virions entering the probability is 0.99997, that 

is, ~100%. Now consider a drug that is 95% effective. In the case of one virion entering, the 

probability of infection in the presence of the drug is reduced to p = 0.1 × 0.05 = 0.005. For 

the case of 100 virions, with p now equal to 0.005, the probability that at least one virion 
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succeeds in infecting the cell is then PI = 0.39. Rather than reducing the probability of 

infection by 95%, as in the case of an infection by a single virion, the drug reduces the 

probability of infection by only 61% when 100 virions are transmitted during the infection 

of a single cell, as might occur during cell-to-cell transmission. Despite this simple 

argument, Agosto et al. (22, 23) later showed that most nonnucleoside reverse transcriptase 

inhibitors, protease inhibitors, and entry inhibitors remain highly effective even when 

infection is cell-to-cell, suggesting the mechanism of action of the drug and its target are 

important factors. Further, the assumption that each virion has the same probability of 

infecting a cell when transmission is by cell-free virions or cell-to-cell infection may not be 

valid (24). Whether drugs are less effective or not, the properties of robustness, multiple 

genome transmission, and immune evasion could explain why cell-to-cell spread seems to be 

an important mechanism for the establishment and maintenance of persistent infections (12, 

14, 25).

Recently, it has been shown that the transfer of HIV-1 genetic material by cell-to-cell 

transmission into resting CD4+ T cells can trigger pyroptotic death (26). Death is due to an 

innate immune response against incomplete cytosolic viral DNA intermediates that 

accumulate in these cells. Cell-free HIV-1 virions, even when added in large quantities, fail 

to activate this death pathway, highlighting an important role of cell-to-cell transmission in 

HIV pathogenesis (26).

As cell-to-cell transmission predominantly occurs in solid tissues, it has been difficult to 

distinguish between cell-to-cell and cell-free virus transmission modes, and the extent to 

which different viruses exploit these modes of spread in vivo is unknown. In such 

circumstances, mathematical models may be informative.

Mathematical models have been an essential tool in determining the dynamics of viral 

infections based on experimental and clinical data (27). They allow one to examine the 

dynamics of viral replication and spread in vivo and in vitro within a systematic and 

quantitative framework. Analyzing experimental and clinical data with mathematical models 

has helped to quantify the in vivo rate of HIV-1 and HCV viral replication (28–30) and the 

clearance rate of virions and infected cells in both HIV-1 (28, 31) and HCV infection (30, 

32) and to determine how specific drugs mediate their antiviral efficacy (30, 32–35). Further, 

mathematical models allow the quantification of processes that are hidden within the data 

and that cannot be measured and/or observed directly.

Below, we discuss how mathematical models have been used to quantify viral spread and to 

determine the extent to which viruses, such as HIV-1 and HCV, exploit cell-to-cell spread in 

vivo. We review different ways in which the processes of viral spread have been modeled 

and discuss the way these models have been applied to experimental data. In addition, we 

highlight recent developments in experimental techniques that will improve our 

understanding of viral spread mechanisms in vitro and in vivo, and we describe how they 

can be used for the quantification of these processes. We also outline the challenges that still 

need to be resolved in order to fully determine how HIV-1 and HCV infections spread in 

vivo.
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MODELING CELL-TO-CELL TRANSMISSION FOR HIV-1

Modes of Viral Transmission and Modeling Viral Dynamics

The well-known standard model of viral dynamics (reviewed in 27, 36) represents the 

dominant and standard approach to analyze and quantify the spread of a viral infection 

within a host. The model follows the concentrations of target cells (T ), infected cells (I ), 
and virions (V). Their interactions, depicted in Figure 1a, are mathematically described by 

the following system of ordinary differential equations:

1

Target cells, T, which are cells susceptible to infection, are produced at a constant rate λ and 

have an average lifetime of 1/dT . Infected cells, I, die with rate δ per cell and produce new 

virions at rate ρ that are cleared from the system at rate c per virion. In the formulation given 

in Equation 1, infection of target cells is mediated (a) by cell-free virions at a rate dependent 

on the viral concentration, V, and a transmission rate constant β and (b) by infected cells 

with a cell-to-cell transmission rate constant ω. When cell-to-cell transmission is included in 

the model, virus spread and target cell depletion are accelerated (Figure 1b).

Whereas most previous analyses used the standard model of viral dynamics based on the 

assumption that infection is solely transmitted by cell-free virions (ω = 0) (27, 30, 33, 37, 

38), recent models have incorporated cell-to-cell transmission by allowing both modes of 

transmission within the model (β ≠ 0, ω ≠ 0) (39–42). Iwami et al. (42) used a model as 

shown in Equation 1 to analyze the contribution of cell-to-cell transmission to HIV-1 spread 

in vitro by comparing static and shaking culture systems. The shaking of the culture is 

assumed to inhibit the formation of cell-to-cell contacts (20) and thus to prevent cell-to-cell 

transmission (ω = 0), whereas the static culture system allows for both modes of 

transmission. Fitting the model to time course data on the number of infected and uninfected 

cells and the viral load in the static and shaking culture systems simultaneously to estimate 

the kinetic parameters, they found that cell-to-cell transmission was responsible for ~60% of 

the viral spread. Thus, cell-to-cell transmission seems to be the predominant mode of spread 

for HIV-1 in vitro. In a different in vitro system using fluorescent virus transfer, Chen et al. 

(18) also concluded that cell-to-cell transfer is the dominant mechanism of HIV-1 

transmission. In vivo, experiments on acute HIV-1 transmission in humanized mice indicated 

that migration of infected cells, and not solely viral diffusion, is necessary to promote 

systemic viral spread (43). Further, in an analysis of the distribution of multiple HIV-1 

proviruses present in HIV-infected CD4+ T cells taken from the spleens of two infected 

individuals, Dixit & Perelson (44) estimated that ~10% of infections in lymphoid tissue are 

mediated by cell-free virions, whereas 90% occur via cell-to-cell transfer.

Zhang et al. (39) used an extended version of the model depicted in Equation 1 to analyze 

viral progression in treatment-naive HIV-1-infected patients. They distinguished between 

quiescent and activated uninfected cells as well as latently infected cells. In contrast to 

Graw and Perelson Page 4

Annu Rev Virol. Author manuscript; available in PMC 2017 September 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Iwami et al. (42), Zhang et al. (39) used parameters from the literature to study the ability of 

the model to reproduce clinical data, focusing on the contribution of the different modes of 

viral spread. They found that both modes of HIV-1 transmission are essential for the 

establishment and persistence of the infection, but that cell-to-cell transmission is important 

for disease progression and becomes dominant during the late phases of the infection. 

Although their model could reproduce viral load and CD4+ T cell count changes in a cohort 

of patients, their conclusions about the relative importance of the two mechanisms of spread 

may be dependent on their choice of parameter values to describe the two modes of 

transmission. Nonetheless, their results support the current understanding that cell-to-cell 

transmission is an important mechanism used by viruses to establish persistence.

The Virological Synapse

For HIV-1, the spread of infection by direct cell-cell contacts is facilitated by specific 

structures called virological synapses (17, 18, 21, 45–47). A single infected cell can form 

virological synapses with multiple target cells, called polysynapses, and thereby 

simultaneously infect them (48). The formation of a virological synapse between an infected 

and an uninfected cell is characterized by an initial adhesion between the cells triggered by 

an interaction between HIV-1 envelope proteins on the infected cell and CD4 receptors on 

uninfected CD4+ T cells. This is followed by stabilizing interactions involving cellular 

adhesion molecules, such as lymphocyte function–associated antigen 1 (LFA-1) and 

intercellular adhesion molecule 1 (ICAM-1) (47). Confocal microscopy and time-lapse 

imaging of virological synapse formation have indicated rapid viral assembly at the points of 

cell-cell contact after cellular adhesion (21). On an artificial membrane containing ICAM-1, 

addition of HIV-1 envelope protein is sufficient to trigger the arrest of CD4+ T cell migration 

and the initiation of virological synapse formation (49). Generally, a virological synapse 

lasts between 10 min and a few hours in vitro (18, 19, 49). During the time the virological 

synapse exists, infectious viral material is efficiently transmitted between cells (18, 19, 49). 

Synapses that efficiently transmit infection can also form between virus-carrying dendritic 

cells and CD4+ T cells (50, 51).

In Equation 1, the kinetics of the processes underlying viral entry, for either cell-to-cell or 

cell-free transmission, are incorporated within the corresponding transmission rates (i.e., ω 
and β, respectively). Work has been done on quantifying the number of HIV-1 envelope 

glycoprotein trimers that need to interact with target cell receptors in order to facilitate 

virion entry in the case of cell-free infection and its relationship to viral infectivity (reviewed 

in 52), but corresponding quantitative analysis for virological synapse formation remains 

rudimentary. Some estimates indicate that roughly ~56% of cell-cell contacts lead to 

virological synapse formation (21, 46), with only ~0.19 of these synapses leading to a 

successful infection (18, 20, 53). Consideration of the processes characterizing contact 

formation will be helpful when trying to quantify the rates of cell-to-cell transmission in 

comparison to the rates of cell-free transmission. Such an endeavor would help to improve 

current estimates (39, 42) and to validate their appropriateness.
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Multiple Infections

Because multiple viral particles can be transferred simultaneously via a single virological 

synapse (15, 21, 54), it is plausible that cells infected by cell-to-cell transmission contain 

multiple integrated proviruses. As mentioned above, infected CD4+ T cells isolated from the 

spleens of two HIV-1-infected individuals were observed to contain on average 3–4 proviral 

copies of HIV-1, with some cells having as many as 8 proviruses (55). Because one virion 

leads to production and integration of at most one provirus, this number suggests that on 

average at least 3–4 virions entered the cell if the mode of transmission was via cell-free 

virus. However, the distribution of proviral copy number was bimodal, with peaks at 1 copy 

and 3 copies per cell. As the spleen is a densely packed organ, allowing frequent cell-cell 

interactions, the multiple integrated proviruses could also have derived from a single or 

multiple cell-to-cell transmission events. In contrast, in a study in which cells in blood were 

analyzed, the vast majority had only a single proviral copy (56), presumably due to 

inhibition of stable synapse formation by frequent cell mixing (20). Using mathematical 

models, Dixit & Perelson (44) analyzed the distribution of proviral genomes found in the 

spleen (55) in order to better understand the mechanisms leading to the observed distribution 

of multiple infections. In one model they assumed that infections were sequential and that an 

infected cell containing one provirus could be infected m more times, where m is given by a 

Poisson distribution. They also accounted for the fact that after infection CD4 is 

downregulated, making subsequent infections more unlikely (57). This model fit the data 

with a mean value of m of 2.3 but gave rise to a single-peaked distribution. To explain the 

bimodal distribution they assumed that infections could occur simultaneously either by cell-

free or cell-to-cell transmissions. The best fit of this model to the data suggested that about 

90% of infections were by cell-to-cell transmission, with every cell-to-cell event leading on 

average to the transmission of ~3.4 genomes. This model explained the observed bimodal 

distribution of proviral copy numbers.

Experiments in vitro by Del Portillo et al. (53) using T cells coexpressing different 

fluorescent HIV-1 variants showed that multiple HIV-1 genomes could be transmitted across 

a single virological synapse. The experiments also indicated that, whereas cell-free 

transmission followed Poisson statistics, cell-associated HIV-1 transmission led to larger 

numbers of successful viral integrations than predicted by a Poisson distribution, consistent 

with multiple viral genomes being successfully transmitted through a virological synapse 

(53). A computational model that followed the fate of individual cells (an agent-based 

model) in which cells are allowed to interact, form synapses, and transmit infection 

supported these observations. Further, they also measured on average 3.82 (± 0.56 SEM) 

proviral copies in cells infected by cell-to-cell contact and 1.3 (± 0.16 SEM) in the case of 

cell-free infection (53), values that are comparable to observations in vivo (55, 56).

To determine the advantage of multiple infections, Komarova & Wodarz (41) developed a 

mathematical model describing synaptic transmission. They distinguished between cells 

infected by i virions, xi, with 0 ≤ i ≤ N, where i is defined as the multiplicity of infection. 

Here, x0 is the number of uninfected cells and N the maximal number of virions that can 

successfully infect a cell—that is, the model assumed that up to N viral genomes can be 

incorporated into a single cell’s genome. Actual synaptic transmission was then modeled by 
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a mass-action relationship of infected and uninfected cells with a parameter γ(m)
j defining 

the probability of a cell infected with m virions to transmit j virions per synapse (41). The 

probability γ(m)
j contained all information on viral replication and synapse formation in the 

model. Varying the number of virions transmitted per synapse and the kinetics of synapse 

formation and viral replication, the authors used their model to compare different viral 

strategies with regard to their success in maximizing viral spread. Here, by a viral strategy, 

the authors meant the probability distribution for the number of virions transmitted to a cell 

by cell-to-cell transmission. For example, one type of strategy would be to always pass on 

the same mean number of virions, s. Different strategies would correspond to different 

values of s. Their model is very flexible and allows one to study questions such as what the 

effects are of assuming the number of virions transmitted depends on the cell’s multiplicity 

of infection or whether the lifetime of an infected cell depends on its multiplicity of 

infection. Interestingly, they showed that there are circumstances in which transmitting 

intermediate numbers of virions yields the highest basic reproductive number and hence the 

highest probability of establishing persistent infection. Komarova et al. (24) used the same 

model to argue that the decreased drug efficacy of the nucleotide reverse transcriptase 

inhibitor tenofovir against HIV-1 in vitro observed by Sigal et al. (12) can be due to 

multiplicity of infection only if multiple transmission—i.e., cell-to-cell transmission—is 

more efficient than single infection, as in the case of cell-free infection (24).

The advantage of a high multiplicity of infection identified by kinetic and probabilistic 

arguments was made without considering viral diversity. The transmission of several 

independent mutant proviral copies into a single cell offers the possibility to increase viral 

fitness by increasing viral diversity, allowing selection on the quasispecies level (53). 

Although the number of copies transferred via a single synapse can be on the order of 

thousands of genomes (18, 21), the number of successfully replicated genomes is usually 

rather small, ~4–5 (55). Miyashita et al. (58) showed by an integrative analysis of 

computational simulations and experimental data that the number of viral genomes 

establishing infection per cell and the number of viral progeny per founder sequence are 

subject to stochastic variation. This heterogeneity on a cellular and viral level during the 

whole infection process allows rapid adaptation of the virus to its environment. Observations 

made for tomato mosaic virus—a positive-strand RNA plant virus—in vivo show how a 

small number of viral genomes selected for replication upon cell-to-cell transmission of 

larger viral populations can be advantageous for viral spread (59).

MODELING CELL-FREE AND CELL-TO-CELL TRANSMISSION IN HCV 

INFECTION

Similar to HIV-1, HCV is able to spread via cell-free diffusing virions and direct cell-to-cell 

contact (15). However, differences in the characteristics of the main target cell populations 

require different modeling approaches when trying to analyze viral spread, especially when 

addressing cell-to-cell transmission.
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Modeling Cell-Free Viral Spread and Antiviral Therapy

The standard model of viral infection when applied to HCV infection by cell-free virus and 

treatment with antiviral drugs, such as interferon-α (IFN) or the current panoply of direct-

acting antivirals, takes the following form:

2

where ε is the drug effectiveness in blocking viral production, with ε = 1 corresponding to a 

100% effective drug. The vast majority of antivirals used for treating HCV infection act by 

blocking viral replication and/or viral assembly and hence reduce viral production from 

infected cells. Neumann et al. (30) introduced this model in order to understand the very 

rapid decay of plasma HCV RNA observed during the first one to two days after the 

initiation of IFN treatment, when viral levels fell one to two orders of magnitude in a dose-

dependent manner. Because hepatocytes are long-lived cells, Neumann et al. assumed that 

during the first two days of therapy the number of target cells and the number of infected 

cells remained constant. Further, it had been observed that in untreated chronically infected 

HCV patients the viral load, measured in terms of HCV RNA copies per milliliter of serum 

or plasma, remained approximately constant on timescales of days, weeks, and even months. 

When this occurs, clinicians say the virus has reached a set point. Under these 

circumstances, the rate of viral production, ρI0, must equal the rate of viral clearance, cV0, 

where the subscript 0 is used to denote baseline or pretherapy value. If therapy is applied at 

time 0, then the equation for the change in viral load becomes

where we have assumed the infected cell level remains constant at its pretherapy value.

When this equation is solved, it predicts that the viral load during therapy will change 

according to the equation (30)

where t0 represents a pharmacological delay, as IFN needs to bind to its receptor and cause 

the expression of a large number of IFN-stimulated genes, which in turn affect viral 

production through complex and not fully understood mechanisms. This equation fit the 

clinical data taken over the first two days of therapy from a variety of patients extremely 

well (30). By fitting this equation to the data, both the effectiveness of therapy, ε, and the 

rate constant for viral clearance, c, could be estimated. Standard IFN given at a dose of 5 

million IU day−1 was found to be about 80% effective (30). By comparison, applying the 

theory to modern drugs, such as the HCV polymerase inhibitor sofosbuvir, a Gilead drug 

that costs $1,000 per pill, showed that sofosbuvir was 99.96% effective (60). This theory 
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suggested that the in vivo effectiveness of new HCV drugs could be evaluated in very short-

term clinical trials, and it was an approach embraced by the pharmaceutical industry.

Also, recall that at the pretherapy viral set point, cV0, the rate of viral clearance is equal to 

the rate of viral production. Using the estimate of c and the measured baseline viral loads 

and adjusting for the total body volume through which virus could be distributed, Neumann 

et al. (30) concluded that approximately 1012 virions are produced and cleared daily. 

Combining this virion production rate with estimates of the per base error rate of the HCV 

polymerase (61), Rong et al. (62) later showed that in a person chronically infected with a 

predominant virus, virions containing HCV RNA with all possible single- and double-

mutant variants are likely made every day; this finding highlighted the need for combination 

therapy to treat HCV infection, as is now becoming commonplace (63). One recent proof-of-

concept clinical trial showed that it was possible with response guided therapy to cure a 

group of HCV genotype 1b chronically infected patients using a combination of an HCV 

protease inhibitor, a polymerase inhibitor, and an NS5A inhibitor given for only three weeks 

(64).

Accounting for Spatial Dynamics

The standard model for viral dynamics with the extension for cell-to-cell transmission 

(Equation 1) does not contain any spatial information and assumes any two cells can interact 

and form a virological synapse. This assumption is not appropriate for cell-to-cell 

transmission among stationary cells, such as hepatocytes in the liver. As transmission by 

cell-to-cell contact allows transmission from infected cells only to their direct neighbors, 

infections can get trapped in certain areas (65–67), and the speed of progression of infection 

can be limited due to the lack of target cells in certain locations. Through simulation of viral 

spread by the standard model of viral dynamics within a spatially defined setting, it was 

shown that overall infection dynamics are altered, and that models not accounting for spatial 

aspects might underestimate the true infection dynamics (68). HCV predominantly spreads 

among hepatocytes, which are epithelial cells that form tight junctions with their neighbors 

and are spatially organized within the liver. These aspects have to be considered when 

analyzing and quantifying HCV spread.

Mathematically, infection dynamics in space and time can be modeled by partial differential 

equations (69–71). Handling such model systems is much more challenging, and these 

models have rarely been used in analyses of viral dynamics. With recent advances in 

experimental and imaging techniques (11, 72–74), as well as in computational power, 

approaches following and simulating the behavior of single cells during an infection have 

become standard tools of viral dynamics analysis (65). Models that follow the fate of 

individual cells in space and time have been called agent-based models (65). These models 

can also include intracellular processes, such as viral replication and viral export from 

infected cells. Because of their complexity in representing multiple aspects of cellular 

behavior, they require an increased amount of experimental information to appropriately 

parameterize the model. Slowly, this type of information is becoming available (75, 76).
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Quantifying HCV Cell-to-Cell Spread

Much like for HIV-1, the extent to which HCV exploits cell-free and cell-to-cell 

transmission in vivo is unknown. Further, the kinetics of HCV cell-to-cell transmission still 

need to be determined. In combination with experimental data, agent-based models have 

been used to analyze and quantify the spread of HCV in vivo and in vitro. Using single-cell 

laser capture microdissection, Kandathil et al. (72) analyzed the infection status of single 

cells within 2D slices of liver biopsy samples taken from HCV-infected patients and 

quantified the amount of intracellular viral RNA (vRNA). Plotting the amount of vRNA 

above a grid representing a set of adjacent cells gives rise to a viral infection landscape, or 

viroscape (72). Examining sets of viroscapes showed that infected cells tend to occur in 

small clusters, with individual clusters comprising ~4–50 infected cells (72). Such clustered 

landscapes are consistent with the hypothesis that HCV exploits both cell-free and cell-to-

cell modes of transmission in vivo, with isolated clusters being founded by cell-free 

infection and then growing by local spread. The local spread can be due to cell-to-cell 

transmission or to the preferential infection of neighboring cells when virions are released 

from an infected cell. In addition, analyzing Kandathil et al.’s data in more detail, Graw et 

al. (77) found that the amount of intracellular HCV RNA declines from the cell with the 

highest level of vRNA, which presumably founded the cluster, to cells at the outer boundary 

of the cluster. Similar observations of HCV foci in tissue samples have been made by others 

(73, 78, 79). Determining whether the local spread and the observed patterns are largely 

dependent on cell-to-cell transmission is difficult— experimentally and theoretically—and 

may be possible only if both modes of transmission have vastly differing kinetics.

Two different approaches have been used to determine the rate at which cell-to-cell 

transmission occurs during HCV infection.

Analyzing focus spread in vitro—Studying HCV spread in vitro allows one to control 

viral transmission modes to a certain extent. Administration of antibodies against the HCV 

envelope protein E2 blocks HCV spread by cell-free virions in vitro (7). Viral spread in the 

presence of anti-E2 treatment is characterized by the growth of existing foci and thus is 

mostly driven by direct cell-to-cell transmission. In addition, the proliferation of infected 

cells, which can also be viewed as a form of cell-to-cell transmission, may also play a role. 

In order to quantify HCV cell-to-cell transmission, Graw et al. (80) described focus growth 

as a stochastic process. A number of different models of viral spread were examined to 

estimate focus growth rates. In one it was assumed that each infected cell in a focus can 

infect another cell at a constant rate ρ in the absence of cell-free virus transmission. This 

model worked well in describing the growth rate of small clusters, where neighboring target 

cells are plentiful. To explain the growth kinetics of larger foci, Graw et al. assumed that foci 

grow radially and only infected cells at the perimeter of a focus contribute to focus growth. 

Using this model to explain data collected in vitro in a system using Huh7 cells infected by 

JFH-1 virions they estimated a focus growth rate of ρ ≈ 3 × 10−2 to 7 × 10−2 per hour per 

infected cell (80). This would mean that a focus would double its size by cell-to-cell 

transmission (including proliferation of infected cells) in vitro within 10–24 h. The model 

was also used to quantify the effect of antibodies against different HCV entry receptors in 

inhibiting cell-to-cell spread. Despite the shortcomings of this approach, which 
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approximates individual irregular foci as circular ones and ignores the ongoing cell 

proliferation within the culture, the study provides a first estimate for HCV cell-to-cell 

transmission rates. It still remains to be shown how well these in vitro estimates hold in vivo.

Determining HCV spread based on viroscape profiles—Another approach to 

quantify HCV cell-to-cell transmission and to address transmission kinetics is based on the 

analysis of the viroscape profile—that is, the profile of intracellular HCV RNA levels within 

infected cells of different clusters. As a first step, we developed a model that uses the 

amount of intracellular positive-strand vRNA within infected cells, a quantity we call H, as a 

surrogate for the time a cell has been infected, (61, 77). The model considers the 

intracellular replication cycle by distinguishing between vRNA, H, and the negative strand 

that is part of replication complexes, R. The vRNA, H, is produced from replication 

complexes after a lag phase of duration a0 and is also degraded intracellularly. Replication 

complexes are produced by copying vRNA at a rate that slows as the cell reaches a 

maximum allowed number of replication complexes, presumably due to a limitation in host 

cell resources. Each cell has a carrying capacity Hmax and Rmax of ~100 vRNAs (81) and 

~40 replication complexes, respectively (81, 82). Parameterizing the model and neglecting 

the loss of vRNA by export within virions, the doubling time of vRNA was estimated to be 

~6 h (61). Simulating the stochastic replication dynamics within a cell with such a model, 

and varying the lag phase between 6 and 24 h, we estimated that the cells in the liver biopsy 

samples might have been infected for ~5 days (3.5, 7.7) (77).

HCV viral replication and infected focus formation in a spatially explicit 2D setting can also 

be studied through the use of agent-based models (77). In this case, hepatocytes are modeled 

as cubic or hexagonal structures distributed on a regular grid (see Figure 2) representing a 

solid tissue environment or a 2D in vitro culture. Once a cell is infected, processes of 

intracellular viral replication are modeled as described above, distinguishing between vRNA 

and replication complexes. vRNA can be assembled into virions and exported from the 

infected cell. Extracellular virus is assumed to diffuse, and the extracellular viral 

concentration at different points in space is modeled (Figure 2). New infections occur either 

via cell-to-cell transmission among neighbors or via cell-free infection by diffusing virions. 

The rate of infection events depends on the infection probabilities for cell-to-cell and cell-

free transmission, pcc and pcf , respectively, and on the amount of intracellular vRNA and the 

local extracellular viral concentration, respectively.

Such a model was used to study how the observed profile of intracellular vRNA in a cluster, 

the so-called viroscape, is influenced by different factors (77). The ratio of the rate at which 

neighboring cells become infected to the rate at which intracellular vRNA accumulates 

determines the steepness of the viroscape between two neighboring cells. In the liver biopsy 

samples analyzed by laser capture microdissection, the vRNA level within cells in the direct 

neighborhood of the core of a focus was only ~40% of that within the central infected cell 

(77). Under the assumption that the lag before the start of viral production is ~24 h, this 

relationship was recovered in simulations of foci spread on a 2D lattice when the probability 

of cell-to-cell transmission was set to pcc ≈ 4 × 10−2 per hour, which agrees with the 

estimates obtained for the cell-to-cell transmission rate of HCV in vitro (80).
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This example nicely shows how simulation of the spatial processes involved in viral 

replication and spread, in combination with experimental observations, allows one to obtain 

estimates for the quantification of processes that are not directly observed. By varying the 

parameter values for pcc and pcf , the model of 2D HCV spread can also be used to identify 

the relative proportions of cell-free and cell-to-cell transmission based on the spatial pattern 

of infected cells at a certain time point (P. Kumberger & F. Graw, unpublished observations). 

Simulating these processes with a model allows one to determine how factors such as the 

spatial boundaries of an in vitro culture system and the merging of individual foci over time 

could affect the interpretation of experimental data. By combining spatially explicit 

mathematical models with time course data on HCV focus spread in vitro, one can quantify 

viral transmission modes and their impact on infection dynamics.

CONSIDERATION OF IMMUNE RESPONSES AND THE EFFECT OF 

TREATMENT ON VIRAL SPREAD

Analysis of clinical data on HIV-1 or HCV viral spread in vivo usually requires the 

consideration of the effect of antiviral treatment and potential immune responses. 

Mathematical modeling has helped to identify the mechanisms of action of antiviral drugs, 

to quantify their effectiveness, and to find appropriate doses and treatment regimens 

(reviewed in 33, 83). These endeavors made use of population dynamic models similar to 

Equation 2 that treated target cell populations, immune responses, and drug concentrations 

as homogeneous and well-mixed populations, appropriate to describe average dynamics. 

However, the increasing evidence for the importance of cell-to-cell transmission in HIV-1 

and HCV in vitro and in vivo (42, 80), as well as the finding that some antiretroviral drug 

tissue concentrations are much lower than plasma concentrations (84) allowing viral 

replication and evolution (85), also demands the consideration of spatial aspects of drug 

efficacy and local immune responses when analyzing viral spread in vivo (Figure 3).

In HCV infections, the progression of infection triggers infected cells and their neighbors to 

start producing antiviral factors, such as type I IFN (IFN-α), which may protect uninfected 

cells from becoming infected and interfere with viral replication (86, 87). Thus, if viral 

spread mostly relies on cell-to-cell transmission, the growth of individual foci of infected 

cells is an arms race between the efficacy of viral spread and the local increase of antiviral 

factors evoked by the spread. Such a trade-off could have shaped the observed cluster 

profiles in HCV-infected liver tissue (77). A recent study analyzed this trade-off for dengue 

virus on a population level using live-cell analysis in combination with a mathematical 

model to study the effect on viral spread (88). Prior to that, a stochastic spatial model that 

included the dynamics of a type I IFN response and was parametrized by data was used to 

study the time-dependent spread of herpes simplex virus type 1 within a cell monolayer (89). 

Whether local spread can evoke local immune responses in the case of HCV still remains 

controversial (72, 73, 79). However, it is quite intuitive to assume that high local 

concentrations of virions require high antiviral drug concentrations at the same locations in 

order for an antiviral drug to be efficient, as has been observed for HIV-1 (12). Agent-based 

models can and should be used to study the kinetic relationship between viral spread and 
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innate immunity in a spatially confined setting to identify the relevant factors that determine 

disease outcome (65).

CONCLUSIONS AND FUTURE OUTLOOK

Understanding the way viruses spread in vivo is an important prerequisite to developing 

effective therapeutic protocols and preventive strategies. Analyzing experimental data on 

viral spread through the use of mathematical models should allow one to obtain a more 

systematic and quantitative understanding about the processes involved and to identify key 

targets for therapeutic interventions.

Mathematical modeling has advanced our knowledge about the kinetics of viral turnover and 

spread and the efficacy of drug treatment. However, modeling local spreading mechanisms, 

such as cell-to-cell transmission or the release of virions from one cell yielding preferential 

binding to neighboring cells, and the local innate responses these mechanisms may generate, 

requires further work.

In the light of these findings, key questions to be answered in order to understand viral 

dynamics and progression of infection in more detail concern (a) the kinetics of formation 

and the lifetime of cell-to-cell contacts for viral transmission, (b) the role of multiple viral 

genome transfers for persistence of infection and in reducing drug effectiveness, and (c) the 

effect of local immune responses on viral spread (Figure 3). Addressing these questions 

presents novel challenges for mathematical techniques as well as experimental methods. 

More complex modeling frameworks are required to capture the processes involved, and 

such models need corresponding support from the collection of appropriate experimental 

data.

Advances in experimental techniques, especially addressing the visualization of important 

steps of the viral life cycle and allowing live-cell imaging, have increased the possibilities to 

obtain the necessary quantitative data. These advances include the development of 

appropriate labeling techniques—for example, fluorescent tags attached to viral structural 

proteins, such as Gag for HIV-1 (34, 35)—that allow one to follow several rounds of 

replication, unlike previous techniques that were limited to a single round (62, 87, 90). In 

addition, a dual-color fluorescent reporter system has been developed to study how viral 

infections spread through a host cell monolayer and how the cellular innate immune system 

mounts an antiviral response (91, 92). A further improvement is the development of 3D in 

vitro systems to analyze viral spread in more complex environments that more closely 

resemble the in vivo situation (93). Live-cell imaging of viral entry on a single-cell level (94, 

95); investigating viral subcellular localization and replication (74, 96); analyzing viral 

spread within a tissue or organism, as can be done in humanized mouse models (86); and 

obtaining time courses of interactions between pathogen spread and individual immune 

responses (97) will provide more detailed information that can be used to drive new 

modeling.

We are only at the beginning of using mathematical modeling as a tool to combine 

information from these various sources and at a various scales to generate a quantitative 
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understanding of viral spread. With the help of new technologies and new models we hope 

to understand the full dynamics of these processes in quantitative detail and to be able to 

identify the key processes that need to be targeted to prevent spread of infection.
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Figure 1. 
(a) Sketch of the mathematical model given by Equation 1, describing viral spread by cell-

to-cell (red ) and cell-free (black) transmission. (b) Dynamics of uninfected (solid line) and 

infected (dashed line) cells (upper panel ), and corresponding dynamics of cell-free virus 

(lower panel ), for realizations of the model allowing for either cell-to-cell and cell-free 

transmission (black) or only cell-free transmission (red ). Parameters used in the model were 

λ = 100 day−1, d = 0.1 day−1, ρ = 1.5 × 103 day−1, c = 10 day−1, δ = 0.5 day−1, β = 10−5 

day−1 per virion, and ω = 10−3 day−1 per infected cell.
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Figure 2. 
Agent-based model of hepatitis C virus cell-to-cell spread. (a) Cells are modeled as 

hexagonal structures within a regular grid and can change their status, xi ,j(t), with time. 

Uninfected cells (white hexagons) get infected ( green hexagons) by cell-free virus ( purple 
stars) with probability pcf or by cell-to-cell transmission from direct neighbors that are 

infectious (red hexagons) with probability pcc. Intracellular viral replication and viral export 

are explicitly modeled, distinguishing between positive-strand vRNA (H) and replication 

complexes (R). Positive-strand vRNA is responsible for cell-to-cell transmission and, when 

exported in viral particles, for cell-free virus transmission. Cell-free virus can diffuse 

throughout the grid. Infection is initiated by introducing a limited number of infected cells 

onto the grid. (b) Output from two simulations assuming either cell-free and cell-to-cell 

transmission (left) or only cell-to-cell transmission (right). Simulations comprise ~10,000 

cells in total, and snapshots of parts of the simulated cell culture are shown when a total of 

~300 cells were infected. The black hexagons indicate the initially infected cell that founded 

the corresponding large infected cell focus.
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Figure 3. 
Current challenges for the analysis of viral spread. (a) The number of viral particles 

transmitted per contact, m, and how the magnitude of m affects viral dynamics and evolution 

are not known. (b) The kinetics of contact formation and duration of contact needed to 

successfully infect other cells are also not known in the case of motile cells, such as CD4+ T 

cells. (c) The dynamics and protective capacity of local innate immune responses triggered 

by infection, such as type I interferon (IFN) responses, still need to be characterized for most 

viral infections. How quickly agents such as IFN released by infected and nearby cells (e.g., 

plasmacytoid dendritic cells or target cells in which viral products have been sensed but that 

have not yet become productively infected) render neighboring cells protected against 

infection is still an open question. Quantification of these processes is needed in order to 

advance the analysis of viral spread. Red cells are infectious, orange cells are becoming 

infected, blue cells are protected, and gray cells are uninfected. Blue arrows indicate release 

of IFN, and black arrows with red crosses indicate the spread of infection being blocked due 

to the protected state of blue cells.
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