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MODELING VISCOELASTIC BEHAVIOR OF ARTERIAL WALLS

AND THEIR INTERACTION WITH PULSATILE BLOOD FLOW∗

SUNČICA ČANIĆ† , JOSIP TAMBAČA‡ , GIOVANNA GUIDOBONI† , ANDRO MIKELIĆ§ ,

CRAIG J. HARTLEY¶, AND DOREEN ROSENSTRAUCH‖

Abstract. Fluid-structure interaction describing wave propagation in arteries driven by the
pulsatile blood flow is a complex problem. Whenever possible, simplified models are called for.
One-dimensional models are typically used in arterial sections that can be approximated by the
cylindrical geometry allowing axially symmetric flows. Although a good first approximation to
the underlying problem, the one-dimensional model suffers from several drawbacks: the model is
not closed (an ad hoc velocity profile needs to be prescribed to obtain a closed system) and the
model equations are quasi-linear hyperbolic (oversimplifying the viscous fluid dissipation), typically
producing shock wave solutions not observed in healthy humans. In this manuscript we derived a
simple, closed reduced model that accounts for the viscous fluid dissipation to the leading order.
The resulting fluid-structure interaction system is of hyperbolic-parabolic type. Arterial walls were
modeled by a novel, linearly viscoelastic cylindrical Koiter shell model and the flow of blood by
the incompressible, viscous Navier–Stokes equations. Kelvin–Voigt-type viscoelasticity was used to
capture the hysteresis behavior observed in the measurements of the arterial stress-strain response.
Using the a priori estimates obtained from an energy inequality, together with the asymptotic analysis
and ideas from homogenization theory for porous media flows, we derived an effective model which
is an ǫ2-approximation to the three-dimensional axially symmetric problem, where ǫ is the aspect
ratio of the cylindrical arterial section. Our model shows two interesting features of the underlying
problem: bending rigidity, often times neglected in the arterial wall models, plays a nonnegligible role
in the ǫ2-approximation of the original problem, and the viscous fluid dissipation imparts long-term
viscoelastic memory effects on the motion of the arterial walls. This does not, to the leading order,
influence the hysteresis behavior of arterial walls. The resulting model, although two-dimensional,
is in the form that allows the use of one-dimensional finite element method techniques producing
fast numerical solutions. We devised a version of the Douglas–Rachford time-splitting algorithm to
solve the underlying hyperbolic-parabolic problem. The results of the numerical simulations were
compared with the experimental flow measurements performed at the Texas Heart Institute, and
with the data corresponding to the hysteresis of the human femoral artery and the canine abdominal
aorta. Excellent agreement was observed.
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1. Introduction. The study of flow of a viscous incompressible fluid through
a compliant tube is of interest to many applications. A major application is blood
flow through human arteries. Understanding wave propagation in arterial walls, local
hemodynamics, and temporal wall shear stress gradient is important in understanding
the mechanisms leading to various complications in the cardiovascular function. Many
clinical treatments can be studied in detail only if a reliable model describing the
response of arterial walls to the pulsatile blood flow is considered.

It has been well accepted that in medium-to-large arteries blood can be modeled
as a viscous, incompressible Newtonian fluid. Although blood is a suspension of red
blood cells, white blood cells, and platelets in plasma, its non-Newtonian nature due
to the particular rheology is relevant in small arteries (arterioles) and capillaries where
the diameter of the arteries becomes comparable to the size of the cells. In medium-to-
large arteries, such as the coronary arteries (medium) and the abdominal aorta (large),
the Navier–Stokes equations for an incompressible viscous fluid are considered to be
a good model for blood flow.

Devising an accurate model for the mechanical behavior of arterial walls is more
complicated. Arterial walls are anisotropic and heterogeneous, composed of layers
with different biomechanical characteristics [21, 22, 29, 44]. A variety of different
models has been suggested in the literature to model the mechanical behavior of
arteries [1, 2, 3, 21, 22, 23, 29, 27, 33, 44, 51]. They range from the detailed description
of each of the layers to the average description of the total mechanical response of the
vessel wall assuming homogeneous, linearly elastic behavior.

To study the coupling between the motion of the vessel wall and pulsatile blood
flow, a detailed description of the vessel wall biomechanical properties may lead to a
mathematical and numerical problem whose complexity is beyond today’s computa-
tional capabilities. The nonlinearity of the underlying fluid-structure interaction is so
severe that even simplified description of the vessel wall mechanics assuming homo-
geneous, linearly elastic behavior leads to the complicated numerical algorithms with
challenging stability and convergence properties. To devise a mathematical model
that will lead to a problem which is amenable to numerical methods producing com-
putational solutions in a reasonable time-frame, various simplifications need to be
introduced. They can be based on the simplifying model assumptions capturing only
the most important physics of the problem and/or on the simplifications utilizing
special problem features such as, for example, special geometry, symmetry, and peri-
odicity.

A common set of simplifying assumptions that captures only the most impor-
tant physics in the description of the mechanical properties of arterial walls includes
homogeneity of the material with “small” displacements and “small” deformation gra-
dients leading to the hypothesis of linear elasticity. A common set of special problem
features that leads to simplifying models includes “small” vessel wall thickness allow-
ing a reduction from three-dimensional models to two-dimensional shell models, and
cylindrical geometry of a section of an artery where no branching is present allowing
the use of cylindrical shell models. Neglecting bending rigidity of arteries, studied in
[18, 21], reduces the shell model to a membrane model. Further simplifications include
axial symmetry of the loading exerted by the blood flow to the vessel walls in the ap-
proximately straight cylindrical sections, leading to axially symmetric models with a
potential of further reduction to one-dimensional models. One-dimensional models,
although a good first approximation to the underlying problem, suffer from several
drawbacks: they are not closed (an ad hoc velocity profile needs to be prescribed to
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obtain a closed system), and the model equations are quasi-linear hyperbolic, typically
producing shock wave solutions, not observed in healthy humans [5]. In particular,
the wall shear stress calculated using one-dimensional models is a consequence of the
form of the prescribed velocity profile.

Two-dimensional and three-dimensional models of the fluid-structure interaction
between the incompressible viscous fluid flow and the motion of a linearly elastic
cylindrical membrane are rather complex. Often times additional ad hoc terms of
viscoelastic nature are added to the vessel wall model to provide stability and conver-
gence of the underlying numerical algorithm [40, 44], or to provide enough regularity
in the proof of the existence of a solution [10, 16, 24, 49], thereby showing well-
posedness of the underlying problem. To this day there is no analytical result proving
well-posedness of the fluid-structure interaction problem without assuming that the
structure model includes the higher-order derivative terms capturing some kind of
viscoelastic behavior [10, 16, 24, 49], or with the terms describing bending (flexion)
rigidity in elastic shells or plates [10, 15]. In fact, current literature on well-posedness
of the fluid-structure interaction between a viscous incompressible Newtonian fluid
and a viscoelastic structure includes many additional simplifying assumptions such
as the smallness of the data [49], periodic boundary conditions [24, 49], or flow in
a closed cavity [10, 15, 16], not appropriate for the blood-flow application. Thus,
the well-posedness of the fluid-structure interaction problem describing blood flow in
compliant (elastic or viscoelastic) arteries remains an open problem. However, even
in those simplifying problems when the data is infinitesimally small the higher-order
regularizing terms in the structure model play a crucial role in providing the stabi-
lizing mechanism. Thus, ignoring the terms that account for bending rigidity of the
vessel walls and/or viscous dissipation might mean oversimplifying the physics, giving
rise to a problem which might not have a solution.

Keeping this in mind we turn to the theory of elastic/viscoelastic shells to model
the mechanical properties of arterial walls. Thus, we will be assuming that the ves-
sel walls are homogeneous, that the thickness of the wall is small in comparison to
the vessel radius, and that the state of stress is approximately plane, allowing us
to consider shell theory. See section 2. The equations of shell theory have been
derived by many authors; see [19] and the references therein. Due to variations in
approach and rigor the variety of equations occurring in the literature is overwhelm-
ing. Among all the equations of shell theory the Koiter shell equations appear to
be the simplest consistent first approximation in the general theory of thin elastic
shells [32, 31]. In addition, they have been mathematically justified using asymptotic
methods to be consistent with three-dimensional elasticity [12, 13]. Ciarlet and Lods
showed in [12] that the Koiter shell model has the same asymptotic behavior as the
three-dimensional membrane model, the bending model, and the generalized mem-
brane model in the respective regimes in which each of them holds. Motivated by
these remarkable properties of the Koiter shell model, in this manuscript we derived
the Koiter shell equations for the cylindrical geometry and extended the linearly elas-
tic Koiter model to include the viscous effects observed in the measurements of the
mechanical properties of vessel walls [1, 2, 3]. We utilized the Kelvin–Voigt viscoelas-
tic model, which has been shown in [1, 2, 3] to approximate well the experimentally
measured viscoelastic properties of the canine aorta and of the human femoral and
carotid arteries. In [43] a version of the Kelvin–Voigt model was used to model the
vessel walls as a linearly viscoelastic membrane. In the Kelvin–Voigt model the total
stress is linearly proportional to the strain and the time-derivative of strain. More
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precisely, for a three-dimensional isotropic and homogeneous body, the Kelvin–Voigt
model relates the total stress tensor, whose components we denote by tkl, to the in-
finitesimal strains ekl and the time-derivative of the strains ∂tekl through the following
relationship [20]:

tkl = (λe + λv∂t)Ieδkl + 2(µe + µv∂t)ekl, k, l = 1, 2, 3,(1.1)

where λe and µe are the Lamé constants of elasticity, λv and µv are their corre-
sponding viscoelastic counterparts, δkl is the Kronecker delta, and Ie :=

∑3
i=1 eii.

In section 8 we show that the fluid-structure interaction algorithm based on the vis-
coelastic Koiter shell equations coupled with the Navier–Stokes equations for a viscous
incompressible fluid captures the experimentally measured viscoelastic properties of
arterial walls in the human femoral artery and in the canine aorta. This is, in a
nutshell, the main result of this manuscript; using the a priori estimates based on an
energy inequality, coupled with the asymptotic analysis and homogenization theory,
we derived an effective, closed fluid-structure interaction model and a fast numeri-
cal solver whose solutions capture the viscoelastic properties of major arteries. We
show that our effective model approximates the original three-dimensional axially
symmetric problem to the ǫ2-accuracy, where ǫ is the aspect ratio of the cylindrical
domain (vessel). Our reduced, effective model reveals several interesting features of
the coupled fluid-structure interaction problem:

(1) Our model explicitly shows how the leading-order viscous fluid dissipation
imparts long-term viscoelastic memory effects on the motion of the vessel wall. This
is studied in section 5; see (5.11). We show that this does not influence, to the leading
order, the viscoelastic hysteresis loop observed in the stress-strain (or the pressure-
diameter) measurements of the arterial viscoelastic properties.

(2) Our model shows that bending rigidity of vessel walls plays a nonnegligible
role in the asymptotic behavior of the underlying fluid-structure interaction problem.
See the equation for p0 in (4.17). We found that for the parameters describing blood
flow through medium-to-large arteries the leading-order terms in the coupling of the
stresses at the vessel wall include not only the membrane terms but also a correction
accounting for the bending rigidity of the wall, often times neglected in the description
of the mechanical properties of vessel walls.

We developed a fast numerical solver based on the one-dimensional finite element
approach and compared the computational solution with the experimental measure-
ments. First, the reduced elastic model was tested experimentally using a mock
circulatory flow loop with latex tubing, assembled at the Research Laboratory at the
Texas Heart Institute. Then the viscoelastic model was compared to the hystere-
sis measurements of the viscoelastic properties of the human femoral artery and the
canine aorta. In both cases, excellent agreement between the experiment and the
numerical solution was obtained.

2. The viscoelastic cylindrical Koiter shell model. In this section we focus
on the derivation of the viscoelastic cylindrical Koiter shell model. We begin with
the linearly elastic Koiter shell model as it was derived in [31, 32] and specialize
it to the cylindrical shell geometry. Following standard texts in conventional plate
and shell theories (see, for example, [20, 41, 45, 50, 52]), we then derive the stress-
strain relationship for the Koiter shell model and extend it to include the Kelvin–
Voigt viscoelasticity, which has been experimentally observed to approximate well
the viscoelastic mechanical properties of arterial walls [1, 2, 3]. We summarize the
main steps next.
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2.1. The linearly elastic Koiter shell model. Consider a clamped cylindrical
shell with the reference radius of the middle surface equal to r = R, with the shell
thickness h and the cylinder length L, z ∈ (0, L). The basic assumptions under which
the Koiter shell model holds are [31, 32] that

• the shell is thin (h/R ≪ 1);
• the strains are small everywhere, although large deflections are admitted, and

the strain energy per unit volume of the undeformed body is represented by
the quadratic function of the strain components for an isotropic solid (Hooke’s
law);

• the state of stress is approximately plane.

z

r

L

R

h

middle
surface

displacement

undeformed shell

deformed shell

Fig. 2.1. Left: Cylindrical shell (reference configuration) with middle surface radius R and
shell thickness h. Right: Deformed shell.

The weak formulation, describing the variation of the strain energy density func-
tion, depends on the change of metric and the change of curvature tensors of the
surface. The change of metric tensor captures the stretching of the surface and the
change of curvature tensor captures the bending effects. The weak formulation of the
Koiter shell describes variation of the energy that is due to stretching and bending of
the shell.

Denote by ξ(z) = (ξz(z), ξr(z)) the displacement of the middle surface at z (see
Figure 2.1), where ξz(z) and ξr(z) denote the longitudinal and the radial component
of the displacement, respectively. Here the axial symmetry of the problem has already
been taken into account assuming that the displacement in the θ-direction is zero, and
that nothing in the problem depends on θ. The change of metric and the change of
curvature tensors for a cylindrical shell are given, respectively, by [11]

γ(ξ) =

[

ξ′z 0
0 Rξr

]

, ̺(ξ) =

[

−ξ′′r 0
0 ξr

]

.

Here ′ denotes the derivative with respect to the longitudinal variable z. Introduce
the following function space:

Vc = H1
0 (0, L) ×H2

0 (0, L)

=
{

(ξz, ξr) ∈ H1(0, L) ×H2(0, L) : ξz(0) = ξz(L) = ξr(0) = ξr(L) = 0,

ξ′r(0) = ξ′r(L) = 0} .
Then the weak formulation of the linearly elastic cylindrical Koiter shell is given by
the following: find η = (ηz, ηr) ∈ Vc such that

h

2

∫ L

0

Aγ(η) · γ(ξ)Rdz +
h3

24

∫ L

0

A̺(η) · ̺(ξ)Rdz =

∫ L

0

f · ξRdz, ξ ∈ Vc,(2.1)
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where · denotes the scalar product

A ·B := Tr
(

ABT
)

, A,B ∈ M2(R) ∼= R
4.(2.2)

Here f is the surface density of the force applied to the shell, and A is the elasticity
tensor given by [11]

AE =
4λµ

λ + 2µ
(Ac · E)Ac + 4µAcEAc, E ∈ Sym (R2), with

Ac =

[

1 0
0 R2

]

, Ac =

[

1 0
0 1

R2

]

,

where λ and µ are the Lamé constants. Written in terms of the displacement, the
weak formulation reads

h

2

∫ L

0

(

4µλ

λ + 2µ

(

η′z +
1

R
ηr

)

·
(

ξ′z +
1

R
ξr

)

+ 4µ

(

η′zξ
′
z +

1

R2
ηrξr

))

dz

+
h3

24

∫ L

0

(

4µλ

λ + 2µ

(

−η′′r +
1

R2
ηr

)

·
(

−ξ′′r +
1

R2
ξr

)

+ 4µ

(

η′′r ξ
′′
r +

1

R4
ηrξr

))

dz

=

∫ L

0

(fzξz + frξr)dz ∀(ξz, ξr) ∈ Vc.

Using the following relationships between the Lamé constants and Young’s modulus
of elasticity E and the Poisson ratio σ

2µλ

λ + 2µ
+ 2µ = 4µ

λ + µ

λ + 2µ
=

E

1 − σ2
,

2µλ

λ + 2µ
= 4µ

λ + µ

λ + 2µ

1

2

λ

λ + µ
=

E

1 − σ2
σ,

the elasticity tensor A reads

AE =
2Eσ

1 − σ2
(Ac · E)Ac +

2E

1 + σ
AcEAc, E ∈ Sym (R2).

From here we get the weak formulation (2.1) as

h

∫ L

0

(

Eσ

1 − σ2

(

η′z +
1

R
ηr

)(

ξ′z +
1

R
ξr

)

+
E

1 + σ

(

η′zξ
′
z +

1

R2
ηrξr

))

dz

+
h3

12

∫ L

0

(

Eσ

1 − σ2

(

−η′′r +
1

R2
ηr

)(

−ξ′′r +
1

R2
ξr

)

+
E

1 + σ

(

η′′r ξ
′′
r +

1

R4
ηrξr

))

dz

=

∫ L

0

(fzξz + frξr)dz, (ξz, ξr) ∈ Vc.

(2.3)

The terms multiplying h/2 account for the stored energy density due to stretching
(membrane effects) and the terms multiplying h3/12 account for the stored energy
density due to bending (flexural shell effects). Integration by parts gives rise to the
static equilibrium equations. Written in differential form they read

− hE

1 − σ2

(

η′′z + σ
1

R
η′r

)

= fz,

hE

R(1 − σ2)

(

ση′z +
ηr
R

)

+
h3E

12(1 − σ2)

(

η′′′′r − 2σ
1

R2
η′′r +

1

R4
ηr

)

= fr.

(2.4)

The Linearly Elastic Cylindrical Koiter Shell Model
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We employ these equations to study the response of arteries to pulsatile blood
flow. For this purpose, we assume that the in vivo arteries are prestretched under
internal pressure load, that the arterial walls are longitudinally tethered, and that the
longitudinal displacement is negligible [38, 42].

The assumption that the longitudinal displacement is negligible has been justified
in [38]. More precisely, in [38] we considered the equations of three-dimensional linear
elasticity to model the vessel wall, coupled with the Navier–Stokes equations for a
viscous, incompressible fluid to model the flow of blood in cylindrical geometry. In
addition, we assumed that the “thickness” h of the structure (the radial dimension
of the three-dimensional elastic body) is less than or comparable to the radius of
the domain occupied by the fluid, i.e., h/R ≤ 1 (this includes the scenario h/R ≪ 1
considered in this manuscript). Starting from the assumption that both the radial and
longitudinal displacement of the three-dimensional structure are nonzero, we showed
that the effective model obtained by considering small aspect ratio ǫ = R/L embodies
negligible longitudinal displacement of the structure.

Taking this into account we emply here the equations of a linearly elastic cylin-
drical Koiter shell model with negligible longitudinal displacement:

(

hE

R(1 − σ2)
+ pref

)

ηr
R

+
h3E

12(1 − σ2)

(

η′′′′r − 2σ
1

R2
η′′r +

1

R4
ηr

)

= fr.(2.5)

This is obtained from the weak formulation (2.3), assuming ηz = 0, and the test space

V 0
c := Vc ∩ {ξz = 0}.

In order to include the fact that the reference configuration is prestressed at
reference pressure pref , and that the arterial walls are viscoelastic, we study the stress-
strain relationship corresponding to the Koiter shell model and modify it to include
these two effects. This is presented next.

2.2. The linearly viscoelastic Koiter shell model. The stress-strain rela-
tionship is given by the “stress resultant,” which relates the internal force with the
change of metric tensor, and the “stress couples,” which describe the bending moments
in terms of the change of curvature tensor [20]. As noted by Koiter in his original
paper [31], the stress resultant and the stress couples can be obtained from (2.1) as
gradients of the stored energy function, given by the integrand on the left-hand side of
(2.1), with respect to the middle surface strains and changes of curvature. Following
this approach one obtains

• stress resultant (or the internal force) for the elastic Koiter shell

N :=
h

2
Aγ(η) =

h

2

[ 2Eσ
1−σ2

ηr

R 0

0 2E
1−σ2

ηr

R3

]

,(2.6)

• stress couples (bending moment) for the elastic Koiter shell

M :=
h3

24
A̺(η) =

h3

24

[ − 2E
1−σ2 η

′′
r + 2Eσ

1−σ2

ηr

R2 0

0 2E
1−σ2

ur

R4 − 2Eσ
1−σ2

1
R2 η

′′
r

]

.

(2.7)

At this point we also introduce the effects of prestress by defining the stress resultant
Nref that relates the reference pressure pref with the circumferential strain [17, 34, 35]

h

2
Nref = hRAc

[

0 0
0 pref

R
h ηr

]

Ac(2.8)
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so that the total stress resultant, including the effects of prestress, reads
• stress resultant for the prestressed elastic Koiter shell

N =
h

2
Aγ(η) +

h

2
Nref .(2.9)

We focus now on introducing the viscous effects to the linearly elastic, prestressed
cylindrical Koiter shell model. For this purpose assume that the displacement is not
only a function of position z but also a function of time: η = η(z, t) and that the
velocity of the displacement is linearly proportional to the stress as described in (1.1).
Employing the Kelvin–Voigt model (1.1) to describe this viscoelastic behavior one
writes the constitutive relations in which the stress is linearly proportional to the
strain plus the time-derivative of strain [20]. For the linearly viscoelastic Koiter shell
model we define

• stress resultant for the viscoelastic prestressed Koiter shell

N :=
h

2
Aγ(η) +

h

2
Bγ(η̇) +

h

2
Nref ,(2.10)

• stress couples for the viscoelastic Koiter shell

M :=
h3

24
A̺(η) +

h3

24
B̺(η̇),(2.11)

where B is given by

BE =
4λvµv

λv + 2µv
(Ac · E)Ac + 4µvA

cEAc, E ∈ Sym (R2),

with µv and λv corresponding to the viscous counterpart of the Lamé constants µ
and λ. With these constitutive relations we now define the weak formulation of the
linearly viscoelastic prestressed Koiter shell model by the following: for each t > 0
find η(t) ∈ Vc such that ∀ξ(t) ∈ Vc

h

2

∫ L

0

(Nref + Aγ(η) + Bγ(η̇)) · γ(ξ)Rdz +
h3

24

∫ L

0

(A̺(η) + B̺(η̇)) · ̺(ξ)Rdz

+ ρwh

∫ L

0

∂2η

∂t2
· ξ =

∫ L

0

f · ξRdz,(2.12)

where η̇ denotes the time-derivative. Written in terms of the displacement, after
employing the notation

Cv :=
2λvµv

λv + 2µv
+ 2µv, Dv :=

2λvµv

λv + 2µv
,(2.13)

the weak formulation of the linearly viscoelastic prestressed Koiter shell model reads

∫ L

0

frξrdz = ρwh

∫ L

0

∂2ηr
∂t2

ξr + h

∫ L

0

((

E

1 − σ2
+ pref

R

h

)

1

R
ηr + Cv

1

R

∂ηr
∂t

)

ξr
R
dz

+
h3

12

∫ L

0

((

Eσ

1 − σ2

(

−∂2ηr
∂z2

+
ηr
R2

)

+ Dv

(

− ∂3ηr
∂t∂z2

+
1

R2

∂ηr
∂t

))(

−∂2ξr
∂z2

+
ξr
R2

)

+

(

E

1 + σ

∂2ηr
∂z2

+ (Cv −Dv)
∂3ηr
∂t∂z2

)

∂ξr
∂z2

+

(

E

1 + σ

1

R2
ηr + (Cv −Dv)

1

R2

∂ηr
∂t

)

ξr
R2

)

dz
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∀ξ(t) ∈ V 0
c . Integration by parts gives rise to the equilibrium equation

fr = ρwh
∂2ηr
∂t2

+ C0ηr − C1
∂2ηr
∂z2

+ C2
∂4ηr
∂z4

+ D0
∂ηr
∂t

−D1
∂3ηr
∂t∂z2

+ D2
∂5ηr
∂t∂z4

,

(2.14)

The Linearly Viscoelastic Cylindrical Prestressed Koiter Shell Model
with Zero Longitudinal Displacement

where ρw denotes the shell density (see Table 4.1) and

C0 =
h

R2

E

1 − σ2

(

1 +
h2

12R2

)

+
pref

R
, C1 = 2

h3

12R2

Eσ

1 − σ2
, C2 =

h3

12

E

1 − σ2
,

D0 =
h

R2
Cv

(

1 +
h2

12R2

)

, D1 = 2
h3

12R2
Dv, D2 =

h3

12
Cv.

(2.15)

We use this equation to model the motion of compliant arterial walls interacting with
the time-dependent fluid flow driven by the pulsatile inlet and outlet pressure data.
To simplify notation, from this point on in this manuscript we will be using η to
denote the radial displacement ηr.

3. Fluid-structure interaction: The three-dimensional model. In me-
dium to large arteries blood can be modeled as an incompressible, Newtonian vis-
cous fluid. We will be assuming that the viscosity of blood is constant, utilizing the
data from biomedical literature (see, e.g., [21, 39, 44]), providing the viscosity coef-
ficient µF = 3500 kg/ms. The Navier–Stokes equations for a viscous, incompressible
fluid have been well accepted as a model for blood flow in medium-to-large arter-
ies. Assuming cylindrical geometry and axially symmetric flow, the fluid velocity
v(r, z, t) = (vr(r, z, t), vz(r, z, t)) and pressure p(r, z, t) satisfy

ρF

{

∂vr
∂t

+ vr
∂vr
∂r

+ vz
∂vr
∂z

}

− µF

(

∂2vr
∂r2

+
∂2vr
∂z2

+
1

r

∂vr
∂r

− vr
r2

)

+
∂p

∂r
= 0,(3.1)

ρF

{

∂vz
∂t

+ vr
∂vz
∂r

+ vz
∂vz
∂z

}

− µF

(

∂2vz
∂r2

+
∂2vz
∂z2

+
1

r

∂vz
∂r

)

+
∂p

∂z
= 0,(3.2)

∂vr
∂r

+
∂vz
∂z

+
vr
r

= 0.(3.3)

Here ρF is the fluid density and µF is the fluid dynamic viscosity coefficient, where
the subscript F stands for the fluid quantities. The Navier–Stokes equations hold in
the cylindrical domain

Ω(t) =
{

x ∈ R
3;x = (r cosϑ, r sinϑ, z), r < R + η(z, t), 0 < z < L

}

(3.4)

bounded by the viscoelastic lateral boundary

Σ(t) =
{

((R(z) + η(t, z)) cos θ, (R(z) + η(t, z)) sin θ, z) ∈ R
3 : θ ∈ (0, 2π), z ∈ (0, L)

}

.

See Figure 3.1. The reference configuration corresponds to that of a straight cylinder
with radius R and length L. (The same results can be obtained for a cylinder with a
slowly varying radius R(z) under the assumption that R′(z) < ǫ [47].) The following
inlet (z = 0) and outlet (z = L) boundary data lead to a well-defined problem:
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η

Fig. 3.1. Deformed domain Ω(t).

1. The dynamic pressure is prescribed at both ends:

p + ρ(vz)
2/2 = P0,L(t) + pref at z = 0, L.(3.5)

2. The fluid enters and leaves the tube parallel to the axis of symmetry, with
zero displacement:

vr = 0, η = 0 at z = 0, L.(3.6)

3. The tube is clamped so that

∂η

∂z
= 0 at z = 0, L.(3.7)

In the reduced model (see section 4), the zero displacement condition is relaxed. This
is typical for reduced models where the boundary layer phenomena near the edges
with high stress concentrations are lost [8].

Initially, the fluid and the wall are assumed to be at rest, with zero displacement
from the reference configuration:

v = 0, η = 0,
∂η

∂t
= 0.(3.8)

These initial and boundary conditions describe well our experimental set up, described
in section 7.

The coupling between the fluid flow and vessel wall dynamics is performed via
the following kinematic and dynamic lateral boundary conditions [9]:

• The kinematic condition requiring continuity of velocity:

vr(R + η(z, t), z, t) =
∂η(z, t)

∂t
, vz(R + η(z, t), z, t) = 0.(3.9)

• The dynamic condition requiring balance of forces (the contact force of the
fluid is counterbalanced by the contact force of the wall):

fr = [(p− pref)I − 2µFD(v)]n · er

(

1 +
η

R

)

√

1 + (∂zη)
2
,(3.10)

where fr is given by the viscoelastic shell model (2.14). The right-hand side of
(3.10) describes the contact force of the fluid, where D(v) is the symmetrized
gradient of velocity, defined in (3.12), n is the vector normal to the deformed
boundary Σ(t), and er is the radial unit vector.

See [9] for more details.
Thus, the complete fluid-structure interaction problem consists of solving the fluid

equations (3.1)–(3.3) on the domain Ω(t) defined by (3.4) with a moving boundary
Σ(t), satisfying the initial and boundary data given by (3.5)–(3.10) where the contact
force of the structure fr is given by (2.14).
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3.1. Weak formulation. To derive a weak formulation of the fluid-structure
interaction problem we take the standard approach: multiply the fluid equations by
a test function, integrate by parts, and take into account the initial and boundary
conditions to obtain the integral form of the problem. For that purpose, introduce
the following test spaces.

Definition 3.1 (the test spaces). Let

V (Ω(t)) = {ϕ = ϕrer + ϕzez ∈ H2(Ω(t))2 | ϕr(r, z) = ∂zϕr(r, z) = 0 at z = 0, L,

(3.11)

ϕz(R + γ(z, t), z) = 0, and div ϕ = 0 in Ω(t) a.e.}.
For each t ∈ [0, T ], the test space is the space H1(0, T ;V (Ω(t)).

To specify the weak solution we introduce the spaces containing the candidates
for the radial displacement and the velocity. They are deduced from the a priori
solution estimates, presented in section 3.2.

Definition 3.2 (the solution spaces).
• The space Γ consists of all the functions

η ∈ L∞(0, T ;H2(0, L)) ∩ C1([0, T ];L2(0, L)) ∩ C([0, T ];H2(0, L))

such that η(t, 0) = η(t, L) = 0, ∂zη(t, 0) = ∂zη(t, L) = 0, and η(0, z) =
∂tη(0, z) = 0.

• The space V consists of all the functions

v = (vr, vz) ∈ L2(0, T ;H1(Ω(t))2) ∩ C([0, T ];L2(Ω(t))2)

such that divv = 0 in Ω(t) × R+, vr = 0 for z = 0, L, and v = 0 at t = 0.
To define the weak form recall that the symmetrized gradient of velocity D(ϕ),

defined for an axially symmetric vector valued function ϕ = ϕrer +ϕzez, is given by

D(ϕ) =

⎛

⎜

⎜

⎜

⎜

⎝

∂ϕr

∂r
0

1

2

(∂ϕr

∂z
+

∂ϕz

∂r

)

0
ϕr

r
0

1

2

(∂ϕr

∂z
+

∂ϕz

∂r

)

0
∂ϕz

∂z

⎞

⎟

⎟

⎟

⎟

⎠

.(3.12)

Define the matrix norm | · | through the scalar product

A ·B := Tr
(

ABT
)

, A,B ∈ R
9.(3.13)

Definition 3.3. A weak solution of problem (3.1)–(3.10) is a function (η,v) ∈
Γ × V such that ∀ϕ ∈ H1(0, T ;V (Ω(t))) the following integral equation holds:

2µF

∫

Ω(t)

D(v) ·D(ϕ) rdrdz + ρ

∫

Ω(t)

{

∂v

∂t
+ (v(t)∇)v

}

ϕ rdrdz

+R

∫ L

0

{

C0η ϕr|R+η + C1
∂η

∂z

∂ϕr

∂z

∣

∣

∣

∣

R+η

+ C2
∂2η

∂z2

∂2ϕr

∂z2

∣

∣

∣

∣

R+η

+D0
∂η

∂t
ϕr|R+η + D1

∂2η

∂t∂z

∂ϕr

∂z

∣

∣

∣

∣

R+η

+ D2
∂3η

∂t∂z2

∂2ϕr

∂z2

∣

∣

∣

∣

R+η

}

dz(3.14)

+Rρwh

∫ L

0

∂2η

∂t2
ϕr(R + η(t, z), z, t) dz = −

∫ R

0

{

P2(t) −
ρ

2
(v2

z)|z=L

}

ϕz|z=Lrdr

+

∫ R

0

{

P1(t) −
ρ

2
(v2

z)|z=0

}

ϕz|z=0rdr,
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where Ω(t) is given by (3.4) and η and vr are linked on Σ(t) through (3.9).

Notice that the domain as well as the solution and test spaces depend on time. To
get a global weak formulation one can use the a priori solution estimates, presented
below, and define a global weak solution via a fixed point mapping, defined on a fixed,
“fictitious” domain. This approach is used in [9] to define a global weak solution
for a related fluid-structure interaction problem using the linearly elastic membrane
equations to model the vessel walls. We do not pursue this approach here but continue
with the derivation of the energy and a priori estimates.

3.2. The energy and a priori estimates. By replacing the test function with
the fluid velocity and using the kinematic lateral boundary condition (3.9) one obtains
the following proposition.

Proposition 3.4 (energy equality). Solution (η,v) of problem (3.1)–(3.10) sat-
isfies the following energy equality:

ρ

2

d

dt

∫

Ω(t)

|v|2 dV +
πR

2

d

dt

∫ L

0

{

C0|η|2 + C1

∣

∣

∣

∣

∂η

∂z

∣

∣

∣

∣

2

+ C2

∣

∣

∣

∣

∂2η

∂z2

∣

∣

∣

∣

2
}

dz

+
πR

2
ρwh

d

dt

∫ L

0

∣

∣

∣

∣

∂η

∂t

∣

∣

∣

∣

2

dz + πR

∫ L

0

{

D0

∣

∣

∣

∣

∂η

∂t

∣

∣

∣

∣

2

+ D1

∣

∣

∣

∣

∂2η

∂t∂z

∣

∣

∣

∣

2

+ D2

∣

∣

∣

∣

∂3η

∂t∂z2

∣

∣

∣

∣

2
}

dz

+ 2µF ‖D(v)‖2
L2(Ω(t)) = −

∫ R

0

P2(t)vz(t, r, L) rdr +

∫ R

0

P1(t)vz(t, r, 0) rdr,(3.15)

with vr(t, R + η, z) = ∂η
∂t (t, z) and vz(t, R + η, z) = 0 on (0, L) × (0, T ).

To obtain the a priori estimates and the correct scales for the problem, we intro-
duce the nondimensional time

t̂ := ωt.(3.16)

The characteristic frequency ω will be specified later in (3.21). The choice of ω
determines the time-scale for the natural oscillations of the structure in terms of the
inlet and outlet pressure data. As it will be seen later, the quantity Lω corresponds to
the “sound speed” of the natural oscillations of the structure, and the choice of ω given
in (3.21) gives rise to the structure sound speed reported in Fung [21]. From now on
we will be working with the nondimensional time t̂ but will drop the “hat” notation
for simplicity. Whenever physical time t is used, this will be explicitly specified.

Take the rescaled time into account and integrate the energy equality with respect
to time to obtain

ρω

2

∫

Ω(t)

|v|2 dV +
πRω

2

∫ L

0

{

C0|η|2 + C1

∣

∣

∣

∣

∂η

∂z

∣

∣

∣

∣

2

+ C2

∣

∣

∣

∣

∂2η

∂z2

∣

∣

∣

∣

2
}

dz(3.17)

+
πRω3

2
ρwh

∫ L

0

∣

∣

∣

∣

∂η

∂t

∣

∣

∣

∣

2

dz + πRω2

∫ t

0

∫ L

0

{

D0

∣

∣

∣

∣

∂η

∂t

∣

∣

∣

∣

2

+ D1

∣

∣

∣

∣

∂2η

∂t∂z

∣

∣

∣

∣

2

+ D2

∣

∣

∣

∣

∂3η

∂t∂z2

∣

∣

∣

∣

2
}

dzdτ

+ 2µF

∫ t

0

‖D(v)‖2
L2(Ω(τ))dτ = −

∫ t

0

∫ R

0

(P2(τ)vz(τ, r, L) − P1(τ)vz(τ, r, 0)) rdrτ.

By estimating the right-hand side in a manner similar to the estimates in [9] and [6]
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one obtains

ρω

2
‖v‖2

L2(Ω(t)) + πω3ρwhR ‖∂tη‖2
+

πωRC0

2
‖η‖2(3.18)

≤ 16πLRω

C0

(

sup
z,t

|p̂|2 +

(

sup
z

∫ t

0

|∂tp̂|dτ
)2
)

+
8TπR2

ρωL

∫ t

0

|A(τ)|2dτ,

where

A(t) = PL(t) − P0(t), p̂(t) =
A(t)

L
z + P0(t),(3.19)

and T > 0 denote the physical time such that

T ≤ 1

4

R
√
ρwhC0

‖p‖∞
.(3.20)

For example, for pref = 0, this inequality reads T ≤ 1/[4(1 − σ2)]h
√
Eρw/‖p‖∞.

This is the point were we define the frequency ω. Choose ω so that the contri-
bution of all the terms involving the pressure data have the same weight. Namely,
choose ω so that the time-scale of the captured oscillations is determined by the pres-
sure drop A(t), the inlet and outlet maximum pressure, and by the time-average of
the steepness of the pressure front ∂tp̂ to obtain

ω =
1

L

√

RC0

2ρ
.(3.21)

This choice of ω gives rise to the sound speed of the waves in the “structure” ωL
which is exactly the sound speed reported by Fung in [21]. After taking this form of ω
into account, and after dividing (3.18) by ω, we obtain the following energy inequality
from which the a priori estimates will follow.

Proposition 3.5. Weak solution (η,v) satisfies

ρ

2
‖v‖2

L2(Ω(t)) + πω2ρwhR ‖∂tη‖2
+

πR

2
C0‖η‖2 ≤ 16πLR

C0
P2, where

P2 := sup
z,t

|p̂|2 +

(

sup
z

∫ t

0

|p̂t|dτ
)2

+ T

∫ t

0

|A(τ)|2.(3.22)

Using this result we obtain the a priori estimates for the L2-norms of the fluid
velocity, the displacement, and the time-derivative of the displacement.

Lemma 3.6. Weak solution (η,v) satisfies the following a priori estimates:

1

L
‖η(t)‖2

L2(0,L) ≤
32

C2
0

P2,
1

L
‖∂tη(t)‖2

L2(0,L) ≤
16

ρWω2hC0
P2,

1

LR2π
‖v‖2

L2(Ω(t)) ≤
32

ρFRC0
P2,

∫ t

0

{

‖∂rvr‖2
L2(Ω(τ)) +

∥

∥

∥

vr
r

∥

∥

∥

2

L2(Ω(τ))
+ ‖∂zvz‖2

L2(Ω(τ))

}

dτ ≤ 4πR2

µF

√

2

ρFRC0
P2,

∫ t

0

{

‖∂rvz‖2
L2(Ω(τ)) + ‖∂zvr‖2

L2(Ω(τ))

}

dτ ≤ 4R2

µF

√

2

ρRC0
P2.
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Furthermore, we obtain the following estimates for the functions describing the
viscoelastic behavior of the structure.

Corollary 3.7. The following estimates hold for the viscoelastic thin shell
model:

ω

L

∫ t

0

∥

∥

∥

∥

∂η

∂t

∥

∥

∥

∥

2

L2

dτ ≤ 32

C0D0
P2,

ω

L

∫ t

0

∥

∥

∥

∥

∂2η

∂t∂z

∥

∥

∥

∥

2

L2

dτ ≤ 32

C0D1
P2,

ω

L

∫ t

0

∥

∥

∥

∥

∂3η

∂t∂2z

∥

∥

∥

∥

2

L2

dτ ≤ 32

C0D0
P2,

where P is given by (3.22), and ω by (3.21).
The a priori estimates obtained in this section will be used to derive the reduced

model presented below.

4. Fluid-structure interaction: A reduced model. We proceed by deriving
a closed, effective, reduced model, approximating the full, original axially symmetric
problem to the ǫ2-accuracy.

We begin by considering (3.1)–(3.3) written in nondimensional form. The scalings
for the dependent variables v and η are obtained from the a priori estimates presented
in Lemma 3.6

v = V ṽ, where 2V =
P√
ρF

(

hE

R(1 − σ2)
+ pref

)− 1

2

,(4.1)

η = Ξη̃, where 2Ξ = PR

(

hE

R(1 − σ2)
+ pref

)−1

.(4.2)

Consider p = Cpp̃, where Cp will be determined later; see (4.11). The nondimensional
independent variables r̃, z̃, and t̃ are introduced via

r = Rr̃, z = Lz̃, t =
1

ω
t̃, where ω =

1

L

√

1

ρF

(

hE

R(1 − σ2)
+ pref

)

.(4.3)

At this point we could continue by performing singular perturbation analysis of the
rescaled system (3.1)–(3.10), (2.14). As in [9], we would find a two-dimensional re-
duced free-boundary problem approximating the initial problem to the ǫ2-accuracy.
This problem involves a hydrostatic approximation of the pressure, and it is usually
written as an analogue of the shallow water system. Elimination of the radial compo-
nent of the velocity leads to a nonlocal degenerate term. The resulting equations are
too complex to be used in the calculation of the solution, and simplifications involving
an ad hoc axial velocity profile are typically considered in the literature. Typically
considered vz-profiles are in the form of a product of an unknown function of z and t
and a generalized Poiseuille profile in r (see, e.g., [44]). The resulting variant of the
shallow water equations is then closed, but the closure hypothesis could introduce an
error of order 1.

In order to find a closure that results from the problem itself and gives rise to an ǫ2-
approximation of the full three-dimensional axially symmetric problem, we are going
to use homogenization theory [4]. Homogenization theory is used to find effective
equations for nonhomogeneous flows. For porous media problems homogenization
theory can be applied when (a) the pore size (characteristic size of the fluid region
free of another phase) is smaller than the characteristic length of the macroscopic
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problem (here, vessel diameter) or (b) the pore includes a large number of molecules
to be considered as continuum [28].

At a first glance using this approach in our setting is pointless. A simple averaging
of the equations for the fluid phase over the cross-section of the vessel should provide
a good approximation. Unfortunately, as remarked above, this approach leads to a
problem that is not closed and might ultimately give rise to the errors of order 1. On
the other hand, we know how to obtain closed models related to nonlinear filtration
laws in rigid periodic porous media by homogenization [36, 37]. In rigid periodic
porous media the expansions are of lower order of precision, but the resulting models
are closed. It was shown in [36, 37] that in this case it is possible to link the homoge-
nized equations with the nonlinear algebraic relations between the pressure gradient
and the velocity (Forchheimer’s filtration law), found in experiments. In a similar
way, Robertson and Sequeira [46] obtained a closed model for blood flow in rigid wall
tubes by replacing the averaged momentum equation with a variant of Forchheimer’s
law, and no closure assumption was needed to derive a closed system.

In our case we are concerned with viscoelastic walls. How do we link the flow
of blood through viscoelastic arteries with the filtration through porous media? Due
to the uniform bound on the maximal value of the radial displacement, obtained in
section 3.2, our artery can be placed into a rectangle with the length of order 1 and of
small width ǫ. By repeating periodically this geometry in the radial direction, we get
a network of parallel, long, and narrow tubes, with no cross-flow from one horizontal
tube to another. This is one of the simplest porous media which one can imagine.
It is not a rigid but a deformable porous medium, just as are the domains in Biot’s
theories of deformable porous media. All results that are valid for deformable porous
media are also valid in our situation. Motivated by the results from [36] and [37],
where closed effective porous medium equations were obtained using homogenization
techniques, we set up a problem that mimics a similar scenario.

Introduce y = 1
ǫ z̃ and assume periodicity in y of the domain and of the veloc-

ity and the pressure. Furthermore, recalling that we have a narrow long tube with
r̃ = 1

Rr = 1
ǫ
r
L , assume periodicity in the radial direction thereby forming a network

of a large number of strictly separated, parallel tubes. Follow the approach first pre-
sented in [9]. In [9] a closed, reduced model was derived in the case when the vessel
walls were approximated by a linearly elastic membrane equations. In the present
manuscript, the introduction of a linearly viscoelastic Koiter shell model introduces
minor differences in the derivation of the reduced model. Thus, we present only the
main steps in the derivation and omit the details which can be found in [9].

Following standard approach in homogenization theory [28, 4], we look for the
unknown functions that explicitly depend on the “slow variables” r and z̃ as well as
on the “fast variables” r/ǫ and z̃/ǫ =: y. In our problem the slow and fast variables
are related through z = Lz̃ := Lǫy = Ry, r = Rr̃. Thus, we look for the functions

ṽ = ṽ(t̃, r, r/ǫ, z̃, z̃/ǫ), η̃ = η̃(t̃, r, r/ǫ, z̃, z̃/ǫ), and p̃ = p̃(t̃, r, r/ǫ, z̃, z̃/ǫ)(4.4)

that are 1-periodic in y = z̃/ǫ and r/ǫ and satisfy the Navier–Stokes equations (3.1)–
(3.3). Keeping both the fast and the slow variables in the derivation of the equations,
namely keeping r, r/ǫ, z̃, and y in the problem, will help us determine the proper
scaling for the pressure and lead us to a closed, reduced effective model.

Expand the functions in (4.4) in terms of the small parameter ǫ

v = V
{

ṽ0 + ǫṽ1 + · · ·
}

, η = Ξ
{

η̃0 + ǫη̃1 + · · ·
}

, p = Cp

{

p̃0 + ǫp̃1 + · · ·
}

(4.5)
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Table 4.1
Table with parameter values.

Parameters Aorta/iliacs Latex Tube

Char. radius R(m) 0.006-0.012 [44] 0.011
Char. length L(m) 0.065-0.2 [14] 0.34

Dyn. viscosity µF ( kg
ms

) 3.5 × 10−3 [44] 3.5 × 10−3

Young’s modulus E(Pa) 105
− 106 [44, 1, 3] 1.0587 × 106

Wall thickness h(m) 1 − 2 × 10−3 [44] 0.0009
Wall density ρW (kg/m3) 1.1 × 103 [44] 1.1 × 103

Fluid density ρF (kg/m3) 1050 [44] 1000
Wall viscosity coef. hCv/R(Pa · s) 103

− 8 × 103 [1, 2, 3] 0

and plug this into the Navier–Stokes equations (3.1)–(3.3). We look for a solution to
the zeroth-order approximation of the problem plus its ǫ-correction. The zeroth-order
approximation corresponds to the leading-order approximation of the flow in the limit
in which the wavelength of the disturbance and the length scale of tube variation are
large compared with the tube radius.

4.1. The zeroth-order approximation. The leading-order Navier–Stokes equa-
tions read

Sh0
∂ṽ0

z

∂t̃
+ (ṽ0∇r̃,y)ṽ

0
z +

∂p̃0

∂z̃
+

∂p̃1

∂y
− 1

Re0

{

1

r̃

∂

∂r̃

(

r̃
∂ṽ0

z

∂r̃

)

+
∂2ṽ0

z

∂y2

}

= 0,(4.6)

Sh0
∂ṽ0

r

∂t̃
+ (ṽ0∇r̃,y)ṽ

0
r +

∂p̃0

∂r
+

∂p̃1

∂r̃
− 1

Re0

{

1

r̃

∂

∂r̃

(

r̃
∂ṽ0

r

∂r̃

)

+
∂2ṽ0

r

∂y2

}

= 0,(4.7)

∇r̃,y p̃
0 = 0,(4.8)

∂

∂r̃

(

r̃ṽ0
r

)

+
∂

∂y

(

r̃ṽ0
z

)

= 0,(4.9)

with ṽ0
r , ṽ

0
z , and p̃1 1-periodic in y and ṽ0

r = ṽ0
z = 0 at r̃ = 1 +

Ξ

R
η̃,(4.10)

where Sh0 := ǫLωǫ

V and Re0 := ρFRV
µF

. Here the following scaling for the pressure is
used:

p =
ρFV

2

ǫ
p̃, thus Cp =

ρFV
2

ǫ
.(4.11)

Notice Sh0 = ǫSh and Re0 = Re/ǫ. For the average values from Table 4.1 Sh0 is of
order 1 and Re0 is around 1000. We remark that (4.8) corresponds to the ǫ−1-term
and the others to the ǫ0-term.

The leading-order behavior for the boundary conditions evaluated at the lateral
boundary r̃ = 1 + Ξ

R η̃0 is the following:
• The kinematic boundary condition:

ṽ1
r =

∂η̃0

∂t̃
+ O(ǫ2).(4.12)

• The dynamic boundary condition:

p̃0 − p̃ref =
ǫ

ρFV 2

Ξ

R

hE

R(1 − σ2)

(

1 +
h2

12R2

)

η̃0 + p̃ref
Ξ

R
η̃0

+
ǫ

ρFV 2

Ξ

R

hCV ω

R

(

1 +
h2

12R2

)

∂η̃0

∂t̃
+ O(ǫ2).

(4.13)
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Notice that for the parameter values in Table 4.1, ω ≈ 100 and the values of the

leading-order coefficients are both of order one: ǫ
ρFV 2

Ξ
R

hE
R(1−σ2) (1 + h2

12R2 ) = O(1),
ǫ

ρFV 2

Ξ
R

hCV ω
R (1 + h2

12R2 ) = O(1). This is the ǫ2-approximation of the pressure-
displacement relationship describing the linearly viscoelastic cylindrical Koiter shell
model. The terms multiplying h3 account for the bending rigidity of the Koiter shell.
These terms are not present in the pressure-displacement relationship describing a
viscoelastic membrane.

To obtain a closed system of reduced equations notice that system (4.6)–(4.10)
admits a unique strong (nonstationary) unidirectional solution independent of y [48]
for every given smooth pressure p̃0:

ṽ0
r = 0, ṽ0

z = ṽ0
z(r̃, z̃, t̃),(4.14)

where ṽ0
z satisfies

⎧

⎪

⎨

⎪

⎩

Sh0
∂ṽ0

z

∂t̃
− 1

Re0

1

r̃

∂

∂r̃

(

r̃
∂ṽ0

z

∂r̃

)

= −∂p̃0

∂z̃
(z̃, t̃),

ṽ0
z(0, z̃, t̃) bounded, ṽ0

z(1 + Ξη̃0(z̃, t̃)/R, z̃, t̃) = 0, and ṽ0
z(r̃, z̃, 0) = 0,

(4.15)

and p̃1 is a linear function of y, independent of r̃. Since p̃1 is 1-periodic p̃1 cannot
depend on y. Thus, the derivatives of p̃1 with respect to r̃ and y are both zero.

To complement (4.15) in the calculation of ṽ0
z and p̃0 we use the conservation

of mass equation (3.3) averaged with respect to the cross-section. The leading-order
terms in (3.3) read

∂

∂r̃

(

r̃ṽ1
r

)

+
∂

∂z̃

(

r̃ṽ0
z

)

= 0.

Integrated with respect to r̃ from 0 to 1 + Ξ
R η̃0 one obtains

∂
(

1 + Ξ
R η̃0
)2

∂t̃
+

Ξ

R

∂

∂z̃

∫ 1+ Ξ

R
η̃0

0

2ṽ0
z r̃dr̃ = 0,(4.16)

where we have used the kinematic boundary condition (4.12) to couple the flow ve-
locity and lateral boundary motion.

Equations (4.16), (4.15), and (4.13) give rise to a nonlinear free-boundary problem
for the zeroth-order approximation of the flow. In dimensional variables, the nonlinear
free-boundary problem for (v0, η0, p0) = (v0

z , 0, η
0, p0) reads

∂(R + η0)2

∂t
+

∂

∂z

∫ R+η0

0

2rv0
zdr = 0,

̺F
∂v0

z

∂t
− µF

1

r

∂

∂r

(

r
∂v0

z

∂r

)

= −∂p0

∂z
,(4.17)

p0 − pref =
hE

R2(1 − σ2)

(

1 +
h2

12R2

)

η0 + pref
η0

R
+

hCV

R2

(

1 +
h2

12R2

)

∂η0

∂t
,

v0
z |r=0 − bounded, v0

z |r=R+η0 = 0, v0
z |t=0 = 0,

η0|t=0 = 0, p0|z=0 = P0, p0|z=L = PL.
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4.2. The first-order correction. The first-order correction to the solution de-
fined by (4.17) is obtained by solving the equations that result from the coefficients
at the ǫ1-terms in the expanded Navier–Stokes equations (3.1)–(3.3)

Sh0
∂ṽ1

z

∂t̃
+ ṽ0

z

{

∂ṽ1
z

∂y
+

∂ṽ0
z

∂z̃

}

+ ṽ1
r

∂ṽ0
z

∂r̃
+

∂p̃1

∂z̃
+

∂p̃2

∂y
=

1

Re0

{

1

r̃

∂

∂r̃

(

r̃
∂ṽ1

z

∂r̃

)

+
∂2ṽ1

z

∂y2

}

,

(4.18)

Sh0
∂ṽ1

r

∂t̃
+ ṽ0

z

∂ṽ1
r

∂y
+

∂p̃2

∂r̃
=

1

Re0

{

1

r̃

∂

∂r̃

(

r̃
∂ṽ1

r

∂r̃

)

+
∂2ṽ1

r

∂y2

}

,(4.19)

∂

∂r̃

(

r̃ṽ1
r

)

+
∂

∂y

(

r̃ṽ1
z

)

+ r̃
∂ṽ0

z

∂z̃
= 0,(4.20)

ṽ1
r , ṽ

1
z , p̃

2 1-periodic in y; ṽ1
r =

∂η̃0

∂t̃
, ṽ0

z = 0 at r̃ = 1 +
Ξ

R
η̃0.(4.21)

Using the same arguments as in [9] one can show that p̃1 = p̃2 = 0 and we have
a closed linear system, known as a nonstationary Oseen system, defined on a fixed
domain (0, L) × (0, 1 + Ξ/Rη0).

To calculate the ǫ-correction to the velocity we look for a solution ṽ1
z that is

independent of the “artificial” fast variable y. In this case the conservation of mass
equation (4.20) can be integrated with respect to r̃ to obtain an explicit formula for
ṽ1
r in terms of the already calculated ṽ0

z :

r̃ṽ1
r(r̃, z̃, t̃) =

(

1 +
Ξη̃0

R

)

∂η̃0

∂t̃
+

∫ 1+Ξη̃0/R

r̃

∂ṽ0
z

∂z̃
(ξ, z̃, t̃) ξ dξ.(4.22)

The axial momentum equation (4.18) defines a linear problem for ṽ1
z :

Sh0
∂ṽ1

z

∂t̃
− 1

Re0

1

r̃

∂

∂r̃

(

r̃
∂ṽ1

z

∂r̃

)

= −ṽ1
r

∂ṽ0
z

∂r̃
− ∂

∂z̃

(

(ṽ0
z)

2

2

)

,(4.23)

ṽ1
z(0, z̃, t̃) bounded, ṽ1

z(1 + Ξη̃0(z̃, t̃)/R, z̃, t̃) = 0,(4.24)

ṽ1
z(r̃, z̃, 0) = 0, ṽ1

z(r̃, 0, t) = ṽ1
z(r̃, L, t) = 0.(4.25)

Notice that the quadratic transport terms appear in this higher-order approxima-
tioni. They are linearized around the zeroth-order approximation of the solution.

Equations (4.22)–(4.25) define the ǫ-correction of the solution. In dimensional
form the system reads

v1
r(r, z, t) =

1

r

(

R
∂η0

∂t
+

∫ R

r

ξ
∂v0

z

∂z
(ξ, z, t)dξ

)

,

ρF
∂v1

z

∂t
− µF

1

r

∂

∂r

(

r
∂v1

z

∂r

)

= −ρF

(

v1
r

∂v0
z

∂r
+ v0

z

∂v0
z

∂z

)

,(4.26)

v1
z |r=0 − bounded, v1

z |r=R = 0, v1
z |t=0 = 0.

Proposition 4.1. The velocity field v = (v0
z + v1

z , v
1
r), the radial displacement

η = η0, and the pressure p = p0, defined by (4.17) and (4.26), satisfy the original
problem (3.1)–(3.10) to O(ǫ2).

The proof is the same as that of Proposition 7.1 in [9].
We end this section by summarizing the main assumptions under which the sim-

plified, effective problem (4.17), (4.26) holds and the parameter values assumed.
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Assumptions.

(1) The domain is cylindrical with small aspect ratio ǫ = Rmax/L.
(2) The problem is axially symmetric.
(3) Longitudinal displacement is negligible.
(4) Radial displacement is not too large, i.e., δ := Ξ/R ≤ ǫ.
(5) The reference tube radius varies slowly: R′(z) < ǫ.
(6) The Reynolds number Re is small to medium (Re ≈ 1000).
(7) The z-derivatives of the nondimensional quantities are O(1) (not too large).

5. Viscoelasticity of the fluid-structure interaction. We emphasize in this
section that the viscoelastic behavior of the coupled fluid-structure interaction prob-
lem comes from two distinct effects. One is the viscoelasticity of the structure itself,
and the other is the viscoelasticity due to the interaction between the structure (not
necessarily viscoelastic) with a viscous fluid. To explicitly capture the leading-order
effects that the viscous fluid imparts on the motion of the structure we proceed as fol-
lows. First, we simplify the free-boundary problem (4.17) by expanding the underlying
problem (4.17), (4.26), with respect to the radial displacement. The free-boundary
problem will be approximated by two fixed boundary problems of similar form. Each
of the two fixed boundary problems consists of solving a system of two equations
(see (5.1), (5.3)) that are of hyperbolic-parabolic type. In each of the two problems,
we can “explicitly solve” the parabolic equation for the velocity, plug the velocity
into the resulting equation for the structure, and obtain a single equation describing
the motion of the structure. The resulting equation incorporates the viscous fluid
effects in terms of a convolution integral. If we will assume, for the moment, that
the structure is purely elastic, the resulting equation describes the dynamics of an
elastic structure under a viscous fluid load; see (5.11). It corresponds to a model of
a viscoelastic string with viscous long-term memory effects. Thus, the fluid viscosity
influences the dynamics of an elastic structure through a long-term memory effect.

We begin by expanding the free-boundary problem (4.17) and the ǫ-correction
(4.26) with respect to the radial displacement whose magnitude is measured, in non-
dimensional variables, by Ξ/R. Thus, assume that

δ :=
Ξ

R
≤ ǫ

and introduce the following expansions with respect to δ:

η̃0 = η̃0,0 + δη̃0,1 + · · · , p̃0 = p̃0,0 + δp̃0,1 + · · · ,
v0
z = v0,0

z + δv0,1
z + · · · , ṽ1

z = ṽ1,0
z + · · · , ṽ1

r = ṽ1,0
r + · · · .

The first superscript denotes the expansion with respect to ǫ and the second with
respect to δ. Then using the same approach as in [9] one obtains a set of equations
approximating the original problem to the ǫ2-accuracy. The resulting problem, in
dimensional variables, consists of finding the functions

vz = v0,0
z + v0,1

z + v1,0 + O(ǫ2), vr = v1,0
r + O(ǫ2), η = η0,0 + O(ǫ2) p = p0,0 + O(ǫ2)

satisfying the following set of closed, well-defined problems.
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The zeroth-order approximation. Find (η0,0, v0,0
z ) such that

∂η0,0

∂t
+

1

R

∂

∂z

∫ R

0

rv0,0
z dr = 0,

̺F
∂v0,0

z

∂t
− µF

1

r

∂

∂r

(

r
∂v0,0

z

∂r

)

= −∂p0,0

∂z
,(5.1)

v0,0
z |r=0 − bounded, v0,0

z |t=R = 0, v0,0
z |t=0 = 0,

η0,0|t=0 = 0, p0,0|z=0 = P0, p0,0|z=L = PL,

where

p0,0 =
Eh

(1 − σ2)R

(

1 +
h2

12R2

)

η0,0

R
+ pref

η0,0

R
+

hCv

R2

(
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h2

12R2

)

∂η0,0

∂t
.(5.2)

The δ correction. Find (η0,1, v0,1
z ) such that

∂η0,1
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1

R

∂
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∫ R

0

rv0,1
z dr = − 1

2R
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,
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1
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(

r
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z
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)
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,(5.3)
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0,0
z
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z |t=0 = 0,

η0,1|t=0 = 0, η0,1|z=0 = 0, η0,1|z=L = 0,
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(

Eh

(1 − σ2)R

(

1 +
h2

12R2

)

+ pref
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(

η0,1

R
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η0,0

R

)2
)

+
hCv

R2

(

1 +
h2

12R2

)(

∂η0,1

∂t
− η0,0

R

∂η0,1

∂t

)

.

(5.4)

The ǫ-correction. Find (v1,0
r , v1,0

z ) such that

v1,0
r (r, z, t) =

1

r

(

R
∂η0,0

∂t
+

∫ R

r

ξ
∂v0,0

z

∂z
(ξ, z, t)dξ

)

,(5.5)

ρF
∂v1,0

z
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1

r

∂
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(

r
∂v1,0

z
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= −ρF
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r

∂v0,0
z
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+ v0,0

z

∂v0,0
z
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,(5.6)

v1,0
z |r=0 − bounded, v1,0

z |r=R = 0, v1,0
z |t=0 = 0.

Systems (5.1) and (5.3) can be solved by considering the auxiliary problem
⎧

⎨

⎩

∂ζ

∂t
− 1

r

∂

∂r

(

r
∂ζ

∂r

)

= 0 in (0, R) × (0,∞),

ζ(0, t) is bounded , ζ(R, t) = 0 and ζ(r, 0) = 1.
(5.7)

For example, the solution of the parabolic equation for the velocity v0,0
z can be written

as the convolution

v0,0
z = − 1

ρF

∫ t

0

ζ

(

r,
µF (t− τ)

ρF

)

∂p0,0

∂z
(z, τ)dτ.
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Plugging this expression for the velocity into the first equation one obtains

∂η0,0

∂t
− 1

ρFR
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∂z

∫ R

0

r

∫ t

0

ζ

(

r,
µF (t− τ)
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)
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∂z
(z, τ)dτdr = 0.(5.8)

Denote the mean of ζ in the radial direction by

K(t) = 2

∫ R

0

ζ(r, t) rdr,(5.9)

and assume, for the moment, that the Koiter shell is purely elastic so that

p0,0 = C0η
0,0, where C0 =
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Then (5.8) becomes

∂η0,0

∂t
− C0

2ρFR

∫ t

0

K
(

µF (t− τ)

ρF

)
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∂z2
dτ = 0.(5.10)

Differentiate with respect to t to obtain
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2ρF
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2ρ2
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∫ t

0
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∂2η0,0

∂z2
.(5.11)
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Fig. 5.1. A comparison between the solutions of (5.11) with µF = 0 (thin solid line) and
µF = 3.5 × 10−3 (thick solid line). The radius, shown in these graphs, is taken at the midpoint of
the tube during two cardiac cycles.

This is a model describing the motion of a linearly viscoelastic string with the viscous
effects described by the convolution integral on the right-hand side of (5.11). The
kernel in the convolution corresponds to the derivative of K which decays in time
exponentially fast, with the decay rate equal to the first zero of the Bessel function
J0. This is the only term that incorporates the viscosity of the fluid µF . Thus, the fluid
impacts the motion of the structure through this long-term memory effect. Numerical
simulations presented in Figure 5.1 show the motion of the structure (displacement
η0,0) with µF = 0 and with µF = 3.5 × 10−3. The smoothing by the viscous fluid
dissipation is obvious.
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Fig. 6.1. The axial (top) and radial (bottom) components of the velocity obtained at a first half
of the systole (1/6 of the cardiac cycle). The magnitude of the axial component of the velocity is
between 0 and 0.52 m/s. The magnitude of the radial component of the velocity is between 0 and
0.0014 m/s. The pictures on the right show the velocity profiles calculated at the midpoint of the
tube.

6. Numerical algorithm. To solve problems (5.1) and (5.3) numerically it is
convenient to rewrite each of the systems of equations as a second-order hyperbolic-
parabolic problem. Namely, after differentiating the first equation in (5.1) with respect
to time, and plugging the second equation into the first, problem (5.1) can be rewritten
as

∂2η0,0

∂t2
− R

2ρF

∂2p0,0

∂z2
= −µF
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∂

∂z

(

∂v0,0
z

∂r

∣

∣

∣

∣

r=R

)

,(6.1)

ρF
∂v0,0

z

∂t
− µF

1

r

∂

∂r

(

r
∂v0,0

z

∂r

)

= −∂p0,0

∂z
,(6.2)

with the initial and boundary conditions specified in (5.1) and p0,0 substituted by
(5.2). Similarly, problem (5.3) can be written as
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with initial and boundary conditions given in (5.3) and p0,1 substituted by (5.4).
The first equation in both subproblems can be thought off as a one-dimensional wave
equation in z and t, and the second as the one-dimensional heat equation in r and
t. The systems for the 0, 0 and 0, 1 approximations have the same form. They are
solved using a one-dimensional finite element method. Since the mass and stiffness
matrices are the same for both problems, up to the boundary conditions, they are
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generated only once. Both systems are solved simultaneously using a time-iteration
procedure. First, the parabolic equation is solved for v0,0

z at the time step ti+1 by
explicitly evaluating the right-hand side at the time-step ti. Then the wave equation is
solved for η0,0 with the evaluation of the right-hand side at the time-step ti+1. Using
these results for v0,0

z and η0,0, computed at ti+1, a correction at ti+1 is calculated by
repeating the process with the updated values of the right-hand sides. This method
is a version of the Douglas–Rachford time-splitting algorithm which is known to be
of first-order accuracy.

Calculating approximation 1, 0 is straightforward once the approximations 0, 0
and 0, 1 are obtained. In this algorithm a sequence of one-dimensional problems
is solved, so the numerical complexity is that of one-dimensional solvers. However,
leading-order two-dimensional effects are captured to the ǫ2-accuracy. Figure 6.1
presents the axial and radial components of the velocity, showing two-dimensional
effects that cannot be captured using one-dimensional models.

7. Experimental validation. A mock circulatory loop was used to validate our
simplified, effective mathematical flow model (5.1)–(5.6). The circulatory loop was
assembled at the Research Laboratory at the Texas Heart Institute. Figure 7.1 shows
the experimental setup and a sketch of the main components of the mock circula-
tory loop. The main components of the flow loop include the left ventricular assist
device (LVAD Heart Mate, Thoratex Corp., Woburn, MA), which is a pulsatile flow
pump used in patients with failing hearts to aid the function of the left ventricle,
the inlet and outlet LVAD valves, two compliance chambers (wash bottles; 250 ml in
volume), a reservoir (Nalgene canister), and pressure transducers (TruEave, Edwards
Lifesciences, Irvine, CA) placed at the inlet and outlet of the test segment. Latex
tubing (Kent Elastomer Products Inc.) was used to simulate compliant vessels. See
Figure 7.1. The straight latex tube segment was attached to the hard plastic con-
nectors placed at the inlet and at the outlet of the segment, keeping the inlet and
outlet displacement together with its derivative equal to zero, i.e., η = ∂η/∂z = 0 at
z = 0, L, as well as the inlet and outlet velocity approximately such that vr = 0.

LVAD

Inlet Valve

Outlet Valve
Pressure Meterers

Compliance Chamber

Compliance Chamber

Reservoir

Clamp (Resistance)

Fig. 7.1. Flow loop at the Research Laboratory at the Texas Heart Institute (left), a sketch of
the flow loop (right).

One of the goals of this experiment was to recreate the pressure waves and fluid
velocity at the middle section of the straight test segment similar to those typical
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for the human abdominal aorta. To achieve this goal a clamp located downstream
from the test segment was added to mimic downstream resistance by the capillary
bed. Figure 7.2(left) shows the measured (filtered) pressure data at the inlet and at
the outlet of the test segment. This compares well with the typical inlet and outlet
pressure data of the human abdominal aorta, shown in Figure 7.2(right). Ultrasonic
imaging and Doppler methods were used to measure the axial velocity of the flow.
Nondairy coffee creamer was dispersed in water to enable reflection for ultrasound
measurements. A high-frequency (20 MHz) single crystal probe was inserted through
a catheter at several locations of the tube. This method has been validated in vivo by
measuring the velocity and wall motion in mice to a precision of 0.1 um; see [25, 26].
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To determine Young’s modulus of the tube wall we measured the tube diameter
d at the reference pressure of 84 mmHg (d = 2.22 cm) and at the maximal systolic
pressure of 148 mmHg (d = 2.38 cm), utilizing the linear pressure-displacement re-
lationship described by the equations of p0 in (4.17) with CV = 0 and the data for
the tube wall thickness provided by the manufacturer of the latex tube, Kent Elas-
tomer Products Inc. The value of E = 1.0587 × 106 Pa was obtained. Using the
numerical solver described in section 6 system of equations (5.1)–(5.6) was solved.
The results were compared with the experimental measurements. At the top of Fig-
ure 7.3(left) is a comparison between the numerically calculated displacement and the
experimentally measured maximal displacement of 0.0008 m. Figure 7.3(right) shows
a comparison between the numerically calculated (solid line) and experimentally mea-
sured (asterisks) axial velocity. Excellent agreement was obtained indicating that this
model captures well the fluid-structure interaction between a linearly elastic structure
such as a latex tube, and the flow of a viscous incompressible fluid such as water, in
the flow regime corresponding to the abdominal aorta.

8. Hysteresis behavior of viscoelastic arteries. In this section we compare
the results of our viscoelastic model with the measurement of the viscoelastic prop-
erties of the human and canine arteries presented in [1, 2, 3]. In [1] Armentano
et al. studied the viscoelastic aortic properties in dogs. In particular, they measured
the magnitude of the viscous modulus corresponding to our coefficient hCv/R. The
values corresponding to dogs aortas, reported in [1], belong to the interval

hCv

R
|(dog aorta) ∈ (3.8 ± 1.3 × 104, 7.8 ± 1.1 × 104) dyn · s/cm2

= (3.8 ± 1.3 × 103, 7.8 ± 1.1 × 103) Pa · s.

Taking into account the radius of the studied aortas (≈ 0.008 m) and the average wall
thickness (≈ 0.0014 m), one obtains

Cv|(dog aorta) ∈ (2.17 × 104, 4.45 × 104) Pa · s.

In [1] the measurements of the viscoelastic properties of the canine aorta were ob-
tained, showing a hysteresis in the stress-strain diagram, where the stress (τ) and
strain (e) were defined using

τ =
2p(reri)

2

r2
e − r2

i

1

R2
, e =

R + η

R
.(8.1)

Here re and ri are the external and internal vessel radii calculated using re,i = R ±
0.5 h. The results of the measurements are shown in Figure 8.1(left). We used the
data presented in [1] as a guide in the numerical simulation of the dynamics of the
canine aorta utilizing the effective viscoelastic model (4.17), (4.26). Unfortunately,
[1] does not include the pressure data at the inlet and outlet of the canine aorta.
Thus, it was impossible to recreate the simulation that would correspond exactly to
the scenario studied in [1]. However, using the data available to us, in particular the
viscous modulus CV , we were able to approximate the scenario studied in [1] and
capture the main viscoelastic properties of the canine aorta. The results are shown in
Figure 8.1. The top figures show the pressure and the scaled diameter in one cardiac
cycle. Both waves exhibit the same morphology, but the diameter shows a time delay
with respect to the pressure, which is due to the viscosity of the vessel wall. The
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Fig. 8.1. Left: Measured viscoelastic behavior of the canine aorta reported in [1] (top: aortic
diameter and pressure wave forms, bottom: stress-strain relationship). Right: Numerical simulation
of the reduced one-and-a-half-dimensional model showing viscoelastic behavior of vessel walls (top:
aortic diameter and pressure wave forms, bottom: stress-strain relationship).

bottom figures show the hysteresis behavior in the stress-strain relationship. The
upper “half” of the hysteresis corresponds to the loading and the lower “half” to
the unloading portion of the cardiac cycle. The hysteresis curves and the time-lag
between the pressure and scaled diameter show similar qualitative behavior.

An even better approximation of the hysteresis behavior in the dynamics of major
arteries was obtained for the data corresponding to a healthy human femoral artery.
One reason for this is that the inlet and outlet pressure data that were used in all
of our numerical simulations correspond to the human data. We compared our nu-
merical simulations to the measurements data presented in [2]. In [2] Armentano
et al. estimated the magnitude of the coefficient multiplying the term ∂D/∂t, where
D is the vessel diameter of a human femoral artery. The value of the coefficient was
estimated to be 266 × Pa · s/m. Using the values for the measured femoral artery
diameter (0.00625m) and the wall thickness (0.001 m), one obtains

Cv|(human femoral) ≈ 5.2 × 103 Pa · s.(8.2)

Thus, the corresponding viscous modulus hCv/R is

hCv

R

∣

∣

∣

∣

(human femoral)

≈ 1.6 × 103 Pa · s,(8.3)



190 ČANIĆ ET AL.

60 80 100 120 140 160
1.5

1.55

1.6

1.65

1.7

D
ia

m
e

te
r(

c
m

)
Pressure (mmHg)

Fig. 8.2. Left: Measurements of the diameter-pressure hysteresis loop in human femoral artery
reported in [2]. Right: Numerical simulation of the diameter-pressure hysteresis loop with parameters
from Table 4.1 (E = 1.3 × 106 Pa, h = 0.001 m, R = 0.008 m, L = 0.13 m, hCv/R = 103 Pa · s).

which is of the same order of magnitude as the viscous modulus corresponding to the
dogs aortas. Figure 8.2 shows a comparison between our numerical simulations and
measurements. There, a pressure-diameter relationship is plotted, showing hysteresis
behavior. The graph in Figure 8.2(left) corresponds to the measurements of the
human femoral artery reported in [2], and the graph in Figure 8.2(right) shows the
pressure-diameter relationship in the simulations obtained using the reduced model
(5.1), (5.6). Again, similar viscoelastic behavior is detected.
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diameter coincide). The figure on the right shows the pressure-diameter plot for the viscoelastic
model (hysteresis) and the elastic model (straight line).

9. Elastic vs. viscoelastic model. We conclude this manuscript by presenting
a comparison between the results of the fluid-structure interaction models assuming
elastic vs. viscoelastic wall model with a relatively large viscoelastic constant hCv/R =
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104 Pa · s. Figure 9.1(left) shows the pressure and the scaled diameter values for the
two models plotted over one cardiac cycle. One can easily detect the time-shift in
the diameter of the viscoelastic model compared with the diameter of the elastic wall
model which coincides (the scaled diameter) with the pressure wave. Figure 9.1(right)
shows the pressure-diameter plot emphasizing the hysteresis in the viscoelastic model
superimposed over the straight line pressure-diameter plot corresponding to the elastic
model.

10. Conclusions. In this manuscript we derived a simple, effective closed model
that describes blood flow through viscoelastic arteries in cylindrical geometry assum-
ing axially symmetric flows. Using homogenization theory and asymptotic analy-
sis, this fluid-structure interaction problem was reduced to a free-boundary problem
of hyperbolic-parabolic type in two space dimensions. Although the model is two-
dimensional, its simple form allows the use of one-dimensional solvers giving rise to a
numerical algorithm of one-dimensional complexity. In contrast with the “classical”
one-dimensional models where an ad hoc assumption on the axial velocity profile needs
to be used to close the model, the system we obtained in this manuscript is closed,
producing the axial as well as radial velocity as a solution of the problem. We showed
that the reduced model approximates the original three-dimensional axially symmet-
ric model to the ǫ2-accuracy, where ǫ is the aspect ratio of the tube approximating
straight arterial sections. The main novelty in this manuscript is the derivation of a
viscoelastic cylindrical Koiter shell model to describe the behavior of arterial walls.
Viscoelasticity of Kelvin–Voigt type was utilized to derive the model which appox-
imates well the hysteresis behavior observed in the vessel wall measurements. We
showed that in this fluid-structure interaction model bending rigidity of arterial walls
plays a nonnegligible role in the leading-order approximation of the problem. This
effect, together with the viscosity of vessel walls, explicitly derived in this manuscript,
provides the regularizing mechanisms for the stability of the solutions.
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