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Modelling 1 -D signals using Hermite basis functions 
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Y.Attikiouzel 
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Abstract: The paper discusses a method for 
estimating the Hermite coefficients of a discrete- 
time one-dimensional signal. To estimate the 
Hermite coefficients a solution based on Gaussian 
quadratures is used. The paper also looks at 
various least mean squared (LMS) estimation 
methods to estimate two further parameters 
which are incorporated into the orthonormal 
Hermite basis function; a spread term and a shift 
term. In addition, the effects of scaling, dilation 
and translates of a signal on its Hermite 
coefficients, spread and shift terms are presented. 
The paper concludes with a brief discussion on 
the potential application of the Hermite 
parameters as features for use in problems 
requiring shape discrimination within a one- 
dimensional signal. It also mentions those 
applications where this was found to be 
appropriate. 

1 Introduction 

The objective of any feature extraction process is to 
obtain a pattern space that retains sufficient informa- 
tion, has low dimensionality and provides good inter- 
class separation to enhance discrimination between the 
various feature classes. 

A typical feature extraction process involves the 
parameterisation of a system in terms of a mathemati- 
cal model and use of its parameters as features. In this 
paper, the model adopted for 1-D signal representation 
is a series expansion of N basis functions, where the 
features are the coefficients of these functions, and the 
pattern space is a space in RN. Using this model, com- 
parisons between the original signal and its synthesis 
(defined as the linear combination of basis functions) 
can easily be made. This provides a means to demon- 
strate the retention of relevant information by the fea- 
tures and, a way to determine the sufficiency of the 
number of features used. 
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This paper concerns itself solely with the orthonor- 
mal basis functions of the Hermite family. It outlines a 
deterministic method based on Gaussian quadratures 
for estimating the Hermite coefficients of a one-dimen- 
sional signal. In addition, two further parameters are 
included into the definition of the orthonormal Her- 
mite function. They are a spread parameter and a shift 
parameter. 

To estimate these parameters, least mean squared 
(LMS) estimation is used. Various gradient descent 
techniques were evaluated to determine a technique 
which would provide the fastest convergence to a solu- 
tion: results are presented in this paper. The paper also 
examines the problem of reducing false minima in the 
cost function of the spread term and includes some vis- 
ualisation of the search space landscape of these 
parameters. 

The choice of the Hermite family was made for two 
reasons. First, the Hermite family of basis functions are 
orthogonal. This means that there is no redundancy 
between features and the assumption of independence 
among them can be made. Also, the Hermite polyno- 
mial has the following desirable properties: 
(i) easily computable via a three-term recurrence rela- 
tion as given by the Christoffel-Darboux formula [l]. 
(ii) completeness: this means that any signal can be rep- 
resented to an arbitrarily high degree of accuracy by 
taking the number of terms in its series expansion, the 
truncation, to be sufficiently large. 

Hermite N=4 

- 1 N W I  N =3 

I I 

a 

I I 

b 
Fig. 1 Hermite functions 
a Plots of  the first eight basis functions belonging to the Hermite family of 
functions; 
b Example of a set of ‘shapes’ to be modelled by Hermite functions for a spe- 
cific application; namely QRSiectopic beat detection 
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The second reason for selecting the Hermite function 
set was motivated by the form of the functions them- 
selves. Comparing the form of the Hennite functions 
with typical QRSiectopic beats, i.e. electrocardiogram 
(ECG) arrhythmia beats (see Figs. l a  and b), it seems 
reasonable to suppose that a series expansion of Her- 
mite functions may be well suited to provide a concise 
representation of these signals [2-61. In short, if a sig- 
nal has a form which shares some resemblance with the 
form of the basis functions, then its series expansion is 
likely to have few terms in it, i.e. the ‘spectra’ has a 
‘narrowband’ characteristic. This also means the 
dimensionality of the feature space is minimised. 

Note that the method described in this paper has 
been applied to the problem of detecting and classify- 
ing QRS and ectopic beats within an ECG trace [2, 31. 
Consequently, much of its description lies within the 
context of this application. Although the method out- 
lined is focused on ECG waveform analysis, its suita- 
bility can be extended to signals, e.g. u(t), that suffer 
simple scale and translation distortions as modelled by 
au(pt - z). This paper concentrates its discussion on the 
methodology for determining and using Hermite coeffi- 
cients. The main contribution of the paper is Section 2 
where the Hermite basis is introduced and its use 
detailed: how to estimate the spectral coefficients, the 
spread factor, and the shift factor; and the effect of sig- 
nal scaling, translation and dilation on the spectral 
coefficients. Also suggestions on estimating the number 
of terms to use in the series expansion are presented in 
the context of a specific application. 

2 Methodology 

2.7 Hermite basis set 
The nth-order Hermite function is a weighted function 
of the nth-order Hermite polynomial. The Hermite pol- 
ynomials are recurrence relations, and so too are their 
derivatives [l,  71: 

dn 
Hn( t )  = i -1)”exP( t2) ) (exP(- t2) )  (1) 

Hn+l(t)  = 2tHn( t )  - 2nHn-l( t )  where Ho(t)  = 1 

To minimise precision errors caused during the compu- 
tation of factorials in the Hermite function normalisa- 
tion constant, this paper uses the normalised form of 
the Hermite polynomials (signified by the A notation). 
Also, a table-lookup approach is used to replace 
precomputable functions such as dn. 

h 1 
Ho(t)  = - 

Jz/;; 

( 3 )  
00 / exp ( -t2) Iz, ( t ) R  ( t )  dt 

-02 

00 

-00 

Therefore, { hn(t)} represents the orthonormal basis set 
of Hermite functions as shown in Fig. la. By replacing 
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t with its scaled version ( t  - z)/o, a generalised form of 
the nth-order orthononnal Hermite function, h,,.(t, z) 
is defined, where o is the ‘spread’ of the function and z 
is the ‘shift’ of the function. 

hn,u(t, 7) 

2.2 Evaluating the Hermite coefficients 
To determine the Hermite coefficients of signal u(t), the 
following iiitegral is evaluated: 

&(a, 7 )  = u(t)h,,,(t, r)dt (6) 
-cc .I 

Substituting x = ( t  - z ) / ( d 2 )  into eqn. 6 we obtain 
00 

un(o ,r )  = / v?%u(znh+~) l?~( z \ /T )  exp( -z2)dz  

(7 )  
To evaluate this integral, the Gauss-Jacobi integration 
theorem is used [I, 81 

(-m < < < 03) (8) 
where the set of weights wi is known. 

If p(x) is defined as an exponential weighting func- 
tion, exp(-x2), then the optimum grid points are the 
roots of the (A4 + 1)th Hermite function (i.e. the Mth- 
order Hermite function). If these points are examined, 
we find that they are unevenly spaced, i.e. the outer- 
most points are further apart than the points near t = 
0. To compute the roots of HM and its corresponding 
weights, the algorithm by Secrest and Stroud is used 
[9], p.154. 

The first task is to exploit the form of eqn. 8 by 
rewriting the integrand of eqn. 7 as the product of two 
functions, Ax) and p(x), where p(x) is defined as an 
exponential weighting function: 

p(z )  = exp(-z2)  (9) 

If we assume u(x) is a polynomial such that fn,o(x, z) is 
also a polynomial of at most degree (2M - l), then the 
spectral coefficients are 

M-1 

2=0 

If no such assumption is made, then the equality of 
eqn. 11 becomes an approximation, i.e. the spectral 
coefficients are estimates. 

2.3 Estimating the Hermite spectral 
coefficients for a discrete time signal 
The previous subsection has shown how the spectral 
coefficients for the Hermite basis set can be determined 
for continuous-time signals. Since most signals are rep- 
resented in a time sampled form, it would be useful if 
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eqn. 11 could be used accordingly. Unfortunately, 
there is no integer-based quadrature technique since the 
manner in which the spectral coefficients are deter- 
mined makes it necessary to know the value of the sig- 
nal, i.e. u(x), at the grid points; which have noninteger 
values and thus lie between the sample points of the 
signal. To get around this problem, interpolation is 
done; e.g. zero-order holding or linear interpolation. 
Experimental results on the signals in Fig. l b  have 
shown improvements in the fit (i.e. squared error) 
between a signal and its synthesised form when linear 
interpolation is used instead of zero-order holding. 
Note that because of interpolation, the equality in 
eqn. 11 is replaced by approximation. 

If the grid values (or roots) of HM are examined, one 
finds M values {xo, xl, ..., x ~ - ~ } ,  such that xo > x1 > ... 
> xM-l. Note that 
(i) for M odd; f,,dO, Z) = 0 for n odd; xM, = 0 and 
xMn+l+z = -x, where i E {O,  1, ..., M/2 - l}. 
(ii) for M even; = -x, where i E (0, 1, ..., M/2 - 
11. 
With this in mind, eqn. 11 is rewritten as 

Ml2-1 

U n ( 0 , T )  = W z [ f n , & z , T )  + f n , 0 ( - % 4 ]  

n = 0,1, .  . . , N - 1 
t=O 

(12) 
However, the following expression is used in the case 
where M is odd and n even: 

an(a, .) = W M / 2 f n , d O ,  7 )  

M l 2 - 1  

+ wz[fn o ( G , T )  + f n , o ( - G , 4 1  
2=0 

(13) 
Also from eqn. 10, and given that u(t) is a continu- 

ous-time form of a discrete time signal of finite dura- 
tion, i.e. (2L + l)  samples, the range of values for t for 
which u(t) = 0 is, It1 < L or equivalently -(z + L ) / ( d 2 )  
> x > (L - z)/(d2); given the substitution used in 
eqn. 7. Referring to eqns. 12 and 13 we need not eval- 
uate the entire summation over the interval i = 0 to 
(Mi2 - 1). Instead the minimum value of k is found 
such that xk 5 (abs(z) + L) / (d2) .  Then the summation 
interval of eqns. 12 and 13 becomes i = k to (M/2 - 1). 
Fig. 2 demonstrates the modelling of a typical discrete- 
time, finite duration signal for various values of N 
where N is the number of Hermite coefficients. It also 
shows that the Hermite series representation is not par- 

N -  

N=35 

ticularly efficient when modelling a typical discrete- 
time, finite duration ‘wideband’ signal, i.e. a signal 
which has both low and high frequency components. 
However, in the following Section 2.4.4, an approach is 
considered to selectively model the relevant component 
within such signals. 

//-- N=5 

AA 
>> N=55 

2.4 Estimating the spread/shift value 
In the previous subsection, a procedure for computing 
the Hermite coefficients was outlined, where the spread 
and shift term have fixed real values. This Section 
investigates methods to estimate the spread value, 
where such methods can be similarly applied to the 
estimation of the shift value. Since the theory for 
choosing an optimum spread is still incomplete, LMS 
techniques are used instead. After each estimate of 0, 
the coefficients are recalculated and the iterations con- 
tinue until a solution is reached. Note that if the spread 
value is chosen poorly then a large number of series 
expansion terms are required to produce a satisfactory 
fit. Also, this relationship between (r and N is a signifi- 
cant one as emphasised in [lo]. In this subsection vari- 
ous optimisation techniques [ 1 11 are considered to 
estimate the spread for a fixed N .  They, however, do 
not guarantee the spread to be optimal, i.e. finding the 
global minimum of the cost function. 

Consider the discrete-time signal (interpolated) u(t), 
and its synthesised form, uN,dt). The error-sum (cost) 
function, EN(c)), is defined as the squared error between 
these two signals. To minimise this error, two well- 
known methods, namely the step-search approach and 
a gradient descent approach have been tried; see the 
Appendix for details. 

2.4. I Step-search approach: The step-search 
approach to selecting o that minimises the error sum 
involves computing the error sum at various values of 
o, within the range omin I o I omax, as o moves in con- 
stant A o  increments; and choosing the value of (r with 
the least error sum. This method requires that the 
search range of o be known a priori together with its 
step size. Although this approach is computationally 
expensive, especially if the step size is small, the solu- 
tion it provides is a ‘ball-park’ estimate of the global 
minima. 

2.4.2 Gradient descent approach: This 
approach is computationally less expensive than the 
step-search method. Two methods that adopt this 
approach, i.e. steepest-descent and Newton’s method, 
are presented below; see the Appendix for equations. 

/ N=9 

vJ^-J\/Jv’ N=27 

M N=75 

i of N orthonortnal 
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Steepest descent method. The steepest descent method 
involves adjusting the value of o after each iteration as 
given by eqn. 14; see also eqns. 30, 31 and 32 in Section 
7.1. See [4, 51 for a similar proposition. After each 
adjustment of o, the coefficients are recomputed with 
this new value of CT using the method outlined in earlier 
sections: 

ok+l = f lk  - XvI, (14) 
where A 2 0 and V k  is the error gradient 
Newton's method. Newton's method is similar to steep- 
est descent. However, unlike steepest descent, there is 
no step-size parameter A. Instead, the second derivative 
is used and the adjustment of o is given by eqn. 15; see 
also eqns. 33, 34 and 35. This method converges rap- 
idly but is sensitive to the initial value of o. It works 
especiaily well for problems where the 'error surface' is 
quadratic in form. 

(15) 
vk 

v k k  
f l k + l  = f l k  - - 

where Vkk is the derivative of the error gradient. 

2.4.3 Combined approach: Given the strengths 
and weaknesses of the step-search and gradient descent 
methods, it seems only appropriate to use both 
approaches to increase the likelihood of finding an 
optimum solution for the spread. The combined 
method would involve the following stages. 
Stage 1. Step-search method. Here a sparse step-search 
is made to minimise the computational expense and 
provide a 'ball-park' estimate of the global minimum. 
Stage 2. Steepest descent method. Since the initial value 
provided by stage 1 is only an estimate and could well 
be far from the solution, the steepest descent method is 
employed to provide a better estimate. It is preferred 
over Newton's method because it is far better behaved 
in the presence of a poor initial estimate. 
Stage 3. Newton's method. Newton's method is used in 
the final stage because of its fast convergence. Also, it 
is assumed that the initial spread value provided by 
stage 2 is a good enough estimate to guarantee the 
nonchaotic behaviour of this final stage. 

The maximum number of iterations is fixed when 
implementing such an algorithm in a time constrained 
application. This is because the maximum computation 
time allocated for the algorithm to complete its task 
has to be known a priori to guarantee known behav- 
iour. Therefore, gradient descent algorithms usually 
have as their stopping criterion the following condi- 
tions: (i) V k  = 0, or (ii) k > MAXITERATIONS; 
which ever is satisfied first. 

2.4.4 Problems with local minima: To illustrate 
problems inherent in selecting an optimum CT when 
using gradient descent techniques, consider the follow- 
ing example. Note that this example seeks to demon- 
strate how the presence of more than one local minima 
can cause methods like steepest descent to fail; and 
how, through 'preprocessing' the signal, the 'landscape' 
of the cost function can be changed to favour the 
intended minima. 

To begin, a test case is generated, i.e. signal s(x) as 
defined by eqn. 16, which contains a high-frequency 
component (spike) and a low-frequency component 
(linear trend). Next s(x) and w(x)  are multiplied 
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together to create a signal u(x) = w(x).s(x) that pro- 
vides more than one dominant local minima, i.e. local 
minima with comparable error sum values. This is done 
to provide a scenario that emphasises the difficulties in 
picking the 'right' minima. 

Figs. 3-5 demonstrate that selection of the value of the 
spread o, at the first 'local minimum' isolates the 'high- 
frequency' signal in s(~) ,  i.e. the spike. Alternatively, by 
selecting the next spread value, 02, at the next 'local 
minimum', a signal of 'lower frequency' i.e. the linear 
trend component, is isolated. The relation between the 
spread and frequency is an intuitive one, i.e. the smaller 
the spread value, the higher the frequency. The spread 
parameter is also a useful feature for measuring the 
'width' of a signal's shape. Note that this particular 
example typifies the problem of detecting QRS com- 
plexes in ECG signals with severe baseline wander. 

a 

........................................... 

U 
0 .......................................... 

b 

Fig.3 
a Typical signal, s(x), with a high-frequency spike and a low-frequency linear 
trend 
b Signal windowed, u(x)  = s(x) w(x), to provide comparable local minima 

Example of more than one 'optimum' 

I .I 658925 
m 0.8673709 T- 0.5688493 
g 0.2703277 ' -0.0281939 
% -0.3267155 

-0.6252371 
-0.9237587 

I 
0 3  39576 76153 11 273 14931 18588 22246 25903 29561 

spread 
Fig.4 Error sum for various values of B for the signal from Fig 3b 
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a 

I I 

b 
Fia. 5 Simal reconstructions i N  = 51 based on Fic. 4 - 
a High-freqiency spike, ~~,~,(x), 'reconstiucted by sele&ng the lower of the 
two minima, 0, 
b Low-frequency signal, pN,02(x), reconstructed by selecting the higher of the 
two minima, 0, 

Returning to the problem of detecting a beat in an 
ECG, consider the scenario where the ECG waveform 
is processed as a series of running snapshots of partial 
ECG waveforms as viewed through a sliding window 
that traverses the full ECG waveform in time. Clearly 
only when the beat to be recognised occupies a central 
position in the window, is the beat considered detected. 
This means that the signal information at the centre of 
the window is more relevant than that at the ends. In 
other words the fit of the signal segment located in the 
central portion of the window should be better than the 
segments at the ends. To reflect this in the overall fit, 
the error contributed by the samples at the end of the 
window have less weight than those in the middle; 
hence the error term is redefined as 

biased error sum, 

(18) 
where m is equal to the sample width of the signals, i.e. 
= 0.6L. 

From Fig. 6a note that the biased error sum alters 
the cost function 'landscape' such that only a single 
minima is left, thus making the selection of an opti- 
mum spread simpler. 

The previous attempt to remove the undesirable local 
minima works only for signals whose relevant informa- 
tion all lie within the regions of the window of similar 
size. Therefore if there are signals with vastly different 
widths (i.e. frequencies), erroneous local minima are 
usually the minima with the largest spread values and 
can be attributed to some linear trend component 
within the signal. As an alternative to using a biased 
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error sum, the unbiased error sum is used. It is defined 
in terms of u(x) whose linear trend component has 
been removed. To carry out this removal, a straight 
line is fitted through u(x) using linear regression, and 
then u(x) is redefined by removing this linear compo- 
nent within it. Fig. 6b shows that the error sum after 
removal of the linear trend effectively creates a single 
minima, thus making the selection of an optimum 
spread simpler. 

, ~ ~ ~ I ~ ~ ~ ~ i ~ ~ ~ ~ I ~ ~ ~ ~ I ~ I , ~ I , , , , I , ~ ,  , I # , , , I  

e -10226617 2 -14 540875 
8 -1 8 854935 
-23 168993 
-27 483051 

008 49722 98644 14757 19649 24541 29433 34325 39217 

spread 
a 

I ,  I I I I , ,  I c l , , , ,  I , ,  , 0 1 1  I ,  , I , , ,  I I ,  I , ,  I , ,  I ,  I ,  
6 491 9252 
5 3055296 

% 41191344 
2.9327388 

5 1.7463434 

-1 8128431 
I " " I " " I " " I " " I " " 1 " " 1 ~ " ' I '  

008 4866696532 1444019226 24013 28800 33586 38373 

spread 
b 

Fia.6 Error sum 
a E h e d  
b Unbiased, but with linear trend removed from u(x) 
N = 5 in all cases 

2.5 Overview of results 
To determine a suitable combined estimation approach, 
experiments were carried out using five test signals. 
These were signals QRS, FIB, VPBl and VPB2 of 
Fig. lb, and a signal with arbitrarily chosen Hermite 
parameters as shown in Fig. 7a. They were represented 
as sampled signals of 200 samples each (i.e. -100 5 t 5 
100) and taken from the synthesised form of the signal 
as defined by their Hermite parameters. 

Using the estimation techniques outlined earlier, var- 
ious permutations of the combined approach were 
tried; see the second column of Table 1. In the first 
stage of this approach, a step-search is adopted to esti- 
mate a starting point for use by the subsequent gradi- 
ent descent stage. This is done by imposing a uniform 
grid of CY and z values across a fixed range of values 
and computing the error sum at every point in the grid. 
Then the (0, z) pair with the smallest error sum is cho- 
sen. Note that for certain applications, this grid need 
not be uniform, but random or user defined to mini- 
mise the number of grid points searched. Also, the Her- 
mite coefficients are recalculated for every point in the 
grid and after every adjustment to 0 and z during the 
gradient descent optimisation process. Therefore, if a 
signal s(t) has an error-sum minimum that lies at (0, 0), 
then the error-sum minimum of the signal s(t - z) will 
lie at (0, z), see Figs. 7a and b. 

Table 1 summarises the results of the experiments 
using signal Fig. 7a and is typical. If the combined 
approaches (as given by their row number) are rated 
from the least to the most number of iterations taken 
to reach the solution; we obtain (13, 7, 14, 8, 12, 6 )  for 
signal Fig. 7a, { l l ,  14, 9, 12, 8, 10, 6, 5 }  for QRS, { l l ,  
7, 13/14, 12, 5 ,  9, S} for FIB, (11, 14, 7, 13, 5 ,  6/8/101 
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Table 1: Results of various optimisation procedures for estimating the Hermite coefficients, oand z of a signal 
(200 samples) as defined by the first row‘s parameters 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

Row Description a, a, a2 a3 a4 cf z Iterations Sqr. Err. 

actual parameters 0.638990 -0.215757 0.1 15461 0.250657 -0.430597 5.30 33.0 n.a. n.a. 

fixed o a n d  z 0.637912 -0.212890 0.112609 

sso -0,118669 0.354021 0.472938 

SSl 0.697764 0.069484 -0.054234 

ss2 0.678336 0.049505 -0.164955 

SS, =$ SD 0.040127 0.572624 0.496171 

SS, 3 SD 0.639133 -0.211001 0.114017 

SS, 3 SDm 0.634383 -0.209197 0.104241 

SS, 3 SDm 0.639247 -0.209536 0.104993 

SS, + CG -0.076746 0.360708 0.546929 

SS, + CG 0.639264 -0.210716 0.113571 

SS, + Nwt -0.075087 0.366233 0.547403 

SS, + Nwt 0.639768 -0.208934 0.106940 

SS, j SDm 3 CG 0.637520 -0.214199 0.117177 

SS, 3 SDm + Nwt 0.639052 -0.211207 0.114501 

0.245640 

0.401858 

0.414469 

0.43370 1 

0.190828 

0.252562 

0.252602 

0.251952 

0.391232 

0.253219 

0.386901 

0.255050 

0.2441 24 

0.252184 

-0.421328 

0.255709 

-0.001563 

-0.012664 

0.008323 

0.41 591 6 

-0.419617 

-0.419788 

0.139814 

-0.415621 

0.136195 

-0.416852 

-0.420675 

-0.415999 

5.30 

4.0 

4.0 

5.0 

4.83565 

5.26824 

5.31852 

5.31694 

5.12297 

5.26821 

5.10387 

5.29602 

5.28179 

5.26707 

33.0 - 0.000 129 

20.0 100 0.1231 11 

30.0 400 0.043237 

30.0 1600 0.030190 

21.205 100+1000 0.100142 

32.9406 400+342 0.000195 

32.9591 100+46 0.000187 

32.9629 400+44 0.000176 

19.1261 100+1000 0.009945 

32.936 400+217 0.00020 

19.19 100+1000 0.099445 

32.9338 400+72 0.000186 

33.0038 100+20+3 0.000154 

32.9427 100+20+28 0.000196 
~ 

Procedures 
SS,= Step-search across a 10 x 10 uniform grid; SS, = Step-search across a 20 x 20 uniform grid; 
SS, = Step-search across a 40 x 40 uniform grid; SD = Steepest descent; Lo = 1.0; L, = 10.0; 
SDm = Steepest descent w/momentum; ;1, = 1.0; 
CG = Conjugate gradient; La = 1.0; 
Nwt  = Newton‘s method. 
Stopping criterion 
(1) Sqr. Err. < 0.0002; or (2) Number of iterations (by stages > 1) 2 1000 

= 10.0; pa = 0.5; & = 1.0. 
= 10.0. 

12, 9)  for VPBl and (11, 14, 7, 12, 10, 5,  8, 9, 13, 6 )  
for VPB2. Therefore, given the desired approach must 
take as few iterations as possible and must always 
reach the solution, the approach SSo + SDm +Nwt 
(row 14) was selected and used by the applications 
described in [2, 31. 

a 

b 
Fig. 7 
a s(t ~ z) 
b Error sum surface of ~ ( t  ~ z) 

Error-sum surface for a ‘shifted’ signal with respect to o and z 

2.6 Effect of signal scaling, translation and 
dilation on He rm ite coefficients 
In this Section the effects of signal scaling, translation 
and dilation on its Hermite spectral coefficients, spread 
term and shift term are determined. The influence of 
these three common transformations is particularly 
important because they are a first-order approximation 
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of the kinds of typical distortions experienced by sig- 
nals. Consider a signal u(t) whose Hermite spectral 
coefficients are {bo, bl, ... . bNpl} for some spread o, 
and shift z,, which have been determined such that the 
squared error of the fit is minimised, i.e. 

N-I 

i=O 

Let signal v(t) be defined as a scaled version of signal 
u(t), with Hermite spectral coefficients { C O ,  cl, ..., c ~ - ~ }  
and spread 0, and shift z, or equivalently described 
with Hermite spectral coefficients {ao, a l ,  ..., u ~ - ~ }  and 
spread ovv. 

v ( t )  = olu(Pt - T )  where a,  p and ‘r are scalars 
(20) 

u ( t )  = UN,,, ( t )  
N-1 

i=O 
N--1 

i=O 

The parameters z,, 0, and e, can be rewritten in terms 
of z,, o, and b, as follows, 

w h e r e p > o a n d n E  { O , l ,  . . . ,  N - l }  (22) 
Also, if z = 0 in eqn. 20 then, 

where /3 > 0 and n E ( 0 , l . .  . , N - l} (23) 
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In summary, the relationships of eqns. 22 and 23 pro- 
vide a means for estimating the Hermite coefficients, 
spread and shift for a distorted signal, v(t), using the 
known parameters of the undistorted signal, u(t), and 
the distortion, as given by parameters z, p and a. In 
addition, by comparing the Hermite model parameter 
estimates of u(t) with that of v( t ) ,  the values of the dis- 
tortion parameters can be determined. 

The results of eqns. 22 and 23 are particularly useful 
because they provide a method for describing a signal 
by appropriately defining the feature vector in terms of 
the signal's Hermite model parameters. For example, if 
there is to be no discrimination between a signal u(t) 
and its distortion au(Pt), then the norm of its Hermite 
coefficients is taken: 

= r(au(Pt)) (24) 
where T(u(t)) defines the feature vector of signal u(t) 
and represents a feature extraction process on u(t). 

Similarly, if there is a need to discriminate between a 
signal's scale distortions in time but not in magnitude 
then, 

q u ( t ) )  = [a, iqT = r(aU(t)) # r(.U(pt)) 
where /3 # 1 (25 )  

Hence by choosing the features in the manner similar 
to that described by examples eqns. 24 and 25, the type 
of discrimination between signals can be predefined. 

2.7 Order estimation 
Evaluating the order of our series expansion is very 
much dependent on the 'patterns' to be classified. Since 
these patterns are known (and it is assumed that there 
are K exemplars of their typical form), a value for the 
order, N,  is chosen such that there is no significant 
improvement in the fit for the order greater than N .  To 
do this, some measure of the fit is required. Two such 
'measures' are considered i.e. the squared error and the 
correlation coefficient. 

Considering the squared error as the first measure of 
the fit. 
uk(x) = the xth sample of the kth exemplar, where 

U ~ , ~ , ~ ( X )  = the xth sample of the nth order synthesised 

~ ~ ( n )  = the 'measure-of-fit' of the kth exemplar for 

the exemplar is 2L + 1 samples long 

kth exemplar 

a nth-order fit 
L 

squared error, e k ( n )  = (uk(z) - U ~ , ~ , ~ ( Z ) ) ~  
x=-L 

(26) 

K-1 \ 

The maximum value for the normalised averaged 
error, E(n) is unity for n E (0, 1, ..., N - l}. In general, 
n = 0 has the worst fit, which implies E(0) = 1. Let the 
order be n when E(n + 1) 2 E(n). This condition for 
picking n does not always work and depends on the 
convergent properties of the exemplars i.e. the inequal- 
ity is satisfied for large values of n only. 
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Next consider the correlation coefficient as the meas- 
ure-of-fit [13] i.e. 

suv linear correlation coefficient, &k (n) = 
su(k)su(k) 

where U = u~(x) and U = u ~ , ~ , ~ ( x )  (28) 
As long as it is of no consequence that the synthesised 
signal is a linear function of the original signal (i.e. it 
could be scaled and/or have its mean shifted), it is safe 
to interpret eqn. 28 as a measure of fit to use. 

When the average correlation coefficient E(n) equals 
unity, there is a perfect fit. Similar to the least squares 
approach, n is chosen such that E(n + 1) I E(n). Once 
again, depending on the convergent properties of the 
exemplars, this inequality may only be satisfied for 
large n. Although the basis functions satisfy complete- 
ness, there will be a point beyond which there will be 
no 'significant' improvement in the fit. At this point the 
truncation error is small and susceptible to precision 
errors. These errors give rise to an overall error sum 
that oscillates along a decreasing long-term trend (see 
Fig. 8). Since this tends to occur for large n, the ine- 
quality is modified such that the order is chosen as the 
smallest value of n that satisfies, E(n) 2 E ,  for a pre- 
determined threshold E,. 

-"''2'- 
C 0.7131924 

-6.5168552 
-7.206862 

1 5 9 13 18 22 26 30 
order n 

a 
1.0026458 
0.94516434 1 7 k0.2549848 

0.298583 I ' ' '  ' I ' ' ' ' I '  ' ' ' I ' I  ' ' I ' ' ' I '  ' ' ' I ' ' ' ' ' ' 
!% 0.8876828i 0.8302012 [ 0.21 13867 

0.16778855 
0.1 241 9042 
0.0805923 = 
0.0369941 f -0.006604 

2 0.7727197 
0.7152382 
0.6577566 
0.6002751 

1 5 9 13 18 22 26 30 
order n 

b 
Fig.8 

a E(n) defined as sum of squared errors, E( l )  = 0.24 
b E(n) defined as correlation coefficient, E(l) = 0.60 

Plots of E(n) and dE(n)/dn versus N for  various definitions of 
E(n) 

This inequality does not particularly suit the least 
squares approach because ETH is arbitrarily chosen. 
The correlation coefficient, however, lends itself to the 
'threshold' inequality because it is a measure that is not 
influenced by the scalar variations of u(t), and it is 
intuitively more meaningful. 

To estimate a suitable n, we can either be conserva- 
tive or liberal in our choice. We define a liberal selec- 
tion by picking n for which the correlation coefficient 2 
0.95 and conservative, by picking n for which the corre- 
lation coefficient 2 0.99. From Fig. 8, these values of n 
are 5 and 11 for the liberal and conservative approach, 
respectively. 

3 Applications 

The representation of a 1-D signal as a series expansion 
of Hermite basis functions and the subsequent use of 
the coefficients of this series expansion as features 
towards signal analysis has been successfully applied to 
the area of ECG waveform analysis. The suitability of 
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Hermite coefficients as morphological features in QRS 
detection was first suggested by Sornmo et al. [6]. 
However, no method for estimating these coefficients 
was proposed. Since then, Laguna et al. [4, 51 have also 
investigated the use of Hermite coefficients together 
with an associated spread term for QRS and ectopic 
beat detection. However, they did suggest a method for 
estimating the Hermite coefficients. Theirs was a 
scheme based on the adaptive linear combiner [13], 
called the adaptive Hermite model estimation system 
(AHMES). It used LMS estimation to estimate both 
the coefficients and the spread term. While the 
AHMES approach is well suited to tracking an ECG 
signal, it is unclear if the coefficients and spread term 
model the ‘shape’ of the beats and if they can indeed be 
interpreted as shape features. 

Unlike the AHMES system, where the approach 
seeks to minimise the squared error of each ‘incoming’ 
sample, the authors have proposed an approach in [2, 
31 which seeks to minimise the squared error of each 
‘incoming’ signal segment. In other words, the cost 
function is the sum of the squared errors of all the 
samples taken over a user-defined period within which 
the shape of signal to be modelled lies. Note that the 
length of this user-defined period is a heuristic choice 
such that the ‘shapes’ being looked for in a signal all fit 
within this period. Hence the length of this period is 
determined by the shape with the largest ‘width’. 

It is worth noting that the first Hermite basis func- 
tion has the form of a Gaussian distribution and all 
subsequent Hermite basis functions are derivatives of 
this form. This could suggest that the Hermite series 
expansion may be well suited to modelling ‘distribu- 
tions’. 

4 Conclusions 

The selection of an appropriate orthogonal basis func- 
tion is very much dependent on the shape of the signals 
to be modelled. This choice involves fmding an orthog- 
onal set of basis functions which most conservatively 
models the types of ‘shapes’ intended for recognition. 
More often than not, the close morphological similarity 
of these functions to the ‘shapes’ provides a good indi- 
cation of their suitability. 

In this regard, this paper has purposely considered 
the orthonormal Hermite basis set given, the suitability 
of the Hermite parameters in modelling the one-dimen- 
sional shapes found in signals such as ECG traces. This 
paper has outlined a methodology to estimate the Her- 
mite-spectral coefficients of a one-dimensional signal 
and its associated spread andlor shift term values. 

It is worth noting that the deterministic approach to 
estimating the Hermite spectral coefficients of a I-D 
signal, as described in this paper, allows the method to 
constrain the use of LMS estimation techniques to just 
the two (one) variables, i.e. the spread and (or) shift 
term. As a consequence, the visualisation of the search 
space ‘landscape’ for these two terms is now a practical 
proposition. From such visualisation, the problems in 
trying to estimate an optimum spread and shift term 
value, like false minima and nonconvergence were 
addressed. In addition, heuristic approaches to estimat- 
ing the number of coefficients to use were suggested, 
and special attention was given to determining the 
influence of common signal distortions such as scalar, 
dilatory and translatory effects, on the Hermite coeffi- 
cients, spread and shift parameters. 
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7 Appendix 

7. I Estimating the spread value 
u(x) = discrete time, finite duration signal for x E 

U ~ , ~ ( X )  = synthesised signal from N Hermite coeffi- 
cients with a spread of 0 

~ ~ ( 0 ,  x) = the error between u(x) and U ~ , ~ ( X )  at the 
kth iteration 

{-L, ...) L }  

error sum, 
L L 

x=-L x = - L  

(29) 

n = O  
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-(an + 1)& (y) 

x + 4)(n + 3)(n + 2)(n + 1)&+4 ( Z )  
-J(n + 2)(n + l)kn+z (E) -(n2+n+l)& 

(31 (35) 
1 
2 

+-Jn(n - 1)(n - 2)(n - 3)fin-4 

7.2 Estimating the shift value 
As demonstrated in Section 2.6, the Hermite coeffi- 
cients are translation variant, i.e. the Hermite coeffi- 
cients for a signal u(t - z) differ for different values of 
z. When a shift term, T, is introduced into the defini- 
tion of the Hermite basis function, as given by eqn. 5 ,  
then least-squares estimation can be used to estimate a 
value for z; such that the Hermite functions of eqn. 4 
are fitted about t = z. 

In the previous Section, the equations for estimating 
a spread value for a fixed shift value (i.e. x = t - z) 
were presented. Now the remaining cases are consid- 
ered: (i) estimating the shift value for a fixed spread 
value; and (ii) estimating the spread and shift value. 
Note that after each adjustment in value to the spread 
and/or shift parameter, the Hermite coefficients are rec- 
omputed. 

7.2.1 For constant s: Using eqns. 36 to 39, the 
same LMS techniques are used to estimate the shift 
value. 

x [ J ( n  + 1)(n + 2)I;Tn+2 (q) 
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x=-L 

7.2.2 For variable 0: Once again, the techniques of 
the previous Section are employed with some notable 
changes and additions. First, the second derivative of 
the error sum function is now defined by eqn. 44 and 
its inverse, i.e. the Hessian matrix, is required for New- 
ton's approach. Next, two more gradient descent tech- 
niques are introduced: (i) steepest descent with a 
momentum term; and (ii) conjugate gradient. 

-(n + 2)Jn+lHn+1 (5) 

+Jn(n - l ) (n  - 2 ) & 4  (31 - (41) 

The motivation for steepest descent with momentum 
comes from having found that a typical error-sum sur- 
face has significant portions that are 'flat'. Therefore 
the introduction of a momentum term may prove use- 
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ful in reducing the convergence time. We have also 
found it useful to include eqn. 47 which drops the 
momentum to zero when an ‘overshoot’ (as given by 
the predetermined AETHRESHOLD) occurs (see Fig. 7b). 

With conjugate gradient, if the error-sum surface is of 
‘quadratic’ form, then a faster convergence can be 
expected: 

(48) 

vk+l vi, + s k + l  (46) 
(49) 

i f ( ( E ~ ( ~ k + i , ~ k + i ) - E ~ ( ~ k ,  71~)) > ~ETHRESHOLD) 

Sk  = 0 (47) U k + l  = vi, + h + l  (50) 

[ V V k + l  - ‘C7vi,lT’C7wi,+1 
IIVvi,Il2 

si,+1 = psi, - XVvi, (45) P k f l  = 

s k + l  = p i , + l s k  - vvk+1 
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