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Abstract 

Diverse requirements of participants involved in a 
business process bring forth the need of a flexible process 
model capable of providing appropriate process 
informution fo r  various participants. However; current 
activity-based approach is not adequate to provide 
different participants with varied process information. This 
work describes a novel process-view model for  workflow 
management. A process-view is an abstracted process 
derived from a base process to provide abstracted process 
information. The underlying concept and formal model of 
a process-view are presented. Moreover; a novel 
ordering-preserved approach is proposed to derive a 
process-view from a base process. The proposed approach 
enhances the flexibility and functionality of conventional 
activity-based workflow management systems. 

1. Introduction 

As an effective process management tool, workflow 
management systems (WfMSs) allow a business to 
analyze, simulate, design, enact, control and monitor its 
overall business processes[5, 8, 1 I]. With the support of a 
WfMS, various participants can collaborate in effectively 
managing a workflow-controlled business process. In 
practice, these participants have different requirements 
and levels of authority to obtain information of business 
processes. To facilitate effective workflow management, a 
WfMS should provide various participants with adequate 
process information to fulfill their requirements. 

Although using different notations, activity-based 
methodologies are extensively used process modeling 
techniques and adopted by many commercial products and 
research projects, e.g., MQ Series Workflowt71, 
Ultimus[l3], METEOR[lO], and WfMC (Workflow 
Management Coalition) process definition meta 
model[ 161. Typical activity-based model is a procedure of 
top-down decomposition of a process. This stepwise 
refinement facilitates a modeler to define a process more 

easily and completely than one-step approaches. 
However, subsequently layered process definitions do 

not always fit organizational hierarchy although they 
provide several different levels of hierarchical abstraction. 
Therefore, hierarchically decomposing a process may not 
provide each organizational level with an appropriate view 
of a process. Moreover, different departments may have 
difficulties in obtaining suitable abstractions of a process 
they participate in. The activity-based approach cannot 
adequately provide different participants with varied 
abstracted processes. 

Enhancement of the activity-based approach has 
received considerable interest. Baresi et a1.[2] and 
Gruhn[6] proposed models to integrate the modeling of 
activity, data, and organization. By exploiting property of 
SGML (Standard Generalized Markup Language) 
documents, Weitz[ 151 proposed a variant of Petri nets to 
combine the modeling of activity and data. Some 
investigations[3, 9, 141 use object-oriented technology to 
integrate the modeling of control flow and data flow. 

van der Aalst [ 1 J proposed a novel generic workflow 
model to provide the manager with an aggregated view of 
variants for the same workflow process. Multiple variants 
of the same process exist due to dynamic change. A 
representative process, in which each activity represents 
the aggregation of all identical activities of these process 
variants, is used as the aggregated view. The generic 
process model focuses on providing aggregated 
information of dynamically changing process variants. 

The activity-based approach should be enhanced to 
provide different process abstractions. Based on the notion 
of a view in a DBMS, this work presents a novel virtual 
workflow process, a process-view in a WfMS. A 
process-view, i.e., an abstracted process derived from an 
implemented base process, is used to provide abstracted 
information. With process views, a Wfh4S can provide 
various views of a process for different levels or 
departments in an organization. 

Several approaches can be adopted to construct a 
process-view. This work describes a novel ordering- 
preserved approach in which a constructed process-view 
can preserve the original ordering of activities in a base 
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process. A formal model is also presented to define an 
ordering-preserved process-view. Moreover, an algorithm 
is proposed to automatically generate an ordering- 
preserved process-view. 

The rest of this paper is organized as follows: Section 2 
formally defines business processes. Section 3 then 
describes a process-view and generally defines it. Next, 
Section 4 presents the proposed ordering-preserved 
approach to construct a process-view. Conclusions are 
finally made in Section 5. 

2. Workflow Model: a Base Process 

A process that may have multiple process-views is 
referred to herein as a base process. In general, 
activity-based workflow models use activities and 
dependencies to describe a process. Dependencies are 
used to describe the execution order and relationship 
between activities within a process. This work uses a 
rectangle to denote an activity and an arrow line to denote 
a dependency in a process graph. One dependency 
connects two activities. For an activity, its succeeding 
activities (successor) are connected by outgoing 
dependencies, and its preceding activities (predecessor) 
are connected by incoming dependencies. Each 
dependency is labeled with a condition. A workflow 
engine determines which succeeding activities will be 
triggered according to the condition evaluation and related 
ordering structure. WfMC defines six ordering structures, 
including Sequence, AND-SPLIT, XOR-SPLIT, AND- 
JOIN, XOR-JOIN, and Loop [ 161. 

Herein, process-views are defined by introducing a 
formal model, revised from the standard WfMC 
model[l6], to describe the base processes. The model 
focuses only on activities and dependencies to simplify the 
discussion. 

Definition 1 (Dependency) A dependency is an ordered 
list (activity x, activity y ,  condition C), denoted by de&, y, 
C). This notation indicates that after x is completed, a 
workflow engine can start to evaluate the condition C. The 
fact that x is completed and C is true is one precondition of 
whether y can start. This depcndency is an outgoing 
dependency of x and an incoming dependency of y .  
Activity x is a predecessor of y and y is a successor of x. 
Activity x is called preceding activity and y is called 
succeeding activity in dep(x, y ,  C). 

Definition 2 (Activity) An activity is a 4-tuples (AID, 
SPLIT-flag, JOIN-flag, SC), where 
1. 
2. 

AID is a unique activity identifier within a process. 
SPLIT-flag may be “NULL’, “AND”, or “XOR’. 
NULL indicates this activity has only one outgoing 
dependency (Sequence). When multiple outgoing 
dependencies exist, AND indicates all succeeding 

branches can be followed (AND-SPLIT) while XOR 
indicates only one succeeding branch is followed 

JOIN-flag may be “NULL”, “AND”, or “XOR’. 
NULL indicates this activity has only one incoming 
dependency (Sequence). When multiple incoming 
dependencies exist, AND indicates this activity can 
start if all incoming dependencies have satisfied 
condition (AND-JOIN); XOR indicates this activity 
can start if one of the incoming dependencies has 
satisfied condition (XOR- JOIN). 

4. SC is the starting condition of this activity. A 
workflow engine evaluates SC to determine whether 
this activity can start. If JOIN-flag is NULL, SC 
equals the condition associated with its incoming 
dependency. If JOIN- flag is XOR, SC equals 
Boolean XOR combination of all incoming 
dependencies’ conditions. If JOIN-flag is AND, SC 
equals Boolean AND combination of all incoming 
dependencies’ conditions. 

SPLIT- flag indicates how to choose outgoing 
dependencies to follow. JOIN- flag determines how to 
combine incoming dependencies to trigger an activity. 
SPLIT-flag, JOIN-flag, and dependencies determine the 
control flow of a process. 

(XOR-SPLIT). 
3. 

Definition 3 (Process) A process P is a 2-tuples (BA, BD), 
where 
1. BA is a nonempty set, and its members are activities 

within the process. 
2. BD is a nonempty set, and its members are 

dependencies whose preceding activity and 
succeeding activity are contained by BA. 

Definition 4 (Adjacent) Two activities are adjacent if 
connected by a dependency. 

Definition 5 (Path) For a base process P = (BA, BD), UO, 

a l ,  ... a, E BA, dl ,  d2, . . .d,  E BD, where d, represents the 
dependency from a;.l to a;, i = 1, 2, ... n. The list of 
activities and dependencies aod la ldz . .  .d,a, is called the 
path from a. to a,, denoted by a0 4 a,. The number of 
dependencies is called the length of a path, denoted by 
length(a0 4 a,). 

Definition 6 (Ordering Relation) For a base process P = 
(BA, BD), Vx, y E BA. Activity x is said to have a higher 
order than y if there is a path from x to y, i.e., x proceeds 
before y, and their ordering relation is denoted by x > y or 
y < x. If 3x 4 y and y 4 x, i.e., x > y and y > x , then every 
activity in the paths x + y and y + x belongs to the same 
loop structure. If 3x + y and 3y -+ x in P, i.e., x and y 
proceed independently, their ordering relation is denoted 
byx-y. 
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3. Virtual Process: a Process-view 

In database management systems (DBMSs), a view is a 
virtual table generated from either physical tables or 
previously defined views. Based on the same notion, a 
process-view in WfMSs is defined herein. A process-view 
is generated from either physical processes (base 
processes) or other process-views and is considered a 
virtual process. It is used to provide abstracted 
information of its base process and does not modify its 
base process. During design time, a process modeler 
defines various process-views based on the participants’ 
role. During run time, a WfMS initiates all process-view 
instances if their base process is initiated. Users with a 
specific role can obtain full information about the role’s 
process-view instance. Process-views allow a process 
modeler to flexibly provide different roles (i.e., different 
levels or departments within an organization) with 
appropriate views of an implemented process. 

Similar to process design, designing a process-view 
must identify what activities are within it and then arrange 
them based on dependencies and ordering structures. 
However, an “activity” in a process-view is not performed; 
i t  is used to express the execution states of a set of 
activities. Hence, to differentiate the terminology used in 
base process and process-view, this work uses the terms 
virtual activity and virtual dependency for the 
process-view while the terms base activity and base 
dependency are used for the base process. 

A process-view is defined as follows: 

Definition 7 (Process-view) A process-view is a 2-tuples 
(VA, VD), where 
1. VA is a nonempty set, and its members are virtual 

act i vi t ies. 
2. VD is a nonempty set, and its members are virtual 

dependencies. 

A virtual activity is an abstraction of a set of base 
activities and corresponding base dependencies. A virtual 
dependency is used to connect two virtual activities in a 
process-view. According to the different properties of a 
base process, various approaches can be developed to 
derive VA and VD. Section 4 presents an approach in 
which the original execution order in a base process is 
preserved. Regardless of how VA and VD are derived, 
paths and ordering relations can be defined in a 
process-view as follows. 

Definition 8 (Virtual Path) For a process-view VP = (VA, 
VD), V Q ,  vul, .... vu,€ VA, vd,, vd2, .... vd,E VD, where 
vdi is the virtual dependency from  VU^.^ to vu;, i = 1,  2, .... n. 
The list of virtual activities and virtual dependencies 
vu~vdlvulvd~.  . .vd,vu, is called the virtual path from vu0 to 
vu, , denoted by vu0 + vu,. 

Definition 9 (Ordering Relation between Virtual 
Activities) For a process-view VP = (VA, VD), Vvu, , vu, E 
VA, i # j ,  virtual activity vu, is said to have higher order 
than vu, , if there is a virtual path from vu, to vu,, i.e., ‘ vu, 
proceeds before vu,, and their ordering relation is denoted 
by vu, > vu, or vu, < vu,. If there is no path from vu, to vu, or 
from vu, to vul in VP, i.e., vu, and vu, both proceed 
independently, their ordering relation is denoted by vu, 
vu, . 

4. Ordering-preserved Approach 

In this section, we first introduce three rules that a 
process-view must follow to preserve ordering property. 
Based on these rules, virtual activities and virtual 
dependencies in an ordering-preserved process-view are 
formally defined. Essential activities, i.e., activities that a 
modeler wants to conceal or aggregate in a virtual activity, 
are proposed to simplify the procedure of defining a 
virtual activity. Also presented herein are novel algorithms 
that automatically generate legal virtual activities and 
virtual dependencies. 

4.1 Basic Rules 

If complying with the following three rules, a 
process-view preserves the ordering relations in its base 
process. 

First, a virtual activity can be viewed as a set of 
activities of a base process. A virtual activity may be 
composed of base activities, virtual activities, or both. 

Second, a virtual activity is an atomic unit of 
processing; i t  is completed if and only if  each activity 
contained by it  either has been completed or is never 
executed in a process instance, it starts if and only if one 
activity contained by i t  starts. In Figure 1, for example, if 
SPLIT-flag of a, is AND and JOIN-flag of u4 is AND, u4 
cannot start until a2 and a3 are completed. Thus, the fact 
that virtual activity vu2 is completed implies that u2 and u3 
are completed. If the SPLIT-Jug of ul is XOR and JOIN- 
f lag of u4 is XOR, a4 cannot start until a2 or a3 is completed. 
The fact that virtual activity vu2finishes implies that one of 
u2 and a3 is completed and the other one is never executed. 

............... . . . . . . . . .  
i .. 

j vu, ,,: ..... Val > .... ............................. 
Figure 1. An illustrative example of the atomicity property 
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Furthermore, a situation in which an ordering relation, 
531 (>, < or -a), between two virtual activities stands in a 
process-view implies that any ordering relation between 
these virtual activities’ respective members is also %. The 
process-view in Figure 1 reveals that the ordering relation 
between vuI and va2 is val > va2. Because a virtual activity 
is an atomic unit, vu1 > vu2 implies that ‘5’’ is also the 
ordering relation between any member of vul and any 
member of va2, i.e., vu1 > va2 implies al > u2 and ul > a3. 
Notably, the implied ordering relations may not conform 
to the ordering relations in the base process. 

branch I 

brunch 2 

brunch 3 

,,...... ...... 
: virrull1 ’: 

Figure 2. An illustrative example of ordering 
preservation in the split structure 

,,___. .................................... 

Figure 3. An illustrative example of ordering preservation 
in the loop structure 

Third, defining a virtual activity requires that the 
original ordering relations between activities in a base 
process must be preserved. Consider a base process 
illustrated in Figure 2 (a), in which we want to define a 
virtual activity that must contain activities a l l  and a22 . 
Figure 2 (b) and Figure 2 (c) provide two possible 
definitions. In the base process, three branches proceed 
independently and autonomously; in addition, the ordering 
relation between a13 and a22 is a13 00 u22. However, if we 
define a virtual activity as shown in Figure 2 (b), a l l ,  u12, 
a21, and u22 are viewed as an atomic unit since they are 
members of the same virtual activity. The ordering 
relation Virtual Activity > aI3  infers an implied ordering 
relation: u22 > ~ 1 3 ,  i.e., ~ 1 3  must wait for u22 completed to 
start. This implied ordering relation does not conform to 
the ordering relation in the base process. To preserve 
original ordering relations, the virtual activity must 
contain all activities in brunch 1 and 2 as shown in Figure 
2 (c). 

For loop structure, the repetitive execution order must 
be kept when defining a virtual activity. According to 

Figure 3, each numbered dotted round rectangle is a 
possible definition. Although alternatives 1 and 2 are valid, 
3 and 4 change the original ordering relations. Alternative 
3 creates an implied ordering relation: a3 > ul , i.e., ul , u2 ,  
and u3 may be repetitively executed (a1 and a2 are viewed 
as an atomic unit). Alternative 4 also creates an implied 
ordering relation: a4 > a2, i.e., a4 may be executed without 
waiting for the repetitive execution condition of a2 and a3 
is satisfied. 

In sum, a legal virtual activity in an ordering-preserved 
process-view must follow three rules: 

Rule 1 Membership: A virtual activity’s member may be 
a base activity or a previously defined virtual activity. The 
membership among base activities and virtual activities is 
defined transitively. If x is a member of y and y is a 
member of z, then x is also a member of z. 

Rule 2 Atomicity: A virtual activity, an atomic unit of 
processing, is completed if and only if each activity 
contained by it either has been completed or is never 
executed. A virtual activity starts if and only if one activity 
contained by it starts. In addition, if an ordering relation, % 
(>, < or CO), between two virtual activities stands in a 
process-view, then an implied ordering relation % stands 
between these virtual activities’ respective members. 

Rule 3 Ordering preservation: The implied ordering 
relations between two virtual activities’ respective 
members must conform to the ordering relations in the 
base process. 

Moreover, based on Rule2 and Rule3, the following 
lemma can be derived: 

Lemma 1. For an ordering-preserved process-view VP = 
(VA, VD) as derived from a base process BP = (BA, BD), 
Vva,  , va, E VA, i # j ,  V a ,  , U, E BA, x # y, a, is a member of 
vu, and a, is a member of va, , if the ordering relation 
between va, and va, , vu, % va, , stands in VP, then a, % a, 
stands in BP. 
Proof: vu, 531 va, implies U, 531 U, (Rule 2). According to 
Rule3, the implied ordering relation U, 531 a) must conform 
to the ordering relation in BP. Therefore, vu, 531 vu, stands 
in VP 

The approach is called ordering-preserved because 
implied ordering relations, as derived from a process-view, 
conform to the ordering relations in  the base process. 

a,%a, stands in BP. Q 

4.2 Formal Model 

The rules that a process-view should comply with have 
been introduced above. Next, virtual activities and virtual 
dependencies in an ordering-preserved process-view are 
formally defined. 
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Definition 10 (Virtual Activity) For a base process BP = 
(BA, BD), a virtual activity vu is a 6-tuples (VAID, A ,  D,  
SPLIT-flag, JOIN-flug, SC), where 
1. VAID is a unique virtual activity identifier within a 

process-view. 
2. A is a nonempty set, and its members follow three 

rules: 
a. Its members may be base activities that are 

members of BA or other previously defined virtual 
activities that are derived from BP. 

b. The fact that vu finishes implies that each member 
of A is either completed or never executed during 
run time; vu starts implies that one member of A 
starts. 

c. VXE BA, X P  A,  the ordering relations between x 
and all members (base activities) of A are identical 
inBP,i.e.,Vy,zEBA,y,zEA,ifx%yexistsinBP, 
then x%z also exists in BP. 

3. D is a nonempty set, and its members are 
dependencies whose succeeding activity and 
preceding activity are contained by A .  

4. SPLIT- flag may be “NULL” or “MIX”. NULL 
suggests that vu has only one outgoing virtual 
dependency (Sequence) while MIX indicates that vu 
has more than one outgoing virtual dependencies. 

5. JOIN- flug may be “NULL” or “MIX”. NULL 
suggests that vu has only one incoming virtual 
dependency (Sequence) while MIX indicates that vu 
has more than one incoming virtual dependencies. 
SC is the starting condition of vu. 6. 

The SPLIT- flug and JOIN- Jug cannot simply be 
described as AND or XOR since vu is an abstraction of a 
set of base activities that may associate with different 
ordering structure. Therefore, MIX is used to abstract the 
complicated ordering structures. A WfMS evaluates SC to 
determine whether vu can start. Section 4.4 further 
discusses JOIN-ihg, S P L I T - k g ,  and how to derive SC. 
Members of A are called vu’s member activities and 
members of D are called vu’s member dependencies. The 
abbreviated notation vu = (A,  D) is used to represent a 
virtual activity to save space in subsequent discussions. 

Definition 11 (Virtual Dependency) For two virtual 
activities vu, = ( A , ,  0,) and vu, = (A,, D,) that are derived 
from a base process BP = (BA, BD), a virtual dependency 
from vu, to vu, is vdep(vu,, vu,, VC,,) = ( dep(u,, U , ,  C,) I 
dep(u,, U,, C,,)E BD, U , E  A , ,  U, E A, }, where the virtual 
condition VC,, is a Boolean combination of C,, . 

Section 4.4 further discusses the relationship between 
VC and C. In the following discussion, condition fields of 
base dependencies and virtual dependencies are omitted 
for brevity. Next, we will demonstrate in Theorem 1 that 
the process-view defined according to Definition 10 and 

Definition 1 1 is ordering-preserved. 

Theorem 1. For a process-view VP = (VA, VD), derived 
from a base process BP = (BA, BD), if members of VA 
follow Definition 10 and members of VD follow 
Definition I I ,  then VP is ordering-preserved. 
Proof: 

Vu, E A I ,  if vu, % vu,, then the implied ordering relation % 
stands between U, and U, (according to Rule2 Atomicity). 
Case 1: % is “>”, i.e., vui > vui . It can be shown by 
induction that if vu; > vu,, then 3up E A , ,  uq E A I ,  such that 
up > uy stands in BP. Since up > ay and ay, a, E Ai ,  by 
Definition 10.2.q U,, > U,. Since U,, > ay and.u,, U,, E A i ,  i t  
further derives a, > U, (by Definition 10.2.~). Therefore 
U, > a,. stands in BP. The proof for the case of “<” is 
similar and is omitted. 
Case 2: % is “m”, i.e., vu; 00 vuj .  It can be shown by 
induction that if ~ u , , E  A; , U,,€ A,, up > ay, then vuj> vu,. 
Thus, if vui 00 vuj ,  then up > uq does not exist. Similarly, 
up < uy does not exist. Thus, Vu, E A ; ,  Vu,. E Aj , U, 00 U,. . 

We have shown that if vui % vuj stands in VP, the 
implied ordering relation between U, and ay conforms to 
the ordering relation between U, and a, in BP. :. VP is 
orderi ng-preserved. 

The virtual activity that follows Definition 10 
maintains original ordering relations when abstracting 
base activities. However, this approach only ensures that 
syntax, i.e., execution order, is correct. Notably, the 
semantics of virtual activities is not of concern in this work. 
A process modeler must specify the implication of each 
virtual activity. 

VVU,  , VU, E VA, i # j ,  VU, = ( A ; ,  D,), VU, = (A,, D,), VU, E A ; ,  

4.3 Essential Activity 

From a process modeler’s perspective, however, he/she 
merely wants to conceal sensitive activities or aggregate 
detailed activities. In addition to these activities, what 
activities must be included to form a legal virtual activity 
is not hisher primary concern and should be supported by 
a process-view definition tool. These sensitive or detailed 
activities are called essential activities. 

Definition 12 (Essential Activity) Before defining a 
virtual activity, a modeler must select some activities that 
are essential to this virtual activay. These chosen activities 
are called essential activities, which form an essential 
activity set EAS. 

Many virtual activities contain the same essential 
activities and conform to Definition 10. These virtual 
activities have a “cover” relation with each other and a 
“minimum virtual activity” can be found among these 
activities. 
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Definition 13 (Cover) For an essential activity set EAS, 
we say that vu, = (A , ,  D,) cover vuJ = ( A J ,  DJ), if and only if 
AJ 2 EAS, A, =, AJ and D, a 0,. 

Definition 14 (Minimum Virtual Activity) For an 
essential activity set EAS, a virtual activity (A ,  D) is called 
a minimum virtual activity, denoted by min-vu(EAS), if it 
does not cover other virtual activities and A 3 EAS. 

Given an EAS, a modeler must identify min-va(EAS). 
Besides essential activities, A only contains those 
activities needed to preserve original ordering relations in 
the base process, i.e., the min-va(EAS) only contains 
essential and adequate information to abstract EAS. 
Adding more activities, which are neither a modeler 
selected nor ordering preservation needed, into A merely 
adds unnecessary information into min-va(EAS). 

The procedure of defining a process-view can be 
summarized as follows: A process modeler must initially 
select essential activities. The process-view definition tool 
then automatically generates a legal minimum virtual 
activity that covers (encapsulates) these essential activities. 
Above two steps are repeated until the modeler finishes all 
virtual activities that hdshe needs. Next, the definition 
tool automatically generates all virtual dependencies 
between these virtual activities and ordering fields (JOIN, 
SPLIT) and starting condition of each virtual activity 
(control flow). 

4.4 Algorithm 

In this section, we introduce algorithms to derive an 
ordering-preserved process-view. Algorithm 1 derives the 
member activities and dependencies of a minimum virtual 
activity based on the modeler specified essential activities. 
Then we discuss how to derives virtual dependencies and 
the JOIN-flag, SPLIT-flag, and SC field of each virtual 
activity in the process-view. 

Algorithm 1: Minimum Virtual Activity Generator 

For a given essential activities set EAS, Figure 4 shows 
the algorithm capable of obtaining an min-vu(EAS) = (A,  
0). Because D can be derived from A and EAS is known, 
members ofA must be identified. As mentioned in Section 
4.3, if VXE BA, x E A,  and x e  EAS, then x exists in A for 
ordering preservation. Obviously, EAS is a starting point 
to identify x.  

Initially, the algorithm creates an activity set TAS that 
equals EAS. According to the definition of a virtual 
activity (Definition 10.2.c), Vx E BA, x E A ,  the ordering 
relations between x and all members of A are identical in 
the base process BP. Therefore, VXE BA, x e  EAS, if the 
ordering relations between x and all members of TAS are 
not identical in BP, then TAS is not a legal (i.e., 
ordering-preserved) virtual activity. 

To decide which of the activities should be added into 
TAS to form a virtual activity that is legal and minimum, 
the algorithm checks the ordering relations from the 
activities that are adjacent to a member of TAS. If the 
ordering relations between an adjacent activity and 
members of TAS are not identical, the adjacent activity 
should be added into TAS to follow Definition 10.2.c. If 

procedure VAGenerator (Base process BP = (BA,  BD), Essential activities set EAS) 
begin 

Temp Activities Set TAS = EAS 
repeat 

Activity Set TASl = TAS 
Adjacent activity set AAS = ( x I Vx, y E BA, x E TAS, y E TAS and 3dep(x, y ,  C) ) 
while AAS is not empty do 

Select an activity x from AAS 
Remove x from AAS 
if 3y,  z E BA, y, z E TAS, such that x% iy exists in BP and x % does not exist in BP 
/* The ordering relations between x and all base activities of TAS are not identical in BP */ 
then Add x to TAS 
end if 

end while 
until TAS = TASl 
An Activity Set A = TAS 
A Dependency Set D = { de&, y ,  C) I x, y E A ) 
min_vu(EAS) = (A ,  D)  

end 

Figure 4. The algorithm of a minimum virtual activity generator 
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TAS has changed, the repeat-until loop repeats again to 
check the ordering relations. The repeat-until loop (Line 
4-15) repeatedly executes until the activity set TAS 
satisfies the ordering-preserved condition (Definition 
10.2.~). Finally, Vx, Y E  BA, X E  TAS, Y E  TAS, x and yare 
adjacent, if the ordering relations between x and all 
members of TAS are identical in BP, then the repeat-until 

After A has been determined, members of D are those 
dependencies whose succeeding activity and preceding 
activity both are members of A (Definition 10.3). The 
minimum virtual activity of EAS, min-va(EAS), equals 

Owing to that this virtual activity conforms to 
Definition 10, it  is a legal virtual activity. Moreover, the 
algorithm checks ordering relations from adjacent 
activities, resulting in a minimum virtual activity. The 
proof is illustrated in [12]. 

loop stops. 

( A D ) .  

Figure 5. A process example 

Example 1. This example illustrates how to derive the 
min-va(EAS) if part of a base process is shown in Figure 5 
(a) and EAS = ( 5 ,  7) .  At the beginning, AAS = 14, 6 ,  8 )  
and TAS = { 5 , 7 ) .  Activity 6 is added into TAS since 5 > 6 
but 7 < 6; activity 8 is not added to TAS since 7 > 8 and 
6 > 8. Notably, 4 is added into TAS since 4 > 7,4 > 5 ,  and 

4 < 5 ( o :  5 4 4) .  Therefore, TAS changes to { 4 , 5 , 6 ,  7 )  and 
repeat-until loop repeats again. In the second execution, 
AAS = { 3,  8). Activity 8 is not added into TAS since 4 > 8, 
5 > 8 , 6  > 8, and 7 > 8. Activity 3 is added into TAS since 
3 < 6 (.: 6 + 3 )  but 3 > 7. Therefore, TAS is updated to be 
( 3 ,  4 ,  5,  6, 7 )  and the repeat-until loop repeats again. In 
the third execution, AAS = { 1, 2, 8 ) .  TAS does not change 
in the while loop since the ordering relations between each 
adjacent activity and members of AAS are identical in BP. 
Therefore, the repeat-until loop stops and A = ( 3 ,  4 ,  5 ,  6,  
71, D = I dep(3,4), dep(4, 51, dep(5, 61, dep(6, 71, dep(6, 
3 )  ). The result is shown in Figure 5 (b). 

Virtual Dependency 

After all virtual activities have been generated, the 
process-view definition tool derives virtual dependencies 
by Definition 11. First, members of a virtual dependency 
must be specified. VC field of each virtual dependency 
must then be specified. 

For a process-view VP, its virtual activity set VA is 

known. First, whether a virtual dependency is associated 
with two virtual activities must be determined. tlva;, vu, E 

VA, i # j ,  vai = (A , ,  o,), Vaj = (Aj ,  0,). if 3dep(a., , a,. , C,?), 
a, E A ; ,  a,. E Aj , then 3vdep(va;, vui, VC,,) and the dep(a,r, 
ay ,  C,.) is a member of vdep(va, , vuj, VC,). After checking 
each base dependency, all virtual dependencies and their 
members can be derived. 

For a base activity, its JOIN-flag determines how to 
combine the conditions of incoming dependencies. 
Therefore, for the members of a virtual dependency, 
conditions of the base dependencies that have the same 
succeeding base activity are combined by the succeeding 
base activity's JOIN-flag. According to atomicity rule, a 
virtual activity starts i f  one member activity starts. 
Therefore, these conditions that derived from different 
succeeding base activities are then combined by Boolean 
OR. Given two virtual activitiesva, = (A , ,  0,) and vu, = (A,, 
D,), where A, = {ayl , ay2, .. ., urn) .  Let CJk be the joined 
condition of all dependencies from A; to a,.,, k=l..n, C,.,=f 
( all C,,., ) , where f = JOIN- flag of a,. , 'da.X E A; and 
3dep(a., , a,., , C&. For the virtual depen-dency vdep(vaj, 

The fact that VC evaluates to true is one precondition of 
the execution of a succeeding virtual activity. Whether a 
succeeding virtual activity can start depends on its starting 
condition (SC). 

Due to the space limit of this paper, illustrative 
examples are not presented and can be found i n  [ 121 

VU,, VC,), VC,, = (C,.l OR Cy, . . .OR Cy,,). 

Ordering Structure and Starting Condition 

After all virtual dependencies have been generated, 
ordering fields (JOIN, SPLIT) and starting condition of 
each virtual activity can be derived. If a virtual activity has 
only one outgoing virtual dependency, its SPLlT-Jug is 
NULL. Otherwise, having two or more outgoing virtual 
dependencies, SPLIT-flag of the virtual activity is MIX. 
We cannot simply determine that the SPLIT-flag of the 
virtual activity is AND or XOR since a virtual activity 
abstracts a set of base activities that may associate with 
AND-SPLIT and XOR-SPLIT concurrently. 

Similarly, if a virtual activity has only one incoming 
virtual dependency, its JOIN- flag is NULL. Otherwise, 
having two or more incoming virtual dependencies, JOIN- 
f lag of the virtual activity is MIX. For a base activity, 
JOIN-flag determines the relationship between its starting 
condition (SC) and the conditions (0 of its incoming base 
dependencies. For a virtual activity, MIX-JOIN abstracts 
the existence of different join structure in its member base 
activities. Therefore, the starting condition (SC) of a 
virtual activity cannot simply use JOIN-flag to combine 
incoming virtual dependencies' VC. MIX-SPLIT/JOIN is 
used to represent multiple paths structure, whether a 
virtual activity can start depends on the SC field that is 
derived as following. 
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For a virtual activity vu, it starts if one of its member 
activities starts (Atomicity Rule). Therefore, the starting 
condition of vu’s each member activity must be 
determined, and then the starting condition (SO of vu 
equals the Boolean OR combination of each member 
activity’s starting condition. If vu = (A, D), A = [al, a2, 
u3, . . ., U,,}, Vux E A, the starting condition of U, is SC(u,), 
then the starting condition of vu, SC(va) = (SC(a1) OR 
SC(u2) ... OR SC(a,,) ). That means SC is true if one 
member activity’s starting condition is satisfied. 

As mentioned above, SC of a virtual activity is 
determined by atomicity rule. In this manner, a 
process-view can express progress information of a base 
process. Moreover, evaluating VC of each virtual 
dependency can indicate ordering behavior in a 
process-view. 

5. Conclusion 

This work proposes a novel concept of process 
abstraction: process-view. Process-view enhances the 
conventional activity-based model to satisfy diverse 
requirements of abstraction. A process modeler can easily 
use a process-view definition tool to provide numerous 
views of a business process for different levels and 
divisions. Process-view achieves information abstraction 
and progress monitoring. Each role can obtain adequate 
information on a business process via the role-related 
process-view, thereby facilitating the coordination within 
an enterprise. Moreover, in light of the importance of 
execution order in a business process, this work also 
proposes an ordering-preserved approach to construct a 
process-view that ensures the original ordering of 
activities in the base process is preserved. The algorithm, 
which automatically derives a minimum virtual activity, 
assists vendors in implementing process-view definition 
tools in their commercial systems. The proposed approach 
increases the flexibility and functionality of current 
WfMSS. 
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