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Abstract

With the growing adoption of virtualized datacenters and cloud
hosting services, the allocation and sizing of resources such as
CPU, memory, and I/O bandwidth for virtual machines (VMs) is
becoming increasingly important. Accurate performance modeling
of an application would help users in better VM sizing, thus reduc-
ing costs. It can also benefit cloud service providers who can offer
a new charging model based on the VMs’ performance instead of
their configured sizes.

In this paper, we present techniques to model the performance
of a VM-hosted application as a function of the resources allo-
cated to the VM and the resource contention it experiences. To
address this multi-dimensional modeling problem, we propose and
refine the use of two machine learning techniques: artificial neural
network (ANN) and support vector machine (SVM). We evaluate
these modeling techniques using five virtualized applications from
the RUBiS and Filebench suite of benchmarks and demonstrate
that their median and 90th percentile prediction errors are within
4.36% and 29.17% respectively. These results are substantially bet-
ter than regression based approaches as well as direct applications
of machine learning techniques without our refinements. We also
present a simple and effective approach to VM sizing and empir-
ically demonstrate that it can deliver optimal results for 65% of
the sizing problems that we studied and produces close-to-optimal
sizes for the remaining 35%.

Categories and Subject Descriptors D.4.8 [Operating Systems]:
Performance; C.4 [Performance of Systems]: Modeling tech-
niques

General Terms Management, Performance

Keywords Virtualization, Cloud Data Centers, VM Sizing, Ma-
chine Learning, Performance Modeling
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1. Introduction

With the proliferation of private and public cloud data centers, it is
quite common today, to create or buy virtual machines to host ap-
plications instead of physical machines. Cloud users typically pay
for a statically configured VM size irrespective of the actual re-
sources consumed by the application (e.g., Amazon EC2). It would
be highly desirable for users to size their VMs based on actual per-
formance needs, to reduce costs. At the same time, cloud service
providers can benefit from a performance-based charging model
built around an application service-level agreement (SLA), thereby
eliminating the need for guess work or over-provisioning by the
customers [25]. Doing so could increase customer willingness to
pay a higher price for better service compared to paying a flat fee
based on the size of their VMs. Moreover, cloud service providers
would now have the flexibility to dynamically optimize the re-
sources allocated to VMs based on actual demand.

The complexity of meeting application-level SLAs and do-
ing performance troubleshooting in virtual environments has been
mentioned in many recent studies [15, 21, 32]. The primary source
of this complexity lies in finding accurate relationships between
resource allocation and desired application performance targets.
First, the performance of many real-world applications depend
upon the simultaneous availability levels of several resource types,
including CPU, memory, and storage and network I/O perfor-
mance. Performance model are therefore multi-dimensional and
complex. Second, while some types of resources (e.g., CPU time,
memory capacity) are easy to partition, other types (e.g., storage
and network I/O bandwidths) are not. Virtualization magnifies this
impact due to the inherent, underlying sharing and contention [21].
Our proposed modeling approach explicitly addresses storage I/O
contention, local or networked. We do not address (non-storage)
network I/O contention in this work. While host-level NIC band-
width is typically not a bottleneck, there is little control over in-
flight packets once they leave the host. Datacenter level solutions
are necessary to manage network I/O contention.

In this paper, we create per-application performance models
that can then be used for VM resource provisioning. Our models
use parameters that are based on widely available control knobs
for allocating resources to a VM within commodity virtualization
solutions. We make the following contributions in this paper.

1. We identify and study the impact of key VM resource allo-
cation and contention parameters that affect the performance of
virtualized applications. In doing so, we find that the I/O latency
observed by the virtual machine is a good indicator of I/O con-



Modeling Technique Strengths Weaknesses Applications

Queuing & Control Theory based Techniques

Queueing Theory Usability, Speed Restrictive assumptions Predicting response times of internet services [14]

Control Theory Simplicity Computational complexity Linear MIMO models to manage resource for multi-tier applications [26]

Machine Learning (ML) Techniques

Regression Analysis Usability, Transparency Limited scope Memory resource modeling [35], Translating physical models to virtual
ones [36], Fingerprinting problems [10]

Bayesian Networks Extensibility, Transparency Binary decisions, Domain-
based

Fingerpointing for SLA violations [12], Signature construction of systems
history [13]

Fuzzy Logic Extensibility Usability, Stability Predicting resource demand of virtualized web applications [37]

Reinforcement Learning

(RL)

Exploratory Value predictions not sup-
ported

CPU/memory resource allocation for VMs [27]

Kernel Canonical Correla-

tion Analysis (KCCA)

Multivariate analysis Sensitivity to outliers Predict Hadoop job execution time [16]

Artificial Neural Networks Powerful Opacity, Configuration, Com-
putational complexity, Over-
fitting

Performance prediction for virtualized applications [22]

Support Vector Machines Powerful Opacity, Configuration Workload modeling in shared storage systems [29], Estimating power con-
sumption [24]

Table 1. A compendium of related work on application performance modeling

tention in a shared storage environment. We empirically demon-
strate that it is possible to model the performance of virtualized
applications accurately using just three simple parameters.

2. We apply and extensively evaluate two machine learning tech-
niques, Artificial Neural Network (ANNs) and Support Vector
Machine (SVM), to predict application performance based on
these parameters. We develop sub-modeling, a clustering-based
approach that overcomes key limitations when directly applying
these machine learning techniques.

3. We implement and evaluate our modeling techniques for
five complex benchmark workloads from the RUBiS [7] and
Filebench [2] suites for the VMware ESX hypervisor [33]. The
median and 90th percentile prediction errors are 4.36% and
29.17% respectively (averaged across these applications). The
higher prediction errors appear mainly within areas of low re-
source allocation and consequently low performance.

4. We present a simple and effective approach to sizing the re-
source requirements for VMs in the presence of storage I/O con-
tention based on the performance models that we develop. Our
VM sizing experiments deliver optimal results for 65% of the siz-
ing problems that we studied and produces sizes that are close to
optimal for the remaining 35%.

2. Background

Creating performance models for applications as a function of un-
derlying system parameters is a well researched area. Many pre-
vious studies have focused on predicting an application’s perfor-
mance based on low level performance counters related to cache
usage, allocation, and miss rates [14, 28]. Utilizing such models is
difficult in virtualized environments because the support of hard-
ware performance counters is not widely available in production
hypervisors. However, virtualized environments provide an unique
opportunity to model an application’s performance as a function
of the size of the VM or underlying hardware resource allocation.
The resources allocated to a VM are fungible and can be changed
in an online manner. For example, VMware’s vSphere utility al-
lows changing the minimum reservation and maximum allocation
or relative priority of CPU, memory, and I/O resources available to
a VM at runtime. We now examine the work related to application
performance modeling as a function of one or more resources.

2.1 Related Work

We classify the related work into two categories: (1) Queuing &
control theory based techniques and (2) Machine learning tech-

niques. Table 1 provides a summary of the related work which we
elaborate on below.
Queuing and Control Theoretic Models. Doyle et al. [14] used
queueing theory based analytical models to predict response times
of Internet services under different load and resource allocation.
Bennani et al. [9] proposed multi-class queuing networks to predict
the response time and throughput for online and batch virtualized
workloads. The effectiveness of these solutions is restricted by
their simplified assumptions about a virtualized system’s internal
operation based on closed-form mathematical models.

Another related class of solutions have applied control theory
to adjust VM resource allocation and achieve the desired appli-
cation performance. Such solutions often assume a linear perfor-
mance model for the virtualized application. For example, first-
order autoregressive models are used to manage CPU allocation for
Web servers [23, 34]. A linear multi-input-multi-output (MIMO)
model is used to manage the multi-type resources for multi-tier
applications [26]. A similar MIMO model is also used to allocate
CPU resource for compensating the interference between concur-
rent VMs [25]. Such linear models are not sufficient to accurately
capture the nonlinear behaviors of virtualized applications, which
are demonstrated and addressed in this paper.
Machine Learning Approaches. Machine learning techniques
have been extensively studied for performance analysis and trou-
bleshooting. The CARVE project employs simple regression anal-
ysis to predict the performance impact of memory allocation [35].
Wood et al. use regression to map a resource usage profile obtained
from a physical system to one that can be used on a virtualized
system [36]. However, the accuracy of regression analysis has been
shown to be poor when used for modeling the performance of vir-
tualized applications [22].

Cohen et al. [12] introduced Tree-Augmented Bayesian Net-
works to identify system metrics attributable to SLA violations.
The models enable an administrator to forecast whether certain
values for specific system parameters are indictors of application
failures or performance violations. In subsequent work, the authors
used bayesian networks to construct signatures of the performance
problems based on performance statistics and clustering similar
signatures to support searching for previously recorded instances
of observed performance problems [13].

Bodik et al. [10] challenged the usefulness of Bayesian clas-
sifiers and proposed logistic regression with L1 regularization to
derive indicators. This was shown to be effective for automatic
performance crisis diagnosis and in turn facilitating remedial ac-
tions. The above techniques address bottleneck identification and
forecasting whether certain resource usage and/or application met-



rics would lead to SLA violations. However, they do not address
how much SLA violation would be incurred or how resources
should be allocated to prevent future violation. In contrast, we
specifically address performance prediction: given a set of control-
lable/observable parameters, what would be the application’s per-
formance? Such prediction can then be used within an optimized
resource allocation or VM sizing framework.

Xu et al. use fuzzy logic to model and predict the resource
demand of virtualized web applications [37]. The VCONF project
has studied using reinforcement learning combined with ANN to
automatically tune the CPU and memory configurations of a VM in
order to achieve good performance for its hosted application [27].
These solutions are specifically targeted for the CPU resource. In
addition to CPU, we address memory and I/O contention explicitly.

To address such ”what-if” questions, ANN models were pro-
posed in our own previous work [22]. However, subsequent inves-
tigations revealed several drawbacks. First, we observed that the
parameter to capture I/O contention in shared storage platform can
lead to arbitrary inaccuracy in the model (as demonstrated in sec-
tion 3.3). Second, we observed that the proposed approach of con-
structing a single model encompassing the entire parameter space
in a multi-dimensional model was also severely deficient. In this
paper, we propose new modeling techniques that overcome these
limitations and evaluate them on a wide set of realistic virtualized
server workloads. Further, we demonstrate that our models can also
be applied easily for accurate VM sizing.

We explore the use of both ANN and SVM approaches to ma-
chine learning for performance modeling. Although SVMs are gen-
erally applied as a powerful classification technique, SVM-based
regression (SVR) is gaining popularity in systems data modeling.
In [29], SVR was used to build models to predict response time
given a specified load for individual workloads co-hosted on shared
storage system. SVR has also been used to model power consump-
tion as a function of hardware and software performance coun-
ters [24]. To the best of our knowledge, SVR has not been used
before for performance prediction of virtualized applications.

2.2 Building Models

We propose to use advanced machine learning methods to model
the relationship between the resource allocation to a virtualized ap-
plication and its performance using a limited amount of training
data. Such a model can then be used to predict the resource need of
an application to meet its performance target. One of the questions
in this approach is when and how the model is built. Since our ap-
proach requires collecting application performance data for a wide
range of resource allocation choices, it is difficult to build the model
quickly based only on observations from production runs. One op-
tion is to have a staging area where a customer can deploy the ap-
plication and run a sample workload against various resource allo-
cation configurations to facilitate modeling. We can also leverage
recent work like justrunit [38] where authors provided a framework
for collecting training data by running cloned VMs and applications
in an identical physical environment. The modeling techniques that
we propose can complement and enhance a such a system which
used simple linear interpolation to predict performance results for
unavailable allocations.

3. Model Parameters Selection

Choosing appropriate control knobs to manage a VM’s resource
allocation is critical to create a robust performance model. The
purpose of this section is two fold. First we identify the knobs in
the form of VM resource allocation parameters that can be used to
directly control application performance. Second, we demonstrate
that the relationship between these controls and the application
performance is quite complex and hard to model.
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Figure 1. Impact of CPU limit.

We focus our discussion on control knobs available on the
VMware ESX hypervisor [30]. Similar knobs are available in other
hypervisor solutions as well. Throughout this paper, we use five vir-
tualized benchmark applications to both motivate and evaluate our
modeling approach. These applications are representative of vari-
ous enterprise workloads that consume different physical resources
(CPU, memory, and I/O) in a complex fashion, and are described in
more detail in Section 6. The performance metrics associated with
the RUBiS workloads are requests/sec and those for the Filebench
workloads are operations/sec.

3.1 CPU Limit

ESX provides three control knobs for CPU allocation to VMs:
reservation, limit, and shares [31]. Reservation guarantees a mini-
mum CPU allocation expressed in MHz. Limit (in MHz) provides
an upper bound on the CPU allocation. Share provides a mecha-
nism for proportional allocation during time periods when the sum
of the CPU demands of the currently running VMs exceeds the ca-
pacity of the physical host. We chose reservation and limit, both
set to the same value as our control knob, to enforce the physical
segregation of CPU resources across multiple VMs running on a
single physical machine and to ensure that the VM will never get
any allocation more than the set value as well.

Even with such physical segregation for the CPU, the relation-
ship between application performance and the CPU limit is com-
plex. We measured the performance of the five virtualized applica-
tions while varying the VM’s CPU limit from 200 MHz to 1 GHz
keeping the memory allocations high enough to ensure that mem-
ory is not the bottleneck. We used a VMFS [11] data store on a
local disk of the ESX host to store the virtual disks of the VMs.
Figure 1 shows the normalized performance of these applications.
Both the RUBiS workloads behave non-linearly; the performance
slope varies based on CPU allocation ranges. The three personali-
ties of Filebench: OLTP, webserver, and fileserver behave quite dif-
ferently. While the webserver and fileserver performances saturate
quickly at 400MHz, OLTP performance, on the other hand, varies
almost linearly with CPU allocation. Overall, this data reveals that
virtualized workloads can have quite different performance curves
with respect to CPU allocation.

3.2 Memory Limit

Similar to the knobs for CPU, the ESX hypervisor provides three
controls for memory allocation: reservation, limit, and shares. The
semantics of these knobs are similar to the ones for CPU. We set
the reservation equal to limit and used this as the control parameter
to guarantee a specific memory allocation and no more.

Figure 2 shows the normalized performance of these applica-
tions as we vary the memory limit from 256 MB to 1 GB. The
CPU allocation was kept at a sufficient level to avoid saturation,
and there was no I/O contention at the storage. In the case of the
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Figure 2. Impact of memory limit.

I/O Type Postmark TPS CDIOPS I/O latency [ms]

Seq 49 6016 48.08

Seq 52 8483 48.43

Seq 46 8303 46.14

Rand 13 154 77.14

Rand 13 155 70.06

Rand 11 165 81.9

Table 2. Comparison between CDIOPS vs. I/O latency for model-
ing I/O contention.

RUBiS browsing mix workload, performance improves sharply be-
tween 256 MB and 512 MB, and remains almost flat afterwards.
This behavior can be attributed to the fact that working set size
of the workload fits into the memory after a certain allocation. A
similar observation can also be made in the case of the RUBiS bid-
ding mix workload, where the working set fits within 384 MB of
memory. The Filebench-OLTP workload shows almost no mem-
ory dependency and the performance remains flat when the VM’s
memory allocation ranges from 256 MB to 1 GB. The performance
of the Filebench webserver and fileserver rises gradually as more
of the working set fits in memory.

Overall, these workloads show varied behavior. Some are insen-
sitive to VM memory allocation, while others show either a sudden
or gradual increase in performance as the entire or an increasing
fraction of the working set fits in memory.

3.3 Virtual Disk I/O Latency

Strict performance isolation and guaranteed I/O allocation in virtu-
alized environments are challenging because storage arrays are ac-
cessed in a distributed manner and the allocation is not under direct
control of the hypervisor [17, 18]. I/O allocation can be controlled
or modeled in several ways: measuring or controlling the number
of I/O operations/sec (IOPS), MB/sec, or I/O latency. In our previ-
ous work [22], we used the competing disk IOPS (CDIOPS) issued
by other VMs to the shared storage as a measure of I/O contention
for a VM. However, there are two main drawbacks to this. First, ob-
taining the true CDIOPS value when using shared networked stor-
age requires explicit communication either with other hosts or the
storage device; this may not be feasible or if so, would incur sub-
stantial overhead to keep the information up-to-date. Second, when
there is high variance in I/O sizes from competing workloads, the
CDIOPS metric can be substantially inaccurate in capturing the ac-
tual I/O contention. Large I/O requests would keep the CDIOPS
low while causing high device latencies for all VMs. Finally, even
the sequentiality characteristics of competing I/O can lead to inac-
curacies when using a single CDIOPS value for modeling sequen-
tial versus random I/Os which have different costs.

To illustrate the limitations of CDIOPS for modeling I/O con-
tention, we ran Postmark [20] in a VM running on a ESX host
and generated I/O contention using fio [3] on a different VM. We
fixed the I/O size at 4KB and and issued 4 outstanding I/Os at a
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Figure 3. Performance impact of VM I/O latency.

time. Keeping the CPU and memory allocation levels constant, we
configured the fio VM to issue either random or sequential I/O.
We recorded the data for three different instances in each case.
Table 2 reports the VM I/O latency, CDIOPS, and the resulting
transactions-per-second (TPS) for Postmark. When the competing
I/O is sequential, in spite of the higher CDIOPS values, the appli-
cation performance is better than it is when the competing I/O is
random and the CDIOPS values are lower. This simple experiment
clearly indicates the inadequacy of CDIOPS as a measure of I/O
contention. A similar example can be constructed for bandwidth
(in MB/sec) based modeling by using small and large sized I/Os.
I/O latency-based measure of I/O contention. We explored the
use of the VM I/O latency itself, a direct measure of modeling
the I/O performance of a VM in the presence of contention. This
metric directly reflects the impact of I/O contention irrespective
of its complexity as well as the performance of the underlying
device. Table 2 demonstrates that using the VM I/O latency more
accurately reflects the performance impact of I/O contention on the
Postmark workload.

To understand how VMs behave as I/O contention (as captured
by I/O latency) varies, we ran each of the five applications in one
of the VMs (appVM) and ran the competing fio workload in an-
other VM (called fioVM) both sharing the same storage. The load
is varied from the fioVM to create different levels of I/O contention
and cause different I/O latencies perceived by the appVM. Figure 3
shows normalized performance as the I/O latency is varied from 20
ms to 120 ms. Most of the applications suffer significant perfor-
mance degradation when the average I/O latency seen by the ap-
pVM increases. The RUBiS Bidding and Browsing workloads gen-
erate very few number of I/Os (because their working set is small
and fits well in the memory) which made them largely insensitive
to the I/O contention.
Controlling I/O latency. IO latency observed by a VM can
be controlled in many ways. Techniques like PARDA [17] and
mClock [18] have been proposed for I/O performance isolation
among VMs. With PARDA [17], each virtual disk can be assigned
an I/O share value which determines the relative weight of the I/Os
from its virtual disk as compared to others. VMs with higher I/O
shares get higher IOPS and lower latency. mClock provides addi-
tional controls of reservation and limit to control VM latency. Due
to a lack of access to these technologies, we used the intensity of
contending workloads to control I/O latency for our experiments.

Our analysis in this section reveals that the performance of var-
ious applications varies in a non-linear and complex manner as
the allocation of resources for the VM is changed. We also no-
ticed that the relationship with respect to one resource is depen-
dent on the availability of other resource as well. For example,
performance of the RUBiS bidding workload seems almost inde-
pendent of I/O latency in Figure 3. However, under low memory
allocations (256 MB) the performance is impacted by the changes
in VM I/O latency. When operating at 256 MB, the performance
changed from 1.5 requests/sec under high latency (80-100 ms) to



Benchmark % Avg. % Med. Stdev. 90p.

RUBiS Browsing 68.57 5.23 119.73 340.00

RUBiS Bidding 19.30 2.29 45.86 60.18

Filebench OLTP 11.59 8.82 12.63 21.08

Filebench Webserver 19.85 12.88 30.36 38.60

Filebench Fileserver 12.89 6.80 18.64 28.78

Table 3. Prediction errors when using a single ANN Model.

 0

 50

 100

 150

 200

 0  20  40  60  80  100

%
E

rr
o
r 

o
f 

P
re

d
ic

ti
o
n

Sorted Output Points

% Error

 0

 50

 100

 150

 200

 0  20  40  60  80  100

%
E

rr
o
r 

o
f 

P
re

d
ic

ti
o
n

Sorted Output Points

% Error

(a) Single global model (b) Sub models

Figure 4. % Error in prediction for points sorted in increasing
order of obtained performance for RUBiS bidding mix.

6 requests/sec under low latency (25-35 ms); an increase of 300%.
On the other hand, the performance remains saturates at 59-60 re-
quests/sec when operating under 1024 MB, regardless of the the
VM I/O latency level. Such behaviors clearly emphasize the com-
plexity of modeling performance when taking I/O contention into
account.

4. Model Design

In our previous work [22], we showed the limitations of standard
regression analysis techniques for modeling virtualized applica-
tions due to their inability to capture the complex behavior; we
confirmed these behaviors in the previous section. Specifically, our
study demonstrated that the non-linear dependence of performance
on resource levels and the complex influence of contention cannot
be represented using simple functions. The study also motivated
and justified the choice of Artificial Neural Networks (ANN) based
modeling for virtualized applications. In this paper, we demonstrate
that a simple application of ANN-based technique for modeling
can produce large modeling errors when used for complex appli-
cations and when possible resource allocations span a wider range
(as typical in cloud data centers) than those explored in that study.
We introduce the use of another popular machine learning model,
Support Vector Machine (SVM) which has gained more popularity
recently and find that it has similar limitations as ANN when used
directly for modeling. We analyze the root cause of why ANN and
SVM techniques are still not sufficient and propose improved use
of these tools to substantially increase modeling accuracy.

4.1 Limitations of a Single Global Model

Table 3 summarizes error statistics when using ANNs for model-
ing a set of workloads. We note that prediction errors can be high
in some cases, for instance, the RUBiS workloads. We registered
identical observations by applying SVM modeling as well. Further
analyzing the data revealed that large errors were mostly concen-
trated in a few sub-regions of the output value space, indicating a
single model’s inability to accurately characterize changes in ap-
plication behavior as it moves across critical resource allocation
boundaries. We demonstrate this behavior in Figure 4(a) where we
plot the % error in performance prediction across different testing
points of RUBiS bidding mix benchmark (specified by resource al-
location and I/O latency levels) when sorted by actual obtained per-
formance in requests/sec. Note that the % errors are quite different

across the range of output values and higher errors are concentrated
in the region with smaller output values.

4.2 Creating Multiple Models with Sub-modeling

To overcome the limitations posed by a single model, we explored
the use of multiple models that target specific regions of the input
parameter space. Our proposed sub-modeling technique divides the
input parameter space into non-overlapping sub-regions and builds
individual models for each sub-region. For performance prediction,
the sub-model corresponding to the sub-region containing the input
parameters can be used. One approach to sub-modeling is sub-
dividing the space into several equal-sized regions. However, this
seemingly simple approach is inadequate. First, it is difficult to
determine how many sub-models to use. A small number of sub-
models may not improve prediction accuracy. Whereas a large
number of sub-models would be impractical in terms of collecting
sufficient training data points for each to ensure high accuracy.
Second, since applications behave non-linearly and non-smoothly
with respect to resource allocations, merely building sub-models
for equally divided regions may not always be effective in isolating
and capturing unique behaviors.

To create robust sub-models, we employ classical clustering
techniques whereby the data points are separated into clusters based
on a chosen indicator parameter. We used an improved version of
K-means clustering technique (pamk function in the fpc [4] pack-
age of R [6]) that automatically identifies the optimal number of
clusters based on the observed values. We used application output
values and prediction error values (from using the global model)
as two choices for the clustering indicator parameter. To verify that
the clustering results were useful, we checked whether the clus-
ter boundaries can be clearly identified based on the input parame-
ter values. In other words, a well-defined cluster should be defined
by continuous ranges in the input parameter space. In Section 6,
we demonstrate that output-value based clustering indeed produces
well-defined regions at the input space with negligible overlapping.
After the clustering stage, we segregate the training data points into
buckets based on cluster boundaries and build separate sub-models
corresponding to each cluster.

Predicting for a given resource assignment entails checking the
input parameter values and determine which sub-model to use.
When clusters do not overlap, for points in the boundary regions,
we use ensemble averaging of the two consecutive clusters that
these points straddle. If clusters overlap in the input parameters
space; we use one of two methods to identify the model to use. The
first method uses ensemble averaging of predictions using all the
overlapping sub-models. The second method coalesces the overlap-
ping clusters and builds a single sub-model for the merged cluster.
In general, for applications with high prediction errors either dis-
tributed across the entire parameter space or simply concentrated
in a single sub-region, the sub-modeling technique can help re-
duce prediction errors substantially in comparison to a single global
model over both ANN and SVM techniques. We demonstrate the
effectiveness of the output value based sub-modeling optimization
in Section 6.

Apart from evaluating clustering based on output values, we
also performed clustering based on prediction error values from
the single global model. This choice was motivated by the skewing
of high prediction error values towards low allocation values for
several of the applications (e.g., in the case of RUBiS bidding mix).
At low resource allocation, the sensitivity of the error computation
with respect to predicted values is higher when using a single
model for the entire range because the application performance
drops significantly in this range for most workloads. For instance,
requests/sec for RUBiS workloads drops to very low values when
the memory assignment of the VM nears 256 MB. Figure 4(a)



confirms that the large errors are concentrated in the lower output
region of RUBiS bidding mix which corresponds to the application
output with less than or equal to 256 MB. We made a similar
observation for the RUBiS browsing workload. We created multiple
models based on the clustering results on the % prediction error
values obtained from the global model. Figure 4(b) demonstrates
that error based clustering can substantially reduce the % errors
in the lower output regions. In fact, the 90th percentile errors for
RUBiS browsing mix dropped from 340% to 27.28%. For the
bidding mix, the reduction is from 60.18% to 25.80%.

In general, if large errors are concentrated within a specific
region of input parameters space, sub-models based on prediction
error values from a single global model become valuable. However,
this trend does not hold across all the workloads. Except the RUBiS
workload mixes, error-based clustering did not lead to well-defined
sub-regions and resulted in high overlap in the corresponding input
parameter spaces, rendering the clusters practically unusable. On
the other hand, sub-modeling based on output values produced
robust models across all the workloads we examined. We evaluate
output value based sub-modeling in more detail in Section 6.

5. Model Configuration

In this section, we scrutinize both the ANN-based modeling and
SVM-based modeling and identify the key internal parameters that
need to be tuned for robust modeling. In addition, we provide
details of how the model trainings are performed.

5.1 Model Training

During the training process, a machine learning model gradually
tunes its internal network by utilizing the training data set. The
accuracy of any model is contingent upon selection of a proper
training data set and is evaluated using a different testing data
set. Briefly, the training starts with a boot-strapping phase which
requires system administrators to identify the best-case and worst-
case resource allocation considered feasible across each resource
dimension (CPU limit, memory limit, and virtual disk I/O latency)
for the workload on the target hardware. The input parameter set
is then chosen by first including these boundary allocation values
and selecting additional values obtained by equally dividing the
range between the lowest and highest values across each resource
dimension. This input parameter set and the corresponding output
values (obtained by running the workload on the target system) are
chosen as the initial training data set.

After this initial training, the modeling accuracy with the initial
training data set is measured by predicting for the testing data set. If
satisfactory accuracy (defined as an administrator chosen bound on
prediction error) is achieved, the training process concludes. Oth-
erwise, additional allocation values are computed by preferentially
varying highly correlated input parameters (based on the correla-
tion coefficient calculated using any statistical tool) by further sub-
dividing the allocation range with the goal of populating the train-
ing set with allocation values that represent the output parameter
range more uniformly.

5.2 Model Configuring

We highlight some of the intricacies of model configuration when
using ANN and SVM for modeling VM-hosted applications.

5.2.1 Configuring ANNs

Hidden Layer and Hidden Neurons An ANN has multiple lay-
ers of neurons which include at least one input layer and one output
layer and a tunable number of hidden layers, each with a tunable
number of hidden neurons associated with it. The number of hid-
den layers and hidden neurons at each layer play an integral role in

(hlayer,hneurons) % Avg. Error Std. dev.

(1,4) 13.59 13.30

(1,8) 3.25 5.43

(1,12) 6.07 10.61

(2,4) 6.10 9.04

(2,8) 5.17 6.12

(2,12) 9.46 18.83

(2,15) 2.52 3.52

(2,20) 10.34 17.48

Table 4. ANN model errors when varying hidden layers (hlayers)
and hidden neurons at each layer (hneurons) for the RUBiS bidding
mix workload.

Model % Avg. error % Median error Std. dev.

ANN1 64.67 6.50 105.23

ANN2 84.62 9.31 140.82

ANN3 85.80 9.68 140.87

ANN4 58.95 7.72 107.35

ANN5 63.09 8.70 104.93

Ensemble 68.57 5.23 119.73

Table 5. Errors across individual and ensemble ANN models on
RUBiS browsing workload.

determining the accuracy of an ANN model. However, choosing the
number of hidden neurons at each hidden layer is not straightfor-
ward. If the number of hidden neurons is too small, the model may
not assign enough importance to the input parameters and hence
suffer from under-fitting. Conversely, if this number is too large, the
model may amplify the importance of input parameters and suffer
from over-fitting. We evaluated an automated incremental approach
of determining the hidden layers and hidden neurons in the training
process. We start with one hidden layer and three hidden neurons
(because of three input parameters in our environment) at each hid-
den layer to accommodate the three modeling parameters. We grow
the network by adding more neurons on the single hidden layer. We
grow the network by adding more layers if we find that increasing
number of hidden neurons does not improve modeling accuracy. If
adding more neurons or layers does not lead to improved accuracy,
we pick the least number of layers/neurons which provided the best
accuracy.

For an example, the above process led to an ANN configured
with 2 hidden layers and 15 hidden neurons at each hidden layer for
the RUBiS bidding mix workload. Table 4 summarizes the average
and standard deviation of errors for 59 testing data set points using
a single global ANN model for RUBiS bidding mix workload
under various combinations of hidden layers and hidden neurons
at each layer. We applied the same incremental procedure for other
workloads to derive the best possible layer/neuron combination for
each.

Activation Function It defines the mapping function from the in-
put to the output for each node. Our previous study [22] already
confirmed that ELLIOT activation function (a faster version of sig-
moidal function) is the best choice for this environment. We ob-
served the same trend and hence used ELLIOT activation function
for all the benchmarks.

Ensemble Averaging Since the initial weight distributions are
randomly selected, non-identical models are created across multi-
ple training runs even if the tunable ANN parameters and the train-
ing set are the same. We found that the prediction from the testing
data can vary significantly across such similarly trained models.
One approach to tackle such variability is to generate multiple mod-
els and average their predicted output. Such ensemble averaging



using multiple ANN models is a well-known technique which turns
out to be quite effective [19]. Table 5 demonstrates how ensemble
averaging reduces prediction variability across a set of ANN mod-
els generated using the same training data set, training procedure,
and identical internal configuration of the ANN. Errors are shown
for same testing data points of the RUBiS browsing mix workload.
It is important to clarify that ensemble averaging reduces the varia-
tions in prediction accuracy across different training runs and does
not always deliver to the most accurate predictions.

5.2.2 Configuring SVMs

At high-level, SVM-based regression technique works by first map-
ping the inputs to a multi-dimensional vector space using some
form of non-linear function and finally a linear regression is per-
formed in this mapped space. We specifically used ǫ-regression
implementation of e1071 package which provides an interface to
the libsvm [5] in R. There are several parameters that need to be
tuned for getting accurate modeling with SVM - kernel, gamma,
cost. We experimented with a set of kernel functions (linear, poly-
nomial, radial, sigmoid), out of which radial basis function turned
out to be effective for our data set. Gamma and cost values were
calculated by a tune() function which does a grid search over the
training data to figure out the best possible values of those two pa-
rameters. It is important to understand the influence of these two
parameters, because the accuracy of a SVM model is largely de-
pendent on their selection. For example, if the cost is too large,
we have a high penalty for nonseparable points and we may store
many support vectors and overfit. Conversely, a very small value
may lead to underfitting [8].

6. Evaluation

Our evaluation focuses on addressing the accuracy of our sub-
modeling techniques using both the ANN and SVM approaches
and contrasting these with regression techniques. We compare each
of these modeling techniques when used to create a single global
model and as well as clustering based sub-models. We also evaluate
the prediction confidence by examining how prediction errors are
distributed in the parameter space. Finally, we evaluate the sensi-
tivity of modeling accuracy to training data set size, its robustness
to noise in measurements, and the overhead incurred in modeling.

For our experiments, we used an AMD-based Dell PowerEdge
2970 server with dual socket and six 2.4 GHz cores per socket.
The server has 32 GB of physical memory and ran VMware ESX-
4.1 hypervisor. All the VMs ran Ubuntu-Linux-10.04. VMs were
restricted to use only four of the cores (0-3). All the virtual disks
for VMs, and the ESX install were on a VMFS [11] (VMware’s
clustered file system) data-store on local 7200 RPM SAS drives
from Seagate. We used a VMware vSphere client running on a
separate physical machine for managing the resource allocations
of individual VMs. The statistics were collected using esxtop

utility and transferred to a separate Dell PowerEdge T105 machine
with a quad-core AMD Opteron processor (1.15GHz×4), 8 GB of
physical memory, 7.2k rpm disk, running Ubuntu-Linux-10.10, for
analysis. All modeling tasks were also done using this machine.

To simulate I/O contention, we used a separate Ubuntu-Linux
VM with 1000 MHz of VCPU and 512 MB of memory to run fio [3]
- a Linux-based I/O workload generation tool co-located with the
virtualized application being modeled. The number of outstanding
I/Os and other workload parameters (e.g., sequentiality) were var-
ied to create different levels of I/O contention on the shared VMFS
data-store. A different VM on the same host was used to run Perl-
based scripts for changing the allocation parameters for the VMs
running the benchmarks. Our choice of following workloads used
for evaluation were guided by their representation of data center
server workloads and their diversity in resource usage:

Benchmark Training points Testing points

RUBiS Browsing 160 79

RUBiS Bidding 198 99

Filebench OLTP 135 75

Filebench Webserver 160 80

Filebench Fileserver 68 68

Table 6. Training and Testing data set sizes.

RUBiS Browsing. A Java servlet based RUBiS [7] Browsing work-
load was used for the experiments. Client requests were handled
by a Tomcat web server and the underlying database was MySQL.
The webserver, database, and clients were run on the same VM
to minimize network effects that we do not address in this work.
1000 clients were run simultaneously. The Browsing mix consists
of 100% read-only interactions. After each run, RUBiS reported
average throughput as requests/sec, chosen as the application per-
formance metric.
RUBiS Bidding. A similar set up was used for RUBiS Bidding
Mix workload with 15% writes. The performance metric was aver-
age requests/sec with 400 clients running simultaneously were used
and Both the RUBiS profiles are CPU and memory intensive. They
generate a small number of I/Os and are largely insensitive to the
I/O contention.
Filebench OLTP. Filebench [2] is a widely used benchmark for
creating realistic I/O intensive workloads such as OLTP, webserver,
mail server, etc. We used the Linux based Filebench tool and ran
the OLTP application profile which emulates a transaction pro-
cessing workload. This profile tests for the performance of small
random reads and writes, and is sensitive to the latency of moder-
ate (128k+) synchronous writes to the log file. We configured the
benchmark to create 32 reader threads and 4 writer threads; I/O size
was set to 2KB with a 10GB dataset. We took the Operations per
Second (Ops/Sec) reported by Filebench as the application perfor-
mance metric for this workload.
Filebench Webserver. We also used the Webserver profile that per-
forms a mix of open, read, close on multiple files in a directory tree,
accompanied by a file append to simulate the web log. We created a
fileset of total size 10GB and used 32 user threads. The application
performance metric used was the operations per second (Ops/sec)
performed.
Filebench Fileserver The Filebench Fileserver workload performs
a sequence of creates, deletes, appends, reads, writes and attribute
operations on the file system. A configurable hierarchical directory
structure is used for the file set. Again, we used a dataset of 10GB
and 32 simultaneous threads, and used Ops/sec as the application
performance metric.

6.1 Modeling Accuracy

We evaluated the modeling techniques for overall accuracy across
the workloads. Table 6 shows the training and testing data set
size used for each benchmark; the training data set was obtained
by following the training procedure described in Section 5. A
peculiarity of the ANN Elliot function that we use within the core of
our ANN models is that it requires the output values to be mapped
in the range of 0 to 1. In order to map application performance
metric values to this range, we normalized all observed values
relative to the observed application performance obtained with the
highest resource allocation and no I/O contention and including
an additional headroom of 10% to account for outliers. No such
translation was necessary for any of the other modeling techniques.
We compared the ANN and SVM approaches with the following
regression based approaches.

Regression linear(L) is the simplest of the regression family which
attempts to establish a relationship between the output and the in-
put parameters by considering only first degree terms of the input



Benchmark # clusters % Overlap of consecutive clusters

RUBiS Browsing 2 1.25

RUBiS Bidding 4 0.37

Filebench OLTP 8 1.09

Filebench Webserver 2 0.63

Filebench Fileserver 2 1.47

Table 8. Number of clusters and the average % overlap between
consecutive cluster pairs, measured using the Jaccard coefficient.

variables.
Regression quadratic(Q) allows both first order and second order
terms for the input variables.
Regression linear interactive(LI) captures the combined com-
bined influence of pairs of parameters on the application output
(e.g. Memory and I/O Latency) using the first degree of input vari-
ables with pairwise interactive terms.

6.1.1 Single Global Model

Table 7 summarizes the error statistics for all benchmarks and
modeling techniques; we focus on average, median, and 90th per-
centile values of the error distribution. The classical regression
techniques largely fail to deliver usable accuracy while using a
single global model. This result confirms that the non-linear and
non-smooth application behavior cannot be characterized well us-
ing simpler mathematical models. Similarly, the ANN global model
and the SVM global model also suffer from high average and vari-
ance in prediction errors, especially for the RUBiS benchmarks and
Filebench webserver, confirming that that global models have lim-
itations when modeling complexity.

6.1.2 Sub-Modeling

Recall that sub-modeling requires clustering of the training data
points and then defining cluster boundaries using the corresponding
input parameters before creating sub-models for each cluster. Our
evaluation focuses on output value based clustering; we found it
to be more broadly applicable than error based clustering. We
first report the number of clusters and the degree of overlap in
consecutive clusters for each benchmark in Table 8. If the total
number of clusters is n, the number of consecutive pairs of clusters
is n-1. Sub-modeling is only viable when there is less overlap
in the input dimensions of the clusters formed. We consider two
consecutive clusters overlap only if one or more points in both the
clusters overlap in all three input dimensions (CPU, Memory and
I/O latency). The output-value based clustering is able to produce
well-defined clusters as the average overlaps for all the benchmarks
is about 1% as calculated using the Jaccard coefficient.

Table 7 presents the error statistics for sub-modeling based on
output value clustering for each benchmark. For all workloads and
modeling techniques, sub-modeling successfully reduces the mean,
median, and 90th percentile of the error distribution when com-
pared to using a single global model. Interestingly, even simple
regression models provided greater accuracy using sub-modeling
relative to a global model in most cases. This uniform trend clearly
indicates that the complexity of these applications cannot be re-
duced to a single consistent representation as a global model would
be forced to adhere to. As the sub models are confined to smaller
ranges of the applications performance metric space, they can of-
fer constrained, but more accurate, representations of behavior. Al-
though sub-modeling with clustering increases the attractiveness of
simpler regression based models, the power and utility of using the
machine learning based models are evident when we consider error
variance. We found, in particular, that the effectiveness of regres-
sion based modeling is tied to the effectiveness of clustering. When
the clusters are bigger, regression models typically perform poorly
(average error of 42.78% for R-Browsing using regression-Q) . On
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Figure 6. Error Distribution of RUBiS Bidding Mix when us-
ing sub models for prediction. The X axis represents CPU Limit
(MHz); the Y axis represents Memory Limit (MB). Each box is
divided into three columns - representing low, medium, and high
(from left to right) VM I/O latency. Error value 0-3% = white, 3-
9% = light grey, 9-27% = dark grey, 27% and more = black.

the other hand, ANN and SVM are able to provide reasonable ac-
curacy in all the scenarios with average errors ranging from 5.90%
to 15.95% and 5.65% to 21.51% respectively. To provide a more
detailed view of accuracy when using sub-modeling with ANN and
SVM, Fig 5 shows the actual and predicted output values for each
of the testing points for benchmark. For clarity, we present the ac-
tual and predicted values sorted in increasing order of actual perfor-
mance obtained. Predicted values closely follow the actual values
in the majority of the cases.

6.1.3 Summary

Based on our analysis with the five virtualized server benchmarks,
we conclude that accurately designing and configuring ANN and
SVM based models are critical to effectively address the VM per-
formance modeling problem. We find that creating multiple sub
models is a necessary step in achieving high accuracy predictions.
For instance, even with as few as 68 training data points, both the
ANN and SVM based sub-models improve the prediction accuracy
for the filebench-fileserver benchmark substantially.

In summary, these new techniques substantially improve the
prediction accuracy and reduce the average and 90th percentile
prediction errors from 26.48% and 101.68% respectively (averaged
over all applications) for a correctly configured single ANN global
model to 11.04% and 29.17% by using sub-modeling with ANN.
Similarly for SVM, the average and 90th percentile prediction
errors drop from 34.19% and 66.91% respectively for a single
global model to 12.96% and 33.46% using sub models. We also
emphasize that between ANN and SVM, there is no clear winner.
Although Table 7 shows that ANN is slightly better in prediction
statistics than SVM for most of the workloads, these differences
are not statistically significant.

6.2 Measures of Confidence

While summary error metrics are valuable indicators, the distribu-
tion of error values across various combinations of input parame-
ters can be a useful guide to the system administrator while choos-
ing a specific set of allocation values. Particularly, if it is known
that in certain regions of the resource allocation space, the model-
ing error tends to be higher, system administrators can choose to
compensate with a greater degree of over-provisioning. Figure 6
shows a heatmap of error distributions for qRUBiS bidding mix
workload using SVM and ANN based sub-modeling as an exam-
ple to illustrate this point. The higher errors are concentrated to-
wards the region of low memory allocations (256 MB) with both
techniques, informing administrators of caution while choosing al-
locations around that range of memory allocations. While we do
not address this in our work, it is possible to modify predictions to
be conservative for regions prone to higher prediction errors within



Modeling Regression-L Regression-Q Regression-LI SVM ANN

Bench % prediction error % prediction error % prediction error % prediction error % prediction error

mark avg. med. 90p. avg. med. 90p. avg. med. 90p. avg. med. 90p. avg. med. 90p.

RUBiS Global 397.08 36.05 1366.83 323.81 23.94 867.77 327.27 35.47 1090.05 55.78 12.78 142.67 68.57 5.23 340.00

Browsing Sub-Model 106.11 17.74 340.60 42.78 4.16 145.01 103.39 18.78 332.80 21.51 5.19 68.44 15.95 2.94 45.87

RUBiS Global 314.05 30.87 1096.58 110.53 21.81 341.54 317.52 29.37 1126.94 68.86 14.21 100.67 19.52 1.97 80.00

Bidding Sub-Model 9.19 2.43 34.72 8.37 1.94 34.64 9.10 2.39 35.08 7.38 1.79 22.50 7.18 1.79 30.01

Filebench Global 18.33 15.75 33.41 17.82 12.63 35.58 14.02 10.41 28.74 7.40 4.70 13.14 11.59 8.82 21.08

OLTP Sub-Model 6.31 2.74 13.42 9.47 3.44 29.48 7.55 3.57 10.95 5.65 2.90 15.19 5.90 3.02 13.66

Filebench Global 76.03 62.99 138.31 50.54 44.91 96.71 51.44 33.41 113.78 25.02 15.57 53.50 19.85 12.88 38.60

Webserver Sub-Model 32.13 21.85 53.01 27.83 20.31 55.09 29.85 20.72 55.79 19.38 12.25 36.02 15.57 8.49 33.07

Filebench Global 49.02 30.70 98.18 54.94 21.20 123.36 27.59 21.10 55.75 13.87 9.38 24.56 12.89 6.80 28.78

Fileserver Sub-Model 21.34 13.63 46.48 16.22 8.91 42.64 18.35 11.26 38.91 10.89 6.72 25.14 10.60 5.57 23.22

Table 7. % Error statistics (average, median, and 90th percentile) for different modeling techniques by using global models and sub models.
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Figure 5. Actual performance and predictions using ANN and SVM based sub-models. The x-axis enumerates data points sorted by
increasing performance values. The y-axes represent performance (requests/sec for RUBiS and operations/sec for Filebench respectively).
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Figure 7. Sensitivity of accuracy to training data set size using
ANN based sub-modeling. The x-axis represents the percentage
size of final training set and the y-axis represents the median and

90th percentile errors for each benchmark. R-RUBiS Browsing, B-
RUBiS Bidding, O-Filebench OLTP, W-Filebench Webserver, F-
Filebench Fileserver.

the modeling framework itself once the error distribution is known
using a sample set of testing points.

6.3 Sensitivity to the Training Data Set Size

To understand the implications of the training data set size on
modeling accuracy, we performed a sensitivity study. We collected
a fraction of the final training data set and created sub-models
which we then evaluated for prediction accuracy. We repeated the
same procedure several times but by changing the fraction of the
training set data while retaining the same testing data set each time.

The fractional training data sets were chosen so as to span the
output parameter space as much as possible. Figure 7 shows the
resulting modeling accuracy for ANN sub-models. We conclude
that a careful selection of the fraction of the training data set results
in low median errors even when the fraction is as small as 20%
for most workloads. The only exception is Filebench Fileserver
wherein the total number of points in the training data set was small
resulting in only 13 data points in the 20% fractional training set. A
similar trend was observed with SVM with sub-modeling. These
results indicate that our techniques provide reasonable accuracy
even with relatively fewer training data points.

6.4 Robustness to Noise

Our experiments thus far were performed in a controlled environ-
ment. However, production environments can pose additional chal-
lenges, especially with respect to performance variability due to
noise. To evaluate the effectiveness of our models in the presence
of noise, we simulated noise in 10% of our training data set points.
To do so, we perturbed observed performance values by randomly
varying these within a fixed percentage specified by the degree of
noise. For example, if the degree of noise is 20%, the original value
was changed by either +20% or -20%. The testing data set was
unmodified across these experiments. In Figure 8, we report the
median % modeling errors for each benchmark as we vary the de-
gree of noise when using the ANN-based sub-modeling technique.
Trend lines indicate a largely linear dependency between noise and
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Figure 8. Change in median error when noise is introduced in the
training data set.
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Figure 9. Training time. Benchmarks appear in increasing training
data set size from left to right

error. Additionally, a key take away from this analysis is that even
after 100% modifications of as much as 10% of the training data
points, the modeling accuracy does not suffer substantially. In the
case of RUBiS bidding workload, the % median error just increased
from 1.79% (in case of perfect data) to 2.91% (in case of ±100%
change of 10% of the points in the original training data set). In
the case of Filebench Webserver, the degradation is from 8.49% to
11.48%. This validates one aspect of robustness under noise as is
possible in a production environment.

6.5 Modeling Overhead

The time for training a model is proportional to the number of
points in the training data set. We show the modeling time for
each technique in Figure 9 with benchmarks sorted by their training
data set size, appearing from left to right. We see that the modeling
overhead for the largest training data set (198 points) is limited to
8 seconds using SVM sub-modeling. The training time for ANN
is calculated as an aggregate of five different model runs, as re-
quired by ensemble averaging. We believe that the presented over-
head is sufficiently low to make these models usable in an online
fashion within a production environment where a model is possibly
(re)trained at regular intervals.

7. VM Sizing

Cloud service providers (e.g. Amazon EC2) charge customers
based on the rented computing capacity . For the sake of simplicity,
capacity is usually represented using coarse-grained choices (e.g.
small, large, and extra-large for standard on-demand instances in
Amazon’s EC2 cloud service [1]) that map to a certain amount
of CPU, memory and other resources. These choices have propor-
tional as well as skewed allocation of resources, where one can
even get an instance with more CPU and less memory. In pri-
vate virtualized environments, administrators have more flexibility
in assigning the resource allocations for a VM. In either case, it
is the customers’ responsibility to determine the VM sizes (CPU

and memory capacity) that they need to meet application-level
performance targets. Given the lack of application-based model
customers choose more conservative sizes and over-provision to
avoid any performance problems. This leads to sub-optimal sizing
and higher costs throughout the life of the VM. A fine-grained,
tailored sizing of VMs, on the other hand, can allow meeting target
performance while minimizing over-provisioning.

In this section, we show that given a target application perfor-
mance metric and a VM I/O latency level available to the appli-
cation, our performance models can be used to find the optimal
CPU and memory sizes. We used a specific I/O latency as an input
because it is not configurable in many cloud environments. How-
ever, our modeling can even determine a desired I/O latency value
so as to minimize the overall cost of the VM. We experimentally
demonstrate that, for a range of performance targets across RUBiS
Browsing and Filebench webserver workload, the suggested CPU
and memory sizes indeed deliver the required performance in all
the cases.

7.1 VM Sizing Problem Definition

We define the optimal VM sizing problem as follows:
Problem definition: Given a performance target Ptarget and a VM
I/O latency iolat and a performance model PM , the VM sizing
algorithm generates suggested CPU c and a memory m which are
able to meet Ptarget and satisfy the following constraints:

Pc,m,iolat

Ptarget

≥ 1 (1)

subject to:

cmin ≤ c ≤ cmax (2)

mmin ≤ m ≤ mmax (3)
Pc−δc,m,iolat

Ptarget
< 1 (4)

Pc,m−δm,iolat

Ptarget
< 1 (5)

under the following assumptions:

Pc+δc,m,iolat ≥ Pc,m,iolat;Pc,m+δm,iolat ≥ Pc,m,iolat (6)

Pc−δc,m,iolat ≤ Pc,m,iolat;Pc,m−δm,iolat ≤ Pc,m,iolat (7)

Intuitively, these constraints force us to find a VM size such that
less of any resource would make us miss the performance target.
Equation 1 ensures that application performance for the suggested
c, m, and iolat values should be at least equal to or greater than
Ptarget. Equations 2 and 3 bound allocations to the feasible range;
additionally, allocation choices for CPU and memory in these range
can only be made in units of δc and δm respectively. Equation 4
guarantees that the performance achieved for a smaller CPU alloca-
tion fails to meet Ptarget. Similarly, equation 5 checks for memory
optimality. Finally, we assume that allocating additional resources
to a VM will not degrade its performance (Equation 6) and taking
away resources cannot improve performance (Equation 7).

7.2 Model-based VM Sizing

We follow a simple approach to VM sizing, i.e., determining the
values of c and m. First, assuming a memory allocation of mmax,
the maximum possible memory allocation, we use binary search on
c to determine its optimal value that would allow meeting the ap-
plication’s performance target by querying the performance model
PM using the given iolat (input), mmax, and c. After the optimal
value of c is obtained, we perform a second binary search as above
fixing c for various values of m.

To handle modeling inaccuracy, we use a query performance
target 10% higher than the actual performance target Ptarget. To
accommodate our hardware platform, we used cmin=200MHz,
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(b) Suggested memory allocations

Figure 10. Observed application performance relative to perfor-
mance target for model-based VM sizing. Each point represents a
specific sizing query.
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(a) RUBiS Browsing
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(b) Filebench Webserver

Figure 11. Optimality of VM sizing given a target performance
and a target VM I/O latency. Each point is a box divided into two
triangles - the lower triangle represents optimality of CPU while
the upper one represents optimality of memory. The degree of
optimality is based on the grayscale code (top).

cmax=2GHz, mmin=256MB, and mmax=2GB. We use δc=100
MHz and δm=64 MB in our experiments.

We experimented with two workloads for VM sizing: RUBiS
Browsing and Filebench Webserver workloads. We randomly se-
lected 20 performance targets and VM I/O latency levels as inputs
to evaluate the accuracy of our models and sizing algorithm. We
validate the results by running individual workloads with the CPU
and memory allocation suggested by our sizing technique. VM I/O
latency is controlled by issuing I/Os from a contending VM to the
same storage LUN.

Figure 10 demonstrates that Ptarget is met or exceeded for all
the 20 configurations using our sizing technique; Ptarget is nor-
malized to 1 in all the cases. In other words, the charts plot the
Pachieved

Ptarget
for each performance target; essentially showing how far

are the experimentally observed performances obtained under sug-
gested CPU, memory allocations from the respective target queries.
The X-axis in the two plots marks the suggested CPU and memory
sizes for each query. The wide range of suggested sizes indicates
that the required memory and CPU may vary quite significantly
based on the target performance over most of the available alloca-
tion range, underscoring the need for fine grained VM sizing.

To demonstrate the optimality of the suggested allocations, we
run each workload with smaller CPU (c-δ) and memory (m-δ)
allocations. We deem sizing results as optimal with respect to a
specific resource dimension (CPU or memory) if a δ reduction in
allocation results in the performance target Ptarget being violated.
If Ptarget is met under a reduced allocation, we investigate the
degree of sub-optimality by running the workload under varying
number of δ reductions. In Figure 11, we depict sizing optimality
along CPU and memory dimensions separately. Out of 20 randomly
selected performance targets for a wide range of chosen VM I/O
latency values, the performance models deliver optimal results on
both dimensions in 65% cases; rest of the points are within 2δ of

the optimal, except for two cases where allocations are sub-optimal
by 4δ or 5δ.

This analysis indicates that our model-based VM sizing ap-
proach can suggest optimal sizes in the majority of cases while
meeting performance targets. In some cases, we suggested a higher
size but that is still better than picking a size without any informa-
tion. The higher can also be attributed to the fact that we set a higher
performance target and we want to be conservative in picking our
sizes so that performance is not impacted. This is very critical to
increase the confidence of administrators in such a tool and over
time one can make the estimate more aggressive.

8. Discussion

In this section, we expand on some of the assumptions that are built
into our work and clarify the scope of usage for the performance
models.

One implicit assumption in our work is that the platform used
when training the model is the same as where the VM is executed,
because differences in the underlying software (hypervisor) and
hardware (CPU frequency, memory bandwidth, and cache size) can
influence the model. We believe that this is a reasonable assump-
tion as most cloud systems today are mainly based on homoge-
neous clusters. However, over time, heterogeneity is bound to oc-
cur, which means a virtualized application’s performance model
has to be retrained every time it is deployed (or migrated) to a dif-
ferent platform. While one approach is to retrain performance mod-
els in the new execution platform, cross-platform models can possi-
bly help eliminate this need. We plan to investigate cross-platform
performance prediction models in the future.

In this paper, we focus on the average performance of an ap-
plication’s execution, assuming its behavior to be stable, and the
offline modeling of such performance. Such a performance model
is valuable for a variety of applications that are mainly concerned
with average performance and have static workloads. However, for
applications that service very dynamic workloads, online training
of the performance model is necessary. A key challenge in such
environments is to distinguish between the long-term change and
the short-term change. We believe that our proposed approach can
be extended to work in a dynamic setting primarily because of the
relatively low training time, as shown in Section 6. Retraining the
model at regular intervals and using aging of observed performance
and I/O latency and optionally aging of the model itself can help to
overcome these challenges.

A final point worth mentioning is that our performance mod-
els can be used to find optimal VM I/O latency as well, i.e., per-
form sizing for VM I/O latency. Since current storage systems and
hypervisors do not provide fine-grained control of latency, we did
not explore this direction in this paper. In the future, we anticipate
that storage I/O latency will be virtualized and allocated similar to
CPU and memory resources. This is attractive for both the cloud
service providers who can then charge for various levels of I/O per-
formance as well as the customer who can expect a specific I/O
performance for their VMs. If I/O latency control is available, the
critical question that might arise is trading-off between memory
size and I/O latency since these two are inter-dependent. We did
not face this problem in current set up since CPU and memory can
be treated independently. Nevertheless, our robust modeling tech-
niques will be able to handle the mutual inter-dependence between
the control variables because we train the models under various
combinations of memory and observed VM latency values.

9. Conclusions

Accurate modeling of an application’s performance is very useful
both for users and cloud service providers. However, the non-linear



relationship of resource allocations to application performance, the
interplay of resource usage across different types of resources, and
resource contention in a virtualized environment makes it very dif-
ficult to create such models. We identified three VM resource con-
trol parameters as sufficient inputs for creating performance mod-
els. We also evaluated the effectiveness of artificial neural net-
work (ANN) and Support Vector Machine (SVM) techniques for
modeling and demonstrated that these are superior to conventional
regression-based approaches. In order to further increase the accu-
racy of these techniques, we presented a sub-modeling technique
that substantially reduced prediction errors across five virtualized
benchmark workloads from the RUBiS and Filebench suites. Me-
dian and 90th percentile prediction errors using ANNs were re-
duced from 7.14% and 101.68% respectively (averaged across the
workloads) for a correctly configured single global model to 4.36%
and 29.17% with sub-modeling. Finally, when our models were
used in VM sizing experiments, they delivered optimal results for
65% of the sizing problems we studied and produced sizes that
were close to optimal for the remaining 35%. We expect that cloud
users and service providers can benefit from the ability to create
accurate performance models for their virtualized workloads and
utilize such models for accurate VM sizing and placement.
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[9] M. N. Bennani and D. A. Menascé. Resource allocation for autonomic
data centers using analytic performance models. In ICAC, pages 229–
240. IEEE Computer Society, 2005.

[10] P. Bodik, M. Goldszmidt, A. Fox, D. B. Woodard, and H. Ander-
sen. Fingerprinting the datacenter: Automated classification of per-
formance crises. In EuroSys ’10 Proceedings of the 5th European

conference on Computer systems, pages 111–124, 2010.

[11] A. T. Clements, I. Ahmad, M. Vilayannur, and J. Li. Decentralized
Deduplication in SAN Cluster File Systems. In Proc. of USENIX ATC,
June 2009.

[12] I. Cohen, M. Goldszmidt, T. Kelly, J. Symons, and J. S. Chase. Cor-
relating instrumentation data to system states: A building block for
automated diagnoses and control. In Proc. of the 6th USENIX OSDI),
2004.

[13] I. Cohen, S. Zhang, M. Goldszmidt, J. Symons, T. Kelly, and A. Fox.
Capturing, indexing, clustering, and retrieving system history. In Proc.

of ACM SOSP, 2005.

[14] R. P. Doyle, J. S. Chase, O. M. Asad, W. Jin, and A. Vahdat. Model-
based resource provisioning in a web service utility. In USENIX

Symposium on Internet Technologies and Systems, 2003.

[15] U. Drepper. The Cost of Virtualization. ACM Queue, Feb. 2008.

[16] A. Ganapathi, Y. Chen, A. Fox, R. Katz, and D. Patterson. Statistics-
driven workload modeling for the cloud. In SMDB, 2010.

[17] A. Gulati, I. Ahmad, and C. Waldspurger. PARDA: Proportionate
Allocation of Resources for Distributed Storage Access. In Proc. of

USENIX FAST, Feb. 2009.

[18] A. Gulati, A. Merchant, and P. Varman. mClock: Handling Through-
put Variability for Hypervisor IO Scheduling. In 9th USENIX OSDI,
October 2010.

[19] S. Haykin. Neural Networks: A Comprehensive Foundation. Prentice
Hall, 2nd edition, 1998.

[20] J. Katcher. Postmark: A new file system benehmark. Technical report,
Network Appliance, 1997.

[21] E. Kotsovinos. Virtualization: Blessing or Curse? ACM Queue, Jan.
2011.

[22] S. Kundu, R. Rangaswami, K. Dutta, and M. Zhao. Application
Performance Modeling in a Virtualized Environment. In Proc. of IEEE

HPCA, January 2010.

[23] X. Liu, X. Zhu, S. Singhal, and M. F. Arlitt. Adaptive entitlement
control of resource containers on shared servers. In IM, pages 163–
176. IEEE, 2005.

[24] J. C. McCullough, Y. Agarwal, J. Chandrashekar, S. Kuppuswamy,
A. C. Snoeren, and R. K. Gupta. Evaluating the effectiveness of
model-based power characterization. In Proc. of USENIX Annual

Technical Conference, 2011.

[25] R. Nathuji, A. Kansal, and A. Ghaffarkhah. Q-clouds: managing
performance interference effects for qos-aware clouds. In EuroSys

’10, pages 237–250, 2010.

[26] P. Padala, K.-Y. Hou, X. Zhu, M. Uysal, Z. Wang, S. Singhal, A. Mer-
chant, and K. G. Shin. Automated control of multiple virtualized re-
sources. In Proceedings of the 4th ACM European conference on Com-

puter systems/EuroSys, pages 13–16, 2009.

[27] J. Rao, X. Bu, C.-Z. Xu, L. Y. Wang, and G. G. Yin. VCONF: a re-
inforcement learning approach to virtual machines auto-configuration.
In ICAC, pages 137–146. ACM, 2009.

[28] C. Stewart, T. Kelly, A. Zhang, and K. Shen. A dollar from 15 cents:
Cross-platform management for internet services. In Proceedings of

the USENIX Annual Techinal Conference, pages 199–212, 2008.

[29] S. Uttamchandani, L. Yin, G. A. Alvarez, J. Palmer, and G. Agha.
Chameleon: a self-evolving, fully-adaptive resource arbitrator for stor-
age systems. In Proc. of USENIX Annual Technical Conference, 2005.

[30] VMware, Inc. Introduction to VMware Infrastructure. 2010.
http://www.vmware.com/support/pubs/.

[31] VMware, Inc. vSphere Resource Management Guide: ESX 4.1, ESXi

4.1, vCenter Server 4.1. 2010.

[32] W. Vogels. Beyond Server Consolidation. ACM Queue, Feb. 2008.

[33] C. A. Waldspurger. Memory resource management in vmware esx
server. In Proc. of USENIX OSDI, 2002.

[34] Z. Wang, X. Zhu, and S. Singhal. Utilization and slo-based control
for dynamic sizing of resource partitions. In Proc. of 16th IFIP/IEEE

Distributed Systems: Operations and Management (DSOM), October
2005.

[35] J. Wildstrom, P. Stone, and E. Witchel. CARVE: A cognitive agent for
resource value estimation. In ICAC, pages 182–191. IEEE Computer
Society, 2008.

[36] T. Wood, L. Cherkasova, K. Ozonat, and P. Shenoy. Profiling and
modeling resource usage of virtualized applications. In Proc. of

ACM/IFIP/USENIX Middleware, 2008.

[37] J. Xu, M. Zhao, J. A. B. Fortes, R. Carpenter, and M. S. Yousif.
Autonomic resource management in virtualized data centers using
fuzzy logic-based approaches. Cluster Computing, 11(3):213–227,
2008.

[38] W. Zheng, R. Bianchini, G. J. Janakiraman, J. R. Santos, and Y. Turner.
JustRunIt: Experiment-Based Management of Virtualized Data Cen-
ters. In Proceeding of the USENIX Annual Technical Conference,
2009.


