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Abstract

To understand historical texts, we must be

aware that language—including the emotional

connotation attached to words—changes over

time. In this paper, we aim at estimating

the emotion which is associated with a given

word in former language stages of English and

German. Emotion is represented following the

popular Valence-Arousal-Dominance (VAD)

annotation scheme. While being more expres-

sive than polarity alone, existing word emotion

induction methods are typically not suited for

addressing it. To overcome this limitation, we

present adaptations of two popular algorithms

to VAD. To measure their effectiveness in

diachronic settings, we present the first gold

standard for historical word emotions, which

was created by scholars with proficiency in

the respective language stages and covers

both English and German. In contrast to

claims in previous work, our findings indicate

that hand-selecting small sets of seed words

with supposedly stable emotional meaning is

actually harm- rather than helpful.

1 Introduction

Language change is ubiquitous and, perhaps, most

evident in lexical semantics. In this work, we

focus on changes in the affective meaning of

words over time. Although this problem has

been occasionally addressed in previous work

(see Section 2.3), most contributions in this area

are limited to a rather shallow understanding of

human emotion, typically in terms of semantic

* These authors contributed equally to this work.
Johannes Hellrich was responsible for selecting historical
text corpora and training embedding models. Sven Buechel
selected existing emotion lexicons and was responsible for
modeling word emotions. The adaptation of polarity-based
algorithms (Section 3), the creation of the German and
English historical gold standard lexicons (Section 5.1), as
well as the overall study design were done jointly.

polarity (feelings being either positive, negative or

neutral). Another major shortcoming of this area

is the lack of appropriate data and methodologies

for evaluation. As a result, the aptness of algo-

rithmic contributions has so far only been assessed

in terms of face validity rather than quantitative

performance figures (Cook and Stevenson, 2010;

Buechel et al., 2016; Hamilton et al., 2016a;

Hellrich et al., 2018).

To tackle those shortcomings, we first introduce

adaptations of algorithms for word polarity induc-

tion to vectorial emotion annotation formats, thus

enabling a more fine-grained analysis. Second,

to put the evaluation of these methods on safer

ground, we present two datasets of affective word

ratings for English and German, respectively.1

These have been annotated by scholars in terms of

language-stage-specific emotional connotations.

We ran synchronic as well as diachronic exper-

iments to compare different algorithms for mod-

eling historical word emotions—the latter kind

of evaluation employs our newly created gold

standard. In particular, one prominent claim from

previous work has been that full-sized emotion

lexicons of contemporary language are ill-suited

for inducing historical word emotion. Rather, it

would be much more beneficial to select a small,

limited set of seed words of supposedly invariant

emotional meaning (Hamilton et al., 2016a). In

contrast, our experiments indicate that larger

sets of seed words perform better than manually

selected ones despite the fact that some of their

entries may not be accurate for the target language

stage. Our unique historical gold standard is thus

an important step towards firmer methodological

underpinnings for the computational analysis of

textually encoded historical emotions.

1 Publicly available together with experimental code at
github.com/JULIELab/HistEmo

http://julielab.de
http://github.com/ JULIELab/HistEmo
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2 Related Work

2.1 Representing Word Emotions

Quantitative models for word emotions can be

traced back at least to Osgood (1953) who used

questionnaires to gather human ratings for words

on a wide variety of dimensional axes including

“good vs. bad”. Most previous work focused

on varieties of such forms of semantic polarity,

a rather simplified representation of the richness

of human affective states—an observation increas-

ingly recognized in sentiment analysis (Strappa-

rava, 2016). In contrast to this bi-polar repre-

sentation, the Valence-Arousal-Dominance (VAD)

model of emotion (Bradley and Lang, 1994) is a

well-established approach in psychology (Sander

and Scherer, 2009) which increasingly attracts

interest by NLP researchers (Köper and Schulte im

Walde, 2016; Yu et al., 2016; Wang et al., 2016;

Shaikh et al., 2016; Buechel and Hahn, 2017;

Preoţiuc-Pietro et al., 2016; Mohammad, 2018).

The VAD model assumes that affective states

can be characterized relative to Valence (corre-

sponding to the concept of polarity), Arousal (the

degree of calmness or excitement) and Dominance

(perceived degree of control). Formally, VAD

spans a three-dimensional real-valued space (see

Figure 1) making the prediction of such values

a multi-variate regression problem (Buechel and

Hahn, 2016).

Another popular line of emotion representation

evolved around the notion of basic emotions,

small sets of discrete, cross-culturally universal

affective states (Scherer, 2000). Here, contribu-

tions most influential for NLP are Ekman’s (1992)

six basic emotions as well as Plutchik’s (1980)

wheel of emotion (Strapparava and Mihalcea,

2007; Mohammad and Turney, 2013; Bostan and

Klinger, 2018). In order to illustrate the rela-

tionship between Ekman’s basic emotions and the

VAD affect space the former are embedded into

the latter scheme in Figure 1.

The affective meaning of individual words is

encoded in so-called emotion lexicons. Thanks

to over two decades of efforts from psychologists

and AI researchers alike, today a rich collection of

empirically founded emotion lexicons is available

covering both VAD and basic emotion representa-

tion for many languages (see Buechel and Hahn

(2018b) for an overview). One of the best know

resources of this kind are the Affective Norms for

English Words (ANEW; Bradley and Lang, 1999)
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Figure 1: Affective space spanned by the Valence-

Arousal-Dominance (VAD) model, together with the

position of six basic emotion categories.

Entry Valence Arousal Dominance

rage 2.50 6.62 4.17
orgasm 8.01 7.19 5.84
relaxed 7.25 2.49 7.09

Table 1: Sample Valence-Arousal-Dominance (VAD)

ratings from the emotion lexicon by Warriner et al.

(2013). The scales span the interval of [1, 9] for each

dimension, “5” being the neutral value.

which comprise 1,034 entries in VAD format.

ANEW’s popular extension by Warriner et al.

(2013) comprises roughly 14k entries acquired via

crowdsourcing (see Table 1 for examples).

Recently, researchers started to build compu-

tational models of the relationship between VAD

and discrete categories (illustrated in Figure 1)

resulting in techniques to automatically trans-

late ratings between these major representation

schemes (Calvo and Kim, 2013; Buechel and

Hahn, 2018a).

2.2 Predicting Word Emotions

Word emotion induction—the task of predicting

the affective score of unrated words—is an active

research area within sentiment analysis (Rosenthal

et al., 2015). Most approaches either rely on

hand-coded lexical resources, such as WORDNET

(Fellbaum, 1998), to propagate sentiment infor-

mation to unkown words (Shaikh et al., 2016), or

employ similarity metrics based on distributional

semantics (see below). We deem the former

inadequate for diachronic purposes, since almost

all lexical resources typically cover contemporary

language only. In the following, we focus on
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algorithms which have been tested in diachronic

settings in previous work. An overview of recent

work focusing on applications to contemporary

language is given by Buechel and Hahn (2018c).

More than a decade ago, Turney and Littman

(2003) introduced a frequently used and often

adopted (e.g., Köper and Schulte im Walde (2016);

Palogiannidi et al. (2016)) algorithm. It computes

a sentiment score based on the similarity of an

unrated word to two sets of positive and nega-

tive seed words. Bestgen (2008) presented an

algorithm which has been prominently put into

practice in expanding a VAD lexicon to up to

17,350 entries (Bestgen and Vincze, 2012). Their

method employs a k-Nearest-Neighbor method-

ology where an unrated word inherits the aver-

aged ratings of the surrounding words. Rothe

et al. (2016) presented a more recent approach to

polarity induction. Based on word embeddings

and a set of positive and negative paradigm

words, they train an orthogonal transformation

of the embedding space so that the encoded

polarity information is concentrated in a single

vector component whose value then serves as an

explicit polarity rating. The algorithm proposed

by Hamilton et al. (2016a) employs a random walk

within a lexical graph constructed using word

similarities. They outperform Rothe et al. (2016)

when embeddings are trained on small datasets.

Note that these algorithms differ in the kind

of input representation they require. Whereas

Turney and Littman (2003), Rothe et al. (2016),

and Hamilton et al. (2016a) expect binary class

ratings (positive or negative), Bestgen’s algorithm

(Bestgen, 2008) takes vectorial seed ratings, illus-

trated in Table 1, as input.

2.3 Historical Sentiment Information

There are several studies using contemporary

word emotion information, i.e., emotion lexicons

encoding today’s emotional meaning, to analyze

historical documents. For instance, Acerbi et al.

(2013) and Bentley et al. (2014) observed long-

term trends in words expressing emotions in

the Google Books corpus and linked these to

historical (economic) events. Another example

are Kim et al. (2017) who investigate emotions in

literary texts in search for genre-specific patterns.

However, this contemporary emotion information

could lead to artifacts, since the emotions con-

nected with a word are not necessarily static

over time. This phenomenon is known as ele-

vation & degeneration in historical linguistics,

e.g., Old English cniht ‘boy, servant’ was elevated

becoming the modern knight (Bloomfield, 1984).

Alternatively, algorithms for bootstrapping

word emotion information can be used to predict

historical emotion values by using word similarity

based on historical texts. This was first done for

polarity regression with the Turney and Littman

(2003) algorithm and a collection of three British

English corpora by Cook and Stevenson (2010).

Jatowt and Duh (2014) tracked the emotional

development of words by averaging the polarity

of the words they co-occurred with (assuming the

latters’ polarity to be stable). Hamilton et al.

(2016a) used their novel random walk-based algo-

rithm for polarity regression on COHA. They con-

sider their method especially suited for historical

applications.2 This algorithm was also used by

Généreux et al. (2017) to test the temporal validity

of inferred word abstractness, a psychological

measure akin to the individual VAD dimensions.

They used both modern and historical (1960s)

psychological datasets rating the same words as

gold standards and found a strong correlation

with predicted historical abstractness. Buechel

et al. (2016) used Bestgen (2008)’s algorithm to

investigate emotional profiles of different genres

of historical writing. Finally, we used the Turney

and Littman (2003) algorithm to induce historical

sentiment information which is provided as part of

JeSemE.org, a website for exploring semantic

change in multiple diachronic corpora (Hellrich

et al., 2018).

3 Methods

3.1 Word Similarity

We measure word similarity by the cosine between

word embeddings, the most recent method in

studies of distributional semantics. Their most

popular form are Skip-Gram Negative Sampling

(SGNS; Mikolov et al., 2013) embeddings which

are trained with a very shallow artificial neural

network. SGNS processes one word-context pair,

i.e., two nearby words, at a time and learns good

embeddings by trying to predict the most likely

contexts for a given word.

2 However, the algorithm is sensitive to changes in its
training material and thus likely prone to compute artifacts,
see their README at github.com/williamleif/

socialsent

http://JeSemE.org
http://github.com/williamleif/socialsent
http://github.com/williamleif/socialsent
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An alternative solution for generating low

dimensional vectors is gathering all word-context

pairs for a corpus in a large matrix and reducing its

dimensionality with singular value decomposition

(SVD), a technique very popular in the early

1990’s (Deerwester et al., 1990; Schütze, 1993).

Levy et al. (2015) propose SVDPPMI, a state-of-

the-art algorithm based on combining SVD with

the positive pointwise mutual information (PPMI;

Niwa and Nitta, 1994) word association metric.

Both SGNS and SVDPPMI have been shown

to be adequate for exploring historical semantics

(Hamilton et al., 2016b,a). A general down-

side of existing embedding algorithms other than

SVDPPMI is their inherent stochastic behavior

during training which makes the resulting embed-

ding models unreliable (Hellrich and Hahn, 2016;

Antoniak and Mimno, 2018; Wendlandt et al.,

2018). Very recently, contextualized word embed-

dings, such as ELMo (Peters et al., 2018) and

BERT (Devlin et al., 2018), have started to

establish themselves as a new family of algorithms

for word representation. Those methods achieve

enhanced performance on many downstream tasks

by taking context into account, both during

training and testing, to generate an individual

vector representation for each individual token.

This makes them unsuitable for our contribution,

since we address emotion on the type level by

creating emotion lexicons.

3.2 Word Emotion

Our work employs three algorithms for inducing

emotion lexicons, two of which had to be adapted

to deal with the more informative vectorial VAD

representation instead of a simple binary two-class

representation (positive vs. negative polarity):

KNN — The k-Nearest-Neighbor-based algo-

rithm by Bestgen (2008) which already sup-

ports vectorial input.

PARASIMNUM — An adaptation of the classical

PARASIM algorithm by Turney and Littman

(2003) which is based on the similarity of two

opposing sets of paradigm words.

RANDOMWALKNUM — An adaptation of the

RANDOMWALK algorithm proposed by

Hamilton et al. (2016a) which propagates

affective information of seed words via a

random walk through a lexical graph.

KNN sets the emotion values of each word w to

the average of the emotion values of the k most

similar seed words. For any given seed word

s, let e(s) denote its three-dimensional emotion

vector corresponding to its VAD value in our seed

lexicon. Furthermore, let nearest(w, k) denote

the set of the k seed word most similar to a given

word w. Then the predicted emotion of word w
according to KNN is defined as follows:

eKNN(w, k) :=
1

k

∑

s∈nearest(w,k)

e(s) (1)

PARASIM computes the emotion of word w
by comparing its similarity with a set of positive

and negative paradigm words (POS and NEG,

respectively):

ePARASIM(w) :=
∑

p∈POS

sim(w, p)−
∑

n∈NEG

sim(w, n)

(2)

where sim(·, ·) denotes the cosine similarly

between two embedding vectors.

Let e(s) map to ‘1’, if word s ∈ POS, and

to ‘−1’, if s ∈ NEG, then Equation (2) can be

rewritten as

ePARASIM(w) =
∑

s∈POS∪NEG

sim(w, s)× e(s). (3)

For PARASIMNUM, our adaptation of PARAM-

SIM, we change e(s) to map to a three-

dimensional vector corresponding to the VAD

entry of a word in our set of seed words S :=
POS ∪ NEG. We also introduce a normal-

ization factor so that the predictions according

to PARASIMNUM take the form of a weighted

average:

ePARASIMNUM(w) :=

∑
s∈S sim(w, s)× e(s)∑

s∈S sim(w, s)
(4)

RANDOMWALK propagates sentiment scores

through a graph, with vertices representing words

and edge weights denoting word similarity. Let

V represent the set of words in this lexical graph,

and let the vector p ∈ R
|V| represent the induced

sentiment score for each word in the graph. To

compute word emotions, p is iteratively updated

by applying a transition matrix T :

p(t+1) := βTp(t) + (1− β)s (5)

Here s ∈ R
|V| is the vector representing the seed

sentiment scores and the β-parameter balances
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between assigning similar scores to neighbors and

correct scores to seeds. The vector p is initialized

so that the i-th element pi = 1/|V|, whereas s is

initialized with si = 1/|S| (S being the set of seed

words), if the corresponding word wi is a seed

word and 0, otherwise. Details how the transition

matrix is initialized can be found in Zhou et al.

(2004).

To obtain the final sentiment scores pfinal, the

process is independently run until convergence for

both a positive and a negative seed set, before

the resulting values p+ and p− are normalized by

performing a z-transformation on:

pfinal :=
p+

p+ + p−
(6)

We now provide a simple adaptation for vec-

torial emotion values, RANDOMWALKNUM: p
and s are replaced by |V|× 3 matrices P and S,

respectively. All entries of P are initialized with

1/|V|. For the positive seed set, S is populated

with the original VAD values of each word in the

seed lexicon and 0, otherwise. For the negative

seed set all values are inverted relative to the

center of the numerical VAD rating scales. For

instance, the valence score of relaxed in Table 1

is transformed from 7 to 3, because 5 is the center

of the respective scale. Finally, S is normalized so

that each column adds up to 1. Pfinal can then be

calculated analogously to the original algorithm.

4 External Datasets

4.1 Diachronic Corpora

We rely on two well curated diachronic corpora—

the Corpus of Historical American English3

(COHA; Davies, 2012) and the core corpus of the

Deutsches Text Archiv4 [’German Text Archive’]

(DTA; Geyken, 2013; Geyken and Gloning, 2015).

They are smaller than some alternative diachronic

corpora, especially the Google Books N-gram

subcorpora (Lin et al., 2012), yet their balanced

nature and transparent composition should make

results more resilient against artifacts (Pechenick

et al., 2015). Both corpora contain metadata in the

form of automatically generated POS annotations

and lemmatizations. The latter appears to be more

consistent in DTA, possibly due to the inclusion of

an orthographic normalization step (Jurish, 2013).

3 english-corpora.org/coha/
4 deutschestextarchiv.de — we used the May

2016 snapshot.

COHA is relatively large for a structured corpus

(Davies, 2012, p. 122) containing over 100k long

and short texts from the 1810s to the 2000s. It is

conceptually centered around decades and aims at

providing equally sized and genre-balanced data

for each decade. The only deviations are an

increase in size between the 1810s and 1830s to

a then stable level, as well as the inclusion of

newspaper texts from the 1860s onwards. COHA

is based on post-processed texts from several

pre-existing collections, e.g., Project Gutenberg

(Davies, 2012, p. 125), digitized with optical

character recognition (OCR) software.

DTA is the closest German equivalent to COHA

and the result of an ongoing effort to create a dig-

ital full-text corpus of printed German documents

from the 15th to the 19th century. It is smaller

than COHA, containing only about 1.3k long

texts, yet of higher quality, based on extensive

manual transcription (mostly double keying, in

some cases corrected OCR). It contains texts

from different genres, and individual texts were

chosen with an eye toward cultural (not statistical)

representativeness. Balance between genres is

limited for some timespans, e.g., non-fiction is

strongly over-represented in the early 17th century.

However, the texts used in our experiments (see

below) are well balanced between fictional and

non-fictional texts (101 vs. 91 texts, respectively).

For both, COHA and DTA, we selected all texts

from particular timespans as basis for our exper-

iments. Those timespans served two purposes:

(a) when building our gold standard of historical

word emotions (Section 5.1) the annotators were

requested to rate word emotions according to the

respective target language stage; (b) documents

associated with the respective timespan were used

to train language stage-specific word embeddings

(Section 6.1) in order to model those gold ratings.

The 2000s decade of COHA was an obvious

fit for our synchronic experiments in Section

6.2, as it is the most recent one. For our

diachronic experiments in Section 6.3 we aimed at

sufficiently sized training material (10M+ tokens)

to ensure high quality word embeddings. We also

wanted to use data as distant from the present time

as possible. We thus picked the 1830s decade

of COHA for English and combined thirty years

of DTA texts (1810–1839) for German—earlier

COHA decades, as well as all individual DTA

decades, are of insufficient size.

http://english-corpora.org/coha/
http://deutschestextarchiv.de
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4.2 Emotion Lexicons

We now describe the VAD lexicons which were

used to provide seed words for both synchronic

and diachronic experiments. Based on its size

and popularity, we chose the extended version of

ANEW (Warriner et al., 2013; see Section 2) for

English. Concerning German emotion lexicons,

we chose the Affective Norms for German Sen-

timent Terms (ANGST; Schmidtke et al., 2014)

which contain 1,003 words and largely follows

ANEW’s acquisition methodology.

5 Historical Gold Standard

5.1 Dataset Construction

In general, native speakers fluent in the respec-

tive (sub)language are the only viable option for

acquiring a gold standard lexicon of emotional

meaning for any language or domain. In the

case of historical language older than about a

century, this option is off the table due to bio-

logical reasons—we simply lack native speakers

competent for that specific language period.

As the best conceivable surrogate, we rely on

historical language experts for constructing our

dataset. The gold standard consists of two parts, an

English and a German one, each with 100 words.

We recruited three annotators for German and two

for English, all doctoral students experienced in

interpreting 19th century texts.

We selected high-frequency words for the anno-

tation to ensure high quality of the associated

word embeddings. The selection was done by,

first, extracting adjectives, common nouns and

lexical verbs from the 1830s COHA and the 1810–

1839 DTA subcorpus and then, second, randomly

sampling 100 words out of the 1000 most frequent

ones. We manually excluded two cases of ordinal

numerals misclassified as adjectives.

The actual rating process was set up as a

questionnaire study following established designs

from psychological research (Bradley and Lang,

1999; Warriner et al., 2013). The participants

were requested to put themselves in the position

of a person living between 1810 and 1839 for the

German data set, or a person living in the 1830s

for the English one. They were then presented

with stimulus words and used the so-called Self-

Assessment Manikin (SAM; Bradley and Lang,

1994) to judge the kind of feeling evoked by these

lexical items. SAM consists of three individual

nine-point scales, one for each VAD dimension.

Valence Arousal Dominance Mean

goldEN 1.20 1.08 1.41 1.23
goldDE 1.72 1.56 2.31 1.86
Warriner 1.68 2.30 2.16 2.05

Table 2: Inter-annotator agreement for our English

(goldEN) and German (goldDE) gold standard, as

well as the lexicon by Warriner et al. (2013) for

comparision; Averaged standard deviation of ratings

for each VAD dimension and mean over all dimensions.

Each of the 27 rating points is illustrated by an

cartoon-like anthropomorphic figure serving as a

non-verbal description of the scale. Moreover,

these figures are supplemented by verbal anchors

for the low and high end points of the scales

e.g., the rating point “9” of the Valence scale

represents “complete happiness”. They were not

provided with or instructed to use any further

material or references, e.g., dictionaries. The final

ratings for each word were derived by averaging

the individual ratings of the annotators.

5.2 Dataset Analysis

We measure inter-annotator agreement (IAA) by

calculating the standard deviation (SD) for each

word and dimension and averaging these, first,

for each dimension alone, and then over these

aggregate values, thus constituting an error-based

score (the lower the better). Results are provided

in Table 2. In comparison with the lexicon by

Warriner et al. (2013), our gold standard displays

higher rating consistency. As average over all

three VAD dimensions, our lexicon displays an

IAA of 1.23 and 1.86 for English and German,

respectively, compared to 2.05 as reported by

Warriner et al. (2013). This suggests that experts

show higher consensus, even when judging word

emotions for a historical language period, than

crowdworkers for contemporary language. An

alternative explanation might be differences in

word material, i.e., our random sample of frequent

words.

Next, we provide a short comparison of histor-

ical and modern emotion ratings. This analysis

is restricted to the English language, because

the overlap of the historical and modern German

lexicons is really small (13 words compared to 97

for English). This difference is most likely due

to the fact that the English modern lexicon is more

than an order of magnitude larger than the German

one.
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historical modern
V A D V A D

daughter 3.5 4.0 4.0 6.7 5.0 5.1
divine 7.0 7.0 2.0 7.2 3.0 6.0
strange 2.0 6.5 1.0 4.7 3.5 5.3

Table 3: Illustrative example words with large devia-

tion between historical and modern affective meaning;

Valence-Arousal-Dominance (VAD) of newly created

gold standard compared to Warriner et al. (2013).

The Pearson correlation between modern and

historical lexicons is 0.66, 0.51, and 0.31 for

Valence, Arousal, and Dominance, respectively.

Table 3 displays illustrative examples from our

newly created gold standard where historical and

modern affective meaning differ strongly. We con-

ducted a post-facto interview on annotator motiva-

tion for those cases. Explanations—which match

observations described in common reference text-

books (e.g., Brinkley (2003))—range from the

influence of feminism leading to an increase in

Valence for “daughter” up to secularization that

might explain a drop in Arousal and rise in

Dominance for “divine”. The annotation for

“strange” was motivated by several now obsolete

senses indicating foreignness or alienness.5

In summary, we recruited historical language

experts as best conceivable surrogate to com-

pensate for the lack of actual native speakers

in order to create a gold standard for historical

word emotions. To the best of our knowledge,

no comparable dataset is elsewhere available,

making this contribution unique and hopefully

valuable for future research, despite its obvious

size limitation.

6 Modeling Word Emotions

This section describes how we trained time period-

specific word embeddings and used these to eval-

uate the algorithms presented in Section 3.2 on

both a contemporary dataset and our newly created

historical gold standard.

6.1 Word Embedding Training

COHA and DTA were preprocessed by using the

lemmatization provided with each corpus, as well

as removing punctuation and converting all text to

lower case.

5 See the Oxford English Dictionary: oed.com/view/
Entry/191244

We used the HYPERWORDS toolkit (Levy et al.,

2015) to create one distinct word embedding

model for each of those subcorpora. Hyperpara-

meter choices follow Hamilton et al. (2016a).

In particular, we trained 300-dimensional word

vectors, with a context window of up to four

words. Context windows were limited by docu-

ment boundaries while ignoring sentence bound-

aries. We modeled words with a minimum

token frequency of 10 per subcorpus, different

from Hamilton et al. (2016a). For SVDPPMI,

eigenvectors were discarded, no negative sampling

was used and word vectors were combined with

their respective context vectors.

6.2 Synchronic Evaluation

Our first evaluation of lexicon induction algo-

rithms compares the ability of the three different

algorithms described in Section 3 to predict ratings

of a modern, contemporary VAD lexicon, i.e., the

one by Warriner et al. (2013), using two different

types of seed sets (see below). For this experi-

ment, we used word embeddings trained on the

2000s COHA subcorpus. We call this evaluation

setup synchronic in the linguistic sense, since

seed lexicon, target lexicon and word embeddings

belong to the same language period. A unique

feature of our work here is that we also take

into account possible interaction effects between

lexicon induction algorithms and word embedding

algorithms, i.e., SGNS and SVDPPMI.

We use two different seed lexicons, both are

based on the word ratings by Warriner et al.

(2013). The full seed lexicon corresponds to all

the entries of words which are also present in

ANEW (about 1,000 words; see Section 2). In

contrast, the limited seed lexicon is restricted to 19

words6 which were identified as temporally stable

by Hamilton et al. (2016a).

The first setup is thus analogous to the polarity

experiments performed by Cook and Stevenson

(2010), whereas the second one corresponds to the

settings from Hamilton et al. (2016a). We use

Pearson’s r between actual and predicted values

for each emotion dimension (Valence, Arousal and

Dominance) for quantifying performance7 and a

6 One of the 20 words given by Hamilton et al. (2016a),
“hated”, is not present in the Warriner lexicon and was
therefore eliminated.

7 Some other studies use the rank correlation coefficient
Kendall’s τ . We found that for our experiments the results
are overall consistent between both metrics. In the following
we only report Pearson’s r as it is specifically designed for

http://oed.com/view/Entry/191244
http://oed.com/view/Entry/191244
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Induction Method Seed Selection SVDPPMI SGNS

KNN full 0.548 0.487
PARASIMNUM full 0.557 0.489

RANDOMWALKNUM full 0.544 0.436

KNN limited 0.181 0.166
PARASIMNUM limited 0.249 0.191

RANDOMWALKNUM limited 0.330 0.181

Table 4: Results of the synchronic evaluation in Pearson’s r averaged over all three VAD dimensions. The best

system for each seed lexicon and those with statistically non-significant differences (p ≥ 0.05) are in bold.

Language Induction Method Seed Selection SVDPPMI SGNS
E

n
g

li
sh

KNN full 0.307 0.365
PARASIMNUM full 0.348 0.361

RANDOMWALKNUM full 0.351 0.361
KNN limited 0.273 0.153

PARASIMNUM limited 0.295 0.232

RANDOMWALKNUM limited 0.305 0.039△

G
er

m
an KNN full 0.366 0.263

PARASIMNUM full 0.384 0.214
RANDOMWALKNUM full 0.302 0.273

Table 5: Results of the diachronic evaluation in Pearson’s r averaged over all three VAD dimensions. The best

system for each language and seed selection strategy (full vs. limited) is in bold. Only the system marked with ‘△’

is significantly different from the best system (p < 0.05).

Fisher transformation followed by a Z-test for

significance testing (Cohen, 1995, pp. 130–131).

Table 4 provides the average values of these

VAD correlations for each seed lexicon, embed-

ding method and induction algorithm. SGNS

embeddings are worse than SVDPPMI embeddings

for both full and limited seed lexicons. SVDPPMI

embeddings seem to be better suited for induction

based on the full seed set, leading to the highest

observed correlation with PARASIMNUM. How-

ever, results with other induction algorithms are

not significantly different. For the limited seed set,

consistent with claims by Hamilton et al. (2016a),

RANDOMWALKNUM is significantly better than

all alternative approaches. However, all results

with the limited seed set are far (and significantly)

worse than those with the full seed lexicon.

Performance is known to differ between VAD

dimensions, i.e., Valence is usually the easiest one

to predict. For the full seed lexicon and the best

induction method, PARASIMNUM with SVDPPMI

embeddings, we found Pearson’s r correlation

to range between 0.679 for Valence, 0.445 for

Arousal and 0.547 for Dominance.

6.3 Diachronic Evaluation

The second evaluation set-up utilizes our historical

gold standard described in Section 5.1. We call

numerical values. In contrast, Kendall’s τ only captures
ordinal information and is therefore less suited for VAD.

this set-up diachronic, since the emotion lexicons

generated in our experiments aim to match word

use of historical language stages, whereas the

seed values used for this process stem from

contemporary language. This approach allows us

to test the recent claim that artificially limiting

seed lexicons to words assumed to be semantically

stable over long time spans is beneficial for

generating historical emotion lexicons (Hamilton

et al., 2016a). We used Pearson’s r correlation and

the Z-test, as in Section 6.2.

Again, we investigate interactions between lex-

icon induction algorithms and embedding types.

For English, we evaluate with both full and

limited seed lexicons, whereas for German, we

evaluate only using the full seed lexicon (ANGST,

see Section 2) since most entries of the English

limited lexicon have no corresponding entry in

ANGST. Embeddings are based on the 1830s

COHA subcorpus for English and on the 1810–

1839 DTA subcorpus for German, thus matching

the time frames featured by our gold standard.

The results of this experiment are given in Table

5. For English, using the full seed lexicons, we

achieve performance figures around r = .35. In

contrast, using the limited seed lexicon we find

that the performance is markedly weaker in each

of our six conditions compared to using the full

seed lexicon. This observation directly opposes

the claims from Hamilton et al. (2016a) who
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argued that their hand selected set of emotionally

stable seed words would boost performance rel-

ative to using the full, contemporary dataset as

seeds.

Our finding is statistically significant in only

one of all cases (the combination of SGNS and

RANDOMWALKNUM). However, the fact that

we get the identical outcomes for all the other

five combinations of embedding and induction

algorithm strongly indicates that using the full

seed set is virtually superior, even though the

differences are not statistically significant when

looking at the individual conditions in isolation,

due to the size8 of our gold standard. Note that

this outcome is also consistent with our results

from the synchronic evaluation where we did find

significant differences.

German results with the full seed lexicon are

similar to those for English. Here, however, the

SGNS embeddings are outperformed by SVDPPMI,

whereas for English both are competitive. A

possible explanation for this result might be differ-

ences in pre-processing between the two data sets

which were necessary due to the more complex

morphology of the German language.

7 Conclusion

In this contribution, we addressed the task of

constructing emotion lexicons for historical lan-

guage stages. We presented adaptations of two

existing polarity lexicon induction algorithms to

the multidimensional VAD model of emotion,

which provides deeper insights than common bi-

polar approaches. Furthermore, we constructed

the first gold standard for affective lexical seman-

tics in historical language. In our experiments,

we investigated the interaction between word

embedding algorithm, word emotion induction

algorithm and seed word selection strategy. Most

importantly, our results suggest that limiting seed

words to supposedly temporally stable ones does

not improve performance as suggested in pre-

vious work but rather turns out to be harmful.

Regarding the compared algorithms for emo-

tion lexicon induction and embedding generation,

we recommend using SVDPPMI together with

PARASIMNUM (our adaption of the Turney and

8 Typical emotion lexicons are one or even two orders
of magnitude larger, as discussed in Section 2.1. Given the
current correlation values, we would need to increase the size
of our gold standard by a factor of about 40—a challenging
task, given its expert reliant nature—to ensure p < .05.

Littman (2003) algorithm), as this set-up yields

strong and stable performance, and requires few

hyperparameter choices. We will continue to work

on further solutions to get around data sparsity

issues when working with historical language,

hopefully allowing for more advanced machine

learning approaches in the near future.
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