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ABSTRACT

A general small-signal model for current-
programmed switching power stages 1is used for
design-oriented analysis of a 150W buck regulator.

The model, into which the current-programming
minor feedback loop is absorbed, exposes the
desired tendency towards "constant" output current.
The regulator voltage loop remains the only
explicit feedback loop, allowing the regulator
closed-loop properties to be easily obtained from
those of the open-loop current-programmed power
stage.

The design-oriented analytic results allow
easy inference of the effects of element changes on
the regulator performance functions. Results are
obtained for the regulator line-to-output transfer

function (audio susceptibility) and output
impedance.
1. INTRODUCTION

Current-programmed switching power stages are
becoming widely used in the power supply field
because of several advantages they exhibit over
conventional duty ratio programmed power stages
{1,2]. Design of switching regulators from the
control loop aspect is now well understood: small-
signal models for the power stage, and their use in
design of the feedback loop, have gradually become
familiar tools for design engineers over the last
fifteen years.

These well-known models and methods, however,
are for duty ratio programmed power stages.
Corresponding models for current-programmed power
stages have appeared much more recently ([3,4], and
have been the subject of some controversy [5,6].

The purpose of this paper is to apply a
particular small-signal model [6] of a current-
programmed power stage to the anlaysis and design
of a 150W buck regulator. This is intended as an
illustration of Thow the generalized model,
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established once and for all, can be applied not
only to the analysis but also to the design of
practical regulators.

Although the 1loop gain is of central
importance, a regulator is not specified directly
by its loop gain, but by its performance functions
such as output impedance and line-to-output
transfer function (audio susceptibility).
Therefore, the objective of the analysis is to
determine how the various component values affect
these functions. Understanding of the physical
significance of each analytic step is essential in
choosing the numerous trade-offs that have to be
made. This process and its objective, of course,
are applicable to any design, and are central to
the approach described as design-oriented analysis.

Most of the numbers in the example 150W buck
regulator are the same as those chosen by
Schoneman and Mitchell {7]. This was done so that
the performance functions determined here could be
compared with those derived by Schoneman and
Mitchell, who used an entirely different approach
to the analysis. When all the numbers are the
same, the performance functions obtained by the two
approaches are, of course, also the same. In the
example discussed here, however, one parameter is
chosen differently (the gain of the error
amplifier) to illustrate its effect on the results.

The reasons leading to the choice of
modelling approach are discussed in Section 2, and
result in adoption of a canonical model that
absorbs the current-programming minor feedback
loop. In Section 3, this y-parameter canonical
model is modified and simplified to apply
specifically to the buck power stage of the example
regulator. From this model, the power-stage
control-to-output and line-to-output transfer
functions and output impedance are immediately
written down, and some comments are made regarding
the effectiveness of the current-programming
property.

In >ection 4, the regulator voltage loop,
which is now the only explicit feedback loop, is
closed and the loop gain T and feedback factor 1+T
are determined. The familiar properties of single-
loop feedback systems are then employed to find the
regulator closed-loop output impedance Z,; and
line-to-output transfer function A;; from their
respective open-loop values.
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Also in Section 4, the results for the
regulator closed-loop properties are evaluated.

Discussion of the results and of the
significance of the design-oriented analysis
approach is presented in Section 5.

2. MODELLING APPROACH

The circuit of the regulator with a current-
programmed buck power stage is shown in Fig. 1.
The numbers, supplied to the author by private
communication, are those used in an example by
Schoneman and Mitchell {7].
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Fig. 1. Current-programmed buck regulator.

Values of R, and C, are later chosen to
be 270k and 0.053uF.

The buck power stage and the error amplifier
with gain controlled by 1local feedback are
conventional. The reference voltage Vg is such
that the steady state duty ratio is D = 0.5, which
results in an output voltage V = 15V from a line
voltage V, = 30V. With a load resistance R =1.5Q,
the output current is I = 10A for an output power
of 150W. The switching frequency is f;, = wg/27xr =
25 kHz, for a switching period T, = 1/f, = 40 us.

Current-programming is
which senses the switch current in the ON
condition. The resulting sensed voltage 1is
multiplied by N, and a stabilizing ramp of peak
value 2.0V is added before comparison with the
control signal from the error amplifier. The
operation of the current-programming feature and
the purpose of the stabilizing ramp have been well
documented [1,6].

implemented by R,,

2.1 Choice of Feedback Loops

establishes a local
current feedback loop around the power

Current-programming
"minoxr"

stage, which is inside the "major" voltage feedback
loop via the error amplifier. One may define and
analyze any loops or combinations of loops one
wishes, each of which has its own "crossover
frequency" and "phase margin" [6]; the results for
the regulator performance functions should of
course be the same regardless of the loop
definitions.

One choice is to consider the current and
voltage loops to be in parallel around the power
stage [4,5]; this has the advantage that the
familiar state-space averaged canonical model of
the power stage under duty ratio programming [8]
can be employed, but the disadvantage that the
distinction between the current and voltage loops
is lost. Since the two loops are employed for
different purposes, loss of separation obscures the
design criteria.

Another choice is to consider the current
loop separately, and to find a canonical model that
represents overall transfer functions of the
current-programmed power stage around which the
regulator -voltage loop is closed. This approach,
recommended in [6], has the advantage that design
and optimization of the voltage loop proceeds in
the same way as for a duty ratio programmed power
stage; there is merely a different canonical model
for the current-programmed power stage, whose
contrasting properties are already explicitly
exposed in the model. Another advantage of this
approach is that the analysis of the current loop
is done once and for all, and represented by its
canonical model; thereafter, design of any
regulator requires consideration only of the

voltage loop. This is the approach that will be
adopted here.

Development of a generalized canonical model
for the basic current-programmed buck, boost, and
buck-boost power stages has been described in [6].
This becomes the starting point for the design-
oriented analysis for the buck regulator of Fig. 1.

2.2 _ Current-Programmed Buck Converter
Canonical Model

The canonical small-signal model for current-
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Fig. 2. Generalized small-signal  y-parameter

model for a current-programmed power
stage. The current-programming minor
feedback loop around the power stage is
absorbed in, and therefore is implicit
in, the model. There are two inputs,
the small-signal control voltage ¥,
and line voltage ¥,.



programmed pwm converters operated in the
continuous conduction mode is shown in Fig. 2.
This y-parameter model, and a table of expressions
for the element walues for the buck, boost, and
buck-boost converters, were presented in [6].

For the buck converter, the subject of this
paper, the expressions for the six elements in the
model of Fig. 2 are:
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The modeir of Fig. 2 and the above expressions
represent the part of Fig. 1 designated the "power
stage," that is, excluding the load resistance Ry
and the load capacitance C and its associated esr.
Also, the parasitic resistances within the power
stage are neglected, which means that R, 1is
accounted for- solely as a current sensing device
and its voltage drop in the power stage is ignored.
The dc output voltage V in Fig. 1 is determined by
two inputs, the line voltage V, and the control
voltage V.. Similarly, in the small-signal model
of Fig. 2, the small-signal output voltage ¢ is
determined by the corresponding two small-signal
inputs ¥, and ¢,.

There are several parameters in the
expressions for the element values in addition to
those that are explicit in Fig. 1. These are
defined and evaluated below, along with a review of
their significance in the operation of the current-
programmed converter.

The current sensing function is represented
by Ry, which is the ratio of the voltage presented
to the comparator to the switch current (that is,
the inductor current), that 1is being sensed.
Because of the gain factor N in Fig. 1, the
effective value of R, is Ry = NR, = 5x0.02 - 0.10Q.

The numerical parameter n relates the
equivalent current slope M, of the stabilizing ramp
to the slope M; of the inductor current during the
switch ON-time:

n=1+ 2M /M, . (3

Here, the ramp reaches a peak voltage V, during a
switching period T,, so the equivalent current
slope is M, = V,/T,Ry = 2.0/(40x0.10) = 0.5A/us.
The inductor current slope during the switch ON-
time, when the inductor is connected between line
and output, is M;=(V,-V)/L = 15/40 = 0.375A/us.
Hence, n = 1 + 2 x 0.5/0.375 = 3.67.

The purpose of the stabilizing ramp is to
extend the range of stability of the current-
programmed power stage beyond the value D,,, = 0.5
that exists in the absence of a ramp (n = 1). As
shown in [6], in the presence of a ramp D,,,/(l-
Dpax) = n, so Dy, = n/(l4n). In the present case
n = 3.67 so Dyay = 3.67/4.67 = 0.786, which means
that the minimum line voltage for which regulation
of the output voltage .V = 15V can be maintained is
V/Dpax = 15/0.786 = 19.1V.

It is also shown 1in (6] that if the
stabilizing ramp slope M, equal the slope M, of
the inductor current during the switch OFF-time,
then any disturbance from the equilibrium duty
ratio is eliminated in one switching period; the
value n = n; corresponding to M, = M, is n, =
(14D)/(1-D) = 3 for D = 0.5. 1In the present buck
converter example, n = 3.67 so M, exceeds M,, and
in this sense the converter is "over-stabilized."

The frequency w,, which appears as a pole in
all six y-parameters, is given by
Wy 25

=-2r ———
anD’ ax3.67x0.5

W, =

= (2n)4.34KkHz (4)

In [6], w, is identified as the crossover frequency
of the loop gain of the minor current loop. This
parameter represents the only visible evidence of
the current feedback 1loop after the feedback
effects have been absorbed into the y-parameter
model of Fig. 2.

The resistance R 1is an
parameter" defined as

"operating point

v.ou 1.50 (5)
1 10 )

dc output voltage
dc output current

If the load on the regulator is a pure resistance
Ry, as in the present example, then R = R
numerically. However, the distinction in symbols
will be retained as a reminder that R and Ry are
conceptually different; R is a parameter contained
in the model of the power stage, whereas R; is an
external element. The distinction is important
when the load contains a constant current component
and/or becomes complex.

Finally, K 1is a "conduction parameter"
defined as
2L 2 x 40
K =-1.33 (6)

“RT, T 1.5 x 40

As discussed in [6], the low-frequency loop gain of
the current-programmed minor feedback loop is
proportional to K, and K is the same conduction
parameter that appears in the canonical model for a
duty ratio programmed power stage in discontinuous



conduction mode. Here, it appears in the model for
a current-programmed power stage in continuous
conduction mode, and must exceed a certain critical
value K.,,, if the discontinuous conduction mode is
to be avoided.

It 1s shown in [9] that, for a buck
converter, K, ;; = D'. 1In the present example of
Fig. 1, D = 0.5 so K;,;¢ = 0.5. From Eqs. (5) and
(6), there is a corresponding minimum value I,,, of
dc load current:

VT, 15 x 40

Tnin = 575 Kerse = 5 70— 0.5 = 3.754

(7

The corresponding maximum load resistance (again,
for a pure resistance load), is

v 15
Inin  3.75

Rimax = Rpax = - 40 (8)
If the operating conditions of Fig. 1 represent
full load power of 150W at I = 10A, the minimum
load power to avoid discontinuous conduction is
3.75A x 15V= 56W, or about 38% of full load power.

3. CURRENT - PROGRAMMED BUCK REGULATOR OPEN
LOOP PROPERTIES

3.1 Modified y-Parameter Model

The y-parameter expressions of Egs. (l) can
be put into a somewhat more convenient form by
elimination of the parameter K in favor of the
power stage inductance L, by Eqs. (4) and (6):

—_— = L . 9
nD’ We ( )

For example, y,, can be written
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The physical interpretation of w L = 2x X 4.34 X
0.04 = 1,090 is that it is the reactance of the
power stage inductance at the current loop gain
crossover frequency.

It follows from Eq. (10) that 1/y,, consists
of a resistance in series with an inductance.
However, in the regulator circuit of Fig. 1 1l/y,,,
which is the output impedance of the power stage,
is paralleled by C and Ry. As a consequence, the
inductive component of y,, can be neglected because
at frequencies where it becomes significant in y,,,
the total parallel impedance is dominated by C.

Hence (because of the way the power stage is
loaded), 1/y,, = w/L/(1-D/nD’') = 1.09/0.727 =
1.500.

Replacement of factors in K by w.L, according
to Eq. (9), in the other y-parameters allows Egs.
(1) to be rewritten in the following forms:
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Figure 3 shows the small-signal model of the
current-programmed boost regulator of Fig. 1,
incorporating the modifications already discussed.
Since the regulator input properties seen by the
line are not discussed in this paper, the input
half of the y-parameter model is omitted; only the
output half is needed to derive the loop gain,
output impedance, and line-to-output transfer
function. For convenience in application of this
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Fig. 3. Small-signal model of the circuit of

Fig. 1. The y-parameter model of Fig. 2
is modified and simplified for the buck
converter, and the input half is
omitted. The voltage minor feedback
loop around the error amplifier is
absorbed in, and therefore is implicit
in, the model represented by the gain
block 4. Only the voltage major
feedback loop remains explicit.



model, the numerical values already obtained are
summarized below.

D =-0. R, = 0.100 (13)
C = 2700uF R=- R = 1.50 (14)
£, = 4.34kHz w,L = 1,090 (15)

3.2 Open-Loop Transfer Functions A,
A, and 2,

The switch shown in Fig. 3 is introduced
merely to permit separation between the open-loop
and closed-loop properties. Three small-signal
functions of the open-loop loaded power stage are
of interest: the control-to-output transfer
function A, = ¥/%_, the line-to-output transfer
function (audio susceptibility) A, = ¢/¥,, and
the output impedance (including the 1load) Z,.
These functions are easily written down directly
from the model of Fig. 3, and evaluated with use of
Eqs. (13) through (15):
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These three functions are sketched in magnitude-
asymptote form in Fig. 4.

3.3 Remarks on the Effectiveness of
Current Programming

It is worth pausing here to review the form
of Fig. 3 and its significance.

In accordance with the preferred
approach outlined in Section 2.1, the regulator
voltage feedback loop is explicitly exposed, while
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Fig. 4. Magnitude vs. frequency asymptotes of

the open-loop loaded power stage
transfer functions control-to-output A,
= /0., line-to-output 4, =
G/{}s , and output impedance Z,, from

the model of Fig. 3.

the current feedback loop has been absorbed into
the model representing the overall properties of
the current-programmed power stage. One of the
advantages of this form is that the properties of
the current-programmed power stage are immediately
visible, which is why the three functioms A_, A,
and Z, could be written directly by inspection of
the model.

Also, it can be seen how well the current
programming does its intended job of making the
output current "constant." What this objective
really means is that the output current should be
represented in the model by a current generator
proportional to the control voltage ¥,. It is
seen that such a current generator (the y,,
generator) is indeed present, but that the output
current is not equal to it because the output
resistance is not infinite. The output resistance
is w,L/(1-D/nD') and, as shown in [6], the
denominator only goes to zero in the limit of
instability when n - D/D'. Therefore, the output
resistance can only go to infinity if either the
switching frequency or the inductance goes to
infinity, a limit that corresponds to infinite loop
gain of the current minor feedback loop [6]. The
actual wvalue of the output resistance w,L/(1-
D/nD’), in the present example, is 1.5Q, and not at
all large, consistent with the point made in [6]
that the low-frequency current loop gain is not
large.

Finally, the current generator y, .V, itself
in Fig. 3 fails to "program" its current at higher
frequencies, because of the pole w,. As already
mentioned, this pole is the crossover frequency of
the current loop gain, that is, the frequency above
which the current-programming ceases to function at



all. Consequently, the control-to-output transfer
function A, given by Eq. (16) contains not only the
dominant pole w, (commonly thought to be the "only
corner frequency" in this function), but also a
second pole w., as shown graphically in Fig. 4.

Were it not for these "shortcomings" of the
current feedback 1loop, the y,. 9, current
generator in Fig. 3 would be 1/R,, and this would
also be the output current, so that the output
current would ideally be programmed to be equal to
(1/Re)%, .

Thus Ry, the effective current sense
resistance, sets the control voltage to output
current gain, and therefore appears as an explicit
(reciprocal) factor in the control voltage to
output voltage transfer function given by Eqs. (16)
and (17). This transfer function implicitly
applies to the power stage with the minor current-
programming feedback loop closed, just as the gain
block labeled A; in Fig. 3 applies to the error

amplifier with its minor voltage feedback loop
closed.

In this way, the various feedback loops are
accounted for in an orderly fashion, and in the
model of Fig. 3 only the regulator major voltage
feedback loop remains to be considered. This is
done in the familiar manner used for conventional
"single-loop" regulators, the only difference being
the incorporation of a different canonical model
for the power stage.

4, CURRENT-PROGRAMMED BUCK REGULATOR CLOSED-LOOP
PROPERTIES
The model of Fig. 3 contains all the

information necessary for establishment of the
major voltage loop gain and the regulator closed-
loop output impedance Z,, and line-to-output
transfer function A,,.

4.1 Loop Gain T, Phase Margin ¢y, and
Feedback Factor 1+T

The voltage loop gain T is simply the product
of the error amplifier gain A; and the control-to-
output transfer function A, of the loaded power
stage:

T = A)A, (23)

If A, is a constant A;,, the loop gain is merely a
vertical scaling of the function A, with its
various corner frequencies. This is the same as
saying that the value of A,, determines not only
the midband loop gain T, as

Tp = AjpAcn (24)

but also the loop gain crossover frequency f,., =
wy./2m, the frequency where the magnitude of T
crosses the zero dB axis, as shown in Fig. 5. By
the geometry of the graph,
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Fig. 5. Placement of the loop gain crossover

frequency f,, at 3.43kHz, by appropriate
choice of the midband loop gain T,, and
hence of the error amplifier gain Ay -

Wye = mep (25)

The value of A;; must be chosen so that
crossover occurs below the pole w,, because
otherwise the phase margin would be too small.
Obviously, one wishes to place the crossover
frequency as high as possible in order to get the
widest bandwidth over which the benefits of
feedback are realized.

Where shall the loop gain crossover frequency
£, be placed? Let us try putting f,. at about
one-third of the pole frequency f, = 3.34kHz, say
fo. = 1.67kHz.

The resulting phase margin ¢éu of the voltage
loop gain is 180° minus the sum of the lag
contributions from the poles at f, and f.:

1670 1.67
- 180 - -1 2278 -1 227
Py 0 [tan 79 + tan 4'3[‘]

= 180 - (87° + 21°) = 72° (26)

This is an acceptable phase margin, so we can adopt
the crossover frequency f,, = 1.67kHz,and use Eq.
(25) to find the corresponding midband loop gain as
To = £,./f, = 1670/79 = 21.3 - 26.5dB. From Eq.
(24), the required value of the error amplifier
gain is Ay = Tp/A.p = 21.3/7.5 = 2.84 » 9.1dB.

The error amplifier is actually an opamp with
local feedback to set its overall gain A;, and
hence the crossover frequency of the regulator
major voltage loop. Since only 9.1dB of gain is
required, most of the available opamp gain 1is
wasted. However, the lost gain can be recovered,
for. frequencies sufficiently far below the
regulator loop crossover frequency, by placing an

"inverted zero" w; in the error amplifier gain
function:



A = A [1 + ‘;-’A] (27)

From the circuit in Fig. 1,

A = Ry /Ry (28)
1
- 29)
wy G.K, (

The zero w, is open to choice; let us make w;/2m =
f, = 11Hz. Since A;, is already set at 2.84 and R,
= 95,3k is specified, the required values of R, and
C, are:

R, = AjgRy = 2.84 x 95.3 = 270k (30)
1 10-3

Co = R, ~ 27 x 11 x 270

= 0.053uF 31)

The final designed loop gain T is shown in
Fig. 6. The inverted zero at f; = 11Hz contributes
a small additional phase lag tan-1 (11/1670) = 0.4°
at the crossover frequency f,, = 1.67 kHz,
resulting in a negligible reduction in the original
phase margin ¢y = 72°.
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Fig. 6. cConstruction of the feedback factor 1+T

from the loop gain T, after the inverted
zero chosen to be at f; = 1lHz has been
introduced into T, for minimum load
resistance Ry = R = 1.50Q.

The expression for the final regulator
voltage loop gain, by incorporation of Egqs. (16)
and (27) into (23), is

wy
1+ =
s
TeT, (32)
- s
ERI3
wp W,
where
1w;;nD’ B
Tp = Anfen = Arn R 33
£
= 21.3 » 26.5dB (34)

Also, the regulator voltage loop crossover
frequency is, from Eqs. (18) and (25),

Wye = Tm“’p = R;m (35)
c
2.84x108
- L (22)1.67kH
0.10x2700 ~ (2m)1.67kHz (36)

The above numerical results for T, and w,, of
course confirm the values that led to choice of A,
in the first place. To complete the summary of
analytical and numerical results, the expressions

and numbers for the corner frequencies are repeated
below:

1
> " Tl np = (2x)79Hz (37)
1-D/nD* |~
Wy
w, = ~ = (2m)4.34kHz (38)
nD

One of the most important advantages of the
adopted modelling approach is that the properties
of the current-programmed power stage are already
explicit before the regulator major voltage loop is
considered. The direct result of this approach is
that the regulator closed-loop properties can be
found from the open-loop properties by the familiar
formulas for single-loop systems.

In particular, the regulator closed-loop
output impedance Z,; and line-to-output transfer
functions A ;¢ are given in terms of their
respective open-loop values Z, and A, by

Z
Z ., = 2o
ot = T (39)
byt - 1A (40)
1+7T

where T is the regulator major voltage loop gain
given by Eqs. (32) through (38).

Only one additional calculation is required,
which is to find the feedback factor 14T from the
known T. This can be done very easily, to a
sufficient degree of accuracy, by a semigraphical
technique.

As shown in Fig. 6, 1+T can be constructed by
drawing the asymptotes for 1+T just above those of
T for frequencies below the crossover f, .,

However, beyond crossover, T is much less than
unity, so 1 + T = 1 or OdB. All that remains is
to identify the corner frequencies of 1+T. The
inverted zero f; and the lowest pole f, are the
same as those in T; the new zero, by the geometry
of the asymptotes, is (1 + T)f, or (1 + Ty)f,./T,.
Hence, the factored pole-zero expression for 14T
can be written by inspection of the asymptotes as

W Tns
[” s] [“ <1+T...>wvc]
14T = (1+T,)

(41)
s
3]
@p




It is to be noted that if Eq. (32) for T were
substituted into 1+T and the pole-zero factors
found algebraically, a cubic equation would have to
be solved. With appropriate approximation, the
result of Eq. (41) would be obtained.

4.2 Closed-Loop Transfer Functions Z,,
and A, for Maximum Load

The regulator closed-loop output impedance
Z,¢ can now be found from substitution of Egs. (21)
and (41) into (39):

1
ofm
1 + w_l 1+ L
s (14T, wy ¢

B
14T, 1+T, T,

T, R T, 1
14T, Arp 14T, wy.C
~21.3 0.10

22.3 2.84

Zos = R

(62)

where

&

R m

ofm

|

- 0.0340 (43)

Although the algebra is simple, more insight is
gained into the above result if the process is
conducted graphically. In Fig. 7, the magnitude
asymptotes for Z, and 14T are shown; their
difference gives Z,/(1+4T) = Z ;.

The same graphical process can be used to

find the regulator closed-loop line-to-output
T T T
1000 +

20  1+T,=223 HER ! 100
F 1+ T,

‘ T—":" f,c=1.67 kHz
-0 10 A
| LRm=0.|75§1 gzy
- -20 f,= 11 Hz ola -

|
+ dB

R =R°_”‘
- -40 otm |+ Ty, 0.0i9
1Z4l =0.0340 = -29.5d8
ref 12
10Hz 100 IkHz 10
L 1 N 1 N 1 N 1

Fig. 7. Construction of the closed-loop output

impedance Z,; from its open-loop value

Zy and the feedback factor 1+T,

according to Z,y = 2,/(1+T), for R, = R

- 1.5Q.

transfer function. Figure 8 shows the magnitude
asymptotes of A, and 1+T from Eqs. (19) and (41);
their difference gives Ay /(14T) - Age.
Analytically, the result is

10

— — — — v
140 -
] fo=79Hz ]
F20  j4T,=22.3 gleTl 7
L 1+ Tm 1
T fue™1 67 kHz
Lo
[ (Agm0.16=>16d8 | 7
=20 lA? 7
9% f=nmlz ]
[ | ]
% Agm f.=4.34 kHz
r Agtm= 17 )
LU IS
HAgt =0.0070 => -43d8 -
1OHz 100 1kHz
N 1 r 1 A [ N 1 a
Fig. 8. Construction of the closed-loop line-to-

output transfer function Agy from its
open-loop value A, and the feedback
factor 1+T, according to Age = Ag/(14T)
for Ry = R = 1.5Q.
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where
—gm

14T, T,
D(1-1/nD’)R

Ay wo L
D(1-1/nD’) 1
- 1+T, w. L wy . C

21.3 0.5x0.455x0.10
T 2237 2.84x1.09
0.0070 -+ -43dB
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(45)

S. SIGNIFICANCE AND INTERPRETATION OF THE
DESIGN-ORIENTED ANALYSIS

Analysis is only one of the tools used in
design, and analysis is only useful if its results
can be used in reverse to select element values in
order to achieve certain performance results,
namely, to meet the specifications.

The interpretation of the analytic results
obtained above, discussed in this section, is
indispensable if full value is to be obtained from
the analysis. This 1is, after all, the whole
purpose of the "design-oriented analysis" approach.

The most important aspects of the analytic
results are the loop gain crossover frequency and
the midband (maximum) values of the closed-loop



output impedance and line-to-output transfer
function, and how they vary from minimum to maximum
load resistance, and from minimum to maximum line
voltage. The 1load resistance R; enters the
equations directly, and also indirectly through the
operating point parameter R, which for a purely
resistive load is numerically equal to Ry. In this
example of the buck regulator, the minimum value is
R =R, = 1.50 (maximum power out of 150W), and the
maximum value is R = Ry = 40 (minimum power out of

56W), as discussed in Section 2.2. The minimum
line voltage, also discussed in Section 2.2, is
19.1v. The 1line voltage enters the equations

through the duty ratio D needed to maintain the
regulated output voltage V = 15V,

Although the midband loop gain T,, by Eq.
(33), varies quite strongly with both D and Ry, the
crossover frequency w,, = A;,/R:C, by Eq. (35), is
independent of both line and load. This is because
the dominant pole w,, Eq. (37), varies inversely
with T, as the same function of D and R, through
the common factor [w,L/(1-D/nD')]|R.. It is, of

course, desirable to have a crossover frequency
that changes 1little, if at all, with operating
conditions.

On the other hand, the midband loop gain T,
itself does not have any particular significance

because it is explicit only over the mnarrow
frequency range between the inverted zero w; and
the dominant pole w,. The final pole w. in the

loop gain, Eq. (4), is also independent of 1load,
but does depend on line voltage.

The feedback factor 14T essentially follows T
until it 1levels out at wunity at the =zero
(14T )wy e /Ty, - The midband loop gain 1is
sufficiently high that (1+T,)/T, = 1 and so 1+T
levels out at essentially the crossover frequency
foo = 4.34 kHz.

The closed-loop output impedance Z,; is its
open-loop value divided by the feedback factor,
which results in Eq. (42). Since the loop gain
goes away at the crossover frequepcy, the closed-
loop output impedance is essentially equal to its
open-loop value beyond w,.; since its open-loop
value is dominated by the load capacitance C, the
midband (maximum) closed-loop value R,¢, is equal
to the load capacitance reactance at the frequency
(14T, )wy . /T, , as seen from Eq. (43). The closed-
loop output impedance drops Dbelow R,¢, at
decreasing frequencies below w; because the error
amplifier gain increases, and so the loop gain
increases faster than the capacitance reactance.

The most significant consequence of these
points is that the closed-loop output impedance Z ¢
is independent of load R; (and of the operating
point parameter R), to the extent that (1+T,)/T, =
1.

Very similar remarks may be made concerning
the closed-loop line-to-output transfer function
Agy of Eq. (44), which is also equal to its open-
loop value divided by the feedback factor. The
midband (maximum) closed-loop value A is equal

frequency

to its open-loop value at

g fm
the

"

(14T, )wy . /Ty, as seen from Eq. ( ). As in the case
of the output impedance, this maximum value does
not depend on the operating point parameter R.

Some further points can be made regarding the
design choices. The central importance of the loop
gain crossover frequency has been emphasized: it
determines the midband value of the closed-loop
output impedance and of the line-to-output transfer
function, and the pole above which they fall off.
Clearly, it is desirable to have as high a
crossover frequency f,. as possible, limited by its
encroachment on the second pole w, of the power
stage and consequent reduction of phase margin.

The other frequency of salient importance is
the error amplifier inverted zero at f,. It is
desirable to have f;, as high as possible in order
to make as narrow as possible the frequency over
which the closed-loop output impedance and line-to-
output transfer function have their maximum values

(Figs. 8). The limiting factor is again phase
margin; a higher f; reduces ¢y. The design choices
of A;, and f; are implemented by the appropriate

values of R, and C, in the error amplifier circuit
of Fig. 1, as given by Eqs. (30) and (31).

The consequence of too low a phase margin,
whether because of proximity of either the second
pole w, or the inverted zero f; to the crossover
frequency f,,, is that both the closed-loop output
impedance and 1line-to-output transfer functions
develop a resonant peak above their midband values.
In the extreme, of course, instability results.

Consideration has been given here mainly to
the effects of load resistance upon the regulator
performance functions. However, all the
information relevant to the current-programmed buck
regulator of Fig. 1 is contained in the model of
Fig. 3. A complete design should of course also
take into account a range of line voltages Ve,
which would be accounted for in the model by a
corresponding range of duty ratio D.

Other choices of stabilizing ramp slope M,
represented through the parameter n of Eq. (3),
could also be considered. It has already been
mentioned in Section 2.2 that the power stage is
"over-stabilized" in the sense that M, exceeds M,,
the declining inductance current slope during the
power switch OFF-time. The power stage is even
more over-stabilized in another sense, related to
the line-to-output transfer function Ag .

As seen from Fig. 3 and Eq. (20), the line-
to-output transfer function A; contains the factor
(1-1/nD’) (from the y,; element of the y-parameter
model of the current-programmed power stage). This
factor is zero if nD’ = 1. From Eq. (3), this
occurs if the stabilizing ramp slope is chosen to
be M, = M., such that

1D

1v
McoggD—,Ml P

_l,
2% 2L

In the example regulator, this corresponds to a
voltage stabilizing ramp amplitude V, = 0.76v,
rather than the original value Vv, = 2.0V,
Moreover, this optimum value is independent of



operating point for a

voltage.

given regulated output

Almost all the numbers in the example circuit
of Fig. 1 are the same as those used by Schoneman
and Mitchell [7], who presented experimental
measurements of the closed-loop output impedance
and line-to-output transfer function to verify
predictions made by an entirely different modelling
approach.

The only regulator design parameter in this
paper chosen differently from that of Schoneman and
Mitchell is the error amplifier midband gain A;, =

R, /Ry, which is here set at A;, = 2.84 with a
required resistance R, = 270k. The value of C,
here 1is different from that of Schoneman and
Mitchell only to maintain the same value of the
inverted zero f; = 11Hz.

Although the regulator properties and

transfer functions derived in this paper have not
been directly verified experimentally by the
author, they agree completely with the experimental
measurements presented by Schoneman and Mitchell
when their value A;, =~ 78.7/95.3 = 0.83 is
employed. This may be taken to be adequate proof
of the validity of the canonical model for the
current-programmed boost power stage of Fig. 3.
The value A;, =~ 0.26 implies a midband loop gain of
only T, = 7.9, and correspondingly larger values
Rogm = 0.560 and A ey = 0.11 at a load resistance
of 11.2qQ.

There is actually one other difference from
the model of Schoneman and Mitchell. In the
circuit of Fig. 1, the resistance 0.0120 in series
with the 2700uF capacitance gives a zero at w, = (2
7)5.0 kHz which has been ignored throughout this
paper in order to eliminate the corresponding
factor from numerous equations. It could easily be
replaced, and would appear as a factor (l+s/w,) in
the numerators of the expressions for the loop gain
and the open-loop and closed-loop output impedance
and line-to-output transfer functions.

Both the modelling approach employed in this
paper and that of Schoneman and Mitchell are based
on the state-space averaging method for switched-
mode converters ([8]. This means that results at
frequencies approaching the switching frequency f,
= 25 kHz are not reliable.

6. GCONCLUSIONS

Current-programming of switching power stages

is becoming widely adopted. However, application
of more recently presented equivalent circuit
models has not been fully developed. This paper

discusses the use of a particular model for the
power stage in the analysis and design of a
current-programmed boost regulator.

Since current-programming introduces a minor
feedback loop around the power stage, which is
inside the regulator major voltage loop, a choice
must be made at the outset as to which loop or
combination of loops are to be adopted for analysis

purposes. The merits of alternative choices are
discussed in Section 1, and additional comments are
offered in [10].

The approach chosen 1is that in which the
current-programming minor loop is absorbed into an
equivalent circuit (canonical model) that
represents the properties of the current-programmed
power stage as a whole. The benefit gained is that
the degree to which the current-programming is
effective can immediately be seen explicitly from
this model, which then becomes one transfer block
in the model of the regulator major voltage
feedback loop. Thence, the familiar methods for
single-loop feedback systems can be employed., The
simplicity of this approach is of significant value
in the method of design-oriented analysis, in which
the analytic results (which are not "answers" in
themselves) can be used in reverse to make design
choices and tradeoffs.

This procedure is pursued in the following
sections, applied for illustration to a 150W
current-programmed buck regulator switched at
25kHz .

In Section 3, the y-parameter canonical model
for a current-programmed power stage is modified
and simplified for specific application to the
example buck converter, and immediately leads to

simple factored pole-zero expressions for the
control-to-output and line-to-output (audio
susceptibility) transfer functions A, and A,, and

for the power-stage output impedance Z,.

These open-loop functions are used in Section
4 to determine the regulator (single-)loop gain T

and, by a simple semigraphical technique, the
feedback factor 1+4T. The feedback factor in turn
is used to find the regulator closed-loop
properties Z,, and Ag¢ that correspond to the

converter open-loop values, by Z,, = Z2,/(14T) and
Ay /(14T).

These steps represent the essence of the
design-oriented analysis approach, in which the
analytic results, which are to match the
specifications, are in simple forms closely related
to the original elements in the system. The
significance and interpretation of the design-
oriented analysis approach as applied to the

example regulator are discussed at some length in
Section 5.

A treatment similar to that given in this
paper for a buck regulator has been presented for a
current-programmed boost regulator in [11].
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