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Abstract

This paper presents a new method that permits to solve the problem of de-
termination of a modelled 3D-object spatial attitude from a single perspec-
tive image and to compute the covariance matrix associated to the attitude
parameters. Its principle is based on the interpretation of at least three
segments as the perspective projection of linear ridges of the object model
and on the iterative search ( using Kalman filtering) of the model attitude
consistent with these projections.

The knowledge of the attitude and of the associated covariances enables
to use a higher level Kalman filter to track an object along an image sequence.
In the tracking process this Kalman filter is used to predict the attitude of
the object and the error matrices are used to make robust automatic matches
between the image segments and the model ridges.

Tracking experiments have been made that proves the validity of this
approach.

This work has been partially supported by a contract with the European
Spatial Agency (ESA) in which society Sagem is the prime contractor.

1 State of the art

In the literature, many methods to locate 3D objects by monocular vision can
be found. All of these need some prerequisites (as the knowledge of the observed
object model and matches between 2D image primitives and 3D model elements)
to compensate the loss of data due to the projection of the 3D world on the image
plane. These methods compute the spatial attitudes of the 3D model such that the
selected model elements are projected on the corresponding 2D image primitives.

They can be classified in function of the manipulated image primitives (points,
straight lines, elliptical contours, limbs of curved surfaces...) and the assumption
about the projection of the real world on the image plane (orthographic or per-
spective). Some methods give the closed form solutions of the addressed inverse
perspective problem, the other ones use iterative processes to reach the solution.

Numerous methods deal with point correspondence ([RIV-81], [HOR-87], [HUT-
87], [HOR-89]). Others use line segments ([KAN-81], [LOW-85], [SHA-86], [DHO-
89]).

However any efficient method must, comply to the following requirements:
1. The approach must be general enough to handle any general combination of sufficiently
numerous primitives (i.e. not restricted to particular configurations).
2. The model of projection must be the perspective one because, up to now it is the
only tractable model that allows to compute accurate locations: orthography or scaled
orthography are insufficient.
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3. The used primitives must be present in the images and (easy) ways for extracting
them must exist.
4. It is necessary to be able to compute the accuracy of the obtained localizations to be
able to use them in real industrial environments with a minimum of confidence.

Our method tries to perform these requirements and its basics are very similar
to Lowe's one. As Lowe, we suppose that the matching between 3 or more model
edges with segments of the images has been obtained, and we use an iterative
process to minimize a distance criterion [LOW-85]. The implementation used
differs from he's in three directions:

• the pose is computed in two steps. The first step involves purely vectorial equations.
The unknowns are the three rotation angles of the rigid transform and the process is
properly iterative. The second is to compute the remaining unknown translation. It.
merely consists in the resolution of a linear least square problem, thus it only involves a
linear system resolution.
• The criterion minimized differs from Lowe's one. Lowe uses a 2D criterion calculated
in the image plane. Our criteria are 3D ones which permit to greatly simplify the com-
putations involved.
• The iterative process is implemented as a Kalman filter which permits to obtain co-
variance matrices about the computed pose parameters.

Due to lack of space, many mathematical developments have been omitted,
they can be found in [DAU-93].

2 The localization algorithm

In this section we will describe the problem of localization we will address, give
the mathematical equations and the algorithms to solve them.

In fact two approaches are given, the first is a Newton-Raphson one and is
stated for its simplicity and efficiency and also because it permits a pedagogical
presentation for using the second one which consists of a Kalman filter.

In practice, to decrease the computational burden, the Newton-Raphson method
is used in a first pass to obtain a good approximation of the attitude, and the
Kalman filter is then run to give the associated covariance matrices.

2.1 General formulation.

The localization of a rigid object from an image depends on eleven parameters.
The first six are the "extrinsic" ones, i.e. the values of the three rotation angles
and the three components of the translation that are needed to bring the model in
the observed position. The last ones are "intrinsic" to the camera system and are
the coordinates of the intersection of the view axis with the image plane («o,t'o),
and (/x,/y) where /x = f/dx and fy = f/dy (/ is the focal length and dx and dy
are the digitization steps of the system of acquisition).

Thus, the problem we intend to address here can be stated in a fairly general
way by the following formulation.
Given:
1. the knowledge of the intrinsic parameters of the acquisition system,
2. the accuracy of this knowledge,
3. a projective model (pinhole) for image formation,
4. the CAD-model of an object,
5. the matching of sufficiently many primitives belonging respectively to the model
and to a brightness image of the object,
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6. the accuracy about the extraction of the images primitives.

Find the extrinsic parameters giving the pose of the viewed object in the acqui-
sition reference system and the uncertainties associated to these parameters.

To be able to solve it, we have specialized the problem in two ways:
1. the primitives involved are straight lines as well in the image and in the model,
2. the mathematical equations involving the matched straight primitives will only rely
on direction or extremities of models primitives and on the normal to the interpretation
plane

1 of the images primitives (not on particular isolated points extracted from the
image)

We would like to justify these choices. The primitive likely to be chosen are points,
straight lines or conies. First it must be noted that points have not be chosen as primitives
for two main reasons:

- from an image to another, points of interest can more easily be subject to occlusion
than curves.

- the computational process that leads to structured primitives such as line segments
or ellipses involves a least square minimization that lessen the errors. (Straight lines are
more accurately defined than the points they are made of.)

Moreover, if it is always easy to find in the images of an industrial environment,
primitives that can be interpreted and stored as line segments, this problem is much
more complex for conies or parts of conies. Also, it can be said that (with a sure
loss of accuracy) curves can be transformed in straight segments chains by polygonal
segmentation.

2.2 The mathematical equations.

Let n image segments /; be matched respectively with n model ridges L;.
Let us also suppose that all the vectors and points are expressed in the camera

coordinate system Re (see figure 1).
Each segment I, of the image is characterized by its unit director vector t>,-

and a point p,;. Then we can easily compute the unit vector normal N{ to the
interpretation plane IT,- of/,:.

Using the following notations:

Vi = (ai,bi,0), O^ = (xi,yi,f), Ni = (Ai,Bi,Ci),

we obtain : JV,; = Vi xO~pl/\\vi x6~p^\\ = (&;/, -a,-/ , d ; ) / \ / /
2
 + <%)•

Where di — a,?/,- — 6,x, is the distance between the supporting line of /,- and the

image center (uoit'o)-
The equation of the interpretation plane TI,- is : AiX, + Biyi + C,Zi = 0. We are

looking for the transform (rotation Rtt0y and translation Tuvw) which minimizes
the sum of the distances between the extremities of each the model edges and the
interpretation plane of the corresponding image segments. This minimization is
made in two steps.

• To compute the rotation Rag~! we merely express that the image by the rotation of
the director vector V, of an edge (£,•) of the model lies in the interpretation plane of the
corresponding segment. This can be written as a scalar product: < Rap~y<, N, >= 0.
• When the rotation is computed, the translation is determined by expressing that a point
Pi of each edge of the model, rotated and translated also lies in the interpretation plane
of the corresponding image segment. This can be writen: < RapiPi + TUvw, Ni >= 0.

1 the interpretation plane of an image segment is the plane containing the segment and passing
through the optical center.
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(Rw)

Figure 1: Interpretation plane and reference systems

The main advantage in writing these equations is that the computation is
performed independently for the rotation and the translation, each of the systems
having half of the number of unknown parameters. In practice, we use as points
Pi the two extremities of the model ridge.

2.3 System resolution. The Newton-Raphson approach

Computing the rotation: The signed distance of a vector 7?a/37K = V/ = (A'/, Y/, Z[)
to the interpretation plane II,; is given by:

£>(Q, /? ,T, VitNi) =< RalhVi, Ni > = AiXi + 5,->7 + Z[.

We are looking for a triplet .4 = (a,f3,y) such that D(a, fl,y, Vi, Ni) — 0, i < n.

As the system is non linear, we use a iterative Newton-Raphson approach to

solve it. Moreover, we shall use a first order approximation, writing:

op
(1)

If (a,P,y) is the solution, at each step we will (as the system is overdetermined)

minimize the sum of the squares of the first order approximation of the distance

of the model edges director vectors to the corresponding interpretation planes.

Computing the translation: Once the rotation is computed, it is easy to obtain the

translation as the system giving the three translation components is linear. From

equation < Ra/}yPi+Tuvw, .'V, > = 0, we infer: < Tuvw, Ni > = - < RapyPi, Ni >.

This system can be solved by any classical linear least squares technique.

2.4 The Kalman filter approach.

The equations are of course the same. The advantage found in using Kalman filter-
ing is to be able of estimating errors on solutions (covariance matrix on estimated
parameters) as well as solutions.
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3 Error in computing the pose of an object

This section is devoted to the computation of the localization errors associated
with our method and is crucial for the determination of the adequation of the
method to practical task requirements. However, all results of this section are
theoretical and the reader concerned by their application can switch to the next
sections.

What we need is to be able to compute the covariance matrices about the
normal vectors to the interpretation planes that are used in the measure equations
of the Kalman filter (see section 2) used to locate our object.

It is the confidence about these normals that permits to compute (with the
Kalman filter) the final confidence about localization parameters.

3.1 Error in computing straight line equation

The process starts from pixel datas (p,: = (XJ,yi)i=i .n) that are given by an edge
detector. Following Ayache [AYA-89] it is assumed that each of the contour
points encompasses a gaussian white noise.

The equation of the line that supports the points in its hessian form is -x sin 0+
ycosd + c = 0,

It will be supposed that this noise is gaussian and oriented in the direction
normal to the line. If a frame consisting of the line direction and of the normal
to this direction is used, each point will have a relevant covariance matrix C in
which all terms are 0 but C22 = &p-

If R is the rotation matrix that transforms the natural image frame into the
frame related to the line, the covariance matrix for each point expressed in the
natural frame will be : t

RCR
The determination of line equation from points with gaussian distribution is

a classical least square problem. In the computer vision literature, this problem
(and also the error matrix determination involved) is treated in general by writing
the line equation in the form y = ax + b (or x = ay + 6) and minimizing sums of
the type Yl'i=i(Vi ~

 ax
i ~ b)

2
 • As this method can lead to serious bias, we will use

the perhaps less known following result

T h e o r e m . There exists two couples (0,c) minimizing

(-Xi sin 0 + in cos 0 + c)
2
.

1 = 1

Let x and y be the mean values of the (£;), (resp. (t/;)), and Var(x), Var(y)
be the square of their respective standard deviations (variances), Cov(x,y), their
covariance . Then we have

tan(20) = 2Cov(a;,j/)/(Var(ar) - Var(y)), and c = xsh\0 - ycos0.

This means that two values of 0 differing of TT/2 are possible and that the line goes
through the barycenter of the points.
This result can be found in many probability textbooks and also in [PAV-77].

Now it remains to determine the covariance matrix of the triplet (a,b,c), where
a — — sin 0 and b = cos 0. The help of the Maple software was used to find out the
next result. Let N = a^b

2
 Var(x) - 2abCov(x,y) + a

2
 Var(y))

a n d D = j r ( V a r ( a : )
2 2
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Then the matrix is: Cov = - * #
 S

^
L

D

b(ya-xb)N
D

abN
D

D
a[ya — xb)N

D

b(ya-rb)N
D

a(ya — xb)N
~ D

(ya-xb)
2
N f

n * .

3.2 Errors on normals

For each segment, the error in computing the normal to the plane supporting the
segment through the optical center can be obtained now, in a standard way.

We will use two computations putting detail emphasis on the first one:

• computation of the covariance for one normal.

• computation of the covariance for n normals.

The second computation is very similar to the first one although more complicated.
It is not. possible to restrict to the first because of the dependancy of all the
equation to the camera intrinsic parameters. However the first computation will
allow to see more easily the method.

Error on one normal: The equation of the line supporting a segment is ax+by+c —
0 with a,- + b

2
 = 1. Thus the normal can be writen:

where D = yja
n
-f- + Pf* + (c + au0 + bv0)

2

We will suppose that we know the covariance matrix on the coefficients (o.,6, c)
and also on:

• the position of the optical center projection («o, i»o)- We hypothesis here, that these two
variables are independent of the others and mutually independent; so the corresponding
matrix is diagonal with diagonal elements: <r\a and <J\Q.

• the focal length of the camera fx and /j/.We hypothesis here that these two variables
are independent of the others and mutually independent; so the corresponding matrix is

2 2diagonal with diagonal elements: <J
2

SIand

Note that fx = f/dx, fy = f/dy where dx and dy are the digitization horizontal (respec-
tively vertical) steps.

The global covariance matrix on the normal is thus given by:

C(nx,7iy,n,) = J

Cov(a,i)
Cov(a, c)

0

0

0

0

Cov(a, 6)

(Jov(6, c)

0

0

0

0

Cov(a,c)
Cov(6,c)

0

0

0

0

'J,

where J is the Jacobian matrix of the transformation relating the unit normal
vector t

(nx,ny,n~) to the parameters {a,b,c,uo,vo,fx,fy)-

Errors computing n normals: Let C; be the covariance matrix on segment s, of
the image, this for i = 1. . . n. The covariance matrix Wjt on the n normals ./V,-
corresponding to the n segments s, can be writen:
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Wk =

(0)3X3 (0)3X3 (0)3X3 (0)3X3 (0)3xl (0)3xl (0)3xl (O)3Xl\

(0)3X3

(0)3X3 (0)3X3

: (0)3X3 Cn_l (0)3x3

(0)3X3 (0)3X3 (0)3X3 (0)3X3 C n (0)3xl (0)3 x i (0)3 x i (0)3Xl

(0),x3 (0)lx3 <Tuo 0 0 0

( 0 ) l x 3

( 0 ) l x 3

\ ( O ) ) X 3 (0)lx3

0

i
/

'J,

where J is the Jacobian matrix of the transform relating unit normal vectors
(Ni)i=i...n to the parameter vector: ((s;),= i...„, u0, vo,fx, fy)-

The Jacobian matrix is very similar to the one of the previous paragraph. Its
dimensionality is 3nx(3»+4), the column # / only contains 7 non null components,
corresponding to partial derivatives of the # / equation related to components nxi,
nyi, nzi of Ni, and a,-, 6,:, c,-, u0, t'o, fx, fy

3.3 Errors in computing final localization

of a polyhedral object

As it was seen previously, the final determination of the pose of a polyhedral object
is done by iteratively improving the model attitude by minimizing the distances
of the edges of the model to the interpretation planes of the corresponding image
segments.

As it is quite impossible to achieve analytical computation of the covariance
matrix on the six attitudes parameters, the computation of this matrix is done
using the Kalman approach described in section 2, the covariance matrix about
the parameters of the matched image segment and the corresponding normals to
their interpretation planes being computed as stated previously in this section.

4 The tracking algorithm.

The location algorithm is part of a process which is used to track the 3D-location
of an object along an image sequence. Each time the previous localization method
finds the spatial pose of an object and the associated covariance matrix compatible
with the current image content, it will pass these results to a track process that
will predict the pose of the object at the time of the next shot and enable to
perform robust automatic matching.

The process being a standard Kalman filter we will only give the characteristics
of the filter.

S ta te . Ak =
 t

(nk,/3k,-rk,uk,vk,wk,Sai<,Sljk,S-1k,Sull,St,k,SWk) is the state in which:
» t ,A,7 t , are the three Euler angles of rotation, ttk,vk,wk the three coordinates of
the translation, Sak, Spk, Slk the angular velocities, and SUk, SVk, SWk the translational
velocities.

Measure. The measure is given by: Yk =
 ((a£\/?£\ 7 £ \ u£\ v£\ u>J!1)•
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State prediction matrix. The state prediction matrix is given by:

/rvf
x6

 r
6 x 6 I, this is a constant velocity model.

(0)6x6 J6X6/

Measure prediction matrix. The measure prediction matrix is given by:

M t = (/6x6 (0)6xe).
The output of the tracking process consists in a predicted pose for the next

shot and an associated covariance matrix.
Thus, the matching is performed as follows:

• the predicted pose is used to compute the perspective projections of the model
ridges in the new image. • the associated covariance matrix is used to compute the
estimation of the error on the two parameters (c, 6) (c.f. 3.1) of the supporting line
of each of these projections. • finally for each of these projections, the search for
best match in the set of image segments is guided and pruned using the standard
deviations on the parameters of the supporting line.

The covariance computation is straightforward.
From two model points P\ and P-> for which the pose and covariance (Cioc) are

known, (CCje = JzJiJ\Cioc J\ '̂ 2*^3). where Jx, J2 and J3 are respectively, the
Jacobian matrix of the application expressing P\ and P2 in function of the pose
parameters, the Jacobian matrix of the application expressing the normal vector to
the interpretation plane through Pi and P^ in function of the coordinates of the two
points and the Jacobian matrix of the application expressing the line parameters
(c, 6) in function of the normal vector and the camera intrinsic parameters.

5 Experiments and results of tracking.

The tracking process has been used on sequences of real images. The sequence
presented here is composed of 82 images of a Macintosh mouse.

The objects have been put. on a rotating table, and although the motion is far
from constant velocity (as well in rotation as in translation), the tracker performs
its duty. In particular it can be noted on Figure 2 that the table rotation velocity
has been inverted between images 70 and 72, which does not prevent the tracking.

Each image presents the superimposition of the segments extracted from the
grey-level image and the model ridges projection.

6 Conclusion

We have presented a new method that permits to solve the problem of determi-
nation of a modelled 3D-object spatial attitude from a single perspective image
and to compute the covariance matrix associated to the attitude parameters. Its
principle is based on the interpretation of at least three segments as the perspec-
tive projection of linear ridges of the object model and on the iterative search
of the model attitude consistent with these projections. The proposed method
combines a Newton-Raphson process to rapidly obtain a correct approximation of
the attitude, followed by Kalman filtering to compute the associated covariance
matrix.

We have also shown that this method can be integrated in a process to track an
object through a sequence of monocular images. This tracker is based on Kalman
filtering to predict the attitude of the object in the next image. The covariance



257

matrix associated to the predicted attitude is the cue to build an efficient automatic
matcher between image primitives and model ridges.

Our next purpose will be to integrate the method in a multi-camera system and
also introduce new kinds of primitives, in particular ellipses. The first obtained
results are very promising.
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