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Modeling Viscous Transonic Limit-Cycle Oscillation
Behavior Using a Harmonic Balance Approach

Jeffrey P. Thomas,∗ Earl H. Dowell,† and Kenneth C. Hall‡

Duke University, Durham, North Carolina 27708-0300

Presented is a harmonic-balance computational fluid dynamic approach for modeling limit-cycle oscillation
behavior of aeroelastic airfoil configurations in a viscous transonic flow. For the NLR 7301 airfoil configuration
studied, accounting for viscous effects is shown to significantly influence computed limit-cycle oscillation trends
when compared to an inviscid analysis. A methodology for accounting for changes in mean angle of attack during
limit-cycle oscillation is also developed.

Nomenclature
a = nondimensional location of airfoil elastic axis, e/b

(Fig. 2)
b, c = semichord and chord, respectively
cl , cm = coefficient of lift and moment about elastic axis,

respectively
c̄l0 , c̄m0 = zeroth harmonic or mean coefficient of lift and

moment about elastic axis, respectively
c̄l1 , c̄m1 = first harmonic unsteady coefficient of lift

and moment about elastic axis, respectively
Dh , Dα = airfoil plunge damping and torsional damping,

respectively
e = location of airfoil elastic axis, measured

positive aft of airfoil midchord
h, α = airfoil plunge and pitch coordinate degree

of freedom, respectively
h̄0, ᾱ0 = zeroth harmonic or mean airfoil plunge and pitch

amplitude, respectively
h̄1, ᾱ1 = first harmonic unsteady airfoil plunge and pitch

amplitude, respectively
Iα = second moment of inertia of airfoil about elastic axis
j =

√−1
Kh , Kα = airfoil plunge stiffness and torsional stiffness about

elastic axis, respectively
M∞ = freestream Mach number
m = wind-tunnel experimental wing mass
mh = wind-tunnel plunge coordinate total mass,

m + mSD + mSP
mSD = wind-tunnel shift device mass
mSP = wind-tunnel suspension device mass
NH = number of harmonics used in harmonic balance

computational fluid dynamics flow solver method
Re, Im = real and imaginary part, respectively
Re∞ = freestream Reynolds number
rα = radius of gyration of airfoil about elastic axis,

r 2
α = Iα/mb2

Sα = first moment of inertia of airfoil about elastic axis
s = wind-tunnel experimental model span
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T = period, time for one cycle of oscillation
U∞ = freestream velocity
V = reduced velocity, U∞/

√
(µ)ωαb

xα = airfoil static unbalance, Sα/mb
y = dimensional distance normal to the airfoil surface
y+ = nondimensional distance normal to the airfoil

surface, y
√

(τw/ρ)/ν

ζh = plunge coordinate damping coefficient, Dh/2mωh

ζα = pitch coordinate damping coefficient, Dα/2Iαωα

µ = mass ratio, m/πρ∞b2s
ν = kinematic viscosity
ρ, ρ∞ = local and freestream density, respectively
τw = airfoil surface tangential shear stress
ω, ω̄ = frequency and reduced frequency based on airfoil

chord, ωc/U∞, respectively
ωh = plunge coordinate natural frequency based on wing

mass,
√

(Kh/m)

ωα = pitch coordinate natural frequency,
√

(Kα/Iα)

Subscript

f = flutter point condition

Introduction

A NOVEL approach for modeling limit-cycle oscillation (LCO)
behavior of aeroelastic airfoil configurations in viscous tran-

sonic flows is presented. The method is based on a harmonic balance
(HB) flow solver technique for efficiently modeling nonlinear un-
steady aerodynamics.1,2 The primary objective of the current study
is to assess the capability of the HB/LCO solution methodology
to model transonic viscous flow phenomena such as shock-induced
boundary-layer separation, and to determine if such effects have an
influence on LCO behavior. Recent two-dimensional experimental
LCO investigations by Schewe and Deyhle,3 Schewe et al.,4 and
Knipfer and Schewe5 have also motivated the present research. In
addition to viscous effects, and unlike the NACA 64A010 airfoil
configuration studied by Thomas et al.,2 we now also consider non-
symmetric airfoil sections at nonzero angles of attack. As will be
shown in the following, this requires the solution of one additional
equation for the mean, that is, zeroth harmonic, angle of attack of
the LCO.

The primary motivation for the development of the HB/LCO so-
lution methodology has been to construct an efficient computational
procedure for modeling LCO behavior. Figure 1a illustrates a typi-
cal flutter onset boundary in the reduced velocity vs Mach number
plane, including the commonly observed “flutter speed dip.” As one
moves from point A, a reduced velocity below the flutter onset condi-
tion, to point B, a reduced velocity above the flutter onset condition,
LCO may be encountered. Figure 1b illustrates three possible types
of LCO behavior one might observe.

Curve 1 represents a stable LCO behavior with no LCO occur-
ring below the linear flutter speed. This type of LCO behavior is
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a) Mach number flutter speed dip trend

b) LCO behavior trends near flutter onset condition

Fig. 1 Example of LCO behavior trends.

also sometimes referred to as soft flutter, or benign LCO, per se, in
that the nonlinear effects help to reduce the amplitude of the oscil-
lations. Of course, structural failure may eventually be an issue if
the amplitude of the LCO becomes too large. For the type of LCO
behavior illustrated by curve 2, as soon as one reaches the flutter on-
set condition, any further increase in reduced velocity immediately
results in very large LCO motion. Finally, curve 3 illustrates unsta-
ble LCO behavior. A configuration exhibiting this very dangerous
type of LCO trend is susceptible to explosive LCO, whereby a dis-
turbance of sufficient magnitude may be capable of triggering LCO
at reduced velocities even below the flutter onset condition. As will
be shown, the HB/LCO solution methodology is a computationally
efficient technique for determining such LCO trends.

Theoretical Development
Fluid Dynamic Model

For the model configuration studied in this investigation, we con-
sider both viscous and inviscid fluid dynamic models. The HB flow
solver technique provides an efficient method with which to model
nonlinear unsteady aerodynamic effects for finite amplitude motions
of a prescribed frequency.

As is discussed by Hall et al.1 and Thomas et al.,2 the HB method
is implemented within the framework of a conventional computa-
tional fluid dynamics (CFD) solver. The vector of unsteady flow
conservation variables U(xi , t) at each computational mesh point xi

is approximated in a truncated Fourier expansion as

U(xi , t) ≈
NH∑

n = −NH

Ûn(xi )e
jnωt (1)

where Ûn(xi ) is the nth harmonic coefficient, and NH is number
of harmonics used in the expansion. McMullen et al.6,7 are also

investigating a similar expansion technique for unsteady Euler and
Navier–Stokes flows.

Normally, the HB development proceeds by first substitution of
Eq. (1) into the governing flow equations. One then subsequently
goes through the process of balancing all of the resulting terms
proportional to e jnωt for each n (−NH ≤ n ≤ NH ). This, in turn,
yields 2NH + 1 equations for the 2NH + 1 harmonic coefficients Ûn .
This straightforward approach to the HB formulation is, however,
typically difficult to implement for complex systems of equations
such as those arising from Euler and Navier–Stokes flows.

Hall et al.,1 however, recently devised an alternative approach
to the HB derivation, whereby the method is formulated in terms
of time-domain variables. That is, instead of working in terms of
the Fourier coefficient variables Ûn(xi ), one instead considers, as
dependent variables, flow solutions stored at 2NH +1 equally spaced
subtime levels [U(xi , tn)] over the period of one cycle of motion.
The Fourier and time-domain variables are, in fact, related to one
another via a constant Fourier transformation matrix.

Working in terms of subtime level variables circumvents the ne-
cessity of having to go though the balancing step of the HB method,
and, in fact, it allows one to easily formulate the HB technique
within the framework of an existing steady CFD solver. (See Hall
et al.1 and Thomas et al.2 for further details.) For the results pre-
sented here, the CFD method is a variant of standard Lax–Wendroff
scheme(see Refs. 8 and 9) in conjunction with the one-equation
turbulence model of Spalart and Allmaras.10

Two-Dimensional Airfoil Aeroelastic Model
The frequency domain form of the unsteady aeroelastic equations

governing the typical pitch/plunge airfoil configuration (Fig. 2) can
be written as

Gu = (V 2/π)f (2)

where

G = −(µ/4)ω̄2V 2M + j
√

µω̄V D + K (3)

M =
[

mh/m xα

xα r 2
α

]
, D =

[
ζh(ωh/ωα) 0

0 ζαr 2
α

]

K =
[
(ωh/ωα)

2 0

0 r 2
α

]
, u =

{
h̄1/b

ᾱ1

}
, f =

{−c̄l1

2c̄m1

}
(4)

Static Aeroelastic Equation
For the present investigation, because nonsymmetric airfoil sec-

tions and/or nonzero angles of attack are being considered, one must
also include the effects of changes in the computed mean flow, for
example, zeroth harmonic, for different LCO amplitudes, which, in
turn, effect the mean angle of attack ᾱ0 of the LCO. This requires

Fig. 2 Geometry for typical (pitch/plunge) two-degree-of-freedom air-
foil section aeroelastic model.
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that one must also satisfy the static, for example, zeroth harmonic,
aeroelastic equation for the pitch degree of freedom

Kα

(
ᾱ0 − αe0

) = q∞c2sc̄m0(ω̄, ᾱ0, ᾱ1, h̄1/b) (5)

where αe0 is the angle of attack for zero spring stiffness in the pitch
coordinate. After some rearrangement, this equation can be written
as

ᾱ0 = αe0 + (
2V 2

/
πr 2

α

)
c̄m0 (6)

The static aeroelastic equation for the plunge coordinate h̄0 estab-
lishes the vertical position of the airfoil. This equation is decoupled
from both the static pitch equation and the first harmonic unsteady
aeroelastic equations (Eq. 2) and, thus, is neglected in the following
theoretical development.

LCO Solution Procedure
In the following, we describe the technique in which the HB

method can be used for modeling LCOs. The methodology was
initially developed and presented by Thomas et al.2 The HB/LCO
solution procedure starts by rewriting Eq. (2) as

Gv = (
V 2

/
πᾱ1

)
f (7)

where

v =
{

h̄1/ᾱ1b

1

}
(8)

In this form, Eq. (2) has been divided through by the first harmonic
unsteady pitch amplitude ᾱ1. This enables one to consider ᾱ1 as the
independent variable in the HB/LCO solution process.

Defining R(L) as the vector operator representing residual of
Eq. (6), together with the residual of the real and imaginary parts of
Eq. (7), one may write the governing steady and unsteady aeroelastic
equations in vector form as

R(L) =






ᾱ0 − αe0 − 2V 2

πr 2
α

c̄m0

G̃ṽ − V 2

πᾱ1
f̃





= 0 (9)

where G̃ is the 4 × 4 matrix

G̃ =
[

GRe −GIm

GIm GRe

]
(10)

ṽ and f̃ are

ṽ =






Re(h̄1/ᾱ1b)

1

Im(h̄1/ᾱ1b)

0





, f̃ =






−Re
(
c̄l1

)

2 Re
(
c̄m1

)

−Im
(
c̄l1

)

2 Im
(
c̄m1

)






(11)

and L is the vector of unknown LCO variables

L =






ᾱ0

V
ω̄

Re(h̄1/ᾱ1b)

Im(h̄1/ᾱ1b)






(12)

We have found that a Newton–Raphson nonlinear root finding
technique is an efficient and stable method for quickly solving for
a root L of Eq. (9). That is, for a specified unsteady pitch amplitude

ᾱ1, one can implement an iterative process whereby the (n + 1)th
update to the LCO solution L is given by

Ln + 1 = Ln −
[

∂R(Ln)

∂L

]−1

R(Ln) (13)

where

[
∂R(L)

∂L

]
=





| | | | |
∂R
∂ᾱ0

∂R
∂V

∂R
∂ω̄

∂R

∂Re(h̄1/ᾱ1b)

∂R

∂Im(h̄1/ᾱ1b)

| | | | |





(14)

We have also found that one can get very good convergence by sim-
ply approximating the column vectors of ∂R(Ln)/∂L using forward
differencing. That is,

∂R(Ln)

∂ᾱ0
≈ R

(
Ln, ᾱn

0 + ε
) − R

(
Ln, ᾱn

0

)

ε
(15)

∂R(Ln)

∂V
≈ R(Ln, V n + ε) − R(Ln, V n)

ε
(16)

etc., for a small ε.
For each step of the LCO solution procedure, the HB flow solver

is implemented by the use of the current LCO frequency ω̄ and
structural mode shape (h̄1/ᾱ1b), for the prescribed LCO pitch am-
plitude ᾱ1, to provide an update for the LCO aerodynamic loading,
that is, c̄l1 , c̄m0 , and c̄m1 . The technique is marched until a suitable
level of convergence is achieved, and the linear flutter solution has
been found to provide an excellent starting solution for the itera-
tive process. Typically, only a few iterations are required to achieve
convergence.

Steady and Unsteady Aerodynamic Modeling
of the NLR 7301 Airfoil

The model configuration under consideration is the NLR 7301
constant airfoil section wing tested extensively by Schewe and
Deyhle,3 Schewe et al.,4 and Knipfer and Schewe.5 Transonic two-
degree-of-freedom aeroelastic experimental studies were conducted
for various Mach numbers and angles of attack, and, in some in-
stances, LCO was observed.

The experimental condition we model using the HB/LCO solu-
tion methodology is referred to by Schewe et al.4 as measured point
condition MP77. This is an LCO condition where the wind-tunnel
test section Mach number, mean angle of attack, and Reynolds
number are reported to be4,5 M∞ = 0.768, ᾱ0 = 1.28 deg, and
Re∞ = 1.727 × 106, respectively. The experimental model3−5 con-
sists of a 1-m span (s = 1.0m) by 0.3-m chord (c = 0.3m) NLR 7301
constant airfoil section wing placed in a 1-m by 1-m cross section
wind-tunnel test section. The elastic axis of the model is positioned
at the wing quarter-chord. Because of the relatively large size of
the model in relation to the wind-tunnel cross section, wind-tunnel
interference effects are known to be significant.

The harmonic balance based CFD flow solver used in the present
investigation is capable of only modeling isolated airfoil sections in
an unbounded freestream. As such, a method of accounting for wind-
tunnel wall interference effects is necessary. Unfortunately, simple
classical analytical wind-tunnel wall interference correction meth-
ods have the tendency to breakdown for transonic Mach numbers.
As such, one method to account for wind-tunnel wall interference
effects is to seek out a combination of Mach number and angle of
attack for the CFD method such that the computed surface pressure
distribution matches as best as possible the experimental distribu-
tion. Investigators such as Weber et al.11 and Tang et al.,12 who are
also studying computational techniques for modeling test condition
MP77, have recently reported, however, that such a combination
of corrected Mach number and angle of attack has been quite elu-
sive to determine and appears perhaps not to exist. In fact, Castro
et al.13,14 have recently taken the approach of adding appropriate
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a) b)

c) d)

Fig. 3 Computational grids used for the NLR 7301 airfoil configuration: a) inviscid mesh close-up, b) inviscid mesh overall, c) viscous mesh close-up,
and d) viscous mesh overall.

boundary conditions to their CFD flow solver to account for the
wind-tunnel walls. However, Castro et al.13,14 have noted that there
is still much difficulty in correctly accounting for wind-tunnel wall
porosity effects.

Rather than go through a similar and time-consuming exercise of
trying to determine a combination of corrected Mach number and
angle of attack in an effort to precisely match the experimental sur-
face pressure distribution, we have decided as a first approximation
to proceed by fixing the Mach number to M∞ = 0.75 and to then
simply adjust the angle of attack until the computed CFD solution
steady flow lift matches the experimental lift.

Computational Mesh
Figure 3 shows sample inviscid and viscous computational grids

used by the HB CFD solver for the NLR 7301 airfoil configura-
tion. A C-grid structured mesh topology is used. The medium mesh
viscous grid shown in Figs. 3c and 3d consists of 49 mesh points
radially and 193 mesh points circumferentially, with a total of 145
mesh points surrounding the airfoil surface, and the remainder of the
circumferential mesh points being distributed in the wake. For all
grids, the outer boundary extends to a distance of 10 chord lengths
from the center of the airfoil. Similar 385 × 97 and 97 × 25 viscous
meshes have also been created. (See Mesh and Harmonic Conver-
gence Issues section for more details.) Figures 3a and 3b show an
inviscid 193 × 49 mesh.

For the viscous flow simulations, the grid spacing has been placed
close enough to the airfoil surface such that the maximum computed
value for the nondimensional distance to the wall spacing parameter
y+ is approximately five for the 193 × 49 viscous mesh.

Fig. 4 Computed steady flow surface pressure distributions: NLR
7301 airfoil section, M∞ = 0.75, and Re∞ = 1.727 ×× 106.

Steady Flow Simulations
With the Mach number set to M∞ = 0.75, steady flows are com-

puted by simply running the HB flow solver with zero harmonics.
To match the experimentally observed lift coefficient of c̄l0 = 0.27,
an angle of attack of ᾱ0 = 0.2 deg is needed for the viscous flow
model, whereas an angle of attack of ᾱ0 = −1.55 deg is required for
the inviscid model.

For both the inviscid and viscous flow models, Fig. 4 shows the
computed and experimental steady surface pressure distributions,
whereas Fig. 5 shows computed steady Mach contours. In this in-
stance, the 193 × 49 viscous and inviscid grids have been used. A
strong shock is readily apparent for the inviscid model.
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a) Inviscid

b) Viscous

Fig. 5 Computed steady flow mach number contours: NLR 7301 air-
foil section, M∞ = 0.75, and Re∞ = 1.727 ×× 106.

Unsteady Flow Simulations
Next, Fig. 6 shows computed Mach contours during one cycle of

motion for the fine mesh (193 × 49) viscous flow CFD model of the
NLR 7301 airfoil when oscillating about the quarter-chord at a pitch
amplitude of ᾱ1 = 5 deg and a reduced frequency ω̄ = 0.3. Clearly
evident is shock-induced boundary-layer separation over both the
upper and lower surfaces during a cycle of motion.

Mesh and Harmonic Convergence Issues
To have confidence in the accuracy of the LCO solutions that

will be discussed in the following sections, one needs to deter-
mine whether or not a sufficient level of grid resolution is being
used to model the correct flow physics accurately. For the harmonic
balance solver, the issue of solution resolution is further compli-
cated by the fact that one must also consider harmonic convergence.
That is, whether or not a sufficient number of harmonic expansion
terms NH are being used in the HB flow solver. Thus, much like
when working with time-domain methods where one must also be
concerned with temporal accuracy in addition to spatial accuracy,
for the HB method, both mesh and harmonic resolution must be
considered.

a) b)

c) d)

e) f)

g)

Fig. 6 Computed HB method unsteady Mach number contours:
NLR 7301 airfoil section: M∞ = 0.75, Re∞ = 1.727 ×× 106, ᾱ0 = 0.2 deg,
ᾱ1 = 5 deg, ω̄ = 0.3, a = −−0.5, and NH = 3 [∆T = T/(2NH + 1) = T/7]: a) t0,
b) t0 + ∆T, c) t0 + 2∆T, d) t0 + 3∆T, e) t0 + 4∆T, f) t0 + 5∆T, and
g) t0 + 6∆T.

To demonstrate sufficient mesh and harmonic convergence for
the current NLR 7301 aeroelastic configuration, we consider a case
where the airfoil is pitching about the quarter-chord for the largest
pitch amplitude investigated in this study, which, in this instance,
is ᾱ1 = 5 deg. This will be discussed further in the LCO results
section. The unsteady reduced frequency is chosen to be ω̄ = 0.3,
which is near the reduced frequency of the experimentally observed
LCO.

First, we consider mesh resolution effects when three harmonics
are used for the HB method. Shown in Fig. 7 are the computed zeroth
harmonic (Fig. 7a), and real (Fig. 7b) and imaginary (Fig. 7c) first
harmonic unsteady airfoil surface pressure distributions for three
different grid resolutions. Namely, 97 × 25, 193 × 49, and 385 × 97
meshes. The 193 × 49 mesh is created from the 193 × 49 mesh by
removal of every other mesh point, and, likewise, the 97 × 25 mesh
is created from the 193 × 49 mesh by removal of every other mesh
point. As can be seen, the pressure distributions are very similar
for all three mesh resolutions. Even for the imaginary part of the
unsteady pressure, where, for the midsection of the airfoil there are
some more noticeable differences between the three different mesh
resolutions, it can be seen that the results are converging as mesh
resolution increases.
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a) Zeroth harmonic (mean) pressure

b) Real part first harmonic unsteady pressure

c) Imaginary part first harmonic unsteady pressure

Fig. 7 Mesh resolutions trends for computed steady and unsteady sur-
face pressure distributions when using three harmonics in HB method,
NH = 3.

Because of the four to eight times increase in computational cost
for the Lax–Wendroff method when doubling mesh resolution in
two dimensions (and we stress that this has nothing to do with the
HB technique), we have chosen to proceed with the 193 × 49 mesh.
The reason for the four to eight times computational cost increase is
simply because, when doubling mesh resolution in each computa-
tional coordinate on a structured mesh, the new mesh will have four
times as many nodes and, thus, four times as many computations.

a) Zeroth harmonic (mean) pressure

b) Real part zeroth harmonic unsteady pressure

c) Imaginary part zeroth harmonic unsteady pressure

Fig. 8 Number of harmonics used in HB method solution trends for
steady and unsteady surface pressure distributions when using 193 ×× 49
mesh.

Furthermore, because of the smaller grid spacing on the finer mesh,
for the Lax–Wendroff method, the maximum allowable iteration
step size decreases, which typically means that more iterations are
required to achieve solution convergence.

Next, Fig. 8 shows the harmonic convergence trend on the
193 × 49 mesh. Shown again are the computed zeroth and first
harmonic airfoil surface pressure distributions for three different
numbers of harmonics used in the HB method. Namely NH = 1, 2,
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and 3. The results look fairly well converged, even with just two har-
monics. The computational cost of the HB method grows at a rate
of 2 × NH + 1 times the cost of a steady flow computation. We have
chosen to proceed with two harmonics for the remaining analysis in
this paper.

LCO Modeling for the NLR 7301 Configuration
Structural Parameters

The structural parameters used for the LCO analysis are those
presented by Knipfer and Schewe5 and Schewe et al.4 Table 1 sum-
marizes values for dimensional and nondimensional quantities.

Flutter Point Prediction
Computation of the LCO behavior via the HB/LCO solution

methodology proceeds by first determining the flutter onset con-
dition. As noted before, experimentally measured point condi-
tion MP77 corresponds to an LCO condition. However, the ob-
served LCO amplitude is very small. Approximately |ᾱ1| = 0.18 deg
(Fig. 15 of Knipfer and Schewe5). As will be shown subsequently,
based on the predicted LCO behavior using the HB/LCO method,
for such a small amplitude the flow conditions at measured point
MP77 are likely to be very near the flutter onset condition. For this
analysis, we are considering this to be the case. As such, we are, in
effect, assuming that the lift coefficient at the flutter onset condition
is also c̄l0 f

= 0.27.
Rather than use a separate linearized unsteady aerodynamic solver

to determine the flutter onset condition, one can instead simply
run the HB CFD flow solver with a single harmonic (NH = 1) and
consider a very small-amplitude motion. As the amplitude of motion
goes to zero, the HB solver yields exactly the same answer as a
linearized unsteady solver. This is another useful feature of the HB
solver.

Prediction of the linear flutter point condition, thus, consists of
first tabulating linear unsteady aerodynamic loading data for plunge
and pitch motions, respectively, for discrete reduced frequencies
ω̄ over a range of reduced frequencies where flutter is presumed
to occur. In this instance, we have chosen small unsteady motion
amplitudes of h̄1/b = 0.001 and ᾱ1 = 0.001 deg, respectively, for
the plunge and pitch degrees of freedom, to simulate dynamically
linear unsteady aerodynamics. Normalization of the calculated un-
steady lift and moment coefficients by the respective amplitudes of
either the plunge or the pitching motions, one then can obtain tabu-
lated data for the unsteady aerodynamic transfer functions c̄l1 h̄1/b

(ω̄),
c̄l1 ᾱ1

(ω̄), c̄m1 h̄1/b
(ω̄), and c̄m1 ᾱ1

(ω̄) at the preselected reduced fre-
quencies ω̄. The 2 × 2 linear unsteady aerodynamic transfer function

Table 1 Structural parameter values for the NLR 7301
aeroelastic configuration

Parameter Value

Dimensional Quantities
m 4.65 kg
mSD 8.24 kg
mSP 13.75 kg
Iα 0.086 kg · m2

Kh 1.21 × 106 N/m
Kα 6.68 × 103 N · m/rad
Sα 0.387 kg · m
Dh 82.9 kg/s
Dα 0.197 kg · m2/(s · rad)
ρ∞ 0.383 kg/m3

Nondimensional Quantities
µ 172
xα 0.555
r2
α 0.822

ωh/ωα 1.83
ζh 0.0175
ζα 0.00411

matrix F(ω̄) is

F =
[

c̄l1 h̄1/b
(ω̄) c̄l1 ᾱ1

(ω̄)

c̄m1 h̄1/b
(ω̄)c̄m1 ᾱ1

(ω̄)

]
(17)

and, for dynamically linear unsteady aerodynamics,

f = Fu (18)

With the linear unsteady aerodynamic transfer functions tabulated
for a range of real reduced frequencies, one can then use a “V –g”
or similar type of method to solve for the flutter onset conditions.
For example, by rewriting Eq. (2) as

[G − (V 2/π)F]u = H(V, ω̄)u = 0 (19)

one can search the plane of values for reduced velocity and reduced
frequency (V, ω̄) for the condition(s) where the magnitude of the
determinant of the 2 × 2 matrix H is a minimum. The use of this
technique provides a quick and easy way to determine a good ap-
proximation of the flutter onset condition(s). This approximate flut-
ter solution then provides a good starting solution for the HB/LCO
method, which, when then run for a very small-amplitude motion,
can be used to seek out the precise flutter onset condition. This is
what has been done for the current flutter analysis of the NLR 7301
configuration. The results for the precise flutter onset conditions for
the viscous and inviscid flow models are shown in Table 2, which
also presents data for the LCO condition of experimental test point
MP77.

Note from Table 2, that the computed flutter onset conditions
are somewhat different than those observed for the MP77 test case.
The numerical model predicts a lower flutter reduced velocity, and
a higher flutter reduced frequency, respectively, for both the invis-
cid and viscous flow models. The MP77 experimental result for the
structural eigenvector is also somewhat more plunge dominated than
the computed values. Figure 15 of Knipfer and Schewe5 was used
to determine the value of (h̄1/ᾱ1b) for the MP77 experimental con-
dition. Note that Knipfer and Schewe5 define the plunge coordinate
has positive upward, opposite to our definition. We have corrected
for this sign difference for the experimental value listed in Table 2.

We are currently trying to ascertain what possible causes might
explain the differences between the experimental and computed con-
ditions. Perhaps the steady flow CFD solution based on adjusting
the angle-of-attack to match the experimental lift coefficient does
not provide a sufficient approximation of the true wind-tunnel aero-
dynamic environment, or perhaps the MP77 test case corresponds
to a flow condition more removed from the flutter onset condition.

We wish to also point out that we define mass ratio µ based on
the wing model mass m, whereas Schewe and Deyhle,3 Schewe
et al.,4 and Knipfer and Schewe5 define the mass ratio based on
the total plunge coordinate mass mh . This, in turn, means that the
reduced velocity is also defined somewhat differently. One may
relate the two definitions for reduced velocity via

√
(mh/m). That

is, our definition for reduced velocity is the product of the Schewe
and Deyhle,3 Schewe et al.,4 and Knipfer and Schewe5 definition
multiplied by

√
(mh/m).

Table 2 Computed flutter point conditions and NLR 7301 aeroelastic
configuration experimental test case MP77 LCO conditions

Variable Inviscid Viscous Experiment

ᾱ0, deg −1.55 0.20 ——
c̄l0 0.267 0.272 0.27
c̄m0 −0.140 −0.0646 −0.082
V 0.371 0.385 0.488
ω̄ 0.312 0.301 0.242
ᾱ1, deg 0.0001 0.0001 0.18
(h̄1/ᾱ1b) (1.15, 0.141) (1.12, 0.172) (1.66, 0)
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Fig. 9 LCO behavior trends for the NLR 7301 configuration: a) LCO amplitude, b) LCO frequency ratio, c) LCO reduced frequency, and d) LCO
mean pitch angle.

Zero Spring Stiffness Angle of Attack
Next, the angle of attack corresponding to zero torsional spring

stiffness αe0 is computed for both the viscous and inviscid models.
Once the flutter point is established, this value is easily determined
by the use of Eq. (6). For the inviscid flow model, the value is
αe0 = −0.692 (deg), and for the viscous flow model, the value is
αe0 = 0.645 (deg).

Computed LCO Behavior
With the flutter onset condition established, along with a com-

puted value for the angle of attack for zero torsional spring stiffness
αe0 , one can proceed with the LCO analysis for finite amplitude
motions. Figure 9 shows computed LCO solution behavior trends
for both the viscous and inviscid models of the NLR 7301 configu-
ration. Also shown in Fig. 9 are the experimental LCO conditions as
reported by Schewe and Deyhle,3 Schewe et al.,4 along with com-
puted LCO conditions as determined by the investigations of Weber
et al.11 and Tang et al.12 Clearly from the LCO amplitude vs reduced
velocity curves shown in Fig. 9a, modeling viscous flow effects leads
to a nonlinear soft or benign LCO behavior trend as discussed in
the introduction, whereas the inviscid model exhibits a nearly linear
aeroelastic LCO behavior trend. The flutter onset condition is also
indicated in Fig. 9 and is less sensitive to viscous effects. Figures 9b
and 9c show, respectively, LCO behavior trends for the frequency
ratio and reduced frequency. The reduced frequency can be seen to
change by a significant amount in the viscous case for large ampli-
tudes. Finally, Fig. 9d shows the change in the LCO mean angle of
attack ᾱ0 with respect to reduced velocity. The LCO mean angle of
attack is observed to decrease by approximately 0.5 deg from the
flutter onset condition for the range of LCO amplitudes considered
in the case of the viscous model. Because the aerodynamics are

known to be extremely sensitive to small changes in the transonic
region, it is likely to be important to model this effect.

Conclusions
An efficient procedure for computation of the LCO behavior of

aeroelastic airfoil configurations in viscous transonic flows is pre-
sented. Viscous effects are demonstrated to be an important factor in
the determination of the behavior of an LCO response with respect
to reduced velocity. Viscous effects for the NLR 7301 aeroelastic
configuration under investigation lead to a much more gradual rate
of increase in LCO amplitude with respect to reduced velocity when
compared to an inviscid model. The rapid increase in the computed
LCO response beyond the flutter point emphasizes the importance of
making careful and comprehensive experimental measurements of
LCO response over a range of reduced velocities or other parameters
as the flutter boundary is exceeded.
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