
Modelling access policies using roles in requirements engineering

Robert Crook*,1, Darrel Ince, Bashar Nuseibeh

Security Requirements Group, Department of Computing, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK

Received 1 December 2002; revised 3 March 2003; accepted 1 April 2003

Abstract

Pressures are increasing on organisations to take an early and more systematic approach to security. A key to enforcing security is to

restrict access to valuable assets. We regard access policies as security requirements that specify such restrictions. Current requirements

engineering methods are generally inadequate for eliciting and analysing these types of requirements, because they do not allow complex

organisational structures and procedures that underlie policies to be represented adequately. This paper discusses roles and why they are

important in the analysis of security. The paper relates roles to organisational theory and how they could be employed to define access

policies. A framework is presented, based on these concepts, for analysing access policies.

q 2003 Elsevier B.V. All rights reserved.

Keywords: Access policies; Security requirements; Roles

1. Introduction

There is increasing recognition of the importance of

requirements engineering (RE) in the formulation and

analysis of security policies [1]. The term policy is broad

but can be interpreted as a rule, which may be of a

procedural or technical nature, and is formulated to satisfy a

goal. In this paper we focus on policies for data access and

how the rules by which data should be accessed can be

expressed.

Access is controlled by allocating permissions to users,

allowing them to access particular information only. In

order to specify access control requirements, an under-

standing of organisational structures and procedures is

needed [12]. While some RE methods incorporate notions

of actors or agents, they do not explicitly allow relating

actors to organisational groups or modelling of authority,

both of which are keys to identifying responsibilities of

users with respect to the information assets that are to be

protected.

The ideas presented in this paper have emerged from a

project within the Security Requirements Group at the Open

University. The objectives of this work are to

1. Identify concepts and organisational principles that

underlie access restrictions and authorisation procedures.

2. Develop an analytical framework based on the above

concepts for specifying and analysing these types of

requirements.

3. Explore how this framework could be integrated into

existing RE methods such as goal-based analysis.

4. Validate the framework with a set of case studies, either

using real life projects or analysing case studies from the

literature.

In this paper, we report on the outcome of the first two

objectives. The paper is organised as follows. In Section 2

we discuss the importance of roles for analysing security

goals and policies, the weaknesses of current RE methods,

and examine contributions from the policy and access

control research community as to how roles can be used to

formulate access policies. In Section 3 we relate this

research to organisational theory, and identify categories of

roles and how they may be derived from an organisational

structure. In Section 4 we introduce a framework for

specifying and analysing role-based access restrictions,

which includes a graphical notation, and illustrate its use on

a healthcare example. We conclude the paper with a short

summary and a discussion of future work.

0950-5849/03/$ - see front matter q 2003 Elsevier B.V. All rights reserved.

doi:10.1016/S0950-5849(03)00097-1

Information and Software Technology 45 (2003) 979–991

www.elsevier.com/locate/infsof

1 Robert Crook is also an independent consultant.

* Corresponding author. Tel.: þ44-1908-274-066; fax: þ44-1908-653-

744.

E-mail addresses: robert.crook@t-online.de (R. Crook), d.c.ince@

open.ac.uk (D. Ince), b.a.nuseibeh@open.ac.uk (B. Nuseibeh).

http://www.elsevier.com/locate/infsof


2. Roles in Security Requirements Engineering

2.1. Security goals

Information security is concerned with safeguarding

information assets. The reason we wish to safeguard these

information assets is to protect the individuals or organis-

ations that depend on them. When formulating the

requirements of a system, a set of functional requirements

will arise. The functions that we define also bring with them

dangers. In a banking application, the function to transfer

money could be abused, and we would want to ensure that

criminals do not transfer money out of a customer’s account.

At the requirements level we need to consider these threats

and the goals that we define, in order to express the desire to

prevent such untoward events. In particular, we want to

ensure that the behaviour of users does not compromise

security goals. There are many ways in which users can

compromise security. Users can potentially corrupt data,

delete it, access information they should not, and distribute

it or perform actions that render the system unavailable.

This can occur intentionally or unintentionally. In either

case, the threats to the system need to be evaluated and

measures decided upon to prevent these threats from

occurring. The British Standards Institution [24] defines

the top level goals for information security as maintaining

confidentiality, integrity, and availability.

† Confidentiality—ensuring that information is only

accessed to those who are authorised.

† Integrity—safeguarding the completeness and accuracy

of the information and processing methods.

† Availability—ensuring authorised users have access to

information when required.

In maintaining these goals it is important to restrict

access to information [24]. Access control is an important

component of a security policy, particularly with regard to

confidentiality and integrity. Normally these restrictions

along with other security requirements are dealt with late on

in the software development cycle, often during the design

phase. The consequences are that a rigorous analysis is not

carried out as to who should be able to do what. One

common problem, for example, is the employee who leaves

an organisation but whose permissions are not removed.

This exposes the organisation to an unnecessary risk and is

typical of the sort of loopholes that occur if the analysis is

insufficiently rigorous.

There is therefore a need to tackle access control earlier

on in the development process during the RE phase to

determine exactly what the access control requirements are.

In the RE literature, although there are some important

contributions with respect to the analysis of threats [25],

evaluation of design alternatives to satisfy security goals

[26], and checking the consistency of requirements with

respect to a security policy [1], there is very little with

regard to access policies. An exception to this is Fontaine

[27], who explores how a goal model based on the goal-

oriented approach KAOS can be mapped onto Ponder [21],

a language for specifying access policies, which we review

in more detail later on. What is important here is the

principle of how operationalised goals can be translated into

authorisation policies. The authors propose that the assign-

ment of an agent to a goal maps on to an authorisation policy

in Ponder. This simple definition, as we will see, however, is

inadequate to accurately represent access restrictions, which

are actually somewhat more complex and need to mirror

organisational structures and procedures.

2.2. Access policies

The RE literature on this subject is somewhat wanting;

until now the RE community has largely neglected the

plethora of research on security policy.

Research on computer security policy has been ongoing

since the 1970s. The Bell–LaPadula (BLP) model [3] has

been particularly influential, and forms the basis of a family

of multi-level security models, usually referred to as

mandatory access control [8]. Discretionary access control

on the other hand has been accepted as a less rigorous way

of controlling access. Clark and Wilson [7] identified

important principles for protecting the integrity of data in

commercial organisations and in particular the separation of

duties. Actions can be divided into smaller tasks, which

must be carried out by different individuals, so preventing

one individual alone from being able to defraud the system.

Research into access control has become focused

increasingly around Role-Based Access Control (RBAC)

[14]. The basic premise underlying RBAC is that in

order to simplify administration, permissions are assigned

to roles rather than users; a user gains permissions by

being assigned a role. Roles are a way of defining

positions in organisations, bundling responsibilities, or

perhaps representing a qualification. Sandhu et al. [14]

argue that RBAC is policy neutral, thereby allowing the

enforcement of a variety of security constraints. A good

example is the separation of duties, an important policy

to ensure integrity. Separation of duties can be achieved

by defining mutually exclusive roles, which have to be

invoked for a collaborative task, in order to ensure that a

sequence of tasks cannot be carried out by a single

individual. Furthermore, RBAC can coexist with, or be

used to support, mandatory access control policy [13]

such as BLP or a discretionary access control policy

[16], where users are assigned permissions individually.

There is quite a significant variation in the interpretation

of RBAC, differing in the level of sophistication that

different models support. The authors illustrate this by

presenting a family of models with varying levels of

complexity. More recently, Sandhu et al. [15] have

proposed the NIST RBAC model, which is an attempt to

define a unified standard.

R. Crook et al. / Information and Software Technology 45 (2003) 979–991980



The NIST RBAC model is actually a sequence of

models, with each subsequent model containing an

increased set of capabilities. Three important characteristics

are identified. The first is the basic ternary user role

permission relationship. The idea is that permissions are

assigned to roles rather than to users. The second key

characteristic is a role hierarchy, which is relatively simple,

whereby senior roles inherit the permissions of junior roles.

For permissions that should not be inherited, Sandhu et al.

propose an activity hierarchy in which senior roles only

inherit permissions from junior roles if they have been

activated. The final key characteristic is the principle of role

constraints, which is important for enforcing separation of

duties by, for example, defining two roles as mutually

exclusive.

The idea of a single hierarchy based on inheritance, as

proposed in the NIST model, has been called into question

[12]. A manager does not necessarily inherit the roles of his

juniors. For example, in a project, a manager does not

necessarily possess the necessary competence to carry out

specialised activities. Moffett [12] has derived a set of

hierarchies based on organisational control principles. The

three main principles are separation of duties, decentralisa-

tion and supervision, and review. In order to capture these

characteristics, Moffett proposes three types of hierarchies.

† The ‘is-a’ hierarchy based on generalisation. It is often

possible to identify common responsibilities amongst

members of an organisation. These responsibilities can

be bundled together to form a generalised role. An

example of this in a hospital, say, would be to define a

generalised role of health care provider, which provides

permissions shared by both doctors and nurses. The role

doctor is itself a generalised role for a physician or a

surgeon. The inverse of generalisation is specialisation.

† An activity hierarchy based on aggregation. In this

hierarchy, permissions are bundled together to form a

collection of permissions, which are needed to carry out

the various tasks that logically belong together from an

organisational standpoint. For example, a sequence of

tasks may be required to provide a specific customer

service, such as booking a flight.

† A supervision hierarchy based on the organisational

hierarchy. This hierarchy is what is normally

considered to be the organisational hierarchy in that

it represents the lines of supervision showing the

seniority of the members of staff. This is the hierarchy

that can also be used to differentiate permissions

between junior and senior members of staff.

Bacon et al. [4] also demonstrate how roles based on

function and seniority can be combined. In order to be

assigned certain roles, a user must have been assigned other

prerequisite roles, for example, a doctor can only be

assigned the role of senior haematologist if the roles senior

doctor and haematologist have already been assigned.

More recent work in this area is concerned with access

control models referred to as active security models, which

are aware of the context of an ongoing activity. Bertino et al.

[2] describe how temporal constraints can be defined for

roles, for example, when a role is activated for a shift, and

then subsequently deactivated. In addition, an administrator

can activate roles in an ad hoc way. Covington et al. [6] have

explored applications for the home and suggest how

environmental roles could be useful. Access can be

permitted based on environmental factors, such as location

or time of day. Georgiadis et al. [9] combine contextual

information with team based access control. Team based

roles identified by Thomas [17] are useful for collaborative

working environments, where users are assigned to teams

and get access to the team’s resources. This idea can be

combined with other contextual information, such as

location or time intervals. Yao et al. [18] present an access

control model (OASIS), whereby users can activate roles,

provided they satisfy prerequisite conditions, such as having

an appropriate qualification, assigned function, task com-

petence, or environmental constraint.

Importantly, this research demonstrates that roles

provide an effective basis for defining restrictions. However,

the questions remain: where do roles come from, what are

their relationships with one another, and how do we address

these questions during RE?

2.3. Policy specification languages

We can specify policies at various levels of abstraction

[32]. However we are only interested in those languages that

are at a level of abstraction useful to an analyst or designer,

rather than low level languages or definitions that enable us

define such things as firewall configurations, or low level

access control restrictions.

Earlier in this section we mentioned an important

contribution by Fontaine [27] proposing a mapping between

KAOS and Ponder. Ponder is one of a number of languages

that have been developed by the security policy community

for specifying access policies. These complement the

research described above and often a notation is developed

to specify access control models based on the concepts, and

indeed, most policy specification languages are designed to

be executed in a deployment model as a part of the security

administration, in a distributed system.

Ponder [21] has been developed over a number of years

at Imperial College. It is a declarative language containing

constructs for specifying authorisation, obligation and

delegation policies, whereby authorisation policies rep-

resent the actions that subjects are permitted to carry out on

targets, obligation policies relate to actions that must be

carried out on targets by subjects when a predefined event

occurs, and delegation policies define the policies that a

subject can delegate to other subjects. These are termed

basic policies, additionally there are also meta and

composite policies. The language also contains constructs

R. Crook et al. / Information and Software Technology 45 (2003) 979–991 981



to model the organisational structures. Objects can be

grouped together in domains to represent the partition of

objects in geographical locations, roles can also be defined

relating to positions in an organisation requiring a common

set of policies and roles, and relationships can grouped

together in a management structure A collection of policies

that are assigned to groups or roles are termed composite

policies. Meta-policies enable the definition of complex

policies with constraints defined using the Object Constraint

Language. A typical meta-policy could model the separ-

ation of duties. In the future it is planned to include

constructs to model interactions between roles, the basis of

which has been the subject of a doctoral research project

[22].

Ponder is the most comprehensive in terms of the

features that it can model, and in this respect makes a good

choice by Fontaine to integrate with KAOS. However, the

Ponder language is designed for the deployment of security

policies, and is hence a language designed to be interpreted

and executed by a deployment environment. This makes it

unsuitable for specifying at the requirements level, as it is

difficult to read, being more akin to a programming

language. The KAOS mapping is an important move in

the right direction, the key here being the assignment of

agents to goals. These capabilities that can be defined in

KAOS are functionally based, with the possibility of

defining an inheritance hierarchy of agents. This is very

similar conceptually to the inheritance hierarchy proposed

in the NIST-RBAC model, which we reviewed in the last

section. It therefore shares the same fundamental weakness

identified by Moffett [12], that it cannot adequately model

the principles of organisational control.

Jajodia et al. [20] propose a logical authorisation

specification language (ASL) for specifying security and

an associated deployment model FAM. Bacon et al. [28]

propose how RBAC policies for the OASIS environment

can be specified in a pseudo-natural language. As with

Ponder, these languages are at a level too low for

requirements analysis.

A notable exception to these languages, is a graphical

language proposed by Thomas and Sandhu [23]. This

language is in fact targeted at policy requirements analysis.

The language focuses on task authorisation procedures, for

specifying task sequences and approval steps. It, however,

does not include a way of assigning agents or roles, which

means that although the procedural steps can be represented,

it is not possible to define who should do what.

2.4. Concluding remarks

It is necessary to build a bridge between a requirements

model and the complex access policy deployment environ-

ments such as Ponder or Oasis. However, we believe that the

current RE frameworks such as a KAOS are inadequate to

represent these policies, because, as we mentioned above,

the simple inheritance hierarchy, with regard to the

capabilities of agents, does not allow modelling organis-

ation control.

3. On organisational structures and roles

There is no universally accepted definition of roles. As

we have seen above, researchers have different views on

what constitutes a role and how role hierarchies can be

defined. One of the reasons for this is that a role is a

conceptual notion. In this section we discuss different

categories of roles, and how they can be derived from

organisational structures as this forms the central pillar of

our work.

3.1. Organisational structure

The organisational structure of an enterprise is designed

by the top management of that enterprise and defines the

lines of authority and the division of work. These are the two

principle characteristics that determine the responsibilities2

for each individual member of the organisation.

Organisations can take many forms ranging from very

simple structures, such as are normally found in small start-

up companies, to the complex divisionalised structures

found in large multinational corporations and although no

two organisations are exactly the same, neither are they

truly unique. There are common aspects that enable us to

categorise the structure, generalise about it and posit views

about it.

An organisation is a composite structure made up of

organisational units, which can also be divided into even

smaller units. There are different ways in which individual

positions in the organisation can be grouped together to

form these units, depending on the needs of the organis-

ation. In defining roles it is useful to understand how these

groupings come about.

3.2. Organisational groupings

Mintzberg [11] identified the key characteristics that are

used to form organisational groupings. Essentially there are

two basic types of characteristics that are used to form

organisational groups. The first is function; this is defined

around the tasks that a group performs, and the second is

market defined around responsibility for product, service, or

customers.

Often, particularly in large organisations, several of these

characteristics are used. The National Health Service in the

UK is divided into regional health authorities, which in turn,

are composed of hospitals to serve the different population

centres, so that the authority and the hospitals are organised

on a geographical basis. A hospital, however, is organised

on a functional basis according to administration, medical

2 We use the term responsibility to denote obligation and accountability.

R. Crook et al. / Information and Software Technology 45 (2003) 979–991982



specialities and supporting services. Similarly, retail banks

have autonomous branches dispersed to serve local markets

with a functional structure in each branch.

Another way in which an organisation can be structured

according to multiple factors is through a matrix structure.

In this case, each member of the organisation will belong to

two groups. One group is responsible for the product or

market, and the other has a functional responsibility. An

example of this is in an engineering company undertaking

projects. Each project consists of a multidisciplinary team of

engineers, and each member of the team reports to the

project manager, but there are also departments that carry

responsibility for staff development and maintaining

standards in the different engineering disciplines.

3.3. Organisational roles

Each member of the organisation has a set of responsi-

bilities, which is the ultimate determinant of access

privileges for applications. It is worth stepping back briefly

to consider what organisational roles are, so that we can

relate them to the groupings we defined above. In order to do

this we need to use role theory.

Role theory is largely a sociological science focusing on

how individuals interact with one another. Handy [10]

describes the important concepts of role theory. The

individual who is the centre of analysis is called the focal

person, and the group of individuals with whom he interacts

is called his role set. Thus, depending on the situation and

the person with whom he is interacting, an individual will

adopt a specific role, perhaps as a father, customer, friend, or

advisor, and there are certain societal expectations of people

in these respective roles and in the way they are supposed to

behave. Some roles are occupationally defined, such as

doctor or lawyer, and for which there are legal as well as

cultural expectations.

In an organisation, the situation is similar in that

members of this organisation in a particular position may

have multiple roles such as manager, specialist, or

subordinate depending on the task they are currently

undertaking, and particularly with whom they are interact-

ing. Thus, roles in an organisation, and the expectations of

an individual adopting a role are defined by management,

and relate to the responsibilities and tasks that have been

assigned to that individual.

3.4. Role categories

It is clear we need to create a link between roles and

assets, or more appropriately between sets of roles and

assets, because, as we have seen, an individual will have

several roles. Seniority is one of the important dimensions

and the other is scope of work, for which Mintzberg has

defined two groups of characteristics based on functions and

markets. The characteristics seniority, function and market

give us three groupings, which can be used as a basis for

the identification of roles and are summarised as follows

† Roles based on supervision
* Seniority

† Roles based on function
* Qualification
* Function
* Work-process

† Roles based on market
* Market/customer/client
* Product/service
* Location
* Time

For each of these categories, there is often a potential for

a hierarchy, perhaps reflecting hierarchical structures in the

organisation. The characteristics of this hierarchy also need

to be determined, for example, whether permissions are

automatically inherited.

It is also necessary to establish the relationship between

these roles and the access to information assets. Having

established the key characteristics by which responsibilities

are assigned, it is then a matter of identifying the criteria by

which access is restricted. This needs to be done for each

type of access or operation on each asset.

3.5. Roles based on seniority

Roles that are based on seniority are reflected in the

hierarchical lines of authority. Supervision is a key co-

ordination mechanism and seniority is the cornerstone of

this mechanism. But what are the characteristics of a role

based on seniority, and what is its relationship to other

roles?

Mintzberg has identified three types of authority: line,

staff, and functional authority. Staff and functional authority

are very similar in nature in that they transcend organis-

ational groups. Line authority is the most common form,

and is the kind of authority found within a single

organisational unit. This is what we focus on in this paper.

One of the key characteristics of seniority is span of

control, i.e. which subordinates are under the control of a

supervisory role. There will be subordinates who are

directly controlled and those who are indirectly controlled

through delegated authority. There are two properties that

need to be considered: the first is the cardinality represent-

ing the span of control, and the second is the transitivity,

which represents the extent to which control transcends

levels.

An important issue is how the authority relationship

between two users can be modelled. There are two ways that

this can be done. The first is to link the relationship through

the users, i.e. a user with a subordinate role is directly

assigned to a supervisor. The alternative is to link the

relationship through other roles representing situational

factors, such as a project, a ward in a hospital, or a product

R. Crook et al. / Information and Software Technology 45 (2003) 979–991 983



line in a sales department. In the latter case, the line of

authority in an organisational grouping is linked to the

functional or market factor on which the group is based.

Subordinates may have more than one supervisor. There

are several situations in which this can occur. One situation

is when the subordinate answers to superiors with varying

degrees of delegated authority. In the absence of the

immediate superior, one of the subordinates could act in a

temporary capacity as a supervisor to whom the others

report. A second situation occurs in matrix organisations,

where subordinates answer to two superiors: one with

responsibility for assigning the tasks, and the other with a

more indirect responsibility for the quality of work,

standards, and personal development. In fact, in some

organisations, which operate in this way, an individual may

be assigned to more than one project. In such cases, the

individual reports to a senior in the functional hierarchy and

several project managers in a market-based hierarchy.

Delegation is also a key aspect of a supervisory structure

[12]. Delegated authority is an inherent part of any hierarchy

and there are several forms of this. Barka and Sandhu [5]

identify the following characteristics

† Permanence. This determines whether authority is

delegated on a temporary or permanent basis.

† Totality. This determines the extent to which all or only

some permissions from a user or role are delegated.

† Duration. This determines the length of time for which a

delegation is valid.

† Delegation levels. This determines the extent to which

delegated permissions can be further delegated.

Each of these characteristics needs to be modelled in

order to capture the principles of delegated authority as they

are commonly practised in organisations.

3.6. Roles based on function

It is difficult to envisage a role structure for an

organisation that does not include roles with functionally-

based characteristics. Seniority alone is not normally

sufficient to identify a position in an organisation effec-

tively. The different ways in which roles based on functions

that were listed in Section 3.4 are qualification, function,

and work-process.

Roles based on qualifications or functions are similar

in that they basically model the capability of an

individual. In Section 3.5, the idea of a generalisation

or ‘is-a’ hierarchy [12] was reviewed. In fact, a

specialisation hierarchy would be a more appropriate

term, as it reflects the principle of specialisation either

through qualification or assignment to a function. More

specialised roles inherit responsibilities from roles further

up in the hierarchy.

Tasks that logically belong together can be grouped

together to form work-process based roles. In Section 3.5,

the idea of aggregating activities was presented by Moffett

[12].

It is normal that a dependency exists between work-

process based roles, the assigned qualification or function

roles, and the level of seniority. In order to assign a work-

process role, the user must have the appropriate qualifica-

tion or function and seniority assigned to him.

3.7. Roles based on market

The roles based on functions and seniority determine the

tasks that a user can carry out, but it is roles based on market

characteristics that determine on which targets a user may

carry out the tasks. There needs to be a correspondence with

the asset affected. The role needs to link the role with the

asset through a context, as we will demonstrate in Section 4.

We therefore refer to them as contextually-based roles. As

with roles based on functions, there is the potential for a

hierarchy similar to the aggregation of activities. In Section

2.2 the concept of roles based on contextual information was

reviewed [9], which has certain similarities; location is an

example of this.

3.8. Concluding remarks

Using organisational structure in this way—to define

roles to form a basis of a security framework—has some

significant advantages

† It provides a clear focus for analysts and users eliciting

requirements, as organisational groupings and the lines

of authority are relatively easy to identify.

† Users are able to relate more easily to the defined roles.

† Organisational procedures can be more readily translated

into a security framework, because roles more accurately

reflect the organisation.

4. An analytical role modelling framework

In this section, we present an analytical framework based

on the ideas developed in Section 3. The hypothesis is that

our framework can be used by analysts to model and analyse

access control requirements. We demonstrate the appli-

cation of the framework through the use of an example of

access restrictions to patient records.

4.1. Framework

Fig. 1 shows the relationship between the key conceptual

components of the framework in which the cardinality is

shown between the different elements. In this framework

there are two levels. The first is the meta-level. This

includes the definitions of role types, asset categories,

context types that enable us to define access policies. The

second is the instance level; this includes instance

R. Crook et al. / Information and Software Technology 45 (2003) 979–991984



definitions of users, context instances, asset instances and

role instances that enable us to validate policies through the

definition of scenarios. In the diagram the instance level

components are represented as dashed boxes.

In this framework we include three types of roles:

functional, seniority and contextual. The contextual roles

represent market-based roles that we described in Section 4.

This is because these roles relate to information assets

through a context. For example, in a regional branch of a

retail bank, bank tellers only have access to accounts of

customers of that branch. Therefore, the branch outlet

represents a context, which has to be assigned both to the

account and the bank teller in order for access to be granted.

An access policy is modelled as a ternary relationship

between role sets, sets of operations and an asset category. A

role set is required to model restrictions where a

combination of market, functional and seniority based

characteristics are a prerequisite for accessing an operation

or a set of operations. The set of role sets can be considered

as alternative conjunctions of roles, i.e. a user must satisfy at

least one of the specified role sets. This enables us to allow

users with different functions or responsibilities to access

the same functions. The reason for including sets of

operations in an access policy is that sometimes tasks may

be bundled to form a logical unit of work. An access policy

relates only to a single asset category, however, an asset

hierarchy has been included so that through inheritance the

policy can be applied to more than one category of assets.

The components at the meta-level in the framework, are

as follows

Role. Role is a type representing either functional,

seniority, or contextual roles.

Context type. Some policies require a context, such as an

assignment to a patient, or a ward, in order for them to be

resolved. We use a context type to define this in a policy

definition.

Asset category. Information needs to be categorised, so

that we can determine what policy is relevant. All secure

entities must be assigned to a category.

Operation. This represents an operation that can be

carried out on an asset.

The components at the instance level in the framework

are as follows

User. When validating a policy through a scenario we

need to define users, who we then assign roles in order to

explore whether requests to execute operations on stored

information are authorised or not.

Role instance. This is an instance of an assigned role. A

role is instantiated before it is assigned, so that useful

information about it can be maintained, primarily the

context. If, for example, a role is based around a client of a

consultant or a patient in a hospital, then a role instance

modelling responsibility for the patient or client would be

related to a context. Using a role instance enables us to track

other information, such as who assigned the role, when was

it assigned and when shall it expire, although in this

particular model this has not been done.

Context instance. This represents the actual context,

which can be used to resolve an authorisation request. A

context instance could be a ward in a hospital, where a

patient is located. By being assigned to the ward the nurse

may access the patient’s record.

Asset instance. This is the instantiation of an asset, which

for example could be a specific patient record.

Fig. 1. The key components of our framework.

R. Crook et al. / Information and Software Technology 45 (2003) 979–991 985



Operation request. We use this to model the request that

a user makes when he wishes to execute an operation.

A role–role relation is used to represent the role

hierarchy. For functional roles, a hierarchy serves to

model inheritance, whereas for seniority roles it models

the lines of authority. A similar hierarchy has also been

included for asset categories, rather similar to the general-

isation hierarchy of a functional role model. At the top of the

hierarchy are the most general asset categories and as we

move down the hierarchy the categories become more

specific. An example of a very basic asset type is static data.

Static data is a term used in business process systems to

describe data that rarely changes, such as names and

addresses, account numbers and so on; another common

category is that of transactional data. A more specific

category could be financial transactions, and even more

specific would be a debit.

The hierarchies enable us to define policies at the desired

level of abstraction. For example, a general policy could be

defined for a financial transaction, and this policy would be

applicable to debit and credit transactions. User Roles is a

relation that gives the role instances assigned to a user, and

the role type relates the role to the role instance Role Type.

The relation Asset Instance Category relates the asset

category to an asset instance. Asset Context is a function that

gives the context instances assigned to asset instances. In

this model a policy containing a context role, such as

patient, location or product group, is resolved by matching

the context of a contextual role assigned to a user with one

assigned to an asset instance. If a doctor wishes to access a

patient record, then this needs to be associated with a patient

for whom the doctor has responsibility. In this instance the

context is the patient.

In order to represent policy definitions, we use the

graphical notation detailed in Fig. 2. We developed this

notation ourselves for the purposes of demonstrating the

framework. The reason we did this is because the graphical

notations offered in existing RE methods and frameworks

do not include the elements outlined above that we need to

model. KAOS [19], GBRAMS [29] and Use Case methods

only include simple definitions of actors or agents, which

are often interpreted as roles. The i* Framework [31] goes

further in that roles are explicitly included, and there is a

differentiation between position and task based roles; role

instances are also defined. However, we want to differen-

tiate further with contextual roles, and in addition include

asset hierarchies, role hierarchies, contexts and explicit

policy definitions. With regard to security policy languages

that we reviewed in Section 2.3, the graphical notation

proposed by Thomas and Sandhu [23] can only model task

sequences and is therefore unsuitable. The other languages

and in particular Ponder do include the right sorts of

features, but are textual and difficult for non-technical

specialists to understand. It is important to note, however,

that the notation is secondary to the principles that we are

demonstrating in terms of how roles can be used to define

policies.

The components in Fig. 2 are used to compose policy

diagrams. A policy is depicted as alternatives of conjunc-

tions of roles, which are a prerequisite for a user to be

assigned in order to be able to be executing operations on

assets. A forked line joins roles with operations and

indicates that the conjunction of roles at one end of the

fork is necessary to execute either of the operations at the

other end. In Fig. 1 this relationship between operations and

roles is realised through the access policy. If a role is

contextual, a line is shown between the role and the context

type, and between the context type and the asset category.

This is shown in Fig. 3.

In order to represent policy scenario diagrams we use the

notation shown in Fig. 4.

Fig. 5 shows a policy scenario derived from the policy

definition in Fig. 3 above. Role, asset and context instances

are depicted, together with their type defined in the

respective symbol. A user is allocated role instances

indicated by the forked line between the user and the role

instances. A context instance links a contextual role instance

with an asset instance. In this case a request for Operation 1

on asset instance Asset1 Inst. is authorised because of the

policy defined above, but a request for Operation 3 is

rejected. Operation 3 is an additional operation not defined

in the policy.

4.2. An example

We now present a healthcare example to illustrate how

the above framework can be used to analyse policies for

accessing patient records. In this example there are two

types of records: medical records, which contain diagnoses,

observations, and treatment plans and are updated by

medical practitioners; and nursing records, which record the

treatment and observations from the nursing staff. A patient

Fig. 2. Policy definitions.

Fig. 3. The composition of policy diagrams.

Fig. 4. The notation for policy scenario diagrams.

R. Crook et al. / Information and Software Technology 45 (2003) 979–991986



is assigned to a consultant who is generally either a

physician or a surgeon. The consultant needs read and

update permissions for the patient’s medical records,

and read-only access for the nursing records. All nurses

on the ward, where the patient is located, need read access to

the medical records, and must be able to read and update the

nursing record. As far as nursing care goes, the role set that

is needed for read access includes a nursing qualification

and an assignment to a ward. With regard to medical

practitioners, access must be restricted to the consultant to

whom the patient has been assigned.

This following role diagrams, shown as Fig. 6, represents

the domain definitions that we need to enforce the policy. It

includes the necessary role definitions. The functional roles

Surgeon and Physician inherit permissions of the role

Medical Practitioner. The seniority hierarchy for medical

staff is partially represented with Consultant and Registrar.

A registrar is a junior doctor who reports to a consultant.

Access to a medical record by a registrar is achieved by

delegation, but this has not been modelled here, because our

framework cannot yet handle delegation policies. In this

simplified example, nurses are represented by a single

functional role of Nurse. The context role Responsible For

Patient models the assignment of patient to a consultant,

and Ward Assignment the assignment of a nurse to a ward.

Fig. 7 shows the asset categories. The two basic asset

categories are Medical Record and Nursing Record. The

asset categories Treatment Plan and Diagnosis are inherited

from Medical Record, which is modelled in the mapping

Asset Hierarchy, and therefore policies that apply to

Medical Record apply also to these.

There are four policies depicted in Fig. 8. Read Medical

Record Policy restricts read access to medical records to

nurses that are assigned to the ward, where the patient has

been stationed and the consultant that has responsibility for

the patient. Similarly, the policy Read Nursing Record

Policy restricts read access of the nursing records to the

same groups. Update Medical Record Policy restricts the

update of medical record to the consultant who has

responsibility for the patient, while Update Nursing Record

Policy restricts update access of nursing records to nurses

assigned to the ward, where the patient is located.

4.3. Policy scenario analysis

We now present two scenarios that we can use to validate

the policy. Not all possible asset types and roles that we

defined above are used in the following scenario analysis

due to space limitations.

Fig. 5. A sample policy scenario.

Fig. 6. Domain definitions for the example.

R. Crook et al. / Information and Software Technology 45 (2003) 979–991 987



In the first scenario John Smith is a consultant physician

who has responsibility for the patient Richard Cargill.

Through the relation User Roles, he is therefore assigned

the role instances Physician Inst. and Responsible for

Patient Inst., which are of role types Physician and

Responsible for Patient, respectively, defined by the relation

Role Type. The role instance Responsible for Patient is

linked to the patient context instance Richard Cargill

through the relation Role Context. The asset instance

Medical Record Cargill is linked to the patient of Richard

Cargill through the relation Asset Context. These assign-

ments mean that John Smith has the prerequisite role

assignments to satisfy policies Read Medical Record Policy,

Update Medical Record Policy, and Read Nursing Record

Policy, so that he can read medical and nursing records as

well as update medical records associated with the patient

Richard Cargill. He cannot, however, update the nursing

records. Fig. 9 shows this scenario.

Fig. 7. The asset hierarchy for the example.

Fig. 8. Four policies from the example.

R. Crook et al. / Information and Software Technology 45 (2003) 979–991988



In the second scenario Judy Clegg is a nurse assigned to

the ward Geriatric Ward, where the patient Richard Cargill

has been stationed. In the relation User Roles she is

therefore assigned the roles instances Nurse Inst. and

Assigned Ward Inst., which are of role types Nurse and

Assigned Ward, respectively. The role instance Assigned

Ward Inst. is linked to the ward context instance Geriatric

Ward, which in turn is mapped to the patient record Medical

Record Cargill in Asset Context. Judy Clegg therefore has

the prerequisite role assignments to satisfy the policies

Update Nursing Record, Read Medical Record Policy, Read

Nursing Record Policy and Update Nursing Record Policy.

This is shown as Fig. 10.

5. Conclusion

In this paper, we have explored the importance of

roles in defining security goals and policies and how they

can be used to represent organisational requirements that

underpin access restrictions. We highlighted the different

and sometimes contradictory viewpoints of security

policy researchers with regard to the definition of roles,

what they represent, and how they relate to one another.

In order to resolve these conflicting viewpoints, we

examined the problem from the perspective of the

organisational structure, applying principles identified

by Mintzberg [11] for structuring organisations to derive

Fig. 9. The first scenario.

Fig. 10. The second scenario.

R. Crook et al. / Information and Software Technology 45 (2003) 979–991 989



categories of roles. We then used this as a basis for an

analytical framework, through which access policies can

be defined and validated using scenarios. Finally, we

demonstrated the use of the framework through an

example in the healthcare domain.

In terms of defining access policies the RE literature

is distinctly lacking. Most contributions demonstrate how

existing RE methods can be used to define security goals

and identify threats. Security policy research has

demonstrated the importance of the organisational con-

text in defining policies. Models that researchers in this

area have developed are quite sophisticated and although

focused on design and deployment, give us pointers as to

how we need to deal with policies at the requirements

level. Most RE methods have simple definitions of agents

or actors, which are then assigned to goals or actions,

however, the organisational context is somewhat more

complex requiring a richer representation; roles provide

us a way of capturing these complexities. The i*

Framework goes further than other RE methods by

including the concept of roles explicitly, but the use of

this framework in developing policies has not yet been

explored.

We have demonstrated an alternative approach,

focusing on the use of roles in defining access policies,

with the objective of providing a bridge between existing

RE methods and access control models, however, we

have not yet demonstrated how the concepts in our

framework can be integrated into current RE methods.

Developing policies can only be done within the context

of a functional or goal model.

There is still much that needs to be done to extend the

work in this paper. The example given in this paper does not

demonstrate how the role assignments and access requests

can be integrated with the core business functions. Other

issues that remain to be explored include delegation,

authorisation procedures, and role constraints that can be

used to enforce the separation of duties.

Checking the consistency of security requirements is

also crucial. Role and asset hierarchies offer a way of

defining policies at different levels of abstraction but may

also introduce inconsistency, particularly when access

rights arise indirectly through the inheritance structure

that are not foreseen.

Finally, the link between the requirements model and

the implementation model needs to be investigated, when

implementation options range from custom solutions to

using standard access control models. It would be useful

to investigate how policies, specified using our frame-

work, could be mapped onto a language, which could be

deployed, such as Ponder or ASL. This would help us to

improve the process of translating access policies at the

requirements level into a deployable access control

model.

Acknowledgements

We would like to acknowledge the advice and feedback

to our colleagues in the Security Requirements Group at

The Open University, particularly Jonathan Moffett for his

comments and views on earlier drafts of this paper.

Thanks also to Pat and John Crook, former Clinical

Director of Wrightington Hospital, Wigan, and Leigh

NHS Trust, for insights into the procedures for accessing

patient records. This paper is a revised and extended

version of Ref. [30].

References

[1] A.I. Antón, J.B. Earp, Strategies for Developing Policies and

Requirements for Secure Electronic Commerce Systems, Recent

Advances in Secure and Private E-Commerce, Kluwer Acedemic

Publishers, Dordecht, 2001.

[2] E. Bertino, P.A. Bonatti, E. Ferrari, TRBAC: a temporal role-based

access control model, Proceedings of the 5th ACM Workship on Role-

based Access Control, July 2000, pp. 21–30.

[3] D. Bell, L.J. La Padula, Secure Computer Systems: a Mathematical

Model, MITRE Technical Report 2547, vol. II, 1973.

[4] J. Bacon, M. Lloyd, K. Moody, Translating Role-based Access

Control within Context, Proceedings of International Workshop

Policies for Distributed Systems and Networks (Policy 2001), Bristol,

January 2001, LNCS, Springer-Verlag, pp. 107–119.

[5] E. Barka, R. Sandhu, A framework for role based delegation model,

Proceedings of 23rd National Information Systems Security Con-

ference, Baltimore, October 16–19 2000, pp. 101–114.

[6] M.J. Covington, W. Long, S. Srinivasan, A.K. Dev, M. Ahamad, G.D.

Abowd, Securing context-aware applications using environment

roles, Proceedings of the 6th ACM Symposium on Access Control

Models and Technologies, May 2001, pp. 10–20.

[7] D. Clark, D. Wilson, A comparison of commercial and military

computer security policies, Proceedings of the IEEE Symposium on

Security and Privacy (1987) 184–194.

[8] Department of Defense Trusted Computer System Evaluation Criteria

Dod 5200-28-Std, 1985.

[9] C.K. Georgiadis, I. Mavridis, G. Pangalos, R.K. Thomas, Flexible

team-based access control using contexts, Proceedings of the 6th

ACM Symposium on Access Control Models and Technologies, May

2001, pp. 21–27.

[10] C. Handy, Understanding Organizations, Penguin, Harmondsworth,

1985.

[11] H. Mintzberg, Structure in Fives: Designing effective organisations,

Prentice Hall, Englewood Cliffs, NJ, 1992.

[12] J.D. Moffett, Control principles and role hierarchies, Proceedings of

the 3rd ACM Symposium on Access Control Models and Technol-

ogies, October 1998, pp. 63–69.

[13] M. Nyanchama, S.L. Osborn, Modeling mandatory access control in

role-based security systems, in: D.L. Spooner, S.A. Demurjian, J.E.

Dobson (Eds.), Proceedings of the IFIP WG 11.3 9th Annual Working

Conference on Database Security, Chapman and Hall, London, 1995,

pp. 129–144.

[14] R. Sandhu, E. Coyne, H. Feinstaein, C. Youmann, Role-based access

control models, IEEE Computer 29 (2) (1996) 38–47.

[15] R. Sandhu, D. Ferraiolo, R. Kuhn, The NIST model for role-based

access control: towards a unified standard, Proceedings of the 5th

ACN Workshop on Role-Based Access Control (RBAC-00), Berlin

Germany, July 26–27 (2000) 47–64.

R. Crook et al. / Information and Software Technology 45 (2003) 979–991990



[16] R. Sandhu, Q. Munawer, How to do discretionary access control using

roles, Proceedings of the 9th ACM Symposium on Access Control

Models and Technologies, October 1998, pp. 47–54.

[17] R.K. Thomas, Team-based access control a primitive for applying

role-based access controls in collaborative environments, Proceedings

of the 2nd ACM Workshop on Role-Based Access Control, Fairfax,

USA, 1997.

[18] W. Yao, K. Moody, J. Bacon, A Model of OASIS role-based access

control and its support for active security, SACMAT’01, Chantilly

Virginia, USA, 2001.

[19] A. Dardenne, A. Lamsweerde, Goal-Directed Requirements Acqui-

sition, Science of Computer Programming, vol. 20, 1993.

[20] S. Jajodia, P. Samarati, V.S. Sabrahmanian, A logical language

for expressing authorisations, Proceedings of the IEEE Symposium

on Research in Security and Privacy, Oakland CA, May 1997,

pp. 31–42.

[21] N. Damianou, N. Dulay, E. Lupu, M. Sloman, Ponder A Language

for specifying Management and Security Policies for Distributed

Systems, Imperial College Research Report DoC2001, January,

2001.

[22] E. Lupu, A Role-Based Framework for Distributed Management

Systems, PhD Thesis, Imperial College of Science Technology and

Medicine, Department of Computing, 1998.

[23] R.K. Thomas, Conceptual foundations for a Model of Task-Based

Authorizations, IEEE proceedings on Computer Security Foundations

Workshop VII, CSFW 7 (1994) 66–79.

[24] BS799-1: Information Security Management—Part 1: Code of

Practice for Information Security, British Standards Institution,

London, 1999.

[25] E. Yu, L. Liu, Modelling Trust in the i* Strategic Actors Framework,

Proceedings of the 3rd Workshop on Deception, Fraud and Trust in

Agent Societies, Barcelona, Spain, 2000.

[26] L. Chung, Dealing with security requirements during the development

of information systems, in: C. Rolland, F. Bodart, C. Cauvet (Eds.),

Proceedings of CaiSE’93, 5th International Conferene on Advanced

Information Systems Engineering, Paris, France, Springer-Verlag,

Berlin, 1993, pp. 234–251.

[27] P.-J. Fontaine, Goal Oriented Elaboration of Security Requirements,

Project Dissertation, Université Catholique de Louvain, Belgium,

2001.

[28] M. Bacon, K. Lloyd, K. Moody, Translating Role-Based Access

Control within Context, Proceedings International Workshop Pol-

icy2001, Policies for Distributed Systems and Networks, Bristol,

January 2001, Springer-Verlag, Berlin, 2001, pp. 107–119, LNCS.

[29] A. Antón, Goal Identification and Refinement in the Specification of

Software-Based Information Systems, PhD Thesis, Georgia Institute

of Technology, June 1997.

[30] R. Crook, D. Ince, B. Nuseibeh, Towards an Analytical Role

Modelling Framework for Security Requirements, Proceedings of

8th International Workshop on Requirements Engineering: Foun-

dation for Software Quality (REFSQ-02), Essen, Germany, Septem-

ber 9–10, 2002.

[31] E. Yu, A Framework for Organizational Modeling, PhD Thesis,

Department of Computer Science, University of Toronto, 1995.

[32] N.C. Damianou, A Policy Framework for Management of Distributed

Systems, PhD Thesis, Chapter 2, Imperial College of Science,

Technology and Medicine, Department of Computing, London, 2002.

R. Crook et al. / Information and Software Technology 45 (2003) 979–991 991


	Modelling access policies using roles in requirements engineering
	Introduction
	Roles in Security Requirements Engineering
	Security goals
	Access policies
	Policy specification languages
	Concluding remarks

	On organisational structures and roles
	Organisational structure
	Organisational groupings
	Organisational roles
	Role categories
	Roles based on seniority
	Roles based on function
	Roles based on market
	Concluding remarks

	An analytical role modelling framework
	Framework
	An example
	Policy scenario analysis

	Conclusion
	Acknowledgements
	References


