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ABSTRACT

MODELING VIRUS-HOST NETWORKS

James P. Evans

Lyle Ungar

Virus-host interactions are being cataloged at an increasing rate using protein

interaction assays and small interfering RNA screens for host factors necessary for

infection. These interactions can be viewed as a network, where genes or proteins

are nodes, and edges correspond to associations between them. Virus-host interac-

tion networks will eventually support the study and treatment of infection, but first

require more data and better analysis techniques. This dissertation targets these

goals with three aims. The first aim tackles the lack of data by providing a method

for the computational prediction of virus-host protein interactions. We show that

HIV-human protein interactions can be predicted using documented human peptide

motifs found to be conserved on HIV proteins from different subtypes. We find that

human proteins predicted to bind to HIV proteins are enriched in both documented

HIV targeted proteins and pathways known to be utilized by HIV. The second aim

seeks to improve peptide motif annotation on virus proteins, starting with the dock-

ing site for protein kinases ERK1 and ERK2, which phosphorylate HIV proteins

during infection. We find that the docking site motif, in spite of being suggestive of

phosphorylation, is not present on all HIV subtypes for some HIV proteins, and we

provide evidence that two variations of the docking site motif could explain phos-

phorylation. In the third aim, we analyze virus-host networks and build on the

observation that viruses target host hub proteins. We show that of the two hub

types, date and party, HIV and influenza virus proteins prefer to interact with the

latter. The methods presented here for prediction and motif refinement, as well as

the analysis of virus targeted hubs, provide a useful set of tools and hypotheses for

the study of virus-host interactions.
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Chapter 1

Introduction

1.1 Motivation

Virus proteins interact with their host’s cellular machinery, and in doing so alter the

host cell to favor viral replication. It is important to identify and annotate virus-

host interactions for the discovery of new drug targets as well as for assessing the

efficiency of antiviral drug therapies on host subpopulations [19, 37]. Furthermore,

virus-host interactions can be used to suggest roles for virus proteins [26], and in-

vestigate common viral strategies for interacting with their hosts [116]. With this

in mind, many researchers have gathered data for virus-human interactions to de-

termine host factors necessary for the virus life cycle. These interactions take the

form of virus-human protein interactions, human gene expression responses to in-

fection, and genetic screens for human genes that are necessary for virus survival.

The genetic screens suggest that certain human genes play a role in infection, while

the protein interaction and gene expression data suggest what these roles might be.

To date, only three viruses, human immunodeficiency virus (HIV), hepatitis C virus

(HCV), and influenza A virus have extensive data for these interactions.

The experimental challenges of identifying virus-host protein interactions are nu-

merous. The biggest challenge is designing screens stringent enough to have low false

1



positive rates while ensuring that the number of real interactions that cannot pass

these stringent assays is kept to a minimum. Protein interactions are transient in

nature, and moreover such protein binding interactions may depend on the presence

of cofactors that are not necessarily present in binding assays. These difficulties

suggest supplementing experiments with a bioinformatic approach to predicting and

understanding virus-host interactions. This has been attempted for HIV by pre-

dicting HIV-human protein interactions, but it was found that the most predictive

human protein feature was the number of interacting partners a protein had [160],

which does not provide sites for drug targeting. Such findings indicate that more

analysis is needed to understand the underlying principles of interactions, and to

guide experimental studies.

The overall goal of this dissertation is to estimate and analyze virus-host inter-

actions. These interactions have been organized into networks, where proteins are

nodes and network edges represent interactions between proteins [67]. We begin this

thesis by predicting virus-host protein interactions using short peptide motifs that

have been shown to play a role in protein interactions [82]. We demonstrate the

validity of our predictions using HIV-human interactions. Next we investigate the

usage of mitogen-activated protein kinase docking motifs on HIV proteins. We then

compare HCV, HIV, and influenza virus-host networks to address the finding that

virus proteins prefer to interact with highly connected host proteins. We provide

evidence that this hub preference is a consequence of the requirement of viruses to

utilize host protein complexes during infection. We conclude this dissertation with

a discussion of how the work presented here aids virus-host network analysis.

1.2 Organization

This thesis has been organized into three specific aims: (1) the prediction of virus-

host interactions using sequence motifs, (2) the refinement of virus sequence motifs,

2



and (3) the analysis of virus targeted host proteins.

This chapter serves as a background section. We will discuss two types of virus-

host interactions: protein interactions gathered from high throughput studies and

literature searches, and genetic screens searching for host factors required for the

viral life cycle. Next, we will cover previous studies of virus-host networks, describ-

ing network and gene analysis and the importance of peptide motifs in virus-host

protein interactions. We will then conclude with a description of methods for pre-

dicting protein interactions, and illustrate how they have been applied to virus-host

interactions.

Chapter 2 is devoted to the first aim, the prediction of virus-host protein inter-

actions, which are important for guiding experimental studies [79, 96]. We focus

this aim on interactions between HIV and human proteins and show that a list of

host proteins highly enriched with those targeted by HIV proteins can be obtained

by searching for host protein motifs along virus protein sequences. We find that

peptide motifs conserved across 70% of HIV protein sequence samples occur in simi-

lar positions on HIV proteins, and we document protein domains that interact with

these conserved motifs. We predict which human proteins may be targeted by HIV

by taking pairs of human proteins that may interact via a peptide motif conserved

in HIV and the corresponding interacting protein domain. Our predictions are en-

riched with host proteins known to interact with HIV proteins Env, Nef, and Tat

(p-value < 4.26e-21). Cellular pathways statistically enriched for our predictions

include the T cell receptor signaling, natural killer cell mediated cytotoxicity, cell

cycle, and apoptosis pathways. Molecular functions enriched with both predicted

and confirmed HIV targeted proteins include phosphorylation and adenyl ribonu-

cleotide binding. This study validates the role of peptide binding motifs in guiding

virus-host interactions and suggests new HIV targeted pathways and proteins in the

host cell.

In Chapter 3 we discuss the second aim, the refinement of virus motifs. Over the

3



course of HIV infection, virus replication is facilitated by the phosphorylation of HIV

proteins by human ERK1 and ERK2 mitogen-activated protein kinases (MAPKs).

MAPKs are known to phosphorylate their substrates by first binding with them at a

consensus docking site motif. Docking site interactions could be viable drug targets

because the sequences guiding them are more specific than phosphorylation consen-

sus sites. In this study we use multiple bioinformatics tools to discover candidate

MAPK docking site motifs on HIV proteins known to be phosphorylated by MAPKs,

and we discuss the possibility of targeting docking sites with drugs. Using alignments

of multiple HIV protein sequences taken from different patients, we show that the

consensus MAPK docking pattern previously described for human proteins is miss-

ing from a significant fraction of the sequences gathered for HIV proteins known to

be phosphorylated by ERK1 and ERK2. We revise the consensus MAPK docking

pattern in order to provide patterns that annotate that the majority of sequences

for all HIV proteins. One revision is based on a documented human variant of the

consensus MAPK docking motif, and the other reduces the number of required basic

amino acids in the consensus docking motif from two to one. The proposed patterns

are shown to be consistent with in silico docking between ERK1 and the HIV ma-

trix protein. The motif usage on HIV proteins is sufficiently different from human

proteins in amino acid sequence similarity to allow for HIV specific targeting using

small-molecule drugs.

We tackle the third aim, the analysis of virus targeted highly connected hu-

man proteins, in Chapter 4. HIV, influenza virus, and other human viruses pref-

erentially interact with highly connected proteins, or hubs, in the human protein

interaction network [26, 40, 50, 160]. Hub proteins have been classified into two

groups by co-expression with their interacting neighbors [162]. Intermodular, or

date, hubs are defined as being co-expressed with their neighbors in certain tissues,

while intramodular, or party, hubs are characterized by co-expression with their

neighbors in most tissues [162]. The existence of these two hub classes is under

4



debate [1, 12, 13, 67, 162]. Here we provide new evidence for this hub distinction,

and ask if hub proteins that interact with virus proteins have a significant associa-

tion with one of the hub classes. For HIV and influenza virus, we show that hubs

that directly interact with a virus protein are more likely to be intramodular than

intermodular. This preference is important because the features of intramodular

hubs that are different from intermodular hubs serve as hypotheses for features that

virus proteins target in host proteins. The virus intramodular hub preference is also

important for the study of biological networks because it is further evidence for the

existence of two hub classes.

The thesis concludes in Chapter 5 with a review of the material presented and a

discussion of future work for virus-host interactions. We will summarize our major

discoveries and testable hypothesis generated in Chapters 2, 3, and 4. Next, we

will discuss future work that stems from this dissertation. We will show how protein

structure and virus-host network patterns can be used jointly with the peptide motifs

from the first aim to arrive at a new set of virus-host interaction predictions. We

will cover how peptide motifs on virus proteins can be validated by constructing

a database of virus protein mutations and their effects on virus-host interactions,

and we will discuss a project to test the hypothesis that virus proteins serve as

intermodular hubs in virus-host networks. We will also propose a project to test

that hypothesis that influenza virus uses different versions of peptide motifs based

on which host it infects.

1.3 Review of virus-host interactions

While single species protein-protein interaction networks have been gathered in high

throughput screens and studied for ten years, virus-host networks are only recently

the subject of investigation [111]. Large scale studies of virus-host interactions have

focused on HIV, HCV, and the influenza virus. Smaller studies have been conducted

5



Virus siRNA screen hits Protein interactions (Interacting human proteins)
HIV 850 2652 (887)
HCV 318 477 (414)
Influenza 295 339 (230)
Papillomavirus NA 229 (94)
EBV NA 173
KSHV NA 173
VZV NA 123

Table 1.1: For each virus, we show the number interactions that occur between virus
and human proteins, and count the number of host factors necessary for infection (siRNA
screen hits). Of the viruses in the table, HCV, HIV, and influenza virus have the most
experimentally determined virus-host interactions. siRNA screen hits describe interactions
between a virus and a human gene. siRNA screens have only been conducted for HCV,
HIV, and the influenza virus. Protein interactions cover only direct interactions, like
protein binding or protein modifications, such as the phosphorylation of a virus protein
by a host kinase. A single human protein can be involved in multiple interactions with
different virus proteins, so the total number of unique human proteins involved in virus-
human interactions is given in parentheses. While only direct interactions are listed here,
HIV has a total of 3950 direct and indirect (e.g. regulatory, induced protein modification)
interactions with 1439 human proteins [62].

for Epstein-Barr virus (EBV) [26], Kaposi sarcoma-associated herpesvirus (KSHV),

Varicella-Zoster virus (VZV) [171], and Papillomavirus [47]. Virus-host interaction

data have primarily been collected from small interfering RNA (siRNA) screens, high

throughput binding assays, and literature reviews. siRNA screens were performed

in infected cells to find host factors that could be knocked down without harmful

effects on the host, but would inhibit virus replication [63]. Table 1.1 enumerates

virus-host interactions gathered for different viruses.

We focus on HIV, HCV, and influenza virus for two reasons. First, unlike EBV,

VZV, and KSHV, all three viruses have small proteomes, making them more reliant

on host cell machinery during their life cycles. Second, the interactions of HCV, HIV,

and influenza virus with human proteins are well studied, and include both protein

interactions and siRNA data. The following section describes the interactions for

these three viruses in detail, and later we discuss principal findings from previous

studies of these networks, and initial attempts to model them.
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Figure 1.1: HIV contains nine open reading frames and produces around twenty proteins.
This image was taken from an HIV review article [98]. Permission to reuse this figure was
granted by the publisher, copyright 2006 Nature Publishing Group.

1.3.1 Datasets

HIV-human interactions

HIV is an RNA virus of roughly nine kilobases encoding nine open reading frames

that produce around twenty proteins (Figure 1.1) [58]. There are different subtypes,

or strains, of HIV, and these are classified hierarchically, starting with three groups:

major (M), outlier (O), and non-major and non-outlier (N) [161]. Group M, which is

the most common, has been divided into nine subtypes, or clades: A, B, C, D, F, G,

H, J, and K. Sequences from the same subtype are more similar to each other than

to sequences in other subtypes. Some subtypes correspond to geographical locations.

Recombinant forms of group M subtypes have been identified. For instance, 01 AE

is a combination of subtypes A and E that is circulating in Southeast Asia [161].

Subtype E has not been found in a non recombinant form, so it is not listed in the

nine subtypes of group M. Five subtypes and two recombinants are present in at
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least 2.5% of the world population [161].

Interactions between human proteins and HIV proteins come mostly from litera-

ture curation rather than high throughput binding assays. Interactions between HIV

and human proteins have been cataloged in VirusMINT [29] the NCBI HIV-Human

Protein Interaction Database [130], and the pathogen interaction gateway (PIG) [47].

From these databases, it has been observed that HIV proteins interact with many of

the same host proteins [62]. HIV-human interactions come in two types, direct and

indirect. Direct interactions involve physical protein contact, and include binding

interactions, protein modifications, and cleavage interactions. Indirect interactions

involve gene expression regulation and indirect effects, such as inducing protein mod-

ifications or cleavage. In HIV-human interaction databases, the number of human

proteins involved in indirect virus-host interactions is roughly twice the number that

are involved in direct interactions [62].

Not all of these interactions will occur in vivo, or be relevant to HIV infection.

Direct interactions pertinent to infection can be found by comparing these protein

interaction databases to siRNA screens for host factors involved in HIV replication.

Four large such screens, each resulting in around two hundred host factors have

been conducted for HIV [19, 92, 181, 184]. There was little overlap between the four

screens [24, 181]. While this might be attributed to differences between the cell types

used, more than 90% of the genes deemed important for HIV infection were expressed

in all cell types [24]. Other explanations for different results include experimental

error, different filtering thresholds for deciding which host genes resulted in cell

lethality when knocked down, and differences in the infection time points analyzed

[24].

HCV-human interactions

HCV is a 9.6 kb positive-strand RNA virus that encodes a 3000 residue polyprotein,

which is cleaved by host and virus proteases into ten proteins (Figure 1.2) [113].
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Figure 1.2: (a) HCV genome and (b) HCV polyprotein. This image was taken from a
review of HCV-human interactions [63]. Permission to reuse this figure was granted by the
publisher, copyright 2010 Elsevier Ltd.

Chronic HCV infection leads to serious liver disease [63], with roughly three percent

of the world’s population infected [151]. In the last decade, several infectious model

systems have enabled the accumulation of HCV-human interactions [63].

The HCV-human protein interaction network has been constructed from high-

throughput screens augmented with a literature curation [40]. Unlike HIV, there

is little overlap between the host binding partners of HCV proteins, and all HCV-

human interactions are for direct protein binding. Several small siRNA screens have

been combined with a larger genome-wide screen to arrive at over three hundred

host factors required for HCV infection [102]. While the HIV genetic screens focused

on host dependency factors, some HCV siRNA screens looked for host factors that

when knocked down caused an increase in virus replication. These were likely host

genes that were part of the immune response. One such screen identified twenty five

immune response genes [102].
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Influenza-human interactions

Influenza A virus is a negative-strand RNA virus that encodes eleven proteins using

eight individual RNA segments [31]. An early influenza virus siRNA screen, con-

ducted in fly rather than human cells, identified 100 fly genes involved in influenza

virus replication [70]. Two recent studies have tried to pin down the human path-

ways and genes involved in influenza A infection. A genome-wide siRNA screen in

cells infected with influenza A virus identified 295 host factors required for influenza

replication [91]. A more detailed study extensively cataloged three types of inter-

actions between host and virus: protein-protein, host gene expression response, and

siRNA screens [146]. Like the HCV siRNA data, this study looked at both positive

and negative virus response to host gene knock down, providing lists of necessary

host factors and possible immune response genes. Analysis of the data revealed many

aspects of the host immune system to interact with the virus.

1.4 Previous work with virus-host interactions

It is important to study and model virus-host interaction networks at protein, the

pathway, and network levels to understand virus protein function [26], help design

antiviral therapies [19, 37], guide virus-host protein interaction experiments [79, 96],

and compare the ways in which viruses alter host cellular pathways [116]. Each

interaction abstraction has yielded important insights. Protein level studies often

describe binding sites on both virus and host proteins. Pathway level studies have

revealed subsets of human proteins that are likely to interact with virus proteins.

These studies can be used as a guide for more detailed experiments at the protein

level, and to compare virus-host protein interactions in terms of biological processes

instead of individual proteins. Network level studies have allowed viruses to be

compared to find trends common to infection.
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Protein studies

At the protein level, studying the binding regions on virus and human proteins will

aid in finding small-molecule drugs to prevent virus-host interactions. A recent study

produced a number of U.S. Food and Drug Administration approved small-molecule

drugs that could inhibit certain protein interactions after screening these drugs for

their ability to disrupt protein complexes with known peptide binding sites and

available 3D structures [126]. Without knowledge of the protein binding sites, this

study would not have been possible.

The bulk of HIV protein interactions has come from collections of single protein

studies [29, 47, 111, 130]. In addition to helping to build the HIV-human protein

interaction network, these individual interaction studies have given insights into how

virus-host protein interactions occur. It is now proposed that binding between host

and virus proteins occurs between short peptide motifs on virus proteins, and protein

domains on human proteins [82, 149, 166]. Figure 1.3 shows selected motifs on the

HIV NEF protein. Each motif is associated with a domain or set of proteins that

interact with it. A database of host peptide motifs and the domains that interact

with them exists at the Eukaryotic Linear Motif (ELM) Resource [131]. The ELM

Resource has cataloged over 130 of these peptide motifs and constructed a pattern

that matches each one using documented motif instances from the literature. Work

with binding regions on virus and host proteins has been hampered by a disconnect

between the eukaryotic work done with peptide motifs and the study of virus-host

interactions. In this dissertation, we combine knowledge from the ELM Resource

with virus-host protein interactions to study the ability of peptide motifs to explain

interactions between virus and host proteins.

Pathway studies

Knowledge of which host cellular pathways are targeted by viruses helps to narrow

the focus of experiments determining virus-host protein-protein interactions [96].
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Figure 1.3: HIV and SIV NEF harbor short peptide motifs that enable them to interact
with host cell proteins and alter host trafficking. This image was taken from a review of
the effects of NEF on host cell trafficking [140]. Permission to reuse this figure was granted
by the publisher, copyright 2006 American Society for Microbiology.

Experimental methods for determining protein interactions are costly and require

much time and effort, so methods to guide experiments are desirable [153]. Mapping

the yeast interaction network required several high throughput yeast two-hybrid

screens due to the false negative rates of these assays [33, 76]. Focusing on specific

pathways important for infection will reduce the cost and time required for such

experiments.

Pathways are also useful for comparing viruses, or multiple siRNA screens inves-

tigating host factors required by a virus. Comparing HIV siRNA screens at the gene

level showed little overlap between results, but at the pathway level results became

more consistent [181]. Some common HIV targeted pathways included NFκB signal-

ing, estrogen-receptor signaling, peroxisome proliferator-activated receptor signaling,

RAR activation, and caspase apoptosis routes [181]. Similarly, pathway analysis

of siRNA screens in HCV and other Flaviviridae viruses identified TGFβ, ErbB,

MAPK, focal adhesion, and ubiquitin-mediated proteolysis as common Flaviviridae

virus pathways [102]. Influenza virus, HIV, EBV, and KSHV, have also been found

to target similar immune response pathways [18, 146].

Pathway studies have also facilitated the annotation of virus proteins of unknown
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function [26], and the comparison of viral strategies for subverting the human type

I interferon response [116]. Investigations of virus targeted pathways have led to

hypotheses concerning virus protein function. Analyzing the pathways that were

found to interact with Epstein-Barr virus (EBV) proteins allowed investigators to

infer roles for unannotated EBV proteins [26]. Another pathway study of virus

protein interactions with host proteins involved in the human type I interferon re-

sponse revealed that virus proteins from four viral families (Flaviviridae, Herpesviri-

dae, Papillomaviridae, and Retroviridae) targeted different aspects of the response,

which consists of a four level cascade of interactions traveling from host receptors,

to adapters and mediators, and ending at transcription factors that initiate the im-

mune response [116]. Viruses in the Flaviviridae and Herpesviridae families targeted

host proteins with many host interactions in the interferon pathway, focusing on

protein adapters, mediators, and transcription factors. Viruses in the Retroviridae

and Papillomaviridae families mostly targeted transcription factors.

One issue holding back pathway level studies is the availability of experimental

data. High throughput yeast two-hybrid and siRNA screens have only been con-

ducted for a handful of viruses. It would be nice to compare viruses without such

datasets by only using sequence information, which is becoming easier to gather

[115]. In this dissertation, we address this problem by describing a way to use pep-

tide motifs on virus proteins to predict virus targeted pathways.

Network studies

While these pathway level studies are important, to understand infection as a sys-

tem, researchers began investigating the virus-host interaction network. One network

based analysis of virus-host networks searched for network motifs in the HIV-human

interaction network [172]. Network motifs are statistically over-represented interac-

tion patterns in networks. An example is a feed back loop in a regulatory network,
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where a gene controls the expression of its regulator. Network motifs have been iden-

tified in yeast protein interaction networks [177], E. coli transcriptional regulation

networks [150], and synthetic genetic interaction networks [35]. In an initial study of

cross-species network motifs, the HIV-human network was searched for motifs that

might aid the virus in taking control of the host cell.

Virus-host networks have also been used to achieve a more biological understand-

ing of virus-host interactions. A combined study of HIV siRNA screens and the host

protein interaction network clustered the virus targeted host network into dense

network neighbor hoods. Analysis revealed these neighborhoods to represent pro-

teasome, mediator, RNA binding and splicing, and chaperone network components

[24]. With a similar goal in mind, an influenza virus-host network that included

virus-host protein interactions, siRNA screen results, and host expression response

to infection was analyzed to determine which interactions could be attributed to the

host immune system [146].

In a study of the network properties of pathogen targeted proteins it was deter-

mined that pathogens like HIV and EBV have proteins that prefer to interact with

human proteins with specific network properties. Hub proteins and bottleneck pro-

teins, i.e. proteins that separate large components of the host interaction network,

were found to be preferentially targeted by pathogen proteins [50]. A later topo-

logical analysis of the HCV-human interaction network revealed that HCV proteins

also preferred to interact with human hub and bottleneck proteins [40]. It has been

suggested that hubs are targeted by viruses because they provide an efficient way

to rewire the host network to favor virus production [26]. In this dissertation, we

address the virus hub preference, and suggest a biological reason behind it.

1.4.1 Modeling virus-host interactions

Just as single species protein interaction networks inspired methods to predict pro-

tein interactions, host-pathogen networks have initiated the search for network and
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protein features that model and predict virus-host protein interactions. One study

examined HIV-human interactions to determine what properties, or features, of hu-

man proteins made them more likely to interact with virus proteins [160]. The

features examined included Gene Ontology labels [7], global gene expression profiles,

human interaction partners, human protein domains, and HIV protein motifs, but

it was determined that the most predictive feature was host protein degree, i.e. the

number of host proteins that interact with a candidate host protein. This finding

was consistent with other work done with viruses and host hub proteins, but had

the unfortunate effect of predicting that all viruses will interact with the same host

proteins. Another HIV-human protein interaction prediction study used structural

similarity between host and virus proteins [46]. For each HIV protein with an avail-

able structure, the most structurally similar host proteins were found. The protein

interaction neighbors of these host proteins were predicted to bind to HIV proteins.

This method is limited to virus proteins with determined structures, and virus pro-

tein structures are hard to predict because so many of them are unstructured proteins

[165], so a sequence based approach is preferable.

The work presented in this dissertation continues the exploration of virus-host

interactions at the protein, pathway, and network level. First, we examine conserved

host peptide motifs on HIV proteins. We show that these motifs can be used to

predict HIV-human interactions, and we make an argument that some motifs should

be refined. Then we seek an explanation for the observation that virus proteins

target host hub proteins.
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Chapter 2

Prediction of HIV virus-host

protein interactions using virus

and host sequence motifs

2.1 Background

An important component of systems biology is the determination and study of

protein-protein interactions (PPIs) and the networks, or interactomes, that they

form. Previous work with single organism systems has revealed PPI networks to

be useful for annotating proteins of unknown function [86, 148], comparing organ-

isms [48, 87, 147], predicting other interaction types [175], investigating the peptide

regions guiding interactions [45, 105, 119], and identifying protein complexes [93].

The study of single organism networks has been extended to multiple organism

host-pathogen networks, where virus and cellular parasite proteins alter host inter-

action networks by competing with host proteins for interactions in the host network

[36, 154, 168]. As experimental work with virus-host PPI networks has grown, the

methods for protein functional annotation and network comparison developed using
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single organisms have been transferred to virus-host systems to generate hypothe-

ses about virus protein function [26] and investigate common viral strategies for

countering the host immune system [116].

2.1.1 Virus-host network use cases

The study of virus-host networks has not only aided antiviral drug discovery and

treatment optimization using existing drugs [19], but furthered virology as well.

Here we outline two examples where the analysis of virus-host PPI networks yielded

new insights about viruses. The first case illustrates how virus-host networks can

be used to form hypotheses about the functions of Epstein-Barr virus proteins. The

second case describes a comparative study of viral mechanisms for dealing with the

host immune system that was facilitated by knowledge of virus-host interactions.

Epstein-Barr virus (EBV), which has been linked to several diseases, including

cancer, is a herpesvirus that has almost 90 proteins [26]. 43 of these proteins are

conserved across most herpes viruses, and their functions have been investigated.

However, the functions of the remaining 46 proteins are not as well understood [26].

Determining functions these proteins was made easier by generating and evaluating a

virus-host network to help formulate testable hypothesis about virus protein function

[26]. Using the EBV-human PPI network, some EBV proteins were hypothesized to

have roles in cell survival and apoptosis because the human proteins they interacted

with were known to have these functions [26]. The possible involvement of these EBV

proteins in promoting cell survival and suppressing apoptosis is important because

these activities may be aiding the progression of some cancers [182]. This transfer

of human protein function to virus proteins using virus-host PPI networks has laid

the ground work for future studies of virus proteins with unknown functions.

Virus-host PPI networks have also been utilized to compare viral strategies for

subverting the human type I interferon response, which consists of a four level cas-

cade of interactions traveling from host receptors, to adapters and mediators, and
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ending at transcription factors that initiate the immune response [116]. Navratil et

al. constructed a human type I interferon PPI network that included human proteins

involved in the type I interferon response, as well as human proteins that interacted

with these immune system proteins [116]. Then the interactions of proteins in this

immune response network with virus proteins from four viral families (Flaviviridae,

Herpesviridae, Papillomaviridae, and Retroviridae) were compared to find which of

the four levels of the type I interferon response were targeted differently between

viruses. All four virus groups were found to preferentially interact with the signaling

part of the immune system. Viruses in the Flaviviridae and Herpesviridae families

targeted host proteins with many host interactions in the interferon network, focusing

on protein adapters, mediators, and transcription factors. Viruses in the Retroviri-

dae and Papillomaviridae families mostly targeted transcription factors. As more

virus interactions with host pathways are accumulated, this comparison of pathway

specific virus-host interactions can be extend to other host cellular processes, such

as apoptosis and autophagy.

2.1.2 Reasons for predicting virus-host interactions

For studies of virus-host networks to continue, and to ensure that the conclusions

drawn from such networks are accurate, more interaction data are needed. HIV has

nearly fifteen hundred host proteins that interact with its proteins [62, 130], but

other viruses with similarly sized proteomes, like hepatitis C virus (HCV), have less

than 500 virus-host interactions. This discrepancy in virus-host interactome size

is partially caused by the excessive study of HIV-human interactions in comparison

with other virus-host networks [111], but an additional contributor might be the way

in which virus-host interactions have been collected for HIV. With the exception of

HIV, virus-host interaction data have mostly been generated by yeast two-hybrid

screens. For instance, a recent study investigating interactions between influenza

and human proteins identified less than 350 PPIs using a stringent two-hybrid assay

18



that required interactions to be present in primary and secondary screens [146].

Such stringency in screening is required because of the significant false positive rates

for high throughput screens like yeast two-hybrid and tandem affinity purification

assays [72]. Stringent screens like the one used to identify human-influenza virus

interactions have low false discovery rates, with estimates less than 15% for yeast

and worm protein interactions [76], but they often rule out many true interactions,

with false negative rates above 40% for yeast and worm [76]. False negative rates

have been a problem for yeast and human networks, yielding incomplete networks

that caused revisions of network properties and debates over conclusions as networks

grew in size [1, 12, 13]. To make lasting conclusions from virus-host interactions, we

need nearly complete virus-host interactomes. Due to the high false negative rates

for high throughput screens, and based on the multiple screens required to construct

a high quality yeast PPI network, several large-scale experiments will be required

to accurately map a virus-host network [33], but making predictions for virus-host

interactions can aid in accomplishing this goal by reducing cost and labor.

Experimental methods for determining protein interactions are costly and require

much time and effort, so methods to guide experiments or replace them are desirable

[153]. Predicted interactions for yeast have helped to improve the accuracy, coverage,

and efficiency of PPI screens when used in combination with experiments [79, 96],

and this will likely translate to virus-host networks. There are two ways in which PPI

predictions can help in gathering additional virus-host interactions. First, predictions

can serve as an additional validation of two-hybrid results. In recent high throughput

influenza-human PPI assays, interactions were required to pass two screens [146].

This approach to PPI investigation has high false negative rates, but this could be

solved by combining the screens with predicted interactions. Instead of discarding

all primary screen interactions that failed to pass the secondary screen, only those

primary interactions with no prediction support would be thrown out. These saved

predicted interactions could then be tested in a third screen. PPI predictions can
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also help to focus experiments that are more thorough than two-hybrid screens,

such as luciferase complementation [112]. Computational approaches have helped

by reducing the number of host proteins to verify experimentally [96]. Predictions

could be used to find host pathways with which a virus interacts, and instead of using

the whole host proteome in assays, only host proteins appearing in the prediction

enriched pathways could be interrogated. In this study, we describe a new method

for how such predictions can be made for virus-human interactions.

2.1.3 Predicting virus-host interactions

Previous host-pathogen interaction prediction methods focused largely on finding

PPIs between human and cellular parasite proteins. One method found the proba-

bility that two protein domains interact given the human PPI network, and used this

probability to find the likelihood that pathogen and human proteins interact given

their domain profiles [49]. Another method used structures of human complexes as

templates to match possible host-pathogen interactions against, under the hypoth-

esis that a candidate host-pathogen interaction that resembles a host interaction is

likely to represent a real host-pathogen interaction [38]. Candidate interactions con-

sisting of a pathogen and host protein were matched against template host complexes

using structural and sequence similarity. Candidate interactions that were similar to

a template host complex were then subjected to a test that ensured that pathogen

and host protein were both expressed in the same tissue and at the correct time in

the pathogen’s life-cycle. Translating these methods to interactions between virus

and human proteins has been difficult because virus proteins have few domains and

their structures are either unsolved, or hard to find by comparative modeling. For

instance, to find structures for the N-terminal and C-terminal regions of HIV VIF,

two different protein structures were required for comparative modeling [107]. Due

to problems with missing domains and structures for virus proteins, in this chapter

we address the utility of an interaction prediction method that examines sequences
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instead of structures, and utilizes small virus peptide motifs that guide interactions

instead of domains.

A study of HIV-human interactions conducted by Tastan et al. tried to find

the most predictive feature of virus-host interactions [160]. In their method, each

interacting virus-host protein pair was associated with a feature vector composed of

parameters related to Gene Ontology (GO) [7], global gene expression profiles, the

human interaction network, human protein domains, and HIV protein motifs. Using

roughly one thousand direct HIV-human interactions taken from the NCBI HIV-

Human Protein Interaction Database [62, 130] as a training set, they determined

that the most predictive feature of virus-host interactions was the number of host

proteins with which the virus-host protein pair’s human protein interacted. The more

interactions a human protein had in the human interaction network, the more likely

it was to interact with a virus protein. While this is consistent with other results

from work with hepatitis C virus, Epstein-Barr virus, and other human viruses that

showed that virus targeted proteins had significantly more host interactions that

other proteins [26, 40, 50], it is not very useful for comparative studies of virus-host

interactions because it predicts that all viruses interact with the same host proteins.

For features that differ between viruses, like virus peptide motifs that guide protein

interactions [82, 149, 166], Tastan et al. estimated a relatively weak potential for

predicting virus-host interactions. Here we reevaluate this finding by using not only

the direct virus-host interactions evaluated by Tastan et al., but indirect, regulatory

interactions as well.

We focus this chapter on the computational identification of host proteins tar-

geted by an invading virus. We use HIV infection as a case study because extensive

study at the molecular level has yielded nearly fifteen hundred HIV targeted human

proteins, covering nearly four thousand experimentally determined HIV-human inter-

actions, which are cataloged in the NCBI HIV-Human Protein Interaction Database.
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We predict virus-host interactions based on PPIs mediated by short eukaryotic lin-

ear motifs (ELMs) [131] on HIV proteins and human protein counter domains (CDs)

known to interact with these ELMs. It has been estimated that 15% to 40% of

host protein interactions are mediated by interactions involving a peptide motif

[27, 121, 128]. The ELM Resource has cataloged over 130 of these peptide motifs

and constructed a pattern that matches each one using documented motif instances

from the literature [131]. The ELM Resource has also documented the protein CDs

that interact with each motif. We aim to obtain human protein sets enriched with

sets of known virus targeted proteins by annotating ELMs on HIV proteins, and

using CDs on human proteins to match them with HIV proteins based the ELM

Resource’s catalog of ELM and CD associations.

The potential functional roles of interactions mediated by ELMs and their CDs

in viral infection have been addressed in a number of recent articles [82, 149, 166].

The HIV literature contains at least ten examples of HIV-human PPIs that are

directly associated with motif and domain presence. The motif/domain basis of

such PPIs is not restricted to a single HIV protein, but is widely distributed across

the HIV proteome, including HIV NEF [140], ENV [25], TAT [169], REV [169], VIF

[110], and VPU [55]. This experimental evidence is the motivation for systematically

investigating the association of motif/domain pairs with PPIs between virus and

host proteins. Although Tastan et al. [160] estimated a relatively weak link between

binding motif presence and the actual virus-host PPIs, their work was restricted

to predicting direct binding between host and HIV proteins. In this study, we set

out to identify all virus-host interactions, both direct and indirect, that have been

documented between HIV and human proteins. Our hypothesis-based approach

requires no training data for virus-host interactions to predict interactions. We

only need virus and host protein sequences and the host interactome. As such, it

is directly applicable to identifying host protein sets enriched with virus targeted

host proteins for a wide scope of infectious diseases. The extremely low p-values we
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calculate for the overlap between our predictions and experimentally verified HIV-

host protein interactions, and the statistically significant Gene Ontology similarity we

find between our predictions and experimentally validated interactions indicate the

potential value of our approach for guiding the experimental detection of virus-host

interactions and understanding the protein regions involved in these interactions.

2.2 Methods

2.2.1 Virus protein motif annotation and conservation

As a first step in predicting HIV-human interactions using relations between peptide

motifs on HIV proteins and domains on human proteins, we used 133 peptide mo-

tif patterns from the ELM Resource to annotate HIV protein sequences taken from

multiple patients and found peptide motifs that were conserved across patients, as-

suming that such conservation would be indicative of function. For each of nine HIV

open reading frames (ENV, GAG, NEF, POL, REV, VIF, VPR, TAT and VPU), we

downloaded the 2007 versions of alignments of hundreds of protein sequences span-

ning multiple patients and years from the Los Alamos National Laboratory (LANL)

HIV Sequence Database

(http://www.hiv.lanl.gov/content/sequence/NEWALIGN/align.html) and removed

all sequences except those labeled as subtypes B or C. We focused on subtype B

because it is most common in the industrialized world [75], and chose subtype C

because it is most common globally [74]. The HIV GAG and POL polyproteins are

cleaved by proteases to produce smaller proteins [58]. GAG is cleaved into proteins

CA, MA, NC, P1, P2, and P6, while POL cleavage produces proteins IN, PR, and

RT. The LANL database provides alignments of uncleaved GAG and POL proteins,

so to construct the full HIV proteome, we computationally split the GAG and POL

alignments into their respective cleaved products. We used [GenBank: NC 001802]

as a reference to know where to cut GAG and POL. In addition to evaluating our
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virus-host interaction prediction method for GAG and POL cleavage products, we

used GAG and POL in our analysis as well because many interactions in the NCBI

database of validated HIV-human interactions are between human proteins and GAG

or POL, rather than their cleavage products [62].

All protein sequences in the resulting 18 alignments, one for each HIV protein,

were annotated with 133 peptide motifs (ELMs) using the ELM Resource, accessed

December 2008 [131], with default settings except selecting human for the species

field. Any protein lacking an ELM was removed from the study, leaving at least 70

sequences in each multiple alignment (see Supplemental table A.1). We considered

an ELM to be conserved on an HIV protein if it was present on more than 70% of the

protein’s multiple sequence alignment. This cutoff was chosen for its stability. An

increase of 5% additional conversation did not alter the number of conserved ELMs

(data not shown). A total of 99 ELMs were found on at least one virus protein

sequence. The conservation threshold removed 43 of these, leaving 56 total.

To assess the significance of an ELM being annotated on 70% of the protein

sequences gathered for an HIV protein, we devised a control based on randomly

constructed HIV protein sequences. We chose to focus on the 22 ELMs found to be

conserved on the HIV Nef protein because Nef was better studied than some of the

other HIV proteins [32], and had more protein sequences in the LANL HIV Sequence

Database. Using our total set of 807 Nef subtype B and C protein sequences from

the LANL database, we estimated the probability of amino acid occurrence as well

as amino acid transition probabilities, i.e. the probability of seeing amino acid β

follow amino acid α in Nef protein sequences. We constructed one random Nef

protein sequence for every real Nef protein sequence by first sampling an initial

amino acid based on the single amino acid probabilities, and then using the amino

acid transition probabilities to sample subsequent amino acids and build the rest of

the random protein sequence until it was as long as the real one.

We made one hundred sets of random Nef protein sequences, each containing
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807 random Nef sequences, and matched all proteins in each set against the 133

peptide motifs from the ELM Resource. For each random protein set, we calculated

the conservation of all ELMs across random Nef protein sequences in the set, and

compared this conservation to the ELM conservation observed for real Nef protein

sequences from the LANL database. To obtain a p-value for the conservation of

an ELM on real Nef protein sequences, we recorded the number of random sets

where the conservation of the ELM was equal to or greater than the conservation

observed for real Nef protein sequences. We found that all of Nef’s 22 conserved

ELMs except the LIG PDZ 3 motif were significantly conserved compared to random

protein sequences (p-value < 0.05), i.e. all conserved ELMs but one had higher

conservation on real Nef protein sequences than on random protein sequences in

more than 95 of the random sequence sets. The verification that ELM conservation

on Nef protein sequences was not occurring by chance made it more likely that

conserved ELMs on HIV proteins were guiding interactions with human proteins.

2.2.2 Human protein peptide motif and domain annotation

Once we determined conserved peptide motifs (ELMs) for HIV proteins, we found

domains (CDs) associated with these ELMs, and used them to annotate human

proteins. We used the ELM Resource to find lists CDs or proteins known to interact

with ELMs. For each ELM conserved on a virus protein, we found the appropriate

CDs and mapped them to PROSITE domains [78]. When the ELM Resource listed

a set of interacting proteins instead of CDs, we assumed that all proteins had a

common unknown CD, and annotated them with that. We constructed a list of CDs

and interacting proteins for each HIV conserved ELM (see Supplemental table A.2).

We annotated PROSITE domains and ELMs on the 9446 human protein se-

quences in the Human Protein Reference Database (HPRD) protein interaction net-

work [129], and mapped these sequences to Entrez Gene IDs. PROSITE domains
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were annotated with the PROSITE scan tool (release 20.31) using the default pa-

rameters [39]. We also annotated ELMs on human proteins using the ELM Resource,

accessed August 2008, selecting the same settings used for the HIV sequences. ELMs

have a tenancy to fall in regions of proteins that lack domains, and the ELM Re-

source uses this observation to rule out false positive ELM pattern hits on proteins

[51, 119, 131]. To keep false positive hits on human proteins to a minimum, any

protein lacking a PROSITE domain was removed from the study to ensure that the

ELM scanner would be able to rule out some protein domain regions. After further

limiting human proteins to those that interacted with one other protein in the human

HPRD protein network (see next section), we were left 5954 proteins in the study.

2.2.3 Predicting interactions between HIV and human pro-

teins

The prediction of HHP, the set of human proteins that might interact with HIV

proteins, was based on interactions mediated by peptide motifs (ELMs) on virus

proteins and domains (CDs) on human proteins. We built HHP from the union

of two sets of human proteins, H1 and H2 (Figure 2.1). H1 was the set of human

proteins predicted to directly interact with one or more HIV proteins via a human

CD and a virus ELM. H2 was the set of human proteins whose interactions with

proteins in H1 were potentially disrupted by competition with an HIV protein. An

H1 protein has a CD that it might use to interact with an ELM present on both

H2 and HIV proteins. For example, in the competition between an HIV and H2

protein for phosphorylation by an H1 kinase, the H1 protein has a kinase CD and

the competing proteins have ELMs for phosphorylation sites.

The virus-host interaction prediction algorithm was straightforward. For each

virus protein, we looked at all interactions documented in HPRD that could be

explained by an interaction between a virus protein’s conserved ELM and a CD

known to interact with that ELM, and added the protein with the CD to H1 and
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Figure 2.1: (A) The scheme for predicting HIV-human interactions. Rectangular blocks
represent peptide motifs and ellipses represent the domains that interact with them. (B)
An HIV protein (yellow) alters the human protein interaction network by creating a new
path between human proteins (blue) and (C) breaking a path between two human proteins
by competing for binding [36, 154, 168]. (D) Here we show predicted and experimentally
validated HIV-human interactions with the human interaction network (HPRD). Nodes are
proteins and edges represent an interaction. Yellow nodes represent HIV proteins. Purple
nodes represent the overlap between predicted (HHP) and validated (HHE) interactions.
Blue and red nodes represent proteins specific to HHP and HHE, respectively, while green
nodes are not involved in infection.
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the protein with the ELM to H2. To ensure that an interaction between H1 and H2

proteins did not involve the same human protein, we removed all such self edges from

the network. Human proteins are involved in multiple protein interactions, so H1

and H2 were not mutually exclusive. H1 contained 600 proteins, H2 contained 2151,

and their intersection had 403 proteins. The total set of human proteins predicted

to interact with an HIV protein was the union of the HIV protein’s H1 and H2 sets,

and contained all host proteins that were predicted to either bind to, or compete

with, the HIV protein. Across all HIV proteins, we predicted 2348 human proteins

were involved in 23330 HIV-human interactions.

2.2.4 Validation using the NCBI HIV-Human Protein In-

teraction Database

We used the NCBI HIV-Human Protein Interaction Database (accessed August

2008), which has 3950 interactions between 19 HIV proteins and 1439 human pro-

teins, to evaluate our HIV-human interaction predictions. HIV proteins ENV, GAG,

and POL are cleaved into smaller functional proteins. The NCBI database maintains

different sets of HIV-human interactions for cleavage products and the polyproteins

from which they were made. For instance, HIV POL cleavage products IN, PR,

and RT have some HIV-human interactions that are not attributed to POL. This

distinction did not work for our evaluation purposes because under our interaction

prediction method, cleavage products had a subset of the interactions attributed to

their uncleaved progenitors because of the sequence overlap. For this reason, we

took all ENV, GAG, and POL cleavage product virus-host interactions and assigned

them to the polyprotein from which they came. When evaluating our HIV-human

interaction predictions for each HIV protein, we still looked at interactions for GAG

and POL cleavage products individually. However, we did not assess our predictions

for human interactions with ENV cleavage products GP41 and GP120 separately

from our ENV assessment because there were so few.
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We restricted the human proteins interacting with HIV proteins to those that

we could predict with our motif/domain prediction method, i.e. we only looked at

human proteins in the HPRD human network that had domains and interacted with

one human protein other than itself. These restrictions left a set of 5954 host pro-

teins that we could predict with our algorithm. The NCBI HIV-human interactions

are spread over 68 interaction types, such as ‘interacts with’, ‘phosphorylates’, and

‘upregulates’. We considered all interaction types, both direct and indirect. For each

HIV protein, we removed an interaction type if it described less than six interactions.

This resulted in a set of 1,687 verified interactions between 15 HIV proteins and 887

human proteins. We refer to this set as HHE, and used to investigate the usefulness

of our predictions. When we considered our predicted interactions for each HIV

protein individually, we only looked at HIV proteins with more than ten interactions

with human proteins in our restricted HPRD human network, leaving twelve HIV

proteins (ENV, GAG, IN, MA, NEF, POL, PR, REV, RT, TAT, VIF, and VPR)

to consider. We constructed a subset of HHE, DHHE, which had interaction types

deemed to be direct by Tastan et al. [160]. DHHE was used to evaluate the portion

of our predicted proteins that contained domains, as these proteins were more likely

to have direct interactions with HIV proteins.

Computations used for the comparison of predicted and validated HIV

targeted human proteins

To compare our predicted set of interactions with the experimentally verified dataset

from NCBI, we focused on the overlap between the two sets, Gene Ontology (GO) [7]

molecular function enrichment, GO biological process similarity, and KEGG pathway

[85] enrichment. P-values for the overlap between sets of predicted and verified HIV

targeted proteins and their various subsets were calculated using the hypergeometric

test using a background set of 5954 possibly predicted human proteins. P-values for

GO and KEGG term enrichment for a given protein set compared to the background
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set of 5954 possibly predicted human proteins were found using Bonferroni corrected

p-values from the Database for Annotation, Visualization, and Integrated Discovery

(DAVID) tool [43].

To statistically compare the GO biological process similarity between predicted

and validated virus targeted proteins, we devised a permutation test based on GO

similarity between proteins, as calculated by the GS2 tool [142]. GO is a hierarchy of

labels, with general biological processes at the first level, and more specific ones on

higher levels. The GS2 tool takes two proteins, finds where their GO labels are in the

GO hierarchy, and calculates a distance between all GO labels based on how far away

they are in the GO hierarchy. The GO similarity between two proteins is the average

GS2 distance between the GO labels that annotate the proteins. When we compared

predicted and validated virus targeted proteins, we limited the comparison to only

proteins with GO biological process labels in the fifth level of the GO hierarchy. We

chose this level because the biological process labels here are specific enough for a

meaningful comparison, yet general enough to annotate large numbers of proteins in

our predicted and validated protein sets.

We performed the test for significant GO similarity between predicted and val-

idated HIV targeted proteins for HIV proteins with at least ten targeted human

proteins with GO labels in the fifth level of the GO hierarchy. To find the GO simi-

larity between predicted and validated protein sets, we first found the GO similarity

between all protein pairs taken from the two sets, and then averaged the GO similar-

ity for all cross set comparisons. For the permutation test to assess the significance

of the GO similarity between predicted and validated virus targeted protein sets,

we constructed one hundred random sets of predicted human targets for each HIV

protein by sampling from a background set of 4501 human proteins that were both

considered in our study of HPRD human network proteins, and had GO biological

process labels in the fifth level of the GO hierarchy. For each HIV protein’s GO

similarity between predicted and verified human targets, we arrived at a p-value
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Figure 2.2: This figure shows host peptide motif conservation on NEF. Peptide motifs
(ELMs) were spatially conserved on alignments of HIV proteins of subtypes B and C.
Each box shows the annotations for one conserved ELM (present on more than 70% of
protein instances) on the multiple alignment of NEF protein sequences taken from different
patients. An ELM can be spatially conserved in multiple positions on the alignment,
demonstrated by multiple sets of thick vertical lines in an ELM’s box.

describing the significance of the similarity by counting the number of random pre-

dicted sets that had an equal or greater GO similarity with the validated HIV-human

interactors.

2.3 Results

2.3.1 Human peptide motifs were conserved on HIV pro-

teins

Figure 2.2 shows a subset of the conserved peptide motifs (ELMs) annotated on

HIV NEF’s multiple protein sequence alignment. It is clear from the figure that

conserved ELMs occur in roughly the same position on each aligned protein. Our

computations showed that this was true for all conserved ELMs on all HIV proteins.

The HIV reverse transcription process is susceptible to errors, with HIV RT making

roughly 0.2 errors per genome in each replication cycle [134], which leads to an

evolutionary rate one million times that of host genomes [108]. Noting that HIV is
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Figure 2.3: Here we show conserved host peptide motifs (ELMs) on HIV proteins. Of 133
ELMs scanned, only 56 were conserved (present on more than 70% of an HIV protein’s
sequence alignment). Yellow boxes indicate conservation of an ELM above 70% for a virus
protein. All HIV proteins shown had at least one conserved ELM.

a virus with high mutation rate, it is likely that conserved ELMs are essential for

viral replication within the host cell [82]. ELM annotation in eukaryotic proteomes

is not yet complete. Multiple computational strategies have been employed for the

discovery of additional ELMs involved in protein interactions and post-translational

modifications [45, 120]. It is possible that HIV proteins have additional conserved

ELMs that have not yet been identified.

Conserved peptide motifs (ELMs) are shown for each HIV protein in Figure 2.3.

Overall, 56 of the 133 ELMs in the ELM Resource were conserved on some HIV

protein. Some of the conserved ELMs, like the SH3 ligand sites on NEF, have been

experimentally verified as binding sites for human proteins [32]. We found that some

conserved ELMs occur frequently on human proteins. A PDZ domain binding site,

ELM LIG PDZ 3, was seen on 90% of human proteins. Other ELMs, like LIG EH1 1,

a binding site for the WD40 domain, appeared on only a few human proteins (see
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Supplemental table A.1).

2.3.2 Significant overlap of predicted and validated HIV-

human interactions verifies our method

The NCBI set of curated HIV-human interactions contains 887 host proteins known

to interact with one or more HIV proteins. The dataset captures both direct and

indirect, regulatory HIV-human protein interactions [62], and was appropriate for

the task of assessing our predicted interactions because it allowed us to judge our

algorithm’s ability to capture both direct and indirect interactions. The HPRD hu-

man protein interaction network containing the 5954 human proteins in this study

is shown in Figure 2.1D with yellow HIV proteins connected to their predicted in-

teraction partners (blue) and their verified interaction partners (red). Proteins in

both sets are purple, while all other proteins are green. As seen in the figure, our

predicted set of virus targeted human proteins, with over two thousand proteins, was

larger than the verified NCBI list, with only 877 proteins.

For a more quantitative evaluation of our predictions, we compared predicted and

verified HIV targeted proteins for all HIV proteins individually. The significance of

the overlap between predicted and verified interactions is shown in Table 2.1. Of

the twelve virus-host predicted interaction sets we evaluated, only two, from HIV

proteins IN and VIF, did not have significant overlap with the NCBI interactions.

While the overlap between predicted and validated interactions was significant (p-

value < 0.05), and the recall of known virus-host interactions for each HIV protein

was at least 20%, there were many predicted interactions that were not validated by

the NCBI database.

Our predicted interactions consisted of human proteins with domains that in-

teract with conserved HIV peptide motifs (H1 proteins), and human proteins that

that interacted with H1 proteins and were annotated with HIV peptide motifs (H2

proteins). Proteins in H2 dominated the overlap between predicted and validated
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HIV protein HHP HHE Overlap P-value
ENV 2166 409 194 8.09e-07
GAG 2035 103 46 9.94e-03
IN 1759 46 12 0.631
MA 1129 47 19 1.60e-04
NEF 1828 155 83 6.42e-10
POL 2093 122 57 2.96e-03
PR 1169 58 20 2.30e-03
REV 1702 40 16 4.11e-02
RT 1986 23 20 1.07e-08
TAT 1106 509 183 5.54e-23
VIF 1832 35 7 0.888
VPR 919 119 39 5.29e-07

Table 2.1: For each HIV protein, we evaluated the significance of the overlap between
human proteins in HIV-human predicted and validated interactions. The HHP column
gives the number of human proteins that were predicted to interact with an HIV protein,
while HHE shows the number of verified virus targeted proteins in the NCBI database.
The Overlap column counts the number of proteins in both sets. P-values for the overlap
between predicted and validated HIV targeted proteins were calculated using a hypergeo-
metric test (see Methods). We limited our results to HIV proteins with at least ten verified
interactions with human proteins.

virus targeted proteins. Roughly two thirds of the proteins in H1 were also found in

H2. For this reason, we sought to evaluate H1 separately from our total prediction

set. For each HIV protein, we investigated the usefulness of H1 by comparing it with

DHHE, the validated NCBI direct virus-host interactions. We limited our compar-

isons to the twelve HIV proteins with at least ten direct interactions with human

proteins, and found that eight of these HIV proteins (ENV, GAG, MA, NEF, POL,

REV, RT, and TAT) had significant overlap between H1 and DHHE (see Supple-

mental table A.3). Figure 2.7 shows the overlap p-values and sizes of DHHE and

H1 for HIV proteins ENV, NEF, and TAT. Our H1 predictions for HIV proteins IN

and VIF failed to have significant overlap with validated direct interactions, just as

our full set of predicted interactions for these HIV proteins did not have significant

overlap with all verified virus-host interactions (Table 2.1). While for the HIV RT

protein, H1 predictions performed better than the full prediction set (HHP), this
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Figure 2.4: Here we compare predicted and validated virus-host direct interactions for HIV
proteins ENV, NEF, and TAT. The Match column holds the overlap between predicted
and verified virus targeted host protein sets. The figure compares host proteins from
direct interaction predictions (H1) with host proteins from experimentally verified direct
interactions (DHHE). The p-values indicated a significant overlap for all protein sets. P-
values were calculated as described in Methods.

was not the case for the other HIV proteins. For both H1 and HHP prediction sets,

our precision was not high, indicating that most proteins predicted to interact with

HIV were not verified by the NCBI database. For this reason, we turned to the Gene

Ontology and the KEGG pathway databases for an understanding of how our unver-

ified predictions captured the host cell biological pathways and functions targeted

by HIV proteins.

2.3.3 Predicted and validated HIV-human interactions share

similar Gene Ontology labels

As a biological validation of our results, we compared our predicted and validated

HIV-human interactions using Gene Ontology (GO) labels of molecular function and

biological process. While our predictions missed some of the exact interactions with
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Gene Ontology Label ENV HHP/HHE NEF HHP/HHE TAT HHP/HHE
adenyl ribonucleotide binding 6.82e-12/0.003 NA /NA NA/NA
inositol or PI kinase activity 7.22e-07/0.0009 NA/NA 1.033e-06/0.0016
lipid kinase activity 7.22e-07/0.0009 NA/NA 2.06e-08/0.0016
MAP kinase activity 0.00029/2.33e-07 NA/NA NA/NA
phosphoinositide 3-kinase activity 0.0002/0.0001 NA/NA 1.54e-05/0.000167
protein kinase activity 5.60e-34/0.00085 2.04e-29/0.00044 1.01e-36/0.0035
protein kinase binding NA/NA NA/NA 2.16e-18/3.46e-06

Table 2.2: Here we show Gene Ontology molecular function level 5 labels statistically
enriched (p-value < 0.01) on human proteins from our predicted virus-host interactions
(HHP) for HIV ENV, NEF, and TAT. Enrichment for host proteins involved in NCBI’s
verified virus-host interactions (HHE) is also indicated.

HIV proteins, they might have been close to them in terms of molecular function

and biological pathways. GO labels are organized hierarchically, with general labels

towards the first levels of the hierarchy, and specific labels at the higher levels. For

our investigations, we focused on specific terms on the fifth level of the GO hierarchy.

We examined GO labels for predicted and validated virus-host interactions for HIV

proteins ENV, NEF, and TAT because they had the most verified experimental

interactions with human proteins. First, we found the GO molecular function level

5 labels that were enriched in our predicted virus targeted human proteins, and then

calculated the enrichment for the host proteins in the validated NCBI HIV-human

interactions. Table 2.2 shows that GO molecular functions enriched on predicted

virus targets were also enriched on validated HIV targets (p-value < 0.01).

For a more quantitative assessment of our predicted HIV-host interactions, we

measured the similarity between predicted HIV targeted pathways and known HIV

targeted pathways, using GO biological process level 5 labels as a proxy for path-

way annotations. For each HIV protein, we computed the average GO similarity

for all predicted/validated protein pairs taken from host proteins in predicted and

validated virus-host interactions, and found the significance of the GO similarities

using a permutation test (see Methods). Table 2.3 shows that predictions for most

HIV proteins had significant GO similarity with verified virus targeted proteins.
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HIV protein GO HHP GO HHE P-value
ENV 1640 347 0.00
GAG 1545 88 0.00
IN 1347 44 0.99
MA 872 45 0.00
NEF 1376 126 0.00
POL 1595 116 0.00
PR 882 54 0.00
REV 1273 35 0.00
RT 1517 23 0.00
TAT 857 445 0.00
VIF 1397 32 0.98
VPR 694 93 0.00

Table 2.3: For each HIV protein, we evaluated the performance of our HIV-human inter-
action predictions (HHP) using Gene Ontology (GO) biological process labels to compare
our predicted interactions to experimentally validated interactions. We computed a GO
similarity score between predicted and validated protein sets by averaging over all GO
similarity scores that resulted from pairwise combinations of proteins taken from the pre-
dicted and validated protein sets (see Methods). For each HIV protein, we constructed
random HHP sets to use in a permutation test to evaluate the significance of the observed
GO similarity between HHP and HHE. We report the p-values for these trials.

Just as predictions of virus-host interactions for HIV proteins IN and VIF did not

show a significant overlap with verified interactions, the GO similarities between

predicted and verified virus-host interactions for these HIV proteins were not found

to be statistically significant. For the other HIV proteins, it is likely that some of

our unverified predictions from Table 2.1 and Figure 2.4 are correct, or have some

importance for HIV infection, because they act in the same biological processes that

HIV targets.

2.3.4 Predicted and validated HIV-human interactions oc-

cupy the same KEGG pathways

Since our predicted virus-host interactions performed well at recovering known HIV

targeted biological processes, we moved to an evaluation of our predictions that in-

volved more defined biological pathways from the KEGG pathway database. The
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KEGG Pathway ENV HHP/HHE NEF HHP/HHE TAT HHP/HHE
AML 1.97E-05/2.68E-05 2.07E-05/8.55E-05 2.66E-08/3.08E-04
Adherens junction 2.15E-09/NA 8.21E-11/NA 6.74E-06/NA
Apoptosis 4.58E-04/1.43E-13 5.18E-04/6.54E-04 3.91E-03/3.88E-13
B cell receptor signaling 4.86E-06/8.73E-10 2.88E-04/2.90E-04 1.25E-09/5.57E-06
Cell cycle NA/NA NA/NA 2.88E-04/1.90E-01
CML 7.21E-05/2.23E-05 1.17E-06/2.46E-05 1.01E-09/7.53E-07
Colorectal cancer 1.07E-05/3.18E-04 4.68E-08/3.31E-03 4.50E-04/1.42E-03
Endometrial cancer 6.03E-04/1.62E-02 1.66E-04/2.10E-03 5.03E-07/3.83E-04
H. pylori infection 2.29E-04/3.84E-06 2.07E-06/2.83E-05 NA/NA
ErbB signaling 2.27E-10/5.70E-04 1.70E-12/9.22E-04 1.53E-12/1.66E-05
Fc epsilon RI signaling 8.43E-04/6.23E-21 2.14E-05/2.20E-07 9.62E-05/1.52E-04
Focal adhesion 2.82E-06/2.30E-03 2.31E-07/6.90E-02 5.28E-08/3.36E-09
Gap junction 1.90E-04/1.26E-04 NA/NA 1.12E-04/7.18E-10
Glioma 1.50E-04/1.24E-05 4.99E-06/6.02E-03 1.56E-07/6.79E-11
Insulin signaling 1.53E-07/8.84E-02 1.73E-04/3.50E-01 2.91E-07/7.35E-02
Jak-STAT signaling 4.08E-08/2.15E-04 4.09E-09/1.28E-01 2.32E-17/4.91E-03
Leukocyte migration 1.94E-07/2.21E-08 1.17E-08/6.36E-01 3.28E-05/1.45E-01
Long-term potentiation 6.79E-05/2.20E-02 NA/NA 9.04E-03/2.38E-10
MAPK signaling 5.19E-08/6.32E-04 1.58E-09/3.27E-03 1.18E-03/5.15E-01
NK cell cytotoxicity NA/NA NA/NA 9.50E-06/5.31E-15
Non-small cell lung cancer 4.28E-05/1.25E-04 1.26E-05/1.67E-03 7.55E-06/1.45E-06
Pancreatic cancer 1.26E-04/5.54E-07 1.10E-05/2.50E-06 1.03E-05/8.15E-08
E. coli infection 3.77E-03/1.00E+00 2.94E-03/NA 9.74E-03/3.25E-01
PtdIns signaling 1.36E-03/1.72E-04 2.37E-03/NA 2.19E-05/9.74E-06
Prostate cancer 1.90E-04/1.26E-04 6.26E-06/6.56E-05 5.46E-09/1.11E-07
Regulation of cytoskeleton 4.30E-03/6.02E-01 1.73E-03/8.79E-01 2.66E-03/7.65E-01
Small cell lung cancer 1.94E-03/3.71E-10 8.42E-05/4.25E-02 1.12E-04/4.09E-14
T cell receptor signaling NA/NA NA/NA 1.56E-06/1.35E-11
Tight junction 1.24E-03/1.00E+00 5.29E-04/NA NA/NA
Toll-like receptor signaling 5.16E-03/2.04E-14 5.37E-05/2.04E-14 NA/NA
Type II diabetes mellitus NA/NA NA/NA 3.47E-03/5.95E-01
VEGF signaling 3.23E-03/4.89E-15 6.79E-03/8.82E-03 1.88E-05/4.07E-12

Table 2.4: Here we show KEGG pathways enriched (p-value < 0.01, see Methods) with
human proteins from our predicted virus-host interactions (HHP) for HIV ENV, NEF,
and TAT. Enrichment for host proteins involved in NCBI’s verified virus-host interactions
(HHE) is also indicated.
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KEGG pathways statistically enriched for HIV ENV, NEF, and TAT interacting

proteins (experimental as well as computational) included immune system pathways

such as T cell and B cell receptor signaling pathways, apoptosis, focal adhesion,

and toll-like receptor signaling pathways (Table 2.4). Gene expression data before

and after HIV infection of macrophages also showed apoptosis and MAPK signaling

pathways as statistically enriched [20], as predicted here. Microarray results did

not show cell cycle and toll-like receptor pathways as highly activated in HIV acti-

vated macrophages, although the toll-like receptor pathway was highly enriched with

known HIV targeted proteins (Table 2.4). Also statistically enriched were disease

pathways such as the colorectal cancer, leukemia, and lung cancer pathways that

have been shown to have high incidence of occurrence in HIV infected individuals

[127]. Other disease pathways predicted by our analysis included those previously

associated with HIV infection: H. pylori infection [124], E. coli infection [133], and

type II diabetes [125]. These observations indicated the promise of our method

in predicting activated disease pathways based on viral sequence. Post-translational

modification appeared to be an important element of HIV cellular network hijacking.

As shown in Table 2.2, protein kinase activity and protein kinase binding were sig-

nificantly enriched both in predicted and verified HIV targeted proteins, suggesting

the importance of altered phosphorylation events in the reorientation of the host cell

interaction network towards virus survival and replication [20]. The HIV activated

GO categories listed in Table 2.2 are associated with signal transduction processes

in the KEGG pathways presented in Table 2.4.

The positions of predicted and matched HIV targeted proteins along KEGG

pathways allowed us to assess the overlap between computational and experimental

prediction based on cell-compartment identity. Figure 2.5 shows the overlap (pur-

ple) between predicted (blue) and experimentally determined (red) host proteins

targeted by HIV TAT along the natural killer cell mediated cytotoxicity pathway.
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Figure 2.5: HIV TAT natural killer cell mediated cytotoxicity. The KEGG natural killer
cell mediated cytotoxicity pathway is colored for predicted TAT-human interactions (blue)
and validated TAT-human interactions (red), and their overlap (purple). Green boxes have
proteins not involved in infection, while white boxes do not have human proteins.
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Figure 2.6: HIV TAT T cell receptor signaling pathway. The KEGG T cell receptor
signaling pathway is colored for predicted TAT-human interactions (blue) and validated
TAT-human interactions (red), and their overlap (purple). Green boxes have proteins not
involved in infection, while white boxes do not have human proteins.

Our predictions were on target on the cell membrane for HLA-B, HLA-A3, HLA-

B45, and FAS, but we missed Perforin, HLA-C, HLA-E, and HLA-G1. The figure

also shows a good match for DNA transcription factors targeted by HIV. The green

boxes in the figure correspond to host proteins with apparently no direct interaction

with TAT. The T cell receptor signaling pathway in Figure 2.6 had a high degree

of overlap (purple) along the cell membrane and on transcription factors between

TAT targeted host proteins (red) and our corresponding predictions (blue). The

abundance of predicted host proteins in the pathway with no matching experimental

result suggested new virus-host interaction studies for HIV as well as a justifica-

tion for further refinement of our computational method, perhaps by incorporating

protein structures [46].
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Human proteins in our predicted HIV-human interactions performed well at cap-

turing virus-targeted KEGG pathways. One reason that this pathway evaluation

showed our predictions to be more promising than a simple protein set comparison

could be that proteins in KEGG pathways are better studied than proteins in the

HPRD human interaction network [85]. We attempted to obtain a set of predicted

interactions with fewer false positives by limiting human proteins in our predicted

interactions to those that were in KEGG pathways. We then compared the overlap

between KEGG restricted predicted virus-host interactions and validated virus-host

interactions for HIV proteins ENV, NEF, and TAT (Figure 2.7). We found that

the intersection between predicted and verified virus-host interactions for human

proteins in the HPRD human interaction network became more significant as we

limited predictions to proteins in KEGG pathways (Figure 2.7 and Supplemental ta-

ble A.4). Restricting predictions to all KEGG pathways produced a set of virus-host

interactions with less false positives, so we decided to restrict our predictions further

by finding KEGG pathways that were enriched with human proteins from predicted

HIV-human interactions, and keeping only predictions in these pathways.

Viruses often target specific host pathways, like the type I interferon response

pathway, and interact with multiple host proteins in these pathways [116, 181]. We

hypothesized that estimating HIV targeted pathways from our predicted virus-host

interactions, and then restricting our predictions to only human proteins in these

pathways would yield better results than limiting our predictions to all KEGG path-

ways. We were further motivated to find KEGG pathways enriched with our predic-

tions because studying proteins in specific pathways is valuable because predicted

interactions with certain pathways can be used to guide targeted virus-host interac-

tion experiments [96]. We limited our predicted interactions by focusing on human

proteins in KEGG pathways that were found to be enriched with our predictions (p-

value < 0.01, see Methods). Bar graphs in Figure 2.7 demonstrate the intersection

of predictions when restricted to the KEGG pathways in which they are enriched
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with verified interactions for HIV ENV, NEF, and TAT. Compared to limiting our

predictions to proteins in all KEGG pathways, restricting predictions for HIV ENV

and NEF to proteins in KEGG pathways that were statistically enriched with human

proteins in our virus-host predicted interactions for these HIV proteins improved the

overlap between predicted and verified virus-host interactions.

2.3.5 Virus level comparison of predicted and verified HIV-

human interactions

We have evaluated our predicted interactions for individual HIV proteins, but an-

other way to view our predictions is at the virus level. At the virus level, we can

check to see if human proteins that were predicted to interact with one HIV protein

have any validated interactions with other HIV proteins. This test was motivated

by the observation that virus proteins often interact with the same host proteins

[130]. Figure 2.8 shows a combined view of predicted and validated virus-host inter-

actions, made by aggregating interactions for all virus proteins. When we restricted

our predictions to KEGG proteins, we had 1047 host proteins, and 345 of these had

already been shown to be interacting with at least one HIV protein. The match be-

tween computational prediction and experimental data in this case led to a p-value

of 1.97e-62. The improvement seen in recall and precision for virus level predictions

compared to HIV protein level predictions indicated that our predictions captured

many of the host interactions shared between HIV proteins, and that interaction

predictions made for one virus protein could be used to capture interactions with

other HIV proteins.
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Figure 2.7: Here we compare predicted and validated virus-host interactions for host
proteins in KEGG pathways. The Match column holds the overlap between predicted
and verified virus targeted host protein sets. The figure compares host proteins from all
predicted (HHP) and verified (HHE) interactions for the three HIV proteins. Predicted
host proteins were restricted to either genes in all KEGG pathways (ENVa, NEFa, TATa),
or KEGG pathways enriched (p-value < 0.01, see Methods) with our predictions (ENVe,
NEFe, TATe). The intersection between predicted and verified interactions was significant
for both restrictions, but slightly more significant for enriched pathways for HIV proteins
ENV and NEF. P-values were calculated as described in Methods.
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Figure 2.8: Here we evaluate our predictions on the virus level, rather than the virus
protein level. For both predicted and validated virus-host interactions, we combined the
host targets of individual HIV proteins to produce virus level protein sets. The overlap
(Match) of our predictions (HHP) with verified HIV targeted proteins (HHE) was compared
when restricting them to proteins in HPRD, KEGG, and KEGG pathways enriched in HHP
(p-value < 0.01, see Methods). The lower table compares HHE, HHP, and predictions from
three siRNA screens. The darkened diagonal holds the sizes of all sets. The overlap between
sets is below the diagonal, while p-values for these overlaps are above (see Methods).
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Figure 2.9: Here we tested the hypothesis that using infrequent host peptide motifs for
HIV-human interaction prediction, rather than all host peptide motifs conserved on HIV
proteins, improved the performance of our predictions. We found infrequent host peptide
motifs by limiting conserved HIV peptide motifs to those that occurred on less than some
fraction (Frac) of human proteins, or were seen on an HIV protein with another peptide
motif within a twenty residue window, resulting in a motif module. For HIV proteins ENV,
NEF, and TAT, we compared the performance of predictions using two human fraction
cutoffs, 0.25 and 0.5, to predictions made with unrestricted conserved HIV peptide motifs
(Conserved ELMs). We found significant overlap (Match) between predicted and validated
virus-host interactions in all cases, but using the fraction cutoffs only helped for the HIV
ENV protein. P-values were calculated as described in Methods.
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2.3.6 Infrequent host peptide motifs did not improve pre-

diction performance

We next asked if our predictions could be improved by limiting spurious peptide motif

pattern hits on host proteins. Some peptide motifs, like the PDZ ligand LIG PDZ 3,

have patterns that match 90% of host proteins (Supplemental table A.1). We hy-

pothesized that peptide motifs, or ELMs, that occurred infrequently in the host

proteome would have a higher chance of being functional than frequently occurring

ELMs. Capturing more functional ELMs should result in better HIV-human interac-

tion predictions. We restricted our conserved virus ELMs to those with infrequently

occurring host pattern matches in two ways. First, we imposed a frequency cutoff

based on the fraction of host proteins annotated with the ELM pattern. Second, we

looked for ELM modules, defined as two different ELMs occurring in a 20 residue

window. ELMs often occur as modules within the same region of proteins, acting

in a concerted and cooperative fashion, or as regulatory switches [65]. Since func-

tional ELMs often occur in together, limiting ELMs to those occurring in modules

decreased the false positive pattern matches for ELMs.

We identified ELM modules conserved on more than 70% of each HIV protein’s

multiple sequence alignment, as we did for ELMs. We found the fraction of human

proteins with each ELM or ELM module, and chose two fraction cutoffs, 0.25 and

0.50, to restrict the ELMs and ELM modules on virus proteins to those that were

infrequent on human sequences. Any ELM or ELM module with a human frequency

above the cutoff was not used to predict interactions. Figure 2.9 shows the results

for HIV proteins ENV, NEF, ad TAT, and compares the use of all conserved ELMs

to using frequency (fraction) cutoffs for conserved ELMs and ELM modules. The

results indicated that such restrictions on ELMs helped results for ENV, but not for

NEF and TAT. For NEF and TAT, ELM restrictions yielded smaller set of predicted

interactions, but the overlap between predicted and verified virus-host interactions

was also reduced.
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2.4 Discussion

The rapid sequencing of viral genomes with next generation sequencing technol-

ogy [94] makes it possible to link clinical parameters of viral infection to peptide

sequence motifs. The task of identifying host proteins targeted by a virus is worth-

while because such proteins may become drug targets to fight infection [19] and guide

experiments [79, 96]. Experimental studies for determining virus targeted proteins

are expensive and highly challenging [82]. Such efforts, although large-scale, have

produced incomplete results for even well studied viruses like HIV [19, 92, 184]. In

this study, we used a systems approach to identify host protein subsets enriched by

virus targeted proteins. Our method was based on the identification of host pep-

tide motifs on virus protein sequences. We used the a priori knowledge in the ELM

Resource to identify the counter domains associated with these peptide motifs, and

information from the human protein interaction network to focus on host protein in-

teraction pairs with appropriate motif/domain links. KEGG pathways and the GO

annotations were used to provide biological context and validation for our predicted

virus-host interactions.

The sets of host proteins we predicted as targeted by a given HIV protein in

KEGG pathways were statistically enriched with host proteins known to interact with

the same HIV protein (Figure 2.7). For example, the match between our predictions

and the interactions for HIV NEF in the NCBI HIV-Human Protein Interaction

Database corresponded to a p-value of 4.26e-21 in KEGG pathways enriched in

our predicted set. After combining our predictions for all HIV proteins, we had

607 proteins in HHP enriched KEGG pathways, and of these we matched 241 in

the set of 877 experimentally verified proteins with a p-value of 3.11e-58 (Figure

2.8). Our predictions were not nearly an exact match for experimental data, but

our list was highly enriched with HIV targeted host proteins. Given that reducing

our total virus-host predictions to those with human proteins in KEGG pathways

removes roughly half of the interactions, and has a stronger overlap with verified
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virus-host interactions, experimentalists should begin verification with this set using

rapid testing of binary interactions, such as yeast or mammalian two-hybrid assays

[158], or protein fragment complementation assays [136].

In addition to the interaction research compiled in the NCBI HIV-Human Pro-

tein Interaction Database, recent experimental studies based on genome-wide small

interfering (siRNA) screens have brought additional light to host-pathogen interac-

tions that facilitate HIV replication [19, 92, 184]. In these screens, host genes were

knocked down in HIV infected cells, and the effect on the virus is observed. Genes

whose expression depletion negatively affected the virus were recorded as hits, i.e.

host factors that are required for HIV replication [24]. Three siRNA studies produced

smaller lists of host proteins than the list in the NCBI HIV-Human Protein Inter-

action Database. The lower matrix in Figure 2.8 shows the five-way comparison of

HIV targeted protein lists: verified HIV targeted human proteins from NCBI, human

proteins in our predicted virus-host interactions, and the three siRNA screens.

Figure 2.8 indicated the extent of discrepancy between lists, as well as the statisti-

cal significance of the overlap between them. Our predictions matched the validated

NCBI virus-host interactions with the lowest p-value, and the genome-wide study

lists generally matched each other better than the interaction studies. The list of

280 genes presented as host cellular factors required for HIV replication by Brass et

al. had 13 genes in common with the list of 295 genes deemed necessary by Konig et

al. for regulation of early stage HIV replication, and shared 10 genes with the 311

genes given in the Zhou study. When these proteins were limited to proteins in the

HPRD human protein interaction network, the overlap between them led to p-values

of 7.35e-4 and 4.46e-5. Although the overlap was significant, there was still a dis-

crepancy between the results. This mismatch may be attributed to the differences

in the analysis and experimental methodologies used [24]. Our predictions matched

56 of the 129 HPRD proteins presented by Konig et al. with a p-value of 0.15, 44 of

the 91 HPRD proteins in the list by Brass et al. with a p-value of 0.03, and 54 of
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the 139 HPRD proteins given by Zhou et al. with a p-value of 0.52. The significant

overlap between our human proteins in our predicted virus-host interactions and

the Brass et al. screen is promising for a focused experimental study of virus-host

interactions that facilitate HIV replication. Such a study would only experimentally

test predicted virus-host interactions where the human protein has been implicated

in an siRNA screen. Since our predicted interactions are guided by motifs on virus

proteins and domains on human ones, those that are verified experimentally already

have proposed protein binding regions that could be targeted with drugs [126].

Although our study produced host protein sets statistically enriched with proteins

known to be targeted by HIV, mismatches between our predictions and experimental

data cannot be ignored. It is possible that virus-host interactions are guided by

sequence features more complex than the peptide motif and domain interactions

used in this study. The molecular vocabulary of protein interactions is simply not

well understood even for proteins belonging to the same species. However, one

common mode of interaction is the binding of a peptide motif on one protein to

a domain on another protein [114]. A central hypothesis in the discovery of the

linear binding motifs mediating protein interactions has been that proteins with

a common interacting partner, such as protein kinases, share a common feature

in the form of a motif [118]. Some of the peptide motifs in the ELM Resource

have been shown to bind directly to sites at opposing counter domains listed in

databases such as PROSITE and Pfam [117]. However, for approximately 30%

of the protein interactions listed in HPRD human interaction network, interacting

proteins possess none of the already annotated domains. Thus, a model based on

known motif/domain interactions would not be able to capture all of the known

interactions in the host, let alone those between virus and host.

Another important cause of the discrepancy between our predictions and exper-

imental data might have been the poor annotation of known motifs and domains

used in this study [44]. Recent studies of domain-motif interactions indicated that
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the domains can be divided into more specific versions than those presented Pfam

and PROSITE. This was found to be true for the HIV interacting PDZ domain

[166], SH3 domain [149] and others [82]. Based on these and other observations,

a new database of revised Pfam domains is currently under development (Robert

Weatheritt, personal communication, March 8, 2010).

Emerging peptide motif discovery tools will help researchers improve the speci-

ficity of the motifs that mediate virus-host interactions, a task which is difficult

because motifs are small and variable. As few as two sites in a peptide motif may be

important for activity [51]. The assumption made by peptide motif discovery tools

is that proteins that interact with a given protein will have over-represented peptide

motifs that cause their common interaction with the given protein [159]. The Dis-

covery of Linear Motifs (DILIMOT) server finds over-represented peptide motifs in

a set of query proteins, scoring motifs by the number of query sequences with the

motif, the lengths of the query sequences, and the conservation of the motif among

known orthologs [119]. Like the ELM Resource, DILIMOT does not search for pep-

tide motifs in protein domains. An alternative small linear motif (SLIM) detector,

SLIMFinder, constructs over-represented motifs by combining dimers of residues to

form longer patterns, and retains only those motifs occurring in a sufficient number

of unrelated proteins [51]. While our prediction method could be improved with

more knowledge of protein motifs and domains, the list of host proteins we have

provided

(http://www.biomedcentral.com/content/supplementary/1755-8794-2-27-s5.xls) com-

prises a candidate set for genome-wide studies of the regulation of HIV replication

and infection.

We focused on HIV infection in this study because we desired to assess the effec-

tiveness of our computational approach by comparing our predictions with large-scale

experimental data. Our results provided a rationale for applying our method to pre-

dict virus-human interactions for sequenced viruses. A future systems approach to
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predicting host-pathogen interactions will at least be partially based on the sequence

motifs of interacting genome/proteomes. The present study illustrated the impor-

tance of peptide motifs in the molecular cross talk between host and virus and opened

the door for more extensive experimental and computational studies of virus-host

interactions.

2.5 Conclusion

In this study, we described a bioinformatics model to investigate the interactions

between the HIV and human proteins. Our method used multiple sequence align-

ments of HIV proteins, and three datasets related to the host: sequences of the host

proteins, a priori knowledge of experimentally observed protein-protein interactions

within the host proteome, and associations between short linear peptide motifs and

protein domains. The output of the model was a list of host proteins that may in-

teract with specific HIV proteins using specific sites. This list can be used to draft

a connectivity map between virus and host, and to determine a set of protein in-

teraction pathways that are significantly enriched by host proteins predicted to be

targeted by HIV.

The model was based on the assumption that virus proteins interact with host

proteins though a set of conserved linear sequence motifs present in the host pro-

teome. The conserved spatial organization of these motifs on the rapidly evolving

HIV proteome supported the assertion that short linear motifs play critical roles in

interactions with the host network. The model’s predictions led to host protein sets

that were crowded by known HIV targeted proteins. This statistically significant

enrichment was particularly high along cellular pathways modulated by HIV. The

model’s predictions were also consistent with experimental data showing phospho-

rylation events as key targets of HIV when redirecting cell protein networks toward

the goal of virus replication.
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This study makes two types of predictions of human and virus interactions. The

first type of interaction occurs between virus and host proteins. Each of these pre-

dictions is supported by testable binding regions on HIV and human proteins. The

second type of interaction occurs between the virus and the host KEGG pathways

and GO biological processes found to be enriched in host proteins predicted to inter-

act with virus proteins. Both protein and pathway interactions generate hypotheses

that can be tested in the lab.

Each predicted virus-host interaction not represented in the experimentally val-

idated set serves as a hypothesis. However, there are so many predictions, and the

prediction precision is so low, that it is unreasonable to test all predicted interac-

tions. The value of the predicted virus-host interactions comes when comparing

them with other gene level biological interactions, such as the siRNA screens, to

formulate hypothesis about specific roles of HIV-human interactions. Specifically,

the predicted HIV-human interactions with human proteins that are implicated in

an siRNA screen can be tested to see if preventing the interaction has an effect on

HIV replication.

In addition to predicting virus-host interactions, this study predicted virus tar-

geted host pathways (Table 2.4). While most of these pathways were already known

to be targeted by HIV proteins, there were some that were significantly enriched

with predicted virus targeted proteins, while proteins in the validated virus-host in-

teractions showed no enrichment. The cell cycle, Jak-STAT, cytoskeletal regulation,

and tight junction KEGG pathways were all significantly enriched in our predictions

for some HIV protein, but the corresponding enrichment was not significant for the

validated virus-host interactions from NCBI. These pathways offer new hypotheses

for cell processes that HIV might need to target.

The methodology applied here for HIV-host protein interactions is applicable to

any viruses with multiple sequence alignments and hosts with known interaction

networks. Therefore, our approach has potential use in the identification of host
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proteins targeted by recently discovered and less studied viruses. The resulting

list will be useful for guiding further virus-host interaction experiments, selecting

optimal drug therapies, and discovering new antivirus drugs. The systems approach

presented here for predicting virus-host protein interactions will benefit from ongoing

research on the more specific annotations of short linear motifs and domains involved

in protein-protein interactions.
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Chapter 3

A bioinformatics approach reveals

possible MAPK docking motifs on

HIV proteins

3.1 Background

In response to multiple growth factors and cytokines, the mitogen-activated pro-

tein kinases (MAPKs) ERK1 and ERK2 play important roles in signal transduction

pathways that regulate various cellular processes, which include cell growth, differ-

entiation, gene expression regulation, and cell development [17, 90]. Activation of

ERK1 and ERK2 occurs during the G0/G1 transition and may be required for pro-

gression through the cell cycle [95, 141]. ERK1 and ERK2 are present in all cell

types, and are evolutionarily conserved, indicating their importance in cellular sig-

naling pathways [109, 138, 157]. Given that MAPK ERK1 interacts with five HIV

proteins [62], and MAPK ERK2 has interactions with ten HIV proteins [90], and

both kinases participate in multiple cellular processes, it is likely that it ERK1 and

ERK2 are involved in many steps of HIV infection [130].
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3.1.1 MAPK and HIV infection

ERK1 and ERK2 have been shown to increase HIV infectivity by phosphorylating

a subset of HIV proteins [180]. Inhibiting the phosphorylation of HIV Vif has im-

paired, but not stopped HIV replication [11, 180]. Prior to HIV replication, the

HIV structural protein matrix (MA) must be phosphorylated by ERK2 to allow the

HIV pre-integration complex to translocate to the nucleus, where viral replication

can proceed [22]. Nef and Tat have been shown to induce the ERK MAPK cascade

[144, 167]. ERK1 and ERK2 phosphorylate HIV Nef, Rev, and Tat in vitro [180],

but the roles of these phosphorylation events in HIV infectivity remain unknown

[179]. The inhibition of MAPK phosphorylation has been shown to decrease HIV in-

fectivity, indicating that MA and Vif MAPK-directed phosphorylation events might

make good drug targets [22, 180].

3.1.2 MAPK substrate docking

Like all MAPKs, ERK1 and ERK2 phosphorylate their substrates at serine and

threonine residues [157]. Before ERK1 and ERK1 can phosphorylate their substrates,

they must bind to them at specific docking sites [9]. Two consensus MAPK substrate

docking patterns have been proposed for eukaryotes, although some exceptions to

these patterns do exist [9, 131]. The Eukaryotic Linear Motif (ELM) Resource [131],

a database of peptide motifs that guide protein interactions, has developed patterns

that represent the two versions of the MAPK docking site. It refers to these docking

sites as LIG MAPK 1 and LIG MAPK 2.

The LIG MAPK 1, or D-site, pattern has two functional regions: a string with

two or three basic residues and a chain of alternating hydrophobic residues [9]. One

to six residues maintain distance between these regions, helping them interact with

distinct regions on MAPKs [10]. The basic component of the motif interacts with

MAPKs at a patch of acidic residues, called the common docking (CD) site, while the

hydrophobic region of the D-site interacts with a hydrophobic groove close to the CD
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site [104]. The LIG MAPK 2 docking site pattern is simply FXFP, where the letters

correspond to amino acids, with X representing any amino acid. The LIG MAPK 2

docking site is not utilized as a docking site as much as the D-site [131]. Recent work

with small-molecule drugs suggests that the D-site could be targeted to disrupt its

interaction with MAPKs ERK1 and ERK2. Although using small-molecule drugs to

target protein interactions has been difficult in the past [5], there have been recent

advances, both experimentally [137] and computationally [126], that could be used

to target the docking of MAPK with HIV substrates.

3.1.3 Disrupting protein-protein interactions using small-

molecule inhibitors

Most MAPK drugs prevent MAPKs from interacting with ATP by blocking the con-

served ATP binding site. The use of the ATP binding site in drug development raises

concerns about these drugs’ lack of specificity due to similarities among ATP binding

sites [123]. New research has suggested that a more specific means of inhibition may

be achieved by preventing MAPK substrate docking using small-molecule inhibitors

[23, 69]. These protein-protein interaction inhibitors are good drug candidates be-

cause they are often cell permeable, and they are more stable than peptide inhibitors

[164]. Experimental studies have found small-molecule inhibitors for some protein

interactions. For instance, one study found small-molecule inhibitors that stopped

apoptosis by blocking the interaction of the Bak BH3 motif with members of the

Bcl-2 family [42]. Another study used computational structure modeling and dock-

ing to identify small-molecule inhibitors that blocked calcineruin-NFAT signaling by

disrupting docking between the calcineruin phosphatase and its substrate [137, 139].

Experimental approaches for identifying small-molecule inhibitors of protein bind-

ing are costly and labor intensive [5, 42]. Computationally aided studies like the

calcineruin inhibitor development help to reduce experimental drug development by

identifying protein interaction sites, and finding small-molecules that will act on

57



these sites [137]. A pure computational study sought to aid future work concerned

with using small-molecule drugs to disrupt protein-protein interactions [126]. By

computationally testing all U.S. Food and Drug Administration approved small-

molecule drugs for their ability to disrupt protein complexes with known peptide

binding sites and available 3D structures, the authors behind the study identified

a number of drugs that prevented peptide motif mediated interactions for nuclear

receptors and peroxisome components. With knowledge of docking sites on HIV,

small-molecule inhibitors might also be developed to disrupt HIV protein phospho-

rylation by MAPKs, which may hinder HIV replication. However, care must be

taken when designing HIV drugs because of strain diversity.

As addressed in Chapter 1, HIV has been classified into different strains, or sub-

types, and often these strains combine into recombinant forms [161]. Five subtypes

and two recombinants are present in at least 2.5% of the world population, making

subtype diversity an issue for drug and vaccine design. HIV subtype has been found

to influence transmission and disease progression [161]. The presence and absence of

short peptide motifs on HIV proteins has been correlated with patient response to

certain therapies [37], indicating that differential docking site usage among strains

should be considered when designing drugs.

In this study, we examine MAPKs ERK1/2 docking with HIV proteins from a

drug design perspective using multiple alignments of HIV protein sequences taken

from different patients, and classified according to subtype. We find that only HIV

Nef has docking site pattern hits that cover the majority of protein sequences of

the most common HIV subtypes (A1, B, and C). However, the structure of Nef and

our in silico simulations show that docking at these site is unlikely. Some of the

most frequently observed subtypes of HIV proteins MA, Tat, and Vif are missing

the docking pattern most often observed in eukaryotic MAPK substrates, whereas

HIV Rev does not show the docking pattern on any subtypes. To explain MAPK

docking with HIV proteins in a subtype, or strain, independent manner, we impose
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Motif Pattern Phos(%) ERK(%) p-val
Da [KR]{0,2}[KR].{0,2}[KR].{2,4}[ILVM].[ILVF] 558 (43) 56 (45) 0.299
Db [KR]{2,3}.{1,6}[ILVM].[ILVF] 513 (39) 51 (41) 0.348
Da U Db - 620 (48) 69 (56) 0.030
Dc [KR].{2,6}[ILVM].[ILVF] 841 (65) 92 (75) 0.007
Dd [KR].{1,3}[KR]{2} 694 (53) 70 (57) 0.231

Table 3.1: Using each of the MAPK docking site patterns, we scanned phosphorylated
substrates in the Database of Post Translational Modifications (dbPTM) [97]. We show
the number of phosphorylated substrates with pattern matches (Phos column) as well as
results for ERK1/2 substrates (ERK column). We used Fisher’s exact test to calculate a
p-value for the enrichment of pattern hits on ERK1/2 substrates compared to all other
phosphorylated proteins. The standard docking site patterns, Da and Db, were not en-
riched on ERK1/2 substrates, but the union of these patterns, Da U Db, was enriched.
Dc, but not Dd, was found to be enriched on ERK1/2 substrates.

slight revisions on the MAPK docking patterns described in the ELM Resource.

One such revised motif is present in all major subtypes of HIV proteins known to

be phosphorylated by ERK1/2, and is statistically enriched among the substrates

of ERK1/2. The use of in silico docking indicates the plausibility of the candidate

motifs as HIV protein docking sites for ERK1. Our results provide a first step

towards identifying the docking site motifs on HIV proteins and await experimental

verification.

3.2 Results

3.2.1 Consensus MAPK docking sites on human proteins

As described above, MAPK docking site sequences, found in most eukaryotic MAPK

substrates, are presented as two distinct patterns, dubbed LIG MAPK 1 and LIG MAPK 2,

by the Eukaryotic Linear Motif (ELM) Resource. The LIG MAPK 2 pattern was

not considered in this analysis because it was not found to be enriched in human

ERK1/2 substrates, and it was not expressed by the HIV proteome (data not shown).

The LIG MAPK 1, or D-site, pattern has two functional regions: a string with two
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or three basic residues and a chain of alternating hydrophobic residues [9]. One

to six residues maintain distance between these regions, helping them interact with

distinct regions on MAPKs [10]. The ELM Resource describes one version of the D-

site (Da), while the current literature contains another frequently observed MAPK

docking motif (Db), with a pattern similar, but not identical, to that of Da [9].

Both of the Da and Db motifs have the same biochemical foundations (Table 3.1).

The patterns, or regular expressions, of docking motifs Da and Db were constructed

to account for MAPK docking sites observed in multiple eukaryotic species [131].

Nonetheless, these motifs can serve as starting templates for the discovery of HIV

sequences involved in docking to MAPKs ERK1/2.

To determine the usage of MAPK docking sites in the human proteome, we

scanned proteins with documented phosphorylation sites [97] and ERK1/2 substrates

[97] with the Da and Db docking site patterns. Since functional peptide motifs tend

occur in unstructured regions of proteins [65], tools for motif annotation and discov-

ery do not scan protein regions containing domains [51, 119, 131]. To accomplish this

domain filtering, we removed pattern hits falling in Pfam domains [56] in a manner

similar to the one used by the ELM Resource [131]. The results presented in Table

3.1 indicated that a combined pattern representing both Da and Db docking motifs,

referred to as the Da U Db pattern, was enriched on ERK1/2 substrates relative to

all phosphorylated substrates (p-value < 0.03). This statistical enrichment provided

evidence supporting the validity of the Da U Db pattern as the MAPK docking site

motif among human proteins.

3.2.2 MAPK docking sites on HIV proteins

Since MAPKs ERK1 and ERK2 substrates were statistically enriched with MAPK

docking motifs, we hypothesized that the presence of these docking sites on most

sequences of HIV proteins MA, Nef, Rev, Tat, and Vif would explain their reported

phosphorylation by ERK1 and ERK2. Therefore, we searched for the MAPK docking
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A (Da) B (Db)
VP A1 B C Total VP A1 B C Total
MA 6 14 50 34 MA 1 1 1 1
Nef 97 89 98 93 Nef 96 89 91 90
Rev 1 9 1 3 Rev 0 0 1 0
Tat 0 0 0 0 Tat 67 91 44 59
Vif 92 6 97 50 Vif 1 5 61 27

C (Dc) D (Dd)
VP A1 B C Total VP A1 B C Total
MA 95 96 96 96 MA 95 99 97 97
Nef 100 100 100 100 Nef 60 92 86 87
Rev 100 99 96 97 Rev 100 100 100 100
Tat 69 93 45 61 Tat 100 99 100 99
Vif 100 100 100 100 Vif 92 87 100 92

Table 3.2: We searched sequences of HIV proteins using the four MAPK docking site
patterns in Table 3.1. Here we present the percentages of HIV subtype sequences with
these docking site patterns. The Da and Db patterns were found on the majority of Nef
sequences, but they were missing from some subtypes of the other HIV proteins. The Dc
pattern occurred on the majority of MA, Nef, Rev, and Vif subtypes. The Dd motif had
hits on most sequences of all HIV proteins.

site patterns on HIV sequences gathered from the Los Alamos National Lab (LANL)

HIV Sequence Database (http://www.hiv.lanl.gov/), which contains thousands of

sequences spanning multiple subtypes and recombinant forms. In this analysis, we

considered HIV strains with at least 50 sequences for all HIV proteins known to

interact with ERK1/2, leaving three strains to consider: A1, B, and C. Having at

least 50 sequences for each strain provided us with enough sequence diversity to assess

the conservation of docking pattern hits. Subtypes A1, B, and C are responsible for

the majority of the HIV infection around the globe [74], making them appropriate for

this study. Figure 3.1 shows the Da and Db motif annotations on multiple sequence

alignments of HIV proteins, and Table 3.2 shows the percentages of HIV subtype

sequences with docking site matches. The results showed a subtype dependence for

the annotations of the Da and Db patterns along HIV proteins.

More than 90% of Nef sequences had the Da motif regardless of subtype, but this

motif was absent on most Tat and Rev sequences. Vif subtypes A1 and C, but not
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Figure 3.1: Hits for the standard MAPK docking sites, Da and Db, and the proposed
MAPK docking sites patterns, Dc and Dd, are annotated in purple on multiple sequence
alignments of HIV proteins MA, Nef, Rev, Tat, and Vif. Subtypes in each alignment are
represented by different colors: A1 is pink, B is blue, and C is green. Note that motif
annotations occur in roughly the same position within a virus subtype.
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B, expressed the Da motif. On the other hand, the Db motif was present on Nef,

Tat, and subtype C of Vif, but was absent on MA and Rev. The Da and Db motifs

occupied different spatial positions along the HIV proteins. The data shown in Figure

3.1 suggested Nef was the only HIV protein for which phosphorylation by ERK1 and

ERK2 could be explained by a standard docking site. However, after examining a

map of solvent inaccessible residues on Nef [6], we found that the Db motif hit had

its last residue in a buried region of the protein. Further investigation using in silico

docking revealed that both the Nef Da and Db motif hits could not serve as MAPK

docking sites (see Methods). Docking at these sites placed the MAPK active site

too far from the three possible phosphorylation sites on Nef (Figure 3.2).

Next we revised the Da and Db regular expressions in an attempt to find a motif

that would be present on all major subtypes of HIV proteins known to interact with

human MAPKs ERK1 and ERK2. We looked at sequences of HIV proteins without a

docking motif coincident with the spatial position of the standard motifs. Specifically,

we looked at regions along MA and Vif that aligned with the Da motif, as well as

regions of Tat and Vif that aligned with the Db motif, but were not annotated with

the motif (Figure 3.1). The absence of the Da motif in subtypes A1 and C of MA and

subtype B of Vif was caused by a missing basic residue. The absence of Db in some

subtypes appeared to be due to mutated hydrophobic residues. Taking cues from

these perturbations, we designed a new regular expression for a candidate MAPK

docking motif along HIV proteins (Table 3.1), and represented this motif with the

symbol Dc. The motif Dc turned out to be present on HIV proteins Nef, Rev, Tat,

Vif, and MA in a relatively subtype independent manner (Figure 3.1). We assessed

the significance of Dc motif conservation on HIV proteins by comparing it with the

conservation found on random protein sequences (see Methods). We found that Dc

was significantly conserved on all HIV MAPK substrates compared to random HIV

protein sequences (p-value < 0.05).

We also considered whether or not an infrequently observed MAPK docking motif
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Figure 3.2: In silico docking of MAPK ERK1 (red) and HIV Nef (blue) at the MAPK
docking groove (cyan) and the standard docking motif hit on Nef (green) did not align
the active site of ERK1 (yellow) with any of the three possible Nef phosphorylation site
(magenta). This suggested that the standard docking site pattern match on Nef did not
function as the real docking site for ERK1.
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among human proteins could serve as an HIV subtype-independent MAPK docking

site. The docking site pattern for MAPK with thyroid hormone receptor-beta1

(TRβ1) is KGFFRR, where letters represent amino acids. The motif is known to

be fully functional, and yet it is missing the hydrophobic portion of the Da and Db

motifs [103]. Furthermore, mutational studies showed that only the first and final

two basic residues were required for docking, yielding the pattern KXXXRR, where

X represents any amino acid [103]. Scanning this motif along the HIV proteome

provided new hits, but did not have sufficient coverage along MA, Rev, Tat, and

Vif subtypes. We expanded this pattern to include all basic residues in the first

and final two amino acids, and allowed variation in the distance between the basic

components, resulting in motif Dd, with the regular expression given in Table 3.1.

We used this new pattern to scan multiple alignments of HIV proteins, and found

hits on the majority of sequences for all HIV proteins known to interact with MAPK

(Figure 3.1 and Table 3.2). As with the Dc motif, we found the conservation of

the Dd motif on HIV MAPK substrates to be significant (p-value < 0.05) when

compared to Dd motif conservation on random protein sequences (see Methods).

The specific sequences matched by MAPK docking motif patterns can be different

in human and HIV proteins, and this was best observed by constructing sequence

logos from the motif hits on human (Figure 3.3) and HIV (Figure 3.4) proteins known

to be phosphorylated by MAPKs ERK1 and ERK2. It was clear from Figures 3.3 and

3.4 that the residue usage for motifs Da, Db, and Dc was similar because all motif

hits had basic residues followed by hydrophobic residues. This similar biochemical

foundation explained why the candidate docking motif Dc was coincident with Da

or Db in the HIV proteome. Our computations based on Fisher’s exact test showed

the Dc motif to be statistically enriched on ERK1/2 binding partners (Table 3.1).

The fact that the Da, Db, Dc motif hits on HIV proteins allow less variation in the

spacing residues makes it possible to target these regions with small-molecule drugs

while preserving host ERK1/2 activity. The Dd motif had more or less the same

65



Figure 3.3: For the four MAPK docking sites in the study, we show sequence logos for
hits on human proteins. The motifs used here allowed matches with varying lengths. The
percentage of motif instances of a certain length is shown above each logo.
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Figure 3.4: Here we show sequence logos for MAPK docking site motif hits on HIV
proteins MA, Nef, Rev, Tat, and Vif. For each MAPK docking site motif, we gathered all
hits on all HIV proteins and constructed sequence logos for hits with the same length. The
percentage of motif instances of a certain length is shown above each logo.
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residue usage in human and HIV proteins. This motif is a simple one, and was not

statistically enriched among ERK1/2 substrates (Table 3.1).

3.2.3 Candidate docking motifs on HIV Nef

Focusing on ERK1/2 phosphorylation of HIV Nef, we found that neither of the stan-

dard Da and Db docking motifs were supported by in silico docking (see Methods),

and the Db motif failed the solvent accessibility test. This suggested that one of

our alternative docking motifs could serve as a potential docking site. Using the sol-

vent accessibility test, we found that none of the Dc pattern hits were likely MAPK

docking site candidates, as each one had at least one buried residue. Only the initial

N-terminal Dd pattern hit did not overlap with a buried residue. Unfortunately, we

were unable to find a Nef protein structure that had both this Dd pattern hit and

the proposed Nef phosphorylation sites, so in silico docking could not be performed.

Testing the functionality of this proposed site awaits further experimentation.

3.2.4 Candidate docking motifs on the HIV protein matrix

are supported by structures

In order to further support the feasibility of our new docking patterns as MAPK

docking sites, we compared the structures of the HIV matrix protein to those of

ERK1/2 substrates. We chose MA in this comparison due to the availability of

multiple structures for this protein. Figure 3.5 shows the hierarchical clustering of the

HIV MA proteins and ERK1/2 substrates (with known structures) by their pairwise

structural similarity, as measured by the TM-score. As explained in the methods

section, the TM-score is a normalized measure of structural similarity that ranges

between 0 and 1, where a score above 0.20 is considered significant [183]. As expected

by their 90% sequence similarity, the HIV MA proteins (shown in bold in Figure 3.5)

were clustered together at a high TM-score (0.65). Surprisingly, some of the human
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Figure 3.5: Here we present UPGMA clustering of HIV MA proteins and ERK1/2 sub-
strates by pairwise structural alignment TM-scores. All substrates are human proteins
unless otherwise indicated. The HIV MA proteins are shown in bold.
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ERK1/2 substrates (specifically, Mcl-1, Tob1, and the Xenopus STAR/GSG quaking

protein) were found to be structurally more similar to HIV MA proteins than they

were to other ERK1/2 substrates. These results were consistent with experimental

data showing binding between ERK1/2 and HIV MA.

We next performed in silico docking between HIV MA and ERK1 using the

ZDOCK server [30]. ZDOCK allows users to force binding between specific residues.

The top panel of Figure 3.6 shows ERK1 docked with MA when binding was forced

between the hydrophobic portion of Dc and the hydrophobic groove of ERK1. The

bottom panel of Figure 3.6 shows ERK1 docked with MA after binding was forced

between the Dd motif on MA and the CD site on ERK1 [89]. This figure demon-

strates the close proximity of the MA docking site and the ERK1 docking groove after

both forced docking interactions. The ATP binding site of ERK1 is bound by the

MAPK inhibitor 5-iodotubericidin, colored yellow. Both docking experiments posi-

tioned possible phosphorylation sites on MA close to the ATP binding site of ERK1,

adding additional evidence that the Dc and Dd patterns on MA could be functional.

This was demonstrated in more detail in YASARA (http://www.yasara.org) scenes

of the complexes

(www.ncbi.nlm.nih.gov/pmc/articles/PMC2812490/bin/pone.0008942.s001.zip).

3.3 Discussion

In this study we have shown that known MAPK docking motifs occur in a subtype

dependent manner on HIV proteins known to interact with human MAPKs ERK1

and ERK2. MAPK substrate docking is known to facilitate phosphorylation. While

the detailed role of MAPK phosphorylation in HIV infection has not been established

in a clinical setting, ERK1/2 phosphorylation of HIV proteins has been associated

with viral infectivity in a number of in vitro studies, highlighting the importance of
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Figure 3.6: In silico docking was performed using ZDOCK by forcing ERK1 (red) to dock
at the Dc and Dd motifs on HIV MA (blue). In the upper panel, docking was forced to
occur between the hydrophobic tail of the Dc motif on MA and the hydrophobic docking
groove of ERK1. The lower panel shows the resulting complex when docking was forced
between the basic residues of Dd on MA and the CD site of ERK1. The ATP binding
site of ERK1 interacts with MAPK inhibitor 5-iodotubericidin (yellow). When the Dd
docking site on MA (green) was forced to interact with ERK1, serine phosphorylation sites
(magenta) on ERK1 were positioned in close proximity to the ERK1 ATP binding site.
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MAPK docking sites in the course of HIV infection. For this reason, we hypothe-

sized that if MAPK phosphorylation of HIV proteins was an essential feature of the

progression of HIV infection, then MAPK docking sites along HIV proteins would

be subtype independent. This was our motivation for revising known human MAPK

docking sites for the case of HIV proteins. Our study suggested two docking mo-

tifs, Dc, and Dd, and showed that these appeared on all subtypes of HIV proteins

phosphorylated by ERK1/2. These motifs shared biochemical characteristics with

motifs used by human proteins that bind to MAPKs. The Dc motif was missing one

basic residue form the standard docking motifs, while the Dd motif was missing the

hydrophobic portion. The Dd motif had experimental support on human proteins,

while the Dc motif did not. In silico docking experiments provided evidence sup-

porting the hypothesis that these motifs function as MAPK docking sites along HIV

proteins. One of these candidate motifs, Dc, was statistically enriched among the

binding partners of ERK1/2. However, the lack of statistical enrichment does not

exclude the possibility of the Dd motif being used as a docking site as well.

Current drugs target MAPK kinase activity, but new drugs based on the HIV

MAPK docking sites might work better. Existing MAPK drugs, like SB203580,

SB202190, and RWJ67657 do not target ERK1/2. FR180204 targets ERK1/2 activ-

ity via the ATP binding site, making it susceptible to off target effects. New drugs

targeting HIV replication by blocking ERK1/2 phosphorylation of MA and Vif could

in theory be incorporated into existing therapy regimens, making it more difficult for

an HIV strain to acquire the mutations for resistance to all drugs [41]. By targeting

MAPK docking sites, rather than ATP binding sites, drugs can offer more specificity.

There is hope that few ERK1/2 substrates will be targeted by drugs specific to HIV

docking sequences. Amino acid sequences used by virus and host in the Dc motif

were different enough (Figure 3.3 and Figure 3.4) to allow for specific targeting of

HIV proteins with drugs. Moreover, the poor structural alignment of HIV MA and

other ERK1/2 substrates suggests that HIV specific targeting is possible.
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3.4 Conclusion

The standard MAPK docking motifs from the literature could not explain the inter-

actions of MAPKs ERK1 and ERK2 with all subtypes of HIV proteins. The two new

motifs we introduced as candidate motifs for ERK1/2 docking were present on sub-

types A1, B, and C of HIV proteins known to interact with MAPK. These sites can

be tested by mutating key docking site residues on HIV proteins, and observing the

effect on their phosphorylation by ERK1 and ERK2. The amino acid composition of

the docking motifs on HIV proteins was different enough from the composition found

on human ERK1/2 substrates to allow for HIV sequence specific drug targeting using

small-molecule drugs. This study can be extended based on a recent computational

method for identifying U.S. Food and Drug Administration approved small-molecule

drugs that prevent protein-protein interactions [126]. Using our proposed complex

of MAPK ERK1 and the HIV matrix protein (MA), approved small-molecule drugs

can be screen in silico to find those that disrupt the docking between ERK1 and

HIV MA. Further annotation of the proposed docking motifs awaits experimental

verification.

This study has importance beyond interactions between MAPK and HIV pro-

teins. In Chapter 2, we showed that certain host peptide motifs, like the MAPK

docking site discussed here, are found to be conserved on HIV protein sequences

taken from different patients. Here we have shown that the transfer of a standard

host peptide motif to virus proteins is not as simple as previously thought. We had

to make modifications to the docking site provided by the Eukaryotic Linear Motif

Resource before we could explain how MAPK could dock with HIV proteins. The

requirement for these modifications motivates general questions about host motifs

on HIV proteins. What other host peptide motif are missing on HIV proteins due

to inadequate patterns? How is the virus utilization of variant host peptide motif

patterns beneficial to the virus? These questions help in promoting more studies of

virus-host interactions.
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3.5 Methods

3.5.1 Human and HIV sequences and motifs

HIV sequence alignments were gathered from the Los Alamos National Laboratory

(LANL) HIV Sequence Database, and processed according to [54], but here only

subtypes A1, B, and C were used. We gathered 1436 proteins known to be phospho-

rylated from dbPTM [97], and found 132 of these were phosphorylated by ERK1/2.

We scanned all sequences with the four regular expressions for MAPK docking sites.

For human proteins, we attempted to rule out false positive hits in a manner similar

to the ELM Resource. We removed any pattern hits that overlapped with a Pfam

domain [56]. Pfam domains were found for all proteins using the default settings

for the stand alone Pfam scan program. Enrichment of docking site pattern hits

on ERK1/2 substrates was calculated with a one-tailed Fisher’s exact test, using

phosphorylated dbPTM substrates as a background set.

3.5.2 Significance of proposed docking site motif conserva-

tion on HIV proteins

To assess the significance of our proposed MAPK docking motifs, Dc and Dd, being

annotated on most of sequences gathered for HIV proteins MA, Nef, Rev, Tat, and

Vif, we devised a control based on randomly constructed HIV protein sequences.

Here we describe the control for the HIV matrix protein, but similar steps were used

for all HIV proteins phosphorylated by MAPKs ERK1 and ERK2. Using our total

set of 987 MA subtype A1, B, and C protein sequences from the LANL database, we

estimated the probability of amino acid occurrence as well as amino acid transition

probabilities, i.e. the probability of seeing amino acid β follow amino acid α in MA

protein sequences. We constructed one random MA protein sequence for every real

MA protein sequence by first sampling an initial amino acid based on the single
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amino acid probabilities, and then using the amino acid transition probabilities to

sample subsequent amino acids and build the rest of the random protein sequence

until it was as long as the real one.

We made one hundred sets of random MA protein sequences, each containing

987 random MA sequences, and matched all proteins in each set against patterns

for the Dc and Dd docking sites. For each random protein set, we calculated the

conservation of the proposed docking sites across random MA protein sequences in

the set, and compared this conservation to the docking site conservation observed

for real MA protein sequences from the LANL database. To obtain a p-value for the

conservation of Dc and Dd on real MA protein sequences, we recorded the number

of random sets where the conservation of the proposed docking site was equal to or

greater than the conservation observed for real MA protein sequences. We found

that both Dc and Dd docking site motifs were significantly conserved compared

to random protein sequences (p-value < 0.05), i.e. the proposed docking motifs had

higher conservation on real MA protein sequences than on random protein sequences

in more than 95 of the random sequence sets. Using a similar control for HIV Nef,

Rev, Tat, and Vif proteins, we found Dc and Dd motifs to be significantly conserved

for all HIV MAPK substrates, which made it more likely that they were guiding

interactions with MAPKs ERK1 and ERK2.

3.5.3 Structure analysis

We performed a BLAST [4] search on the Protein Data Bank (PDB) [15] to identify

known ERK1/2 substrate protein structures (E-value threshold of 1e-10). We col-

lected the proteins that had less than 150 residues, to be comparable to HIV MA in

size, and only kept the top hit in each BLAST result set. A pairwise structural align-

ment of each of three MA structures [PDB: 1hiw, PDB: 1uph, PDB: 2hmx] against

each MAPK substrate structure was performed using Vorometric [143]. The align-

ments were filtered by a TM-score [183] of 0.25, resulting in 10 ERK1/2 substrate
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structures. The PDB identifiers for the 10 substrates are as follows: PDB: 1mkpA

- MAPK phosphatase Pyst1, PDB: 3ezzA - Dual specificity protein phosphatase 4,

PDB: 2vswA - Dual specificity phosphatase 16, PDB: 1pueE - PU.1 ETS-domain,

PDB: 1duxC - Elk-1, PDB: 1hksA - Drosophila heat shock transcription factor,

PDB: 2pqkA - Mcl-1, PDB: 2z15A - Tob1, PDB: 2bl5A - STAR/GSG quaking

protein, PDB: 1cmzA - GAIP, PDB: 2g5mB - Neurabin-2, PDB: 1oj5A - Steroid

receptor coactivator 1A, PDB: 1am9A - SREBP-1a.

3.5.4 Docking

Docking in Figure 3.2 was performed with the ZDOCK server (http://zdock.bu.edu)

to find the most likely complex of ERK1 [PDB: 2zoqA] and HIV Nef [PDB: 2nef]

when binding was forced between the proposed docking site on Nef (Arg105, Arg106,

Leu110, and Leu112) and the CD site of ERK1 (Glu98, Asp179, Asp335, and Asp338

[89]).

For the top panel of Figure 3.6, ZDOCK was also used to calculate the most

probable complex of ERK1 [PDB: 2zoqA] and HIV MA [PDB: 1uphA] when binding

was forced between the hydrophobic tail residues of the Dc motif on MA (Ile19 and

Leu21) and the hydrophobic docking groove of ERK1 (Thr127, Leu132, Leu138, and

Phe146 [89]).

For the bottom panel of Figure 3.6, the ZDOCK server was used to calculate the

most probable complex of ERK1 [PDB: 2zoqA] and HIV MA [PDB: 1uphA] when

binding was forced between the basic residues of the Dd motif on MA (Arg22, Lys26,

and Lys27) and the CD site of ERK1.
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Chapter 4

Modularity in protein interaction

network hubs predicts viral

host-pathogen interactions

4.1 Background

As noted in Chapter 1, protein-protein interactions from single organisms have been

organized into networks, where proteins are nodes and network edges represent in-

teractions between proteins [67]. These protein-protein interaction (PPI) networks

have two types of nodes, hubs and non-hubs [8]. Characterizing protein nodes in this

manner happened after PPI networks were observed to be scale-free, i.e. the distri-

bution of the number of proteins each network protein interacts with follows a power

law where a small percentage of network proteins have the majority of interactions

in the network [80]. These highly connected network proteins are referred to as net-

work hubs. Although the scale-freeness of networks has been debated [68, 132, 156],

the property indicates that networks are robust to perturbations on random nodes

because most nodes are not hubs [3, 101], and the specific removal of hub nodes can

drastically alter network structure by removing many interactions [3, 101].
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The study of host network hubs in virus-host systems biology is important for

two reasons. First, HCV, HIV, influenza virus, Epstein-Barr virus, and other human

viruses preferentially interact with hubs in the human PPI network [26, 40, 50, 160].

It has been speculated that this viral targeting of host hubs is an efficient way

to rewire the host network [26]. Second, host hubs are important for the study

of virus interactions with host networks because they have been well studied, and

have a number of important properties that could explain virus-host interactions.

Knowledge of host hub properties from network systems biology provides a number

of host protein features that might be targeted by viruses.

Most of what has been learned about host hubs is useful to consider when look-

ing for properties of virus targeted host proteins. Hubs are evolutionarily conserved

[61]. When compared across organisms, hubs have lower mutation rates than other

network proteins [14]. Furthermore, comparing the number of interactions for hub

proteins across human, fly, worm, and yeast revealed that hub proteins have similar

numbers of interactions across all organisms [57]. Studies of high quality PPI net-

works have revealed a correlation between the number of PPIs a protein participates

in and its importance to the cell [73]. This has led to the conclusion that hubs

are essential for cell survival [14, 67]. Hubs also have only small changes in gene

expression across different conditions as compared to other network proteins [106].

Proteins mutated in cancer are more likely to be network hubs [81]. Finally, hubs

allow for network evolution. Gene duplications are observed more often for hub pro-

teins, creating redundancy in the PPI network that can lead to neofunctionalization

[83, 163].

4.1.1 Intermodular and intramodular hubs

Since the study of hubs is important to the study of networks, or interactomes, hubs

have been investigated further, and it has been revealed that they can be divided

into two classes, or modes, by examining their co-expression with their interactome
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neighbors [162]. In human, hubs are classified as intermodular or intramodular.

Intermodular hubs are defined as being co-expressed with their neighbors in cer-

tain tissues, while intramodular hubs are characterized by co-expression with their

neighbors in most tissues [162]. This hub distinction based on gene co-expression is

important for cancer. It has been demonstrated that the change between intermod-

ular and intramodular modes is predictive of breast cancer patient survival [162].

The case for hub modularity was first made in yeast, where hubs were classified

as ‘date’ or ‘party’ using time series expression data to look at the co-expression of

hubs and the proteins they were observed to bind to in the yeast interactome [67].

The distribution of hub interactome neighbor co-expression values was observed to

have two modes. Hubs in the party hub mode were described as having a higher level

of interactome neighbor co-expression than hubs in the date hub mode. Non-hub

proteins did not show this bimodal distribution of hub and neighbor co-expression.

Further analysis revealed that date hubs served as connections between protein mod-

ules and complexes, while party hubs acted as their central components [59]. This

observation led to the re-branding of date and party hubs as intermodular and in-

tramodular hubs, respectively. Taylor et al. extended these terms to include human

hubs, demonstrating that intermodular hubs were co-expressed with their neighbors

in specific tissues, while intramodular hubs showed neighbor co-expression across

most tissues [162]. These hub classifications have been debated for both yeast and

human. In yeast, the analysis of larger interactome datasets failed to replicate the

hub distinction [12, 13]. In human, using a more controlled normalization of the

expression data used by Taylor et al. caused the hub class distinction to disappear

[1]. Specifically, the GCRMA algorithm [176], which controls for probe affinity, was

used instead of the Affymetrix MAS5 algorithm [77] adopted by Taylor et al..

Intermodular and intramodular hubs have specific properties in both yeast and

human [59, 162]. Intermodular hubs provide temporally and spatially constricted

connections between intramodular hubs, which serve as components of cell machinery
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[59]. These connections allow intermodular hubs to direct macromolecular complexes

in a time and space dependent manner. Intermodular hub proteins have been found

to be larger than intramodular hub proteins, and have more unique domains and

peptide binding motifs than intramodular hubs [162]. Intramodular hubs have been

found to share more molecular functions with their PPI neighbors than intermodular

hubs [162]. As expected of hubs that modulate cellular activity, intermodular hubs

were found to be enriched in cell signaling domains [162]. In yeast, intermodular

hubs are more disordered, or less structured, than intermodular hubs [52, 152]. This

is consistent with the observation that intermodular hubs have few binding surfaces,

while intramodular hubs have multiple, similar binding regions that allow many

interactions to occur at once [88]. Note that this is not inconsistent with the finding

that human intermodular hubs have more unique binding regions than intramodular

hubs. In fact, human intramodular hubs were found to have greater globularity, or

domain coverage, than intermodular hubs [162], which is consistent with the yeast

hub result that intramodular hubs have more protein binding regions. Intramodular

hubs have also been found to have lower evolutionary rates than intermodular hubs

[60]. This may be caused by the greater globularity and more structured regions in

intramodular hubs as compared to intermodular ones [84].

In this chapter we provide new evidence for the inter/intramodular hub distinc-

tion, and ask if hub proteins that interact with virus proteins favor one hub type

over the other. The work presented here is important for two reasons. First, it con-

tributes to the network biology field by reaffirming the existence of two hub classes

by showing that viruses prefer one hub class over another. Second, it aids the study

of virus-host networks by refining the observation that viruses preferentially interact

with hub proteins. This refinement focuses the multiple hub properties that might

be behind the virus preference into a few testable hypotheses for future studies.
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Figure 4.1: In this study we used three human interaction networks, I2D, STRING, and
HPRD. To find hubs for each network, we took the top 20% most connected nodes. Each
network had a different hub set due to differing network size and connectivity. Here we
show the overlap between hub sets for the three networks.

4.2 Results

4.2.1 Hub classification

In this study, we re-examined the hub class hypothesis in human with the goal of

investigating virus hub preference. We adopted the same approach used by Taylor et

al., but substituted their expression dataset with one from COXPRESdb [122], which

is larger in terms of genes and samples. To ensure that our results were robust to in-

teraction network changes, we used three separate human interaction networks from

the Interologous Interaction Database (I2D) [21], the Search Tool for the Retrieval

of Interacting Genes/proteins (STRING) [174], and the Human Protein Reaction

Database (HPRD) [129]. I2D, with roughly 150 thousand edges connecting 11.5

thousand proteins, is the largest network, but it also contains the most interaction
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predictions. HPRD has around 35 thousand edges between nine thousand proteins.

This network has high quality interactions curated from the literature. Like I2D,

STRING has many predicted interactions to complement interactions from the liter-

ature, resulting in a network of about 140 thousand interactions between six thousand

proteins. For each network, we designated the 20% most connected proteins as hubs

[16]. Due to connectivity differences, each interactome resulted in a different set of

hubs (Figure 4.1). To make the hub classifications for each network, we used Pear-

son correlation coefficients (PCCs) from COXPRESdb to indicate correlated gene

expression between hub proteins and their neighbors, and obtained an average PCC

for each hub by averaging the PCCs of the hub’s neighbors [67, 162]. We refer to

the distribution of average PCC values for hubs as dPCC. For each interactome’s

dPCC, we used a likelihood ratio test [53] to confirm that a bimodal distribution was

a significantly better fit for the data than a unimodal distribution. The resulting

bimodal distributions for each network did not allow an easy separation between in-

ter/intramodular hubs because of the large overlap between the two modes, so we fit

a mixture of two Gaussian distributions to binned versions of each network’s dPCC

(Figure 4.2a). We found that limiting hubs in one network to those present in one or

both of the other two networks resulted in a stronger bimodal signal for each dPCC

(Figure 4.2b). For the remainder of the study, we limited hubs in one network to

only proteins classified as hubs in one of the other two networks.

We obtained intermodular and intramodular hub sets for each interactome by

assigning hubs to the most likely mode of the interactome’s dPCC. As defined be-

fore, intramodular hubs in the higher mode were co-expressed with their neighbors

in most tissues, while intermodular hubs in the lower mode were co-expressed with

their neighbors in certain tissues. Like the hub, non-hub classification, interactomes

differed in their inter/intramodular hub sets, but there was much overlap despite the

networks having different connectivities (Figure 4.2c). Final hub classifications were

determined by the most frequently observed hub class across the three networks.
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Figure 4.2: This figure illustrates how we have classified intermodular and intramodular
hubs. (a) The distribution of hub average PCC values (dPCC) for I2D hubs was fit with
a bimodal distribution. Hubs were assigned to either the intermodular mode (blue) or
intramodular mode (green) of the bimodal distribution. (b) The dPCC each for network
hubs became more bimodal as the number of interactomes the hub had to be present
in increased. The density curves shown here for the I2D interactome are for all hubs
present in I2D (1), hubs in I2D and STRING or HPRD (2), and hubs present in all
three interactomes (3). (c) Inter/intramodular hub classifications were compared for I2D,
STRING, and HPRD. In an effort to make are results robust to network changes, we
focused on hubs with the same classification in at least two networks.
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Hubs that were only present in two interactomes, and had conflicting class assign-

ments, were not considered in the study. Hub classifications were stochastic because

of equally likely hub assignments, making hub class assignments differ slightly be-

tween runs, but our results were qualitatively similar for all runs. Here we present

the results for one run.

4.2.2 Hub class properties

Using hubs with consistent inter/intramodular classifications in at least two net-

works, we examined biological features of intermodular and intramodular hubs. As

reported by Taylor et al., intermodular hubs had more linear motifs [131] per residue

and more unique SMART domains [99] per protein than intramodular hubs (one-

tailed Wilcoxon tests, p-value < 0.03 for both). Taylor et al. also reported that

intramodular hubs were longer than intermodular hubs, but we found no difference

in protein length between the hub classes. We used DAVID [43] to find KEGG path-

ways [85] and Gene Ontology [7] terms enriched in each hub class compared to all

hubs. Intermodular hubs were enriched in genes involved in signal transduction, ki-

nase cascades, anatomical structure morphogenesis and development, cellular devel-

opment, and multicellular organismal development (Bonferroni-corrected p-value <

0.01). Intramodular hubs were enriched in genes annotated with translation, mRNA

metabolic process, RNA splicing, ribosome and proteasome components, nucleotide

binding, pyrophosphatase activity, and cell cycle (Bonferroni-corrected p-value <

0.01). These hub enriched terms are consistent with what has been reported for

hubs in both yeast and human [59, 162].

4.2.3 Virus hub preference

With our hub classes established, we gathered three sets of virus-host interactions to

test for an association between hub class and hub proteins that interact with virus
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Average hub-neighbor co-expression
Virus Intermodular Intramodular P-value
HCV 73/655 56/668 0.948350202594
HIV 93/635 130/594 0.00380164624435
Influenza 40/688 88/636 4.77173152977e-06

Median hub-neighbor co-expression
Virus Intermodular Intramodular P-value
HCV 71/646 52/646 0.958559296013
HIV 95/622 121/577 0.01952745875
Influenza 39/678 84/614 6.9130570599e-06

Table 4.1: The table shows the number of virus targeted inter/intramodular hubs consid-
ered when testing for an association between hub class and virus interaction, as well as the
results from a one-tailed Fisher’s exact test. HIV and the influenza virus target proteins
that are enriched in intramodular hubs, while HCV targeted proteins almost show a pref-
erence for intermodular hubs. Calculations were performed using the average and median
to calculate a measure of co-expression between hubs and their interacting neighbors (see
text).

proteins. We found human proteins that interacted with an HIV protein by com-

bining VirusMINT [29] and the NCBI HIV-1, Human Protein Interaction Database

[62]. For HCV, we relied on a collection of virus-host interactions identified by yeast

two-hybrid screens and a literature search [40]. For influenza virus, we used curated

interactions gathered to study influenza virus replication [91].

In an attempt to detect a trend for virus-host interactions, we separately tested

hub sets targeted by HCV, HIV, and influenza virus for an inter/intramodular hub

class preference using a one-tailed Fisher’s exact test (Table 4.1). HIV and influenza

targeted hubs tended to be intramodular (Figure 4.3). On the other hand, HCV

targeted hubs were almost significantly associated with intermodular hubs (Fisher’s

exact test, p-value < 0.055).

To further study the viruses, we turned to small interfering RNA (siRNA) screens

for virus dependency factors (VDFs) [24, 91, 102, 181]. In these screens, host genes

were knocked down in virus infected cells, and the effect on the virus is observed.

Genes whose expression depletion negatively affected the virus were recorded as

VDF hits, i.e. host factors that are required by the virus [24]. For HIV, we merged
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Figure 4.3: This figure visually compares the virus hub preference for HCV, HIV, and
influenza virus. For each virus, dPCC density curves for virus targeted hubs were plotted
against the dPCC density curve for all intermodular and intramodular hubs in the human
I2D network. We used only hubs present in I2D and another human network. Hubs
that interacted with HIV or influenza virus preferred the intramodular mode of the dPCC
bimodal distribution.
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results from four siRNA screens that searched for VDFs required for HIV replication

[24, 181]. These datasets of had few genes in common, but genes across datasets

often had roles in the same pathways [181]. HCV siRNA results were taken from

several screens that covered the full HCV life cycle [102]. Influenza virus screen

results were taken from a study of VDFs involved in influenza replication [91]. Just

as host proteins found to bind to virus proteins were enriched in hubs, we found

that VDFs had more interactome neighbors than genes with no virus association

(one-sided Wilcoxon test, HCV: p-value < 6e-8, HIV: p-value < 3e-11, influenza:

p-value < 9e-19). Using Fisher’s exact test again, we found that HIV still showed

an intramodular hub preference for the siRNA data, while HCV and the influenza

virus did not (Table 4.2).

The bimodality of each network’s dPCC might have been caused by a signifi-

cant difference between hub classes in terms of the number of interacting neighbors,

or degree, considered for each hub, i.e. proteins in one hub class would have sig-

nificantly different numbers of interaction neighbors than proteins in the other hub

class [162]. Taylor et al. addressed this concern and found no difference in the degree

distributions of the hub classes [162]. We compared intermodular and intramodular

hub degree distributions for each network separately using a one-tailed Wilcoxon

test. For the I2D and STRING interactomes, we found that intramodular hubs had

more neighbors than intermodular hubs (p-value < 3.5e-12 and p-value < 5.5e-12,

respectively). For HPRD, neither hub class had more interactions. Since we found

a degree distribution difference between inter/intramodular hubs for the I2D and

STRING networks, we repeated the classification of host hub proteins using the me-

dian instead of the average when summarizing hub neighbor co-expression. If the

degree difference between inter/intramodular hubs was causing the hub distinction,

using the median instead of the average would solve this problem by removing the

influence of outliers in a hub’s collection of neighbor co-expression correlations. Us-

ing the median instead of the average did not produce qualitatively different results
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Average hub-neighbor co-expression
Virus Intermodular Intramodular P-value
HCV 25/703 38/686 0.0581221952106
HIV 58/670 106/618 3.79707703564e-05
Influenza 34/694 36/688 0.441928925248

Median hub-neighbor co-expression
Virus Intermodular Intramodular P-value
HCV 21/696 41/657 0.00477984148923
HIV 56/661 106/592 8.58550353701e-06
Influenza 36/681 34/664 0.599420611669

Table 4.2: The table shows the number of inter/intramodular hubs considered when
testing for an association between hub class and virus dependency factors, as well as the
results from a one-tailed Fisher’s exact test. Only host factors required for HIV replication
are associated with intramodular hubs. Calculations were performed using the average
and median to calculate a measure of co-expression between hubs and their interacting
neighbors (see text).

for virus-host protein interactions (Table 4.1). For the siRNA data, the association

between HCV host dependency factors and intramodular hubs became significant

(Table 4.2).

For each virus, we intersected siRNA screen hits with host proteins that inter-

acted with virus proteins to arrive at virus-host protein binding interactions that

might play an important role in the virus life cycle. Figure 4.4 shows the network of

connections between of these virus targeted inter/intramodular hubs and virus pro-

teins. Human hubs were placed into functional categories according to the literature

[24, 162]. HIV targeted intramodular hubs included proteins involved with tran-

scription and splicing, nuclear transport, HIV cell entry and budding, and the pro-

teasome. The four intramodular HCV targeted hubs were serine/threonine-protein

kinase TBK1, actin-modulating protein CFL1, nuclear import protein IPO5, and

CDK6. Differing from HCV and HIV targeted intramodular hubs, some influenza

virus targeted intramodular hubs were involved in apoptosis and the cell cycle. Inter-

modular HCV targeted hubs included proteins involved in transcription, translation,

and cellular transport. Intermodular hubs found to interact with all three viruses
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included members of the Jak/STAT and MAPK signaling pathways.

4.3 Discussion

To find a biological reason for the hub preference observed for HIV and influenza

virus, we focused on the roles of human protein complexes in virus life cycles. HCV,

HIV, and influenza virus all encode less than 20 proteins, and must rely on human

proteins to accomplish virus replication [102, 160]. There is much anecdotal evidence

that HIV proteins interact with human complexes to accomplish important roles in

HIV replication [24]. HIV proteins interact with the mediator, P-TEFb, and elongin

complexes to accomplish HIV transcription. HIV splicing is directed by HIV proteins

interacting with hnRNP complexes. Interactions of HIV proteins with the chaperone

containing TCP1 complex might play a role in HIV budding. For HCV infection,

the role of human complexes is less clear. An siRNA screen indicated that the

Golgi-associated retrograde transport complex might play a role in HCV replication

[102]. Influenza virus has been predicted to interact with host complexes such as

the ribosome, proteasome, and splicesome [91]. To establish a link between human

protein complexes and viruses, we counted the number of complexes a human protein

participated in using complexes listed in HPRD. In our hub set for HPRD, more than

half of the hubs participated in at least one complex, which was significantly more

than the fraction of complexed proteins found in the entire network (p-value < 9e-

57). For each of the three viruses, we used a one-tailed Wilcoxon test to show that

virus targeted human proteins participated in more protein complexes than other

human proteins (HIV: p-value < 0.002, HCV: p-value < 0.02, influenza: p-value <

6e-4). This is expected from the observation that host hub proteins participate in

more complexes than other network proteins, so we conducted a further test with

HIV that revealed that virus targeted hub proteins participated in more complexes

than other hub proteins (one-sided Fisher’s exact test, p-value < 0.03).
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Figure 4.4: Here we show the inter/intramodular hubs targeted by HCV, HIV, and the
influenza virus. Virus proteins are large circles. Intermodular hubs are triangles, and
intramodular hubs are octagons. Virus-host interactions are thick lines, while human-
human interactions are thin and blue. Human hubs are colored by biological function.
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In yeast, intermodular hubs connect modules and complexes, while intramodular

hubs serve as their central components [59]. Using protein complexes described in

HPRD, we confirmed that human intramodular hubs participated in more complexes

than intermodular hubs (one-sided Wilcoxon test, p-value < 0.02). If viruses must

modulate the activity of protein complexes, they could do so by interacting with

complexes directly through intramodular hubs, or they could interact with proteins

that form connections between complexes, the intermodular hubs. Given that HIV

and influenza virus prefer to interact with human proteins involved in many com-

plexes, and intramodular hubs are involved in more complexes than intermodular

hubs, we propose that some virus proteins interact preferentially with intramodular

hubs because they are involved in more protein complexes than intermodular hubs.

4.4 Conclusion

Our results have further demonstrated the distinction between intermodular and in-

tramodular hubs. We found that by considering hubs present in multiple networks,

this distinction becomes more evident. We used this observation to classify human

hubs that have direct protein interactions with virus proteins, and found that HIV

and influenza virus targeted hubs were more likely to be intramodular than inter-

modular. HCV targeted proteins did not show a significant hub type preference,

but since the siRNA data did show an intramodular preference, this may change as

more interactions are gathered. Compared to intramodular hubs, intermodular hubs

had more linear motifs per residue and more unique SMART domains. Intermodu-

lar hubs were enriched in signaling and developmental pathways while intramodular

hubs were enriched in translation and mRNA processing. Intramodular hubs par-

ticipated in more protein complexes than intermodular hubs, and, given that HIV

and influenza virus proteins prefer to interact with members of many complexes, this

bias might be causing the hub class preference.
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Knowing that some viruses have an intramodular hub preference aids the study

of virus proteins in two ways. First, a virus intramodular hub preference is beneficial

for virus-host network studies that are functionally annotating virus proteins based

on their host binding partners. In single organisms networks, proteins that interact

with each other are often in the same cellular pathways, and share the same functions

[145]. This observation has been used to annotate proteins of unknown function

with the functions of proteins with which they interact [86, 148]. This annotation

method has been extended to virus-host networks, annotating virus proteins based

on the functions of their interacting host proteins [26]. Since intramodular hubs are

more likely to be functionally similar to the proteins they interact with [162], the

virus intramodular hub preference justifies annotating virus proteins using virus-host

networks, while an intermodular hub preference would cast doubt on this annotation

method.

The second way that a virus intramodular hub preference aids the study of virus

proteins is by providing protein features that viruses might be targeting when they

interact with host proteins. Here we provided evidence that virus proteins prefer to

interact with intramodular hubs because they participate in host protein complexes

more often than intermodular hubs. Intramodular hub proteins are also more struc-

tured than intermodular hubs, participate in more cellular housekeeping activities

than intermodular hubs, and evolve at lower rates than intermodular hubs. Further

study is needed to see if these features might also be targeted by virus proteins, and

to determine the importance of each feature to viruses.

4.5 Methods

4.5.1 Human interaction networks

We converted the human I2D (accessed October 2009), human STRING (version

8.2), and HPRD (release 8) interactomes to networks of Entrez Gene IDs using
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ID mapping provided by UniProt [34], gProfiler [135], and NCBI’s eutils. Network

hubs were found for each interactome separately by locating the lowest degree in

the top 20% of connected genes, and taking all genes with at least this degree.

Bimodal curves for each interactome’s hub average PCC distribution were found

using gradient descent to minimize the log-likelihood of a binned distribution. The

number of bins for each distribution was determined by dividing the total number

of data points by a bin divisor. For individual networks, we used a bin divisor of 11

for I2D and 10 for STRING and HPRD. For distributions made using hubs present

in at least two networks, we fit a bimodal curve using a bin divisor of 6 for STRING

and 9 for I2D and HPRD.

4.5.2 Virus-host interaction networks

We gathered HIV-human protein interactions from NCBI and VirusMINT. Both

virus-host interaction datasets label interactions by type. We focused on interaction

types describing direct protein interactions, or modifications. We used VirusMINT

interactions labeled with MINT interaction IDs 0006 (anti bait coimmunoprecipita-

tion), 0007 (anti tag coimmunoprecipitation), 0018 (two hybrid), 0019 (coimmuno-

precipitation), 0027 (cosedimentation), 0045 (experimental interaction detection),

0096 (pull down), 0416 (fluorescence microscopy), 0424 (protein kinase assay), 0435

(protease assay), 0515 (methyltransferase assay), 0889 (acetylation assay). For the

NCBI database, we used acetylated by, acetylates, binds, cleaved by, cleaves, de-

graded by, degrades, dephosphorylates, methylated by, myristoylated by, phospho-

rylated by, phosphorylates, ubiquitinated by edges. We gathered HIV siRNA results

from two sources covering four studies, and converted these hits to Entrez Gene IDs.

Three studies were summarized in Table 4 of the supplementary document supplied

by Bushman et al. at http://www.hostpathogen.org [24]. The fourth study was taken

from Figure S2 in an article by Yeung et al. [181].

HCV-human protein interactions were taken from de Chassey et al. [40]. HCV
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siRNA results were taken as genes that showed a decrease in infection, listed in

supplementary material SD1 and SD2 columns B-E [102].

Influenza-human protein interactions and siRNA hits were taken from a study of

host factors involved in influenza replication [91]. For the protein interactions, we

ignored interactions where no virus protein was specified.

4.5.3 Peptide motif and SMART domain annotations

Protein sequences form three human interactomes, I2D, STRING, and HPRD, were

scanned for peptide motifs and SMART domains. Protein sequences for the STRING

and HPRD interactomes were taken from their respective databases. Protein se-

quences for the I2D network were taken from UniProt. Human proteins were scanned

for SMART domains using batch access. Human proteins were annotated with the

136 peptide motifs described in the ELM Resource by downloading regular expres-

sions for each motif from the resource, and matching them against all human protein

sequences. The networks used in this study were composed of Entrez Gene IDs, and

multiple proteins may correspond to one Entrez Gene ID. For peptide motif and

SMART domain annotations for each Entrez Gene ID, we averaged the annotations

of all the proteins for which it coded.
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Chapter 5

Reflections and perspectives

In this dissertation, we presented three projects that introduced new observations

about the nature of virus-host networks and generated testable hypotheses for further

virus-host network discoveries. In the first project, we showed that host pathways

targeted by HIV could be predicted using peptide motifs on HIV sequences. Our

HIV-human interaction models have predicted new pathways and interactions that

may be important for HIV infection. In our second project, we examined the docking

between HIV proteins and human mitogen-activated protein kinases, which may be

important for HIV replication, and proposed docking sites on HIV substrates that

can be evaluated in the lab. In our third project, we contributed to the network biol-

ogy field by addressing the observation that viruses target host network hub proteins,

and asking if viruses had a preferential interaction with intermodular or intramod-

ular hubs. By demonstrating a preference of intramodular hubs over intermodular

hubs for HIV and influenza virus, we aided the systems study of biological networks

by providing more evidence for the distinction between intermodular and intramod-

ular hubs, which is currently under debate [1, 12, 13, 67, 162]. Furthermore, the

virus intramodular hub preference promotes the study of which intramodular hub

properties are important for viral infection. In this final chapter, we review the work

presented in this dissertation and address how it can be used as a basis for future
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investigations of virus-host networks.

5.1 Review of our work

Prediction of HIV virus-host protein interactions using virus and host

sequence motifs

In Chapter 2 we presented a peptide motif based virus-host interaction prediction

method, and tested its ability to accurately recover HIV-human interactions listed

in the NCBI HIV-Human Protein Interaction Database [62, 130]. We motivated our

work by outlining the importance of predicted virus-host interactions for guiding ex-

perimental studies of virus-host interactions [79, 96, 153]. The virus-host networks

that emerged from virus-host interaction experiments have been used to annotate

virus proteins of unknown function and compare different viral strategies for dealing

with the host immune system [26, 116]. We showed that our predicted interac-

tions had significant overlap with interactions in the NCBI database, and that virus

targeted proteins from our predictions overlapped significantly with a set of host

proteins that are important for HIV replication [24]. Our HIV-human interaction

predictions were further validated in that the human proteins in the interactions

occupied many of the same biological pathways as the human proteins shown to be

targeted by HIV in the validated NCBI interactions. We showed that our predicted

virus targeted proteins were also enriched in some pathways not known to interact

with HIV, providing new potential directions for the study of virus-host networks.

Our work for this chapter has been further summarized in a review by Chan et al.

[28].

Our prediction work has generated hypotheses about new virus targeted host

pathways and provided a list of host proteins whose interactions with virus pro-

teins may be essential for HIV replication. The cell cycle, Jak-STAT, cytoskeletal

regulation, and tight junction KEGG pathways were all significantly enriched in
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our predicted interacting proteins for some HIV protein, but the corresponding en-

richment was not significant for the validated virus-host interactions from NCBI.

These pathways offer new hypotheses for cell processes that HIV might need to tar-

get. Combining the predicted virus-host interactions with the results form siRNA

screens searching for host factors that are important for HIV replication also leads to

new hypotheses. Predicted virus targeted proteins that are implicated in an siRNA

screen can be tested to see if preventing the interaction has an effect on HIV replica-

tion. Furthermore, we have identified several protein binding sites on host and virus

proteins that may be guiding HIV-human interactions that are essential for replica-

tion. Following up on the proposed virus-host interactions that might be important

for replication and the suggested virus targeted pathways will help construct a more

complete HIV-human interaction network that can facilitate future HIV studies.

A bioinformatics approach reveals possible MAPK docking motifs on HIV

proteins

In Chapter 3 we continued our work with the hypothesis that virus proteins use

host peptide motifs to interact with host proteins, and focused on the peptide motif

that acts as a substrate docking site for mitogen-activated protein kinases (MAPKs)

ERK1 and ERK2 [9]. Our work with MAPK and virus proteins was motivated

by the importance of MAPK phosphorylation of HIV substrates MA and Vif in

infection [22, 180]. We observed that HIV proteins MA, Rev, Tat, and Vif, while

documented to be phosphorylated by ERK1 and ERK2, were missing the accepted

MAPK docking motif. The HIV Nef protein had hits for the MAPK docking motif

pattern, but further investigation of Nef’s structure suggested that these sites were

not functional. We revealed that modifications of the accepted MAPK docking

motif pattern would yield peptide motif patterns that annotated all HIV proteins

phosphorylated by ERK1 and ERK2. As an argument that our proposed docking

motifs were functional, we showed that they were enriched on human MAPK ERK1
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and ERK2 substrates, and we demonstrated that in silico docking of MAPK ERK1

and HIV MA via the proposed docking site produced a protein complex that aligned

the active site of ERK1 with a possible phosphorylation site on MA. The locations

of our proposed docking motifs on HIV proteins serve as testable sites that mediate

MAPK and HIV protein interactions. If functional, our proposed docking sites will

aid in the search for small-molecule drugs that prevent HIV protein phosphorylation

by MAPKs ERK1 and ERK2.

The work in this chapter is important for future work with virus-host interactions.

First, it serves as outline of computational steps for the modification and verification

of host peptide motif for use on virus proteins. Second, this chapter motivates more

questions concerning the presence of host peptide motifs on virus proteins. Are there

other peptide motifs, like the MAPK docking site, that are variations of documented

host peptide motifs? How is the virus utilization of variant host peptide motif

patterns beneficial to the virus? Answering these questions will yield more insights

into the nature of virus-host networks.

Modularity in protein interaction network hubs predicts viral host-pathogen

interactions

In Chapter 4 we bridged the gap between studies of hubs in single organism net-

works and work done with virus-host networks to determine if host hub modularity,

i.e., the presence of two hub types in networks, played a role in virus-host interac-

tions. We reaffirmed the debated existence of intermodular and intramodular hubs

in single organism networks using three human protein-protein interaction networks,

and confirmed some of the properties that have been observed for intermodular and

intramodular hubs, such as the preference of intramodular hubs to be parts of pro-

teins complexes [59]. We showed that the despite being debated [1, 12, 13, 67, 162],

the inter/intramodular hub distinction is important for network systems biology by

demonstrating that HIV and influenza virus proteins have a significant interaction
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preference for intramodular hubs. We ended this chapter by proposing that the virus

intramodular hub preference is caused by a virus preference to interact with hubs

that are part of host protein complexes.

The virus intramodular hub preference described in this work promotes questions

about the features of host proteins that are targeted by viruses. Intramodular hubs

evolve at slower rates [60], and are more structured than intermodular hubs [52, 152,

165]. Perhaps viruses are targeting these hub features in addition to the intramodular

hub complex feature. More work should be done to investigate the importance of

these intramodular hub features in guiding virus protein preference.

5.2 Future work

The work outlined here will help with future studies of virus-host networks. In

addition to the experimental work suggested above, our work motivates other com-

putational studies. Here we introduce four promising computational extensions to

this work.

Predicting virus-host integrations using peptide motifs and additional in-

formation

One of the draw backs of predicting virus-host interactions using peptide motifs

is the high number of false positive predictions. This problem can be alleviated

by including additional information. Some of this information is provided by virus

protein structures. HIV protein structures have already been used to predict virus-

human interactions [46]. The peptide motif method can be supplemented by this

work where virus protein structures are available. The peptide motif method can

also easily fit into a prediction method that utilizes virus-host network motifs [172].

Network motifs are over-represented patterns of interaction involving two or more
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proteins. Network motifs have been successfully used to predict yeast protein inter-

actions [2]. It is likely that combining a similar approach using virus-host network

motifs with the peptide motif based interaction prediction method will be able to

predict virus-host interactions with fewer false positives.

Database of HIV mutations and their effects on virus-host interactions

Another fault of the peptide motif based virus-host interaction prediction method is

the lack of evidence that an individual peptide sequence is responsible for a virus-

host protein interaction. In the first aim of the dissertation, we showed that the

conservation of peptide motifs on the HIV Nef protein sequences was not due to

chance, and used this significant conservation to argue that conserved peptide motifs

on HIV proteins were mediating virus-host interactions. In the second aim of the

dissertation, we proposed that the statistical enrichment of a peptide motif on the

interaction neighbors of a protein was evidence that the peptide motif was being

used in interactions with some neighbor proteins.

The task of finding functional peptide motifs would be simplified if there was a

database of mutations on virus proteins and their effects on virus-host interactions,

identifying the functional motif hits would be much easier. The NCBI HIV-Human

Interaction Database has some of the information needed to make such a database,

but it is poorly organized. A database of HIV protein mutations can be built by

taking all the source articles from the NCBI database, mining them for paragraphs

mentioning mutations and virus-host interactions, and then having a large commu-

nity of biologists annotation of these paragraphs with information describing the

mutation and its effect on virus-host interactions. Using these virus mutations to

find functional peptide motifs, and using functional peptide motifs with structure

and network guides would make a better model of virus-host interactions.
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Investigating the role of virus proteins as intermodular hubs in host pro-

tein interaction networks

Highly connected proteins in the human protein interaction network come in two

types, intermodular hubs that modulate the activities of human complexes, and

intramodular hubs that play important roles in these complexes [67, 162]. When

combined with other studies of virus proteins, the work in this dissertation moti-

vates the hypothesis that virus proteins act as intermodular hub proteins in virus-

host networks. There is much evidence to support this claim. First, a study of

influenza-human interactions revealed that influenza proteins had more interactions

with host proteins than expected by chance, indicating that virus proteins might be

hub proteins in the virus-host interaction network [146]. Second, in Chapter 4 we

demonstrated that HIV and influenza proteins prefer to interact with intramodular

hubs. We suggested that this hub preference was actually a preference to interact

with host protein complexes, which is the same preference seen for intermodular

hubs. Third, intermodular hubs are highly unstructured, or disordered, proteins

compared to intramodular hubs [52, 152]. It has been observed that 25 RNA virus

proteins with structures available in the Protein Data Bank [15] had large regions

of protein disorder [165]. Specific cases of virus protein disorder involved the HIV

Rev and matrix proteins [64, 170]. The basic protein segment of HIV Rev that binds

HIV RNA is unstructured when alone in solution, but adopts an α-helix when bound

to RNA [170]. The HIV matrix protein is highly disordered, and this might help

the virus in evading the immune system [64]. Fourth, intermodular hubs have more

peptide motifs than intramodular hubs [162]. In Chapter 2, we showed that not

only do virus proteins have many conserved host peptide motifs, but these motifs

are possibly functional because they can be used to predict interactions with virus

proteins.
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Testing the hypothesis that virus proteins act as intermodular hubs in the virus-

host network is important because it has implications for antiviral therapies. Disor-

dered proteins must be tightly regulated in host cells because their binding promis-

cuity makes then highly sensitive to changes in their concentration [66, 173]. There

is evidence that concentration changes also affect HIV infection. In an HIV infected

cell, HIV proteins Env, Nef, and Vpu regulate the presence of the HIV CD4 receptor

at the cell’s membrane [100]. Downregulating the HIV CD4 receptor at the cell’s

membrane is thought to decrease the chance of reinfection by more HIV virions,

which would stress the host cell’s pathways without resulting in the production of

more virus particles [6, 71]. CD4 downregulation by HIV hints that the tight regula-

tion of HIV protein expression is necessary for successful replication. More extensive

investigation is needed to validate this hypothesis and develop methods to alter virus

protein regulation for therapy purposes.

Examining the effects of host environment on influenza virus peptide mo-

tif usage

Influenza virus has the ability to infect a number of host organisms, including hu-

man, chicken, swine, and horse. Nucleotide sequences of the 2009 H1N1 pandemic

influenza have been shown to have a substitution bias that depends on the host or-

ganism in which it resides [155]. Based on our work in Chapters 2 and 3, we propose

a project to examine the possibility of an influenza virus peptide motif usage bias

that correlates with host organism. Our results in Chapter 2 suggested that peptide

motifs on virus proteins are important for guiding virus-host protein interactions.

Case studies focusing on single peptide motifs on certain virus proteins have shown

that some virus proteins use host peptide motifs to interact with host proteins to

accomplish necessary steps in the viral life-cycle [82]. Regions of some influenza pro-

teins have already been found to evolve differently in different hosts. The identities

of four amino acids in an influenza polymerase component have been found to differ
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consistently between mammalian and avian hosts, and it has been suggested that

these differences affect interactions with host proteins [178]. In light of the impor-

tance of peptide motifs for virus-host interactions, we suggest conducting a study of

differential peptide motif usage among influenza viruses infecting mammalian and

avian hosts. Such a study will give insights into the selective pressures on influenza

proteins, which can aid in drug design and the determination of which organism an

influenza strain has originated.
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Appendix A

Supplemental tables
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HIV protein Alignment sequence count
CA 824
ENV 411
GAG 824
IN 74
MA 824
NC 824
NEF 807
POL 74
PR 74
REV 417
RT 74
TAT 338
VIF 673
VPR 571
VPU 285

Table A.1: This table shows the number of protein sequences in each multiple alignment
for all HIV proteins.
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ELM Binding PROSITE or Proteins
CLV NDR NDR 1 NP 002516.1
CLV PCSK FUR 1 NP 002560.1

CLV PCSK PC1ET2 1 NP 002585.2; NP 000430.3
CLV PCSK PC7 1 NP 004707.2
CLV PCSK SKI1 1 NP 056453.1

LIG 14-3-3 3 14-3-3 proteins signature 1
LIG 14-3-3 3 14-3-3 proteins signature 2

LIG APCC Dbox 1 BAA88957.1; NP 001246.2
LIG BRCT MDC1 1 BRCT domain profile

LIG CYCLIN 1 Cyclins signature
LIG Clathr ClatBox 1 NP 004850.1

LIG EH1 1 Trp-Asp (WD) repeats profile
LIG EH1 1 Trp-Asp (WD) repeats circular profile
LIG EH1 1 Trp-Asp (WD) repeats signature
LIG EVH1 I WH1 domain profile
LIG FHA 1 Forkhead-associated (FHA) domain profile
LIG FHA 2 Forkhead-associated (FHA) domain profile
LIG MAPK 1 MAP kinase signature
LIG NRBOX Nuclear hormone receptors DNA-binding domain profile
LIG NRBOX Nuclear hormones receptors DNA-binding region signature
LIG PDZ 3 PDZ domain profile
LIG PP1 Serine/threonine specific protein phosphatases signature

LIG PP2B 1 AAH28049.1;NP 671709.1;NP 000936.1;NP 000935.1;NP 005596.2
LIG SH2 GRB2 Src homology 2 (SH2) domain profile
LIG SH2 PTP2 Src homology 2 (SH2) domain profile
LIG SH2 SRC Src homology 3 (SH3) domain profile

LIG SH2 STAT3 Src homology 2 (SH2) domain profile
LIG SH2 STAT5 Src homology 2 (SH2) domain profile

LIG SH3 1 Src homology 3 (SH3) domain profile
LIG SH3 2 Src homology 3 (SH3) domain profile
LIG SH3 3 Src homology 3 (SH3) domain profile

LIG TRAF2 1 MATH/TRAF domain profile
LIG TRFH 1 NP 059523.1; NP 005643.1

LIG ULM U2AF65 1 Eukaryotic RNA Recognition Motif (RRM) profile
LIG USP7 1 NP 003461.1

Table A.2: We associated each peptide motif (ELM) with an interacting domain or pro-
tein set (CD). This table has been truncated from the full version, which is available at
http://www.biomedcentral.com/content/supplementary/1755-8794-2-27-s2.xls. The full
version shows the fraction of human proteins used in the study that are annotated with
an ELM or its interacting CD. It also shows the faction of protein interactions that satisfy
the ELM-CD relation.
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VP H1 DHHE Match Precision Recall Pvalue
ENV 527 177 25 4.7438330170778 14.1242937853107 6.57E-003
GAG 404 53 7 1.73267326732673 13.2075471698113 2.51E-002
IN 398 45 3 0.753768844221106 6.66666666666667 3.54E-001
MA 196 29 4 2.04081632653061 13.7931034482759 2.29E-003
NEF 399 55 12 3.00751879699248 21.8181818181818 4.92E-005
POL 482 114 18 3.7344398340249 15.7894736842105 1.81E-003
PR 203 49 0 0 0 1.00
REV 354 27 4 1.12994350282486 14.8148148148148 1.97E-002
RT 388 17 13 3.35051546391753 76.4705882352941 1.13E-014
TAT 188 213 24 12.7659574468085 11.2676056338028 8.93E-009
VIF 450 35 1 0.222222222222222 2.85714285714286 7.54E-001
VPR 178 24 1 0.561797752808989 4.16666666666667 1.60E-001

Table A.3: Here we compare predicted (H1) and experimentally verified (DHHE) direct
virus-host interactions for all HIV proteins, giving the overlap (Match) between the two
protein sets. P-values are calculated as the probability of matching Match genes or more
when comparing DHHE and H1 drawn from the 5954 proteins in the study (see Methods).
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Pathway type VP HHP HHE Match Pvalue
All Pathways TAT 621 509 150 2.95639225843e-37
HHP Enriched Pathways TAT 410 509 112 1.57137483607e-32
All Pathways PR 560 58 19 1.27382356047e-07
HHP Enriched Pathways PR 310 58 14 1.55046126572e-07
All Pathways MA 589 47 16 1.06498484182e-06
HHP Enriched Pathways MA 323 47 15 1.26127368289e-09
All Pathways VPR 444 119 36 1.30088275718e-14
HHP Enriched Pathways VPR 202 119 26 1.03299312653e-15
All Pathways NEF 866 155 69 1.4369577924e-20
HHP Enriched Pathways NEF 519 155 54 4.26449335629e-21
All Pathways CA 853 7 1 0.264613621249
HHP Enriched Pathways CA 529 7 0 1.0
All Pathways NC 6 7 0 1.0
HHP Enriched Pathways NC 5 7 0 1.0
All Pathways REV 797 40 11 0.00470778327471
HHP Enriched Pathways REV 479 40 7 0.0127983863936
All Pathways POL 991 122 45 1.37533161737e-08
HHP Enriched Pathways POL 618 122 38 4.10000804347e-11
All Pathways VPU 81 7 1 0.00367272286524
HHP Enriched Pathways VPU 34 7 1 0.000652943299923
All Pathways ENV 1013 409 170 5.48212311982e-35
HHP Enriched Pathways ENV 584 409 127 7.703084244e-37
All Pathways IN 871 46 5 0.683215864589
HHP Enriched Pathways IN 520 46 2 0.778834368003
All Pathways GAG 938 103 36 3.6204620022e-07
HHP Enriched Pathways GAG 548 103 25 1.22862968376e-06
All Pathways VIF 888 35 5 0.425490399203
HHP Enriched Pathways VIF 520 35 1 0.823304149319
All Pathways RT 911 23 19 4.61361299622e-14
HHP Enriched Pathways RT 518 23 19 6.06244810602e-19

Table A.4: Predicted (HHP) and experimentally validated (HHE) HIV-human virus-host
interactions are compared for all HIV proteins when human proteins in predicted virus-host
interations are restricted to genes in all KEGG pathways, and KEGG pathways enriched (p-
value < 0.01, see Methods) with our predictions. P-values are calculated as the probability
of matching Match genes or more when comparing HHE and HHP drawn from the 5954
proteins in the study (see Methods).
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