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Abstract—We conduct the first detailed measurement study
of the properties of a class of WiFi active power/energy
consumption models based on parameters readily available to
smartphone app developers. We first consider a number of
parameters used by previous models and show their limitations.
We then focus on a recent approach modeling the active
power consumption as a function of the application layer
throughput. Using a large dataset and an 802.11n-equipped
smartphone, we build four versions of a previously proposed
linear power-throughput model, which allow us to explore
the fundamental tradeoff between accuracy and simplicity.
We study the properties of the model in relation to other
parameters such as the packet size and/or the transport layer
protocol, and we evaluate its accuracy under a variety of
scenarios which have not been considered in previous studies.
Our study shows that the model works well in a number of
scenarios but its accuracy drops with high throughput values
or when tested on different hardware. We further show that
a non-linear model can greatly improve the accuracy in these
two cases.

I. INTRODUCTION

Despite the continuously growing popularity of smart-

phones, their utility has been and will always be limited by

their battery life. A major fraction of the energy consumption

in smartphones comes from the WiFi radio, which can

account for more than 50% of the total device power budget

under typical use [1], [2] and can quickly drain the phone’s

battery when transmitting at high peak rates.

The problem becomes particularly pronounced today due

to a combination of reasons. Today’s smartphones run a

variety of network apps which result in a large growth of

network traffic. The discontinuation of unlimited data plans

by most 3G/4G operators forces smartphone users to offload

a continuously growing amount of traffic to WiFi. The

availability of 802.11n/ac in modern smartphones further

exacerbates the situation. Recent studies [3], [4] have shown

that popular 802.11n wireless cards could deplete a typical

smartphone battery in 2-3 hours. Thus, understanding and

optimizing WiFi energy consumption becomes essential for

app developers in order to maximize the battery lifetime of

smartphones.

Since directly measuring WiFi power/energy consump-

tion [5], [1], [6] is a non-trivial task, several recent works

have focused on developing WiFi energy consumption mod-

els [7], [8], [9], [10], [11], [12], [13], [14], [15]. These

models can be broadly classified into two categories.

On one hand, a number of works model the WiFi energy

consumption based on the circuitry or MAC/PHY layer fea-

tures [7], [8], [15], [9], [14]. Such models can offer very high

accuracy; however, they require knowledge only available at

the driver/firmware level and hence, they cannot be used by

app developers. Furthermore, most of these models were

developed for and tested on WiFi cards for laptops/desktops

and they may not be applicable to smartphones [16], [17].

On the other hand, a number of recent works develop

power/energy models for different smartphone components

(disk, CPU, display, cellular, WiFi) that can be easily used

by app developers [11], [10], [13], [18], [19], [20], [21].

In the case of WiFi, one common feature of most of

these models [11], [12], [13], [18], [19] is the assumption

of constant power consumption in each power state. This

assumption is valid for idle/transition power states (e.g.,

sleep, ramp/promotion, and tail power states [10], [13]) and

can also offer satisfactory accuracy for the active power state

(during packet transmissions/receptions) in the case of low

bitrates (e.g., 802.11b) and/or small data transfers.

A major drawback of the constant active power state

assumption is that it fails to capture the characteristics of the

dynamic wireless channel (fading, interference, collisions)

which may trigger retransmissions, exponential backoff, or

rate adaptation during the active power state. Furthermore,

most of the models in this category (with the exception

of [18], [19]) were built for and tested on smartphones

equipped with legacy 802.11b/g WNICs. As recent stud-

ies [3], [14], [16] have shown, the rich set of the new

MAC/PHY features introduced by 802.11n – large number

of available modulation and coding schemes (MCS), frame

aggregation/block ACK (FA/BA), channel bonding, MIMO1

– define a large number of active power states. As an

example, the receive power consumption of a Google Nexus

S smartphone at the highest supported 802.11n bitrate (MCS

7) is 23-102% higher than at the lowest bitrate (MCS 0) [16].

Hence, accurate modeling of the WiFi active power/energy

consumption becomes a critical requirement as apps perform

larger data transfers and 802.11 standards move towards

more and higher bitrates.

A small number of recent works model the WiFi active

1MIMO is not supported by today’s smartphones but it may be supported
in the near future [22].



energy consumption of a smartphone as a function of one or

more input parameters [12], [10], [20], [21]. These parame-

ters are either application layer parameters easily measured

by app developers using tools such as tcpdump [23] (e.g.,

transfer size [10], packet transmission/reception rate [12],

throughput [20]) or lower layer parameters available to

app developers through an API (e.g., signal strength [21]).

Instead of directly measuring the energy consumption of

their app (which requires specialized hardware, e.g., a power

monitor or an oscilloscope), app developers can easily obtain

the value of the input parameter while running their app and

estimate the energy consumption using the model. In spite

of their attractiveness due to their simplicity, most of these

models still fail to fully capture the complex characteristics

of the wireless channel as well as those of the 802.11n

WNICs. Consequently, they may work well only under

certain scenarios, e.g., in lossless environments or in the

absence of interference.

Overall, in spite of the large number of models available to

app developers, the true capabilities and weaknesses of these

models remain to a large extent unknown. In certain cases,

the accuracy of the developed models is not evaluated at all

([10] or [20] in the case of WiFi). In other cases, the models

are validated only at the location where the training dataset

was collected, and under ideal conditions, without external

interference [12], [13], [21], or with only one traffic type

(typically small HTTP transfers [20], [21]). Finally, there is

often no detailed information about the methodology used

to collect the training dataset [20], [21], [24].

In this paper, we conduct the first extensive measurement

study of WiFi active energy consumption models based on

parameters easily measured by app developers, trying to

understand their capabilities and limitations. We begin (Sec-

tion IV) by examining various parameters used by recently

proposed models – packet loss rate, signal strength, transfer

size, throughput. We show that most of these parameters

fail to accurately capture the dynamics of the wireless

environment and/or the 802.11n MAC/PHY features.

A notable exception, which can uniquely capture both the

wireless channel characteristics and several of the 802.11

MAC/PHY features, is the application layer throughput. A

few recent works have developed linear models of the active

power consumption of a wireless interface as a function

of the throughput [20], [24], [25] or have experimentally

observed such a linear relationship [17]. However, all these

works suffer from at least one of the limitations mentioned

above, i.e., limited or no validation, lack of details about

the data collection methodology, and testing only on older

802.11b/g smartphones. Hence, our second and main contri-

bution of this paper is a detailed evaluation of the capabilities

and properties of throughput-based energy modeling. We

perform the evaluation in four steps.

1) Based on a large dataset which covers different link qual-

ities, transport layer protocols, packet sizes, and MAC/PHY

features, we rebuild the linear model from [20], [25] for a

smartphone equipped with an 802.11n WNIC (Section V).

We explore the fundamental tradeoff between complexity

and accuracy by considering four different options for build-

ing the model.

2) We offer a detailed analysis of the estimation errors with

each of the four options and show that the accuracy can be

improved with the knowledge of the transport layer protocol

and/or the packet size (Section VI).

3) We extensively evaluate the accuracy of the model in

a variety of scenarios, many of which have not been con-

sidered in previous studies (Section VII). Our results show

that the linear model proposed in [20], [25] can accurately

predict the energy consumption in several of these scenarios.

However, its accuracy drops in the case of high throughput

values and when tested on different hardware.

4) We discuss important practical issues, such as how to col-

lect a good training dataset, or how to reduce the complexity

of the most accurate of the four models, and we show that

a non-linear power-throughput model can further improve

the accuracy compared to the linear model from [20], [25]

(Section VIII).

II. WIFI ENERGY MODELS FOR SMARTPHONES

A number of recent works have developed models of

the power/energy consumption of different smartphone com-

ponents [11], [12], [10], [13], [18], [19], [20], [21], [25],

[24]. In the case of WiFi, one common feature of several

of these models [11], [12], [13], [18], [19], regardless

of their complexity, is the assumption of constant power

consumption at each power state. This assumption does

not hold true for the active power state and can lead to

high inaccuracy as the transfer size, the data rates, or the

complexity of the MAC/PHY layer increase.

In [10], a simple model is developed for the active energy

consumption of an 802.11b WNIC in a smartphone as a

linear function of the data transfer size. Although its sim-

plicity makes it a good candidate for use by app developers,

we note that the data transfer size is not the only factor

that affects energy consumption. The time to download a

file of a given size depends on the channel conditions and

the MAC/PHY protocol characteristics, which determine the

PHY bitrate. Note that the accuracy of the model was not

evaluated in [10].

In [12], the WiFi active energy consumption is modeled

as a function of the data rate (in packets/sec) and the PHY

bitrate. The authors claim that the packet size does not

affect power consumption. However, [16], [24], [15] show a

different result. In Section VI, we also show that the packet

size largely affects the per-bit energy consumption. As far

as the PHY bitrate is concerned, several works have recently

shown that it affects the energy consumption of an 802.11n

WNIC [3], [14], [16]. However, information about the per-

packet bitrate is often not exposed by today’s smartphones,



as rate adaptation in the case of smartphones is typically

implemented at the firmware level. In addition, the bitrate

alone may not always be a good predictor of the energy

consumption, as it cannot capture sender side wireless inter-

ference, which can elongate packet transmissions/receptions

due to carrier sensing.

In [21], a signal strength-aware model is proposed, which

maps different RSSI levels to different values of power con-

sumption. However, [26] showed that signal strength alone

cannot always capture the dynamics of the wireless channel

in 3G/4G networks. Similarly, in a WiFi network, high signal

strength does not always imply low energy consumption due

to hidden terminals and sender-side interference. Note that

the models in [21] were built and evaluated during the night

hours, when interference was limited.

In [20], [25], a linear model of the active power consump-

tion of a wireless interface (3G, 4G, WiFi) is proposed as

a function of the application layer throughput. [24] builds a

similar model of the energy consumption as a linear function

of the packet transmission time (which can be converted to

a linear model of power vs. throughput). The accuracy of

the model in [20] is only evaluated for 4G and short HTTP

transfers. In the case of WiFi, the training dataset includes

only very low data rates (0-2 Mbps) and only TCP traffic. On

the other hand, [24] and [25] used only UDP packets varying

the packet size and the data rate. Note also that only [25]

built the model for an 802.11n-equipped smartphone.

III. EXPERIMENTAL SETUP

Our experimental setup includes one PC acting as an AP

and one smartphone acting as a client. The PC is part of

a 21-node wireless testbed (UBMesh [28]) deployed on the

3rd floor of UB Davis Hall. Each node has a Ralink RT2860

802.11a/b/g/n mini PCI card, which implements all the

available 802.11n features. The phone is an Android Google

Nexus S (the same model was used in [25]) with a single

core 1000 MHz Cortex A8 processor, and 512 MB RAM.

It was loaded with the CyanogenMod 7 custom ROM based

on Android 2.3. The phone’s 802.11g/n chipset (Broadcom

BCM 4329) is also used in several other smartphones from

manufacturers like Samsung, Apple, HTC, and Motorola. It

supports FA/BA, short guard interval, and PHY bitrates in

the range of 6.5-72.2Mbps (MCS 0-7) [27].

Note that the Android driver does not allow the user to

configure any 802.11 transmission (Tx) parameters (e.g., fix

the MCS, disable FA/BA, etc.). Hence, in this work, we

focus on the receive (Rx) energy consumption on the phone,

similar to in [10], [21]. We also believe that this is of more

interest to app developers, since in most applications WiFi

traffic flows from the AP to the client; the measurement

study in [21] based on a trace from 3785 smartphone users

from 145 countries over a 4-month period shows that the

ratio of downloaded data to uploaded data over WiFi is 20:1.

We measure power consumption on the phone using the

Monsoon Power Monitor [29], following the methodology

in [18], [13], [20], [25], [24]. The measurements were taken

with the screen off, Bluetooth/GSM/3G radios disabled, and

minimal background application activity. This background

activity causes a small base power consumption, which we

subtract from the measured power. The Monsoon Power

Monitor measures the total power consumption and cannot

provide a per-component, per-state, or per-packet break-

down. Hence, our measurements include the idle power con-

sumption between packet receptions (e.g., sender backoff,

carrier sensing, DIFS/SIFS), the transmit power consump-

tion of 802.11 and TCP ACKs, and any CPU processing

power. We consider these components part of the active

power consumption similar to in [18], [13], [20], [25], [24].

We use iperf [30] to generate traffic for our measurement

study. To confirm that iperf does not result in additional

energy consumption, we monitored the CPU usage by the

iperf application using the adb logs [31]. We found that the

CPU usage was negligible and this was true for different

versions of the application. Thus, the total energy measured

with the power monitor (after subtracting the base power)

can be attributed to the energy consumed by the WNIC.

IV. CANDIDATE MODEL INPUT PARAMETERS

In this section, through controlled experiments, we expose

the limitations of a set of candidate model input parameters

readily available to app developers. Most of these parame-

ters have been used in previously proposed models. These

limitations motivate the use of application-layer throughput

as the input parameter.

Constant active power The simplest WiFi energy consump-

tion model is one that assumes constant power states [19],

[13], [18]. Figure 1(a) plots the Cumulative Distribution

Function (CDF) of the active Rx power consumption of

a trace of 1640 power values collected over four links of

different quality. The experiment was repeated for all eight

802.11n bitrates, with 1470B TCP and UDP packets, with

and without FA/BA. We observe that the power consumption

varies from 240-795 mW with a median value of 434 mW.

The highest power value is more than 3 times larger than

the lowest one.

Transfer size We selected three links in our testbed, of

high, moderate, and low signal strength, and downloaded

a 10 MB, 50 MB, and 100 MB file over TCP with and

without FA/BA. Each experiment was repeated 15 times.

The use of rate adaptation resulted in different bitrates and

hence in different download times for different experiments.

Figure 1(b) plots the measured energy values for each file

size and the estimated energy (constant per file size) using

the model from [10], which we rebuilt for the Nexus S phone

and our own training dataset, described in Section V-A. We

observe that the estimated energy with the model can be

several times higher or lower than the actual value.



(a) Constant active power. (b) Transfer size. (c) Loss rate. (d) RSSI.

Figure 1. Limitations of candidate input parameters.

Loss Rate Packet loss rate can easily be measured at the

application layer and it is a good measure of channel quality

at a given MCS. However, a lower loss rate does not

always lead to lower energy consumption [14]. Furthermore,

a loss-based energy model ignores sender-side wireless

interference, which can increase energy consumption even

under zero packet loss. As an example, Figure 1(c) plots

the energy consumption against the loss rate, for a dataset

including measurements with 1470B TCP and UDP packets

over four links of varying quality, with rate adaptation,

with and without FA/BA. We observe that there is no clear

relationship between the energy consumption and the loss

rate; different measured energy values for the same loss rate

may vary by up to 10x.

Signal strength Similar to a packet loss-aware model, a

signal strength-aware model [21] cannot capture sender-

side interference. In addition, it fails to capture receiver-

side interference, i.e., collisions due to hidden terminals. In

Figure 1(d), we plot the power consumption against RSSI for

a dataset including measurements with 1470B UDP packets

over 20 links, with rate adaptation. We observe that there is

no clear relationship between RSSI and power consumption.

Different measured power values for the same RSSI value

may differ by more than 2x.

V. THROUGHPUT-BASED ENERGY MODELS

In the remaining of the paper we focus on the application

layer throughput as the input parameter. We conduct an

extensive study of the properties and the accuracy of the

linear model of power vs. throughput proposed in [20], [25],

[24]. None of these works provides detailed information on

the training dataset (e.g., number of measurement samples,

link conditions, WiFi parameters, etc.). In addition, [20],

[25] used different phones and we do not know whether

a model built for a given device offers the same accuracy

when tested with different devices (we briefly examine this

issue in Section VII-F). Hence, we rebuild the linear model

for the Nexus S phone using our own training dataset.

A. Training dataset

We selected 8 links of varying signal strength levels

by keeping the smartphone at a fixed location and using

testbed nodes located in different offices as senders. All

our measurements were conducted at night to avoid any

interference. We conducted measurements of the application

layer throughput and the Rx power consumption for all

the supported 802.11 g/n bitrates. We built separate models

for the two WiFi standards and we found that they exhibit

similar properties. In the remaining of the paper, we focus

on 802.11n, and we omit the discussion on 802.11g due to

space limitation.

Each measurement involves a 10-second iperf session

during which the sender sends TCP or UDP traffic to

the phone at full speed. We repeated each UDP exper-

iment for 4 different packet sizes: 100B, 700B, 1470B,

and 1470B with FA/BA2. For the TCP experiments, we

only used a packet size of 1470B with/without FA/BA,

since TCP transfers typically use large packets. For each

⟨��������� �����	�
, ��	�� ���,���⟩ setting, we took

15 measurements. In total, we collected around 6,000

throughput/energy samples.

Although [20], [25] build a linear model of the power (� )

as a function of throughput (�ℎ) of the form � = � ⋅�ℎ+�

(1), we preferred an equivalent model of the per bit energy

consumption (��) of the form �� = �⋅�ℎ−1+� (2). The per

bit energy consumption (in nJ/bit) is calculated as the power

consumption divided by throughput. This model can be

directly used to calculate the total energy consumption for a

given data transfer size without considering the downloading

time.

Figure 2(a) plots the 802.11n per bit Rx energy con-

sumption against the Rx application layer throughput for

all 6 ⟨��������� �����	�
, ��	�� ���⟩ settings. In contrast

to [20], which built the model for a very small range of

throughputs (0-2 Mbps), the throughput values in our train-

ing dataset span the whole range of achievable throughputs

for the MCS set supported by the phone (0.12-44 Mbps) with

a median value of 6.7 Mbps and an average value of 7.79

Mbps. The corresponding energy per bit values range from

13.97-1902.11 nJ/bit with a median value of 60.15 nJ/bit

and an average value of 131.94 nJ/bit.

From Figure 2(a), as well as from Figures 3(a), 3(c), 4(a),

5(a), 5(c), 5(e), which plot parts of the training dataset corre-

2Although packet-size distribution in the Internet is bimodal with packets
of around 1500B or smaller than 100B [32], for completeness we also
consider an intermediate size of 700B.



(a) Energy per bit vs. throughput: Training
dataset and model.

(b) Absolute error vs. throughput. (c) Relative error vs. throughput.

Figure 2. Error analysis of the Universal model.

Table I
ENERGY-THROUGHPUT MODEL PARAMETERS

Model Types Parameter � Parameter �

Universal 305.3 13.1

Protocol
TCP 229.4 23.5

UDP 311.2 10.1

Packet

1470B FA/BA 228.0 19.1

1470B 214.7 23.2

700B 199.0 38.5

100B 197.3 258.7

Packet/Protocol

TCP-1470B FA/BA 258.8 20.3

TCP-1470B 210.0 28.0

UDP-1470B FA/BA 216.8 15.4

UDP-1470B 207.4 20.0

UDP-700B 199.0 38.5

UDP-100B 197.3 258.7

sponding to different settings, we observe a clear monotonic

relationship between the energy per bit and the throughput.

This result confirms the superiority of throughput as an input

parameter to an energy/power model compared to the other

candidate parameters we examined in Section IV.

B. Energy models

For an in-depth study of the properties and potential

limitations of throughput-based energy modeling under dif-

ferent settings, we explore four different options for building

a WiFi active energy model based on equation (2) by

considering the fundamental tradeoff between complexity

and accuracy. By complexity here we mean the number of

different equations of the form (2) required to describe the

relationship between energy and throughput.

Universal model: This is the simplest and most generic

model requiring only knowledge of the throughput. It uses

only one equation regardless of the setting.

Protocol model: We use two equations, one for each of the

two transport protocols, i.e., TCP and UDP. The motivation

for this comes from the inherent differences between the two

protocols which can result in different energy consumption

for the same transfer size. For example, TCP’s reaction

to loss may create more idle intervals between packet

receptions. In addition, TCP ACKs increase the total energy

consumption.

Packet model: Another option is to use different equations

for different packet sizes. The primary motivation for this

comes from a recent measurement study [16] showing that

the Rx energy per bit in the Nexus S phone can differ by

up to an order of magnitude for different packet sizes.

Packet/Protocol model: We also explore the case of devel-

oping a per-packet and per-protocol model, i.e., using a dif-

ferent equation for each ⟨��������� �����	�
, ��	�� ���⟩
setting. The accuracy of such a model is expected to be

the highest among the considered models at the cost of the

highest complexity.

We build the models with MATLAB’s Curve Fitting

Tool [33] using the Trust-Region algorithm. The parameters

of the four models for 802.11n are listed in Table I.

VI. ERROR ANALYSIS

In this section, we evaluate the accuracy of the four

models using the training dataset.

A. Error metrics

We use two metrics to evaluate the accuracy of the models.

Our primary metric is the relative estimation error defined

as

������ =
������

��

=
�� − ���

��

where �� is the measured energy per bit value and ��� is

the estimated value from the model. Occasionally, we also

use the absolute estimation error defined as

������ = �� − ���

since the same relative error may be of varying significance

depending on the absolute energy values. E.g., a 50% error

may correspond to a measured value of 2 nJ/bit and an

estimated value of 1 nJ/bit or to a measured value of 2000

nJ/bit and an estimated value of 1000 nJ/bit; we consider

the latter case to be much worse.

For each model, we use the throughput values of the

training dataset as input to the set of equations describing the

model (Table I) and we estimate the Rx energy consumption

corresponding to each throughput value. We then compare

the estimated energy values with the measured values from

the training data set. We analyze the errors for each model



Table II
SUMMARY OF RELATIVE ERROR STATISTICS OF

ENERGY-THROUGHPUT MODELS

Model Types Setting
% of rel. errors with ∣������∣

< 5% < 10% < 20% < 30%

Universal

Total 21 42 68 80

TCP-1470B FA/BA 39 66 93 98

TCP-1470B 42 60 85 93

UDP-1470B FA/BA 9 27 55 73

UDP-1470B 9 52 82 89

UDP-700B 15 35 71 95

UDP-100B 5 9 17 29

Protocol

Total 32 53 71 82

TCP-1470B FA/BA 41 69 87 96

TCP-1470B 57 83 97 99

UDP-1470B FA/BA 25 51 73 86

UDP-1470B 50 72 84 90

UDP-700B 11 27 66 89

UDP-100B 6 9 17 27

Packet

Total 41 70 92 97

TCP-1470B FA/BA 24 58 90 97

TCP-1470B 46 78 95 98

UDP-1470B FA/BA 22 42 70 86

UDP-1470B 23 48 96 100

Packet/Protocol

Total 50 85 96 99

TCP-1470B FA/BA 48 70 90 99

TCP-1470B 41 82 96 99

UDP-1470B FA/BA 24 68 93 97

UDP-1470B 56 93 100 100

UDP-700B 69 98 100 100

UDP-100B 65 98 100 100

in Figures 2-5. For each equation in Table I, we plot the

energy-throughput curve and the training dataset, as well as

the scatterplot of the relative errors against the throughput

values (for the Universal model, we also plot the scatterplot

of the absolute errors). Table II summarizes the statistics for

the relative errors for each model (Total) and separately for

each ⟨��������� �����	�
, ��	�� ���⟩ setting.

B. Error analysis of the Universal model

We first examine whether we can obtain satisfactory

accuracy with a generic model for any application, regardless

of the transport layer protocol or the packet size, across

the whole range of achievable throughputs with 802.11n.

Note that the model in [20] was built based on a training

dataset obtained from long-lived TCP transfers only and for

a very short range of 802.11 throughputs (0-2 Mbps), and

was evaluated (in the case of 4G) only for TCP traffic.

Although Figure 2(a) confirms the superiority of through-

put as an input parameter to an energy/power model com-

pared to the other candidate parameters, Figures 2(b), 2(c),

show that it is hard to find a good curve fit for all settings.

The model fails to accurately estimate the energy consump-

tion with 100B packets, resulting in large absolute errors

and large relative errors – Table II shows that 71% of the

relative errors with 100B packets are higher than 30%. In

Figure 2(c), we also observe large negative relative errors

with very large UDP packets (1470B with FA/BA); from

Table II, 45% of the relative errors are higher than 20%.

On the other hand, the model performs much better

with TCP traffic and UDP traffic of medium/large-size

(700B/1470B) packets without FA/BA; from Table II, 35%-

(a) TCP: Energy per bit vs.
throughput: Training dataset and
model.

(b) TCP: Relative error vs. through-
put.

(c) UDP: Energy per bit vs.
throughput: Training dataset and
model.

(d) UDP: Relative error vs.
throughput.

Figure 3. Error analysis of the Protocol model.

66% of the relative errors for different settings have absolute

values lower than 10%. In particular, the model performs

extremely well for the common case (TCP with or without

FA/BA); more than 90% of the relative errors for these two

settings have absolute values lower than 30% and at least

60% of them have absolute values lower than 10%. Nonethe-

less, a non-negligible fraction of relative errors, ranging from

7%-29% for different settings, still have absolute values

higher than 20%. Compared to the errors with 100B packets,

the absolute errors are much smaller with large packets

(lower than 50 nJ/bit), since the absolute energy per bit

values are much lower. However, note that with large data

transfer sizes (e.g., video streaming), even small errors in the

per bit energy consumption can result in large accumulative

errors for the total energy consumption.

C. Error analysis of the Protocol model

We examine if knowledge of the transport protocol used

by the application improves the accuracy of the model.

From Table II, we observe a small total improvement: the

fraction of relative errors with absolute values lower than

10% increases from 42% with the Universal model to 53%

with the Protocol model. However, there is still a non-

negligible fraction of relative errors with absolute values

higher than 30%.

Figures 3(b), 3(d) show that the improvement comes from

1) the TCP model – 76%/92% of the relative errors have

absolute values lower than 10%/20% (average of rows “TCP-

1470B FA/BA” and “TCP-1470B” for the Protocol model

in Table II) and 2) the UDP protocol with large packets

– 62%/79% of the relative errors have absolute values

lower than 10%/20% (average of rows “UDP-1470B FA/BA”

and “UDP-1470B”). In contrast, both the absolute and the



(a) 1470B FA/BA: Energy per bit
vs. throughput: Training dataset and
model.

(b) 1470B FA/BA: Relative error
vs. throughput.

Figure 4. Error analysis of the Packet model.

relative errors of the UDP model with 100B and 700B packet

sizes are very similar to those of the Universal model, and

they contribute to the overall much lower accuracy of the

UDP model compared to the TCP model. To remove the

impact of the packet size, we rebuilt the UDP model using

only the data points corresponding to large packets. We

found that, in this case, the accuracy is even better than that

of the TCP model, in terms of both absolute and relative

errors. Overall, we conclude that the packet size plays a

much more important role than the transport layer protocol

in the accuracy of a throughput-based energy model.

D. Error analysis of the Packet model

The third model we examine is the packet model. Here, we

discuss only two packet sizes, 1470 bytes with and without

FA/BA, since for the other two packet sizes (700 and 100

bytes) we used only UDP traffic. However, the results for

the row “Total” in Table II are calculated based on all 4

packet sizes. We show the results with FA/BA in Figure 4.

The results without FA/BA are similar and are omitted due

to page limit.

Figure 4(a) shows that given the same throughput val-

ues, TCP results in higher energy consumption than UDP.

Consequently, in Figure 4(b), we observe that the Packet

model underestimates the energy consumption for TCP and

overestimates for UDP. Overall, Table II shows that the total

accuracy of the Packet model increases compared to the

Protocol model. However, this improvement mainly comes

from the Packet models with 100B and 700B which are

based on UDP only (last two rows in Table II which will be

studied in Section VI-E).

We now focus on large packets. From Table II, we find

that the fraction of relative errors with absolute values lower

than 10%/20% is 50%/80% for 1470B FA/BA (average of

rows “TCP-1470B FA/BA” and “UDP-1470B FA/BA” for

the Packet model) and 63%/95% for 1470B. In contrast,

the same percentage for the TCP Protocol model including

both packet sizes (average of rows “TCP-1470B FA/BA”

and “TCP-1470B” for the Protocol model) is 76%/92%.

We conclude that when considering large packet sizes only,

knowledge of the transport protocol is more important than

knowledge of the exact packet size.

(a) UDP-100B: Energy per bit vs.
throughput: Training dataset and
model.

(b) UDP-100B: Relative error vs.
throughput.

(c) UDP-1470B FA/BA: Energy
per bit vs. throughput: Training
dataset and model.

(d) UDP-1470B FA/BA: Relative
error vs. throughput.

(e) TCP-1470B FA/BA: Energy per
bit vs. throughput: Training dataset
and model.

(f) TCP -1470B FA/BA: Relative
error vs. throughput.

Figure 5. Error analysis of the Packet/Protocol model.

E. Error analysis of the Packet/Protocol model

Finally, we analyze the most complex of the four models,

which uses a separate equation for each transport protocol

and packet size. In fact, the model in [20] belongs to this

category, as it was built using only large TCP packets. In

Figure 5, we plot the results for 3 of the 6 settings: UDP-

100B, UDP-1470B FA/BA, and TCP-1470B FA/BA. The

results for UDP-700B, UDP-1470B, and TCP-1470B are

similar to those for UDP-100B.

Table II and Figure 5 show that the model performs very

well for all settings without FA/BA. In Table II, 82-98% of

the relative errors of the models for the settings without

FA/BA have absolute values lower than 10% and 96-100%

of the relative errors have absolute values lower than 20%.

In contrast, the relative errors for the two models with

FA/BA are higher, and they increase as throughput increases

(Figures 5(d), 5(f)). This was not observed in [20] which

only considered 802.11g throughputs in the range of 0-2

Mbps. The number of packets aggregated by the AP in each

transmission varies (1470-11760B in our experiments) de-

pending on a number of factors, such as the link conditions,

loss patterns, rate adaptation, etc. We observe again that it

is difficult to build one model that works well for different



Table III
RELATIVE ERROR STATISTICS IN VARIOUS SCENARIOS

Section/Scenario Model

% of rel. errors

with ∣������∣
< 5% < 10% < 20% < 30%

VI/Training dataset

Packet/Protocol 50 85 96 99

Packet 41 70 92 97

Universal 21 42 68 80

VII-A/Evaluation Packet/Protocol 50 85 98 99

w/ links in the Packet 36 66 91 98

training dataset Universal 24 44 69 80

VII-A/Evaluation Packet/Protocol 43 78 93 97

w/ links outside the Packet 36 68 88 94

training dataset Universal 26 46 71 80

VII-B/Evaluation
Packet/Protocol 35 74 89 99

w/ rate adaptation
Packet 34 54 81 90

Universal 13 37 67 82

VII-C/Evaluation
Packet/Protocol 47 76 92 98

w/ interference
Packet 37 66 84 95

Universal 21 38 70 81

VII-D/Evaluation Packet/Protocol 28 67 87 96

w/ rate adaptation Packet 20 47 75 90

and interference Universal 20 37 69 87

VII-E/Evaluation
Packet/Protocol 26 58 80 89

at different locations
Packet 30 51 73 89

Universal 18 41 69 80

VII-F(a)/Intra-phone
Packet/Protocol 51 76 93 99

evaluation
Packet 35 57 84 91

Universal 19 28 63 80

VII-F(b)/Inter-phone
Packet/Protocol 17 38 68 88

evaluation
Packet 16 37 65 81

Universal 18 41 62 81

packet sizes. Note though that the accuracy is still much

better than with the Protocol model which included small

packets (100B).

Summary We conclude that a throughput-based model

provides very high accuracy when it is built for a given

transport layer protocol and a given packet size. In the case

of a transport protocol-oblivious model and for large packet

sizes only, the accuracy is still satisfactory. On the other

hand, combining small and large packet sizes in one model

is hard and the overall accuracy of a packet-oblivious model

decreases.

In practice, knowledge of the transport protocol is easy to

incorporate, as there are (practically) only two transport pro-

tocols. On the other hand, packet size-awareness increases

the complexity, as a different equation is required for each

packet size, and some applications may use more than one

packet size. In addition, information about MAC-level FA

may not be exposed to the application layer. We discuss

some of these issues further in Sections VIII-B, VIII-C.

However, we note that even the most generic model, built

with a training dataset that combines both transport protocols

and packet sizes varying from 100-11760 bytes provides

satisfactory accuracy for the common case of TCP traffic

with large packet sizes.

Another interesting observation from our results is that

accuracy drops for large throughput values; this is important

as we move towards higher throughput technologies such as

802.11ac.

VII. EVALUATION WITH DIFFERENT DATASETS

In this section, we evaluate the accuracy of the models

with new datasets collected in a variety of realistic scenar-

ios, most of which have not been considered in previous

studies. We omit the results for the Protocol model, since it

suffers from the same weakness as the Universal model and

cannot accurately combine packets of different sizes in one

equation. The statistics of the relative estimation error for

the other three models are summarized in Table III.

A. Different links

We first evaluate the accuracy of the models with (i) the

same links we used to collect the training dataset and (ii)

with different links. For (i), we repeated the measurements

for four links chosen among the eight links we used for

the training data set. For (ii), we used four new nodes of

our testbed as senders, and placed the phone in two new

locations, to ensure a high degree of dissimilarity among

the new links and the ones used for the training dataset.

Table III shows that the relative errors in both cases are

very similar to those in Section VI. The accuracy does not

change over time for links used in the training phase and,

more importantly, it remains similar for new links in the

same environment.

B. Rate adaptation

We evaluate the accuracy of the models (which we built

using measurements at each fixed MCS) with rate adapta-

tion. Table III shows that the accuracy drops for all three

models, especially for the Packet/Protocol model and Packet

model. For example, in the case of the Packet/Protocol

model, we found that, while almost all relative errors with

UDP-100B and UDP-700B have absolute values less than

10%, almost half of the relative errors with UDP-1470B

FA/BA and TCP-1470B FA/BA are larger than 10%. In an

interference-free environment, rate adaptation selects high

throughput bitrates which result in lower accuracy (Sec-

tion VI-E).

C. Interference

We conducted this experiment from 10 AM to 5 PM to

ensure a high level of interference. Using a packet sniffer,

we verified that all three non-overlapping channels in the

2.4 GHz band were used by other networks during our ex-

periment. The whole experiment continued for 4 weekdays.

From Table III, we observe that the accuracy is only slightly

reduced for the Packet/Protocol and the Packet model and

remains almost unchanged for the Universal model. The

impact of interference is reflected as reduced throughput

at the application layer and the models capture this impact

without any information from the lower layers.



D. Rate adaptation and interference

This is the most realistic setting. We used the same links

as in Section VII-C from 10 AM to 5 PM on weekdays.

However, since the interference level in our building varies

significantly over time affecting the performance of the rate

adaptation algorithm, we took 5 sets of 15 measurements for

each combination of transport protocol and packet size over

each link spread out over different times and days. From

Table III, we observe that the accuracy of the Universal

model is not affected. On the other hand, the accuracy of the

Packet/Protocol and the Packet model is lower than in Sec-

tion VII-C. Nonetheless, the accuracy of the Packet/Protocol

model remains satisfactory; 87% of the relative errors have

absolute values lower than 20%.

E. Different locations

We conducted these experiments in two off-campus apart-

ments. In each of them, all three non-overlapping channels

were occupied by other APs during the experiments. In each

apartment, we kept the smartphone in the same room, and

placed one of our testbed nodes in different rooms – we

used four different locations in the first apartment and three

in the second one. We conducted our experiments from 5

PM - 11 PM, when people are likely to use WiFi at home,

with rate adaptation enabled.

In Table III, we observe that the accuracy of the Universal

and the Packet model is similar to that in Section VII-D,

while the accuracy of the Packet/Protocol model drops.

The reason is the same as in Section VII-B; more high

throughput values are included in this dataset, since in the

two apartments, the clients are closer to the APs than in our

office building.

F. Different devices

An important question, which has mostly been ignored in

previous works (with the exception of [12]), is whether a

model built using a given phone can be used to predict the

energy consumption of a different phone. We examine the

accuracy of the models in Table I using two different phones;

another Google Nexus S phone (intra-phone evaluation) and

a Samsung Galaxy Nexus phone (inter-phone evaluation).

The Galaxy Nexus phone is an Android 4.0-based smart-

phone with a dual-core Cortex A9 processor, 1GB RAM,

and a different wireless chipset (Broadcom BCM 4330). We

conducted experiments with rate adaptation at night over

four links of different quality, similar to in Section VII-B.

Table III shows that the accuracy of the models is not

significantly affected when tested on the second Nexus

S phone. On the other hand, the accuracy of the Packet

and the Packet/Protocol model drops significantly with the

Galaxy Nexus phone and becomes similar to that of the

Universal model. This result agrees with the result in [12],

which showed minimal intra-phone but significant inter-

phone variation. It also shows that the impact of factors

such as the packet size or transport protocol on the energy

consumption can be different in different devices and the

advantage of knowledge of such factors may be lost when a

model built for a given device is used on a different device.

Summary Our results in this section reveal another inter-

esting tradeoff between accuracy and stability. The most

generic of the four models (Universal model) offers the

lowest accuracy but its accuracy is not affected by factors

such as the location, rate adaptation, interference, or device

hardware. Table III shows that about 60-70% of the relative

errors remain lower than 20% and 80% of the relative errors

remain lower than 30% for all scenarios under consideration.

In contrast, the accuracy of the other two models is higher in

several scenarios but drops significantly in high throughput

settings and when tested over different hardware.

VIII. DISCUSSION

A. How many links are needed for the training dataset?

To answer this question, we chose 3 links, of high, moder-

ate, and low signal strength, among the 8 links used for the

training dataset. We then rebuilt the models using only the

measurements taken over these three links. We found that

the median and the 90-th percentile of the error for each of

the four models increased by less than 2%. This result shows

that we can build models of satisfactory accuracy using only

a small but representative training dataset.

We also consider an alternative methodology for col-

lecting the training dataset. Instead of collecting energy-

throughput samples at each available MCS, we enable rate

adaptation. We rebuilt the models with a training dataset

collected over 5 links with rate adaptation; the errors were,

in general, lower than those in Section V-A for UDP, but

higher for TCP.

The benefit of the second methodology is that it can also

be used for building an energy model in cases where the user

has no control over MAC/PHY layer parameters, e.g., a Tx

model for WiFi or a model for 3G/4G. The challenge here

is that the set of links used for the training dataset has to

be carefully chosen, so that the measured throughputs over

these links with rate adaptation still cover the whole range

of achievable throughputs, similar to in Figure 2(a).

B. Accuracy with different packet sizes

We examine the potential of building a practical

Packet/Protocol model using a small set of equations, each

for a range of packet sizes, instead of one equation per

packet size. We test the UDP-100B Packet/Protocol model

with 300B packets, the UDP-700B model with 500B and

1000B packets, and the UDP-1470B model with 1000B

packets and 1470B packets with FA/BA. Figure 6 plots the

CDF of the relative errors in each case. We observe that the

model for 1470B packets can predict the energy consump-

tion of both 1000B packets and 1470B with FA/BA with

very high accuracy (86%/79% of the relative errors have



Figure 6. Accuracy of the
Packet/Protocol model with different
packet sizes.

(a) 100B and 700B. (b) 700B and 1470B. (c) 100B and 1470B.
Figure 7. Combining two packet sizes.

absolute values lower than 20%), and the model for 700B

packets yields satisfactory accuracy for 1000B packets (88%

of the errors have absolute values lower than 30%). However,

the accuracy reduces significantly with small packet sizes;

the model for 100B packets fails completely to predict the

energy consumption of 300B packets (81% of the errors have

absolute values higher than 60%). The result suggests using

ranges of variable sizes, with larger ranges for larger packet

sizes.

C. Combining two packet sizes

One issue with the Packet and the Packet/Protocol model

is how to use these models to calculate the energy consump-

tion in cases when traffic combines packets of more than one

size. Assume an app uses two packet sizes �1, �2 which give

throughputs �ℎ1, �ℎ2, respectively, and total throughput

�ℎ. We consider two methods. Method 1: calculate the

energy per bit values ��1(�ℎ1), ��2(�ℎ2) corresponding

to each packet size, and the total energy per bit as �� =
��1

(	ℎ1)⋅	ℎ1+��2
(	ℎ2)⋅	ℎ2

	ℎ1+	ℎ2
. This method assumes that the

total power consumption ��1(�ℎ1) ⋅ �ℎ1 +��2(�ℎ2) ⋅ �ℎ2

equals the sum of the individual power values one would

get if each packet size was used alone. Method 2: calculate

the energy per bit values ��1(�ℎ), ��2(�ℎ) using the

total throughput as input, and the total energy per bit as

�� =
��1

(	ℎ)⋅	ℎ1+��2
(	ℎ)⋅	ℎ2

	ℎ1+	ℎ2
.

Figures 7(a), 7(b), 7(c) plot the CDFs of the relative errors

with each of the two methods in the case of UDP traffic

consisting of 100B and 700B packets, 700B and 1470B

packets, and 100B and 1470B packets, respectively. All

experiments were run over four links of varying quality with

rate adaptation. In each graph, we also include the CDFs

of the relative errors using each of the two Packet/Protocol

models (with the total throughput as input) and the Universal

model.

Figures 7(a), 7(b), 7(c) show that it is not possible

to achieve satisfactory accuracy with the Packet/Protocol

model using a single equation of the form (2); the equation

corresponding to the largest packet size always results in

underestimation of the total energy and the one correspond-

ing to the smallest packet size results in overestimation. In

all three cases, the Universal model performs better than

the Packet/Protocol model. We also observe that Method 1

Table IV
ACCURACY IMPROVEMENT IN TERMS OF PERCENTAGE POINTS

WITH THE NEW PACKET/PROTOCOL MODEL

Section
Improvement of ∣������∣

< 5% < 10% < 20% < 30%

VI 7 2 2 1

VII-A (a) 4 1 0 1

VII-A (b) 7 5 3 2

VII-B 29 15 11 0

VII-C 4 4 2 1

VII-D -2 4 2 0

VII-E 17 21 20 11

VII-F (a) -3 8 7 1

VII-F (b) 13 24 20 9

yields very poor accuracy; the total WiFi power consump-

tion cannot be simply expressed as the sum of the power

consumption values due to different packet sizes, when they

are used alone. In contrast, Method 2 is very accurate; more

than 95% of the errors have absolute values lower than 10%

in Figures 7(a), 7(b), 7(c).

D. Improving the accuracy in the high-throughput region

In Section VI, we observed that the accuracy of a model of

the form �� = �⋅�ℎ−1+� [20], [25], [24] often drops in the

high throughput settings. This is more prominent in the case

of the Packet/Protocol model (Figure 5). Our experiments

in Sections VII-B, VII-E further confirm this finding for

high throughput scenarios. In this section, we examine if a

more generic model of the form �� = � ⋅ �ℎ−� + � (3)

(which results in a non-linear relationship between power

and throughput, unlike the model in [20], [25], [24]) can

improve the accuracy for the high throughput settings.

Table IV lists the improvement (in percentage points)

in the accuracy obtained with the new equation in the

case of the Packet/Protocol model for all scenarios we

considered in Section VII. We observe that the accuracy

of the Packet/Protocol model is improved in almost all sce-

narios. The improvement is more prominent in the two high

throughput scenarios (Sections VII-B, VII-E). Interestingly,

the new model also improves the accuracy when tested with

different hardware (Section VII-F). Similarly, we observe

that the accuracy of the Packet model is improved with the

new equation, especially in the high throughput scenarios.

We omit the statistics due to space limitations.



IX. CONCLUSION

In this paper, we conducted the first detailed measurement

study of WiFi active energy modeling in smartphones,

focusing on a class of models based on parameters readily

available to app developers. We first considered a number

of parameters used by previous models and showed their

limitations. We then focused on a recent promising approach

modeling the active energy consumption as a function of the

application layer throughput. Our study reveals that, while

a previously proposed linear power-throughput model works

well in a number of practical scenarios, its accuracy drops in

high throughput settings or when tested on different hard-

ware. Such limitations had not been reported by previous

works which used a small training dataset or evaluated the

model in a limited number of scenarios. We further showed

that a non-linear model can greatly improve the accuracy in

those two cases, and we discussed a number of practical

issues such as how to collect a small but representative

training dataset. Our findings become more important as

smartphone apps download data of increasingly large sizes

and WiFi NICs support a variety of new features offering

higher throughputs but also a growing number of active

power states.
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