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ABSTRACT

The magnetic network extending from the photosphere (solar radius ≃ R⊙) to the lower corona
(R⊙ + 10 Mm) plays an important role in the heating mechanisms of the solar atmosphere. Here
we develop further the models of the authors with realistic open magnetic flux tubes, in order
to model more complicated configurations. Closed magnetic loops and combinations of closed
and open magnetic flux tubes are modelled. These are embedded within a stratified atmosphere,
derived from observationally motivated semi-empirical and data-driven models subject to solar
gravity and capable of spanning from the photosphere up into the chromosphere and lower
corona. Constructing a magnetic field comprising self-similar magnetic flux tubes, an analytic
solution for the kinetic pressure and plasma density is derived. Combining flux tubes of opposite
polarity, it is possible to create a steady background magnetic field configuration, modelling
a solar atmosphere exhibiting realistic stratification. The result can be applied to the Solar
and Heliospheric Observatory Michelson Doppler Imager (SOHO/MDI), Solar Dynamics
Observatory Helioseismic and Magnetic Imager (SDO/HMI) and other magnetograms from
the solar surface, for which photospheric motions can be simulated to explore the mechanism
of energy transport. We demonstrate this powerful and versatile method with an application to
HMI data.

Key words: MHD – Sun: atmosphere – Sun: chromosphere – Sun: magnetic fields – Sun: pho-
tosphere.

1 IN T RO D U C T I O N

Since the discovery that the solar corona is significantly hotter than
the photosphere, following the 1932 solar eclipse (Cillié & Menzel
1935) and subsequent confirmation (Redman 1942), the explanation
for this has posed a major challenge. Across the solar atmosphere,
temperatures vary by orders of magnitude. Typical photospheric
temperatures are about 6500 K (solar radius R⊙ ≃ 696 Mm) and
temperatures are above 106 K in the corona (out to about 2R⊙:
Priest 1987, 2014; Aschwanden 2005; Erdélyi 2008, and references
therein). The solar surface and atmosphere are extremely dynamic.
Frequent and powerful events such as coronal mass ejections
release high-energy, localized heating within the atmosphere, and
yet the corona is hot everywhere. Jets, flares, prominences and
flux emergence, among other things, carry mass and energy from
the surface into the atmosphere. However, it remains unclear how
energy is dissipated through the chromosphere and subsequently

⋆ E-mail: fred.gent.ncl@gmail.com

to the coronal plasma (Zirker 1993; Aschwanden 2005; Klimchuk
2006; De Pontieu et al. 2011; van Ballegooijen et al. 2011; Priest,
Chitta & Syntelis 2018; Zank et al. 2018). Persistent and ubiquitous
small-scale processes would appear to be candidates for this effect.
Some advocate small-scale reconnections of magnetic field lines
(Gudiksen & Nordlund 2002, 2005; Bourdin, Bingert & Peter 2013).
An alternative view may be that solar magnetic field lines, in the
form of magnetic flux tubes, act as guides for magnetohydronamic
(MHD) waves,which can carry the missing energy to heat the
atmosphere to the observed temperatures. These occur at scales
that are increasingly available for observational comparison (Jess
et al. 2007; Morton et al. 2012; Wedemeyer-Böhm et al. 2012).
This article is motivated by the wave-guide interpretation, but may
nevertheless be useful more generally.

While models of magnetic field configuration dealing with
coronal heating often set the flux-tube footpoints at the photosphere,
some discount the effects of the chromosphere and the transition
region (TR), a relatively narrow layer between chromosphere and
corona where there is a jump in plasma density and temperature. In
the corona, the magnetic field is commonly modelled as force-free

C© 2019 The Author(s)
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Magnetic network construction 29

(for example Schrijver & De Rosa 2003; Schrijver et al. 2004),
assuming the plasma pressure to be negligible, but in the low
chromosphere and the photosphere kinetic forces cannot reasonably
be ignored, with the ratio of thermal to magnetic pressure plasma-β
≫ 1. The dynamic interface region (IR) includes the chromosphere
and TR, connecting the photosphere and lower corona (De Pontieu
et al. 2014). The typical mass and energy density in the infrared
(IR) are orders of magnitude larger than in the corona as a whole
(McWhirter, Thonemann & Wilson 1975; Vernazza, Avrett &
Loeser 1981; Fontenla et al. 2006; Fontenla et al. 2009; Fontenla,
Balasubramaniam & Harder 2007), so it is reasonable to expect the
IR dynamics to be critical for the coronal heating mechanism.

The extreme nine orders of magnitude gradient in plasma density
(six in pressure, three in temperature) over 2.5 Mm from the
upper photosphere to the lower corona presents a significant chal-
lenge in modelling magnetic fields in the chromosphere (DeForest
2007). Typical magnetic flux-tube footpoint strengths of about
100 mT (1000 G) are observed emerging from the photosphere
(Zwaan 1978; Priest 1987, 2014; Aschwanden 2005 (chapter 8.7);
Erdélyi 2008 (chapter 5), and references therein). An isolated
magnetic flux tube must, therefore, expand exponentially in radius
as it rises to balance the plasma pressure. Although the solar
atmosphere is highly dynamic and turbulent, many features, such as
loops, spots and pores, can be observed to remain static for hours,
days or even weeks (McGuire et al. 1977; Levine & Withbroe
1977; Malherbe et al. 1983) and this has been used to investigate
the transport mechanisms along the field lines with a series of
numerical simulations (Shelyag, Fedun & Erdélyi 2008; Fedun,
Erdélyi & Shelyag 2009; Shelyag et al. 2009; Fedun, Shelyag &
Erdélyi 2011; Vigeesh et al. 2012; Khomenko & Collados 2012;
Mumford, Fedun & Erdélyi 2015; Mumford & Erdélyi 2015). These
numerical studies were restricted to single flux tubes and did not
breach the TR, so flux-tube interaction and the effect on the corona
cannot feasibly be explored. Khomenko, Collados & Felipe (2008)
and Khomenko & Collados (2012) constructed a 2D magnetic
field with multiple flux tubes, each identical to its neighbour, but
excluding the TR. Hasan et al. (2005) and Hasan & van Ballegooijen
(2008) constructed a 2D magnetic field. which does extend into
the low corona. Gent, Fedun & Erdélyi (2014, hereafter Paper II)
generalized the background configuration to 3D, multiple, non-
identical flux tubes, extending into the lower corona. This was
successfully applied to a 3D model of a flux-tube pair by Snow et al.
(2018), who showed that chromospheric shocks at the intersections
between the tubes are capable of driving supersonic jets.

However, all of these models apply only to open magnetic flux
tubes of the same polarity. Their major omission is flux loops
with footpoints of opposite polarity, which are common features
of solar magnetic networks. Vesecky, Antiochos & Underwood
(1979) considered an analytic construction of a single 3D magnetic
flux loop as a static background, but for a thermodynamic model,
not MHD. The primary contribution of the current work will be to
add loops to the multiple flux-tube network described in Paper II.
An advantage of this result is that any arbitrary magnetogram of
the photosphere, e.g. from the Helioseismic and Magnetic Imager
(HMI) for the Solar Dynamics Observatory (SDO) (Kosovichev &
HMI Science Team 2007), can be constructed by matching the
vertical field for each pixel to the model and constructing a realistic
3D magnetic network extending into the corona analytically. Using
the corresponding velocity field from the same observational image
or similar, forward modelling can then be applied to explore the
energy transport mechanism. The analytical model is outlined
explicitly in Section 2, along with differences from Paper II. In

Section 3. some applications for the model are described and there
is some discussion of its uses and limitations.

In general β ≪ 1 in the corona, so modelling perturbations about
the steady background magnetic network without kinetic effects is
reasonable. At the photosphere and in the lower chromosphere, how-
ever, β > 1, except inside low-β sunspots and flux-tube footpoints.
This is why it is important to model the steady background with
kinetic and magnetic forces in equilibrium. In this framework, we
can examine the MHD processes localized around strong magnetic
structures, while, on the time- and length-scales of interest, the
kinetically dominated ambient atmosphere supporting the magnetic
structures also remains steady. Solving only the perturbation fields
can reduce the numerical challenges. Even with more complicated
magnetic networks, various analytic photospheric flows can be
applied to investigate how energy propagates and is dissipated
through the magnetic network, to help identify the most relevant
physical processes.

2 M AG N ET IC FLU X L O O P

2.1 Ambient magnetic field outside the flux tubes

In Gent et al. (2013, hereafter Paper I) we constructed analytically a
3D model of a single vertical magnetic flux tube embedded in a re-
alistic solar atmosphere in magnetohydrostatic (MHS) equilibrium.
This was extended to multiple magnetic flux tubes in Paper II.

The background atmosphere employed was derived from the
combined modelling profiles of Vernazza et al. (1981, their table 12,
hereafter VALIIIC) and McWhirter et al. (1975, their table 3) for
the chromosphere and lower solar corona, respectively (see fig. 1
in Paper I). We are only considering MHD, so require profiles only
for the gas density and pressure or temperature to solve the steady-
state momentum equation. The atmospheric models selected are
sufficient for the qualitative results of interest to us, but other profiles
accounting for additional or specific physics would also work,
providing they depend only on solar radius. If additional physics
were included, such as ionization, radiative transfer, self-gravity,
etc., or if the hydrostatic equilibrium depended on horizontal forces,
an alternative solution would be required.

Observations (chapter 3.5 in Mariska 1993; Schrijver & Title
2003) indicate that the atmosphere outside the flux tubes includes
a non-zero magnetic field of order 1–10 mT in the corona. It is
important to model this ambient field, so that realistic ratios can be
obtained between the thermal and magnetic pressures, i.e. plasma-
β < 1 outside the flux tube. Paper I and Paper II implemented
explicit external fields to provide ambient magnetic pressure. In
this article, we model magnetic flux loops by combining vertical
flux tubes of opposite polarity. For a flux tube of opposite polarity,
an ordered ambient field will negate the effective field in the flux
tube. Therefore, a constant vertical ambient field is not suitable for
use with flux loops. A realistic solution still requires a low plasma-
β in the corona. Refining the model further, the ambient magnetic
pressure felt by each individual flux tube is now induced by the
superposition of its neighbouring flux tubes. Plasma-β < 1 above
the photosphere will be obtained due to the expansion of strong
flux tubes and loops near the local network. Therefore, we drop the
ambient field denoted by b00 in equation (22) of Paper II.

2.2 The MHD equations

A full outline of the governing ideal MHD equations we would
use to describe the environment in the solar atmosphere is provided

MNRAS 489, 28–35 (2019)

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

-a
b
s
tra

c
t/4

8
9
/1

/2
8
/5

5
5
2
6
7
9
 b

y
 H

e
ls

in
k
i U

n
iv

e
rs

ity
 o

f T
e
c
h
n
o
lo

g
y
 L

ib
ra

ry
 u

s
e
r o

n
 1

4
 J

a
n
u
a
ry

 2
0
2
0



30 F. A. Gent et al.

in Gent et al. (2014, their section 2.2). Our approach, following
that of Shelyag et al. (2008), is to derive the system of equations
governing the perturbed MHD variables by splitting the variables
ρ (plasma density), e (energy density) and B (magnetic field) into
their background and perturbed components:

ρ = ρb + ρ̃, e = eb + ẽ, B = Bb + B̃, (1)

where a tilde denotes the perturbed portion and it is assumed that
ρb, eb and Bb do not vary with time. When the time-independent
momentum equation describing the background equilibrium is
deducted, the modified form of the momentum equation governing
the perturbed system is given by

∂ [(ρb + ρ̃) ui]

∂t
+

∂

∂xj

[

(ρb + ρ̃) uiuj −
B̃iB̃j

μ0

]

+
∂

∂xi

p̃T −
∂

∂xj

[

B̃iBbj + BbiB̃j

μ0

]

+ Fbali = ρ̃gi (2)

and the consequent energy equation is given by

∂ẽ

∂t
+

∂

∂xj

[

(eb + ẽ)uj −
B̃iB̃j

μ0
ui

]

+
∂

∂xj

[

p̃Tuj −
B̃iBbj + BbiB̃j

μ0
ui

]

+ pbT
∂uj

∂xj

−
BbjBbi

μ0

∂ui

∂xj

+ Fbali ui = ρ̃giui, (3)

in which u and g are the velocity and gravitational acceleration.
Fbal represents net background equilibrium forces. The system is
completed by the equations of continuity, induction and state, as
detailed in Paper II.

Given no vertical current Jz, a stationary state, where magnetic
force balances pressure and gravitational forces exactly, has an MHS
equilibrium solution providing the magnetic field satisfies

∂yBz∂zBx = ∂xBz∂zBy (4)

and, hence Fbal= 0. A scalar solution for pressure can otherwise
still be derived by inclusion of minimal horizontal balancing forces
Fbal, yielding forced magnetohydrostatic equilibrium (FME). These
balancing forces are small compared with the other forces and may
be considered to be a statistical steady superposition of small-scale
high-cadence turbulence in the chromosphere, where the magnetic
field is not force-free. Our approach is to specify the background
magnetic field. We then solve the time-independent momentum
equation

∇pb + ∇
|Bb|

2

2μ0
− (Bb · ∇)

Bb

μ0
− ρbg R̂ + Fbal = 0 (5)

to find the FME pb and ρb and identify the balancing forces Fbal.
Gravity depends only on solar radius R.

2.3 A single magnetic flux tube

In cylindrical coordinates, taking ẑ to be along R, the magnetic
potential of a self-similar axisymmetric magnetic flux tube is

mAbr = mSφ mG
∂

mf

∂r
, mAbφ = 0, mAbz = mSφ mG

∂
mf

∂z
,

(6)

or, in Cartesian coordinates, we have

mAbx = mS arctan
(

y−my

x−mx

)

mG
∂

mf

∂x
,

mAby = mS arctan
(

y−my

x−mx

)

mG
∂

mf

∂y
,

mAbz = mS arctan
(

y−my

x−mx

)

mG
∂

mf

∂z
, (7)

where mAb denotes the potential for the mth flux tube, which has
its axial vertical magnetic field mS located at a footpoint (mx, my) on
the photosphere. We scale mf and mG from Paper II to

mf = −
mr2B0z

2

2
and mG = exp

(

mf

f0
2

)

, (8)

with factor f0
2 governing the radial scale of the flux tube, and the

radial distance mr from the axis at (mx, my) is

mr =
√

(x − mx)2 + (y − my)2. (9)

The reduction in vertical field strength along the flux-tube axis
is specified by an appropriate monotonically decreasing function
B0z(z), such as a sum of exponentials, as applied in Paper II, or
a polynomial form, as applied by Gary (2001) and employed in
Section 3.1. The sign of real parameter mS determines the polarity
of the flux tube. The components of the magnetic field for the mth
flux tube mBb are then defined as in equation (22) of Paper II with
b00 = 0. Now, however, by construction, at (mx, my), mG = 1 and
mr = mf = 0. We also impose B0z(z = 0) = 1. Hence, at the flux-
tube axis, the photospheric magnetic field is mBbz = mS, which can
be set directly or interpolated from HMI data or similar.

Equation (5) can be decomposed into hydrostatic (HS) and MHS
parts, i.e.

∇(pbh + mpbm) + ∇
|mBb|

2

2μ0
−

(

mBb · ∇
)

mBb

μ0

+ mFbal − (ρbh + mρbm)g ẑ = 0, (10)

in which pbh and ρbh denote HS plasma pressure and density and
mpbm and mρbm denote MHS adjustments due to flux tube mBb.
mFbal vanishes, with equation (4) satisfied for the single flux tube.
The HS equilibrium is constructed using the VALIIIC (Vernazza
et al. 1981) temperature and density profiles to calculate a pressure
profile, using the ideal gas law. That is then differentiated vertically
to produce a stable density profile, assuming constant gravity. The
advantage of this method is that it allows the pressure and density
fields to be corrected, after the MHS corrections have been applied,
to exclude negative values. What remains of equation (10) is

∇
mpbm + ∇

|mBb|
2

2μ0
−

(

mBb · ∇
)

mBb

μ0
− mρbmg ẑ = 0. (11)

The solution to equation (11) follows Paper I and Paper II, in the
absence of terms defining an ambient magnetic field b00, to yield

mpbm=
mS2

2μ0

mG2
[

f0
2B0zB

′′
0z + 2mf B ′

0z
2 − B0z

4
]

, (12)

mρbm=
mS2mG2

μ0g

×

[(

f0
2

2
+ 2mf

)

B ′
0zB

′′
0z+

B0zB
′′′
0zf0

2

2
− 2B0z

3B ′
0z

]

. (13)

MNRAS 489, 28–35 (2019)
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Magnetic network construction 31

2.4 Including a second or further flux tube of mixed polarity

Let us now include a second flux tube, such that nBb denotes one
with the same construction as mBb apart from the arbitrary axial
coordinates (nx, ny) and parameter nS. Equation (11) becomes

∇(mpbm + npbm + mnpbm)

−
(

[mBb + nBb] · ∇
)

mBb + nBb

μ0
+ ∇

|mBb + nBb|
2

2μ0

+ mnFbal − (mρbm + nρbm + mnρbm)g ẑ = 0, (14)

where superscript n has equivalent meaning for the second flux
tube to that indicated for the first in Equation (10). The additional
superscript mn refers to the interaction between the flux-tube pair.
Subtracting equation (11), the equivalent for the second flux tube
retains

∇
mnpbm −

(

mBb · ∇
)

nBb

μ0
−

(

nBb · ∇
)

mBb

μ0

+ ∇

mBb · nBb

2μ0
+ mnFbal − mnρbmg ẑ = 0. (15)

Equation (4) is not satisfied, so mnFbal does not vanish.

∂

∂x

mnpbm =
2nf 2

f0
2 B ′

0z

2mSnSB2
0z

mGnG
x − nx

μ0

+
2mf 2

f0
2 B ′

0z

2mSnSB2
0z

mGnG
x − mx

μ0

+
∂

∂x

(

mSnSf 2
0

2μ0

mGnG
[

B ′
0z

2
+ B0zB

′′
0z

]

)

, (16)

in which the first two lines cannot integrate with respect to x,
while a similar residual expression is obtained by integrating the
y-component of equation (15). However, a scalar solution for the
pressure and density is possible, if this contribution to the magnetic
tension force is balanced by

mnFbal = −
2

f0
2 B ′

0z

2mSnSB2
0z

mGnG (17)

{

nf 2

[

x −nx

μ0
x̂ +

y −ny

μ0
ŷ

]

+ mf 2

[

x −mx

μ0
x̂ +

y −my

μ0
ŷ

]}

.

If we generalize to a system of N flux tubes with Bb = 1Bb +
2Bb + ... + NBb, then the pressure can be fully described by

pb = pbh +

N
∑

m=1

mpbm +

N
∑

m,n=1|n>m

mnpbm, (18)

in which pbh is derived from the interpolated observed profile,
constrained to be monotonically decreasing with height, and mpbm

is defined by equation (12). The pressure adjustment due to each
pairwise flux-tube interaction is given by

mnpbm =
mSnSf 2

0

2μ0

mGnG
[

B ′
0z

2
+ B0zB

′′
0z

]

−
mBbz

nBbz

μ0
. (19)

The corresponding expression for the plasma density is

ρb = ρbh +

N
∑

m=1

mρbm +

N
∑

m,n=1|n>m

mnρbm, (20)

in which ρbh is the product of g−1 and the z-derivative of pbh, and
mρbm is defined by equation (13). The density adjustments due to
each pairwise flux-tube interaction are given by

mnρbm = 2
mSnS

μ0 g

mGnGB0zB
′
0z

[(

mf + nf

f0
2 − 2

)

B0z
2

−
mf + nf

2

(

B ′
0z

2

B0z
2 +

B ′′
0z

B0z

)

+
f0

2

4

(

3
B ′′

0z

B0z

+
B ′′′

0z

B ′
0z

)

+ {(x − mx)(x − nx) + (y − my)(y − ny)}

×

{(

1 −
mf + nf

f0
2

)

B ′
0z

2
+ B0zB

′′
0z − 2

B0z
4

f0
2

}]

. (21)

The net balancing force in equation (5) is then fully specified as

Fbal =

N
∑

m,n=1|n>m

mnFbal. (22)

Figure 1. Observed HMI magnetogram (left) and model (right) of the photosphere. Filled pixels highlight the resolution.
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32 F. A. Gent et al.

Figure 2. 2D slice of model horizontal balancing forces at x = 8.15 Mm, as defined by equation (22).

Figure 3. 3D plot of chromospheric loop reconstruction. Colour (or for B&W darker shade of field lines) indicates the magnetic field-line vertical component
and grey-scale lower surface Bz at the photosphere.

3 A P P L I C AT I O N O F TH E M O D E L

3.1 Fitting arbitrary flux tubes

A stable atmosphere can be generated for any distribution of

photospheric magnetic field by using the observed magnetic field
in each pixel to construct a series of interacting flux tubes. To
demonstrate this, an atmosphere is constructed using a subsection
of the HMI magnetogram observed on 2014.07.06 00 00 45. A

MNRAS 489, 28–35 (2019)
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Magnetic network construction 33

Figure 4. HMI magnetogram (left), spatially degraded HMI (centre) and model photosphere (right).

Figure 5. 3D plot of magnetic field lines above an active region, including the lower corona. Colour indicates their vertical component. Grey-scale shading
shows Bz at the photosphere. Units are in kG, not G as in Fig. 3.

relatively small region (16 × 16 pixels) is chosen, featuring a few
isolated magnetic regions of opposite polarity.

In a numerical grid of horizontal dimension 64 × 64, magnetic
flux tubes with f0 ≃ 750 km are fitted for each pixel in the observing
box. Fig. 1 shows the observed HMI magnetogram (left) and the
reconstructed photospheric magnetic field (right). A region around
the observation is set to zero to allow numerical boundaries to
be well defined when the atmosphere is used for simulations. As

shown in Fig. 1, there is strong agreement between the observation
and the reconstruction in terms of both location and magnitude of
the magnetic field.

The density and pressure modifications required to stabilize
the magnetic field are generated using the methods outlined in
Section 2. The additional forcing terms Fbal applied to account
for the magnetic tension effects between neighbouring flux tubes
are plotted in Fig. 2. The forcing terms are significant only in the
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lower atmosphere and are zero in most of the domain. For context,
the magnitude of the forcing terms is maximally around 2 per cent
of the horizontal pressure gradient. These forcing terms represent a
small adjustment to the system.

The end result is a 3D FME that models the photospheric
magnetic field, shown in Fig. 3, using VAPOR (Visualisation an
Analysis Platform for Ocean, Atmosphere and Solar Researchers)
(Clyne & Rast 2005; Clyne et al. 2007). Due to the modest footpoint
magnetic field of around 30 mT, the loop is mainly confined to
the chromosphere, so we model the region to a height of 2 Mm
above the photosphere. Simulations of a well-observed region, in
preparation, aim to illustrate the model’s effectiveness for such
complex networks.

Above active regions, the magnetic field can easily extend
through the transition region and into the solar corona. To test the
construction of such atmospheres, we apply the same methodology
to an active region with vertical magnetic field strength of Bz ≈

±2500 G. This region is much larger than the previous test and hence
fitting a flux tube to each observational pixel is computationally
expensive. To circumvent this, we degrade the observation to a
lower spatial resolution (see Fig. 4) and fit flux tubes to the strongest
sources only, yielding the network plotted in Fig. 5.

4 R ESU LTS SU MMARY

In this article, we describe and demonstrate a new method for
reconstructing a stationary-state solar atmosphere, with realistic
magnetic configuration. The model parameters have been stream-
lined and generalized, making them easy to apply for arbitrary
photospheric magnetic field sources. Calculating the magnetic fields
and the resulting atmosphere is computationally efficient, available
in parallel python from PySAC: Python Interface to the Sheffield
Advanced Code (https://github.com/fredgent/pysac).

The free parameters in the radial scaling and scaleheight and
the generalized inclusion of any ambient atmosphere models make
the method versatile for a number of scientific problems. The
physical veracity of the parameters can, however, be constrained by
comparison with observations of the magnetic field and kinetics at
various heights. The stability of the solution can also be confirmed
by numerical simulation of each configuration. This was carried
out for the flux-tube pair solution used in Snow et al. (2018),
by treating the solution as MHD perturbations, and the system
remained stationary to within machine accuracy.

We provide a new method to extrapolate the magnetic field
from observations in the lower solar atmosphere. A common
approach to obtaining a steady-state magnetic configuration is to
start with a potential field extrapolation of vertical magnetic field
measurements (Schrijver & De Rosa 2003). This is then evolved in
MHD simulations to find an equilibrium (e.g. Gudiksen & Nordlund
2005; Hansteen et al. 2010; Fedun et al. 2011; Hansteen et al. 2015).
The new construction method does not depend on any Dirichlet or
von Neumann type boundary conditions or the time-step constraints
required for the MHD PDE (Partial Differential Equation) solver.
It does require care in the choice of parameters to avoid unrealistic
gas density or temperatures. It may be a faster technique, but
we propose to compare these two methods in future work. First,
the efficiency of deriving the steady-state atmosphere using both
methods will be measured. Secondly, the results of simulations
using each construction of a solar region will be compared with
photospheric and chromospheric observations.
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