Modelling and Analysing Genetic Networks:
From Boolean Networks to Petri Nets

L. J. Steggles, Richard Banks, and Anil Wipat

School of Computing Science, University of Newcastle, Newcastle upon Tyne, U. K.
{L.J.Steggles, Richard.Banks, Anil.Wipat }@ncl.ac.uk

Abstract. In order to understand complex genetic regulatory networks
researchers require automated formal modelling techniques that provide
appropriate analysis tools. In this paper we propose a new qualitative
model for genetic regulatory networks based on Petri nets and detail
a process for automatically constructing these models using logic mini-
mization. We take as our starting point the Boolean network approach
in which regulatory entities are viewed abstractly as binary switches.
The idea is to extract terms representing a Boolean network using logic
minimization and to then directly translate these terms into appropri-
ate Petri net control structures. The resulting compact Petri net model
addresses a number of shortcomings associated with Boolean networks
and is particularly suited to analysis using the wide range of Petri net
tools. We demonstrate our approach by presenting a detailed case study
in which the genetic regulatory network underlying the nutritional stress
response in Fscherichia coli is modelled and analysed.

1 Introduction

The development and function of cellular systems is regulated by complex net-
works of interacting genes, proteins and metabolites known as genetic requlatory
networks [3]. With the advent of improved post—genomic technology the data is
now available to allow researchers to study genetic regulatory networks at a holis-
tic level [26]. However, interpreting and analysing this data is still problematic
and further work is needed to develop automated formal techniques that provide
appropriate tools for modelling and analysing genetic regulatory networks.

In this paper, we present a new technique for qualitatively modelling and
analysing genetic regulatory networks. We take as our starting point Boolean
networks [1, 3], an existing modelling approach for regulatory networks in which
regulatory entities (i.e. genes, proteins, and external signals) are viewed ab-
stractly as binary switches. While Boolean networks have proved successful in
modelling real world regulatory networks [14, 27], they suffer from a number
of shortcomings: analysis can be problematic due to the exponential growth in
Boolean states and the lack of tool support; and they do not cope well with
the inconsistent and incomplete data that often occurs in practice. To address
these problems, we propose a new model for genetic regulatory networks based
on Petri nets [21, 18], a well developed formal framework for modelling and
analysing complex concurrent systems [22, 28]. A range of initial investigations

into using Petri nets to model biological systems have appeared in the literature
to date, including: Place/Transition nets [19, 5, 25, 12]; stochastic nets [9, 24];
high-level nets [11, 6]; and hybrid nets [17]. The results we present significantly
extend the related ideas presented in [5], both semantically and in the provision
of automated tool support for model construction and analysis.

The Petri net model we propose is based on using an intuitive Petri net struc-
ture to represent the Boolean relationships between regulatory entities. We start
by defining each entities individual behaviour as a truth table [10] from which we
extract Boolean terms by applying logic minimization techniques [10, 4]. These
Boolean terms compactly represent the fundamental relationships between regu-
latory entities and we directly translate them into appropriate Petri net control
structures. The result is a compact Petri net model that completely captures
the original Boolean behaviour of a genetic regulatory network. Both the syn-
chronous and asynchronous semantic interpretation of Boolean networks [8] can
be modelled using our approach. We choose to focus on the synchronous seman-
tics here and develop a simple two phase commit protocol to allow synchronized
state updates within the asynchronous Petri net framework. To support the
modelling process a prototype tool has been developed which is able to auto-
matically construct Petri net models of genetic networks from their truth table
definitions. The resulting models can then be analysed using the wide range of
available Petri net techniques and tools [22, 7, 28].

We illustrate our approach by presenting a detailed case study in which the
genetic regulatory network for the carbon starvation stress response in the bac-
terium E. coli [20] is modelled and analysed. Using the detailed data provided
in [20] we define the Boolean behaviour of the key regulatory entities involved
using truth tables. We then apply our prototype tool to automatically construct
a qualitative Petri net model capturing the behaviour of the given genetic regu-
latory network. This Petri net is then validated and analysed using PEP [29] and
in particular, we illustrate the application of model checking techniques [7, 15]
for detailed model analysis.

This paper is organised as follows. In Section 2 we give a brief introduction
to Boolean networks and Petri nets. In Section 3 we describe a new approach
to modelling the Boolean behaviour of genetic regulatory networks using Petri
nets. In Section 4 we consider a case study in which we apply our techniques to
modelling and analysing the genetic regulatory network for the carbon starvation
stress response in E. coli. Finally, in Section 5, we present some concluding
remarks on our work.

2 Background

In this section we give a brief overview of the modelling formalisms discussed
in this paper: Boolean networks [1, 3] and Petri nets [21, 18]. In the sequel we
assume the reader is familiar with the basic Boolean operators not, or and and
(for example, see [10]).

2.1 Boolean Networks

In a Boolean network [1, 3] the state of each regulatory entity g; is represented
as a Boolean value, either 1 representing the entity is active (e.g. a gene is
expressed or a protein is present) or 0 representing the entity is inactive (e.g.
a gene is not expressed or a protein is absent). The state of a gene regulatory
network containing n entities is then naturally represented as a Boolean vector
[g1,- - -, gn] and this gives us a state space containing 2" states [4]. The behaviour
of each g; is described using a Boolean function f; which, given the current states
of the entities in its neighbourhood (i.e. those entities which directly affect it),
defines the next state for g;. As an example consider the Boolean network in
Figure 1.(a) [1] which contains three entities g1, go and g3, where the next state
g; of each entity is defined by the following Boolean functions:

=92, Gh=9193 G5=01

where the notation Z, x+y and x y is used to represent the Boolean operators not,
or and and [10] respectively. The dynamic behaviour of a Boolean network can
be semantically interpreted in two distinet ways [8]: asynchronously where genes
update their state independently; and synchronously where all genes update
their state together. We focus on the synchronous semantics in this paper which
appears to be widely used in the literature [3, 8]. The synchronous behaviour
for our example Boolean network is shown as a truth table in Figure 1.(b) and a
state transition graph [4] in Figure 1.(c).

Current Next
(9) 9 9 G |0, O, O C @
0 00| o0oO01
00 1|00 1
01 0|1 01
01110 1 @ @
100|000
A@ 10 1]/0 10
110|100
el o 1rofie
(a) Boolean network (b) Truth table (c) State transition graph

Fig. 1. An example of a Boolean network for three entities g1, g2 and gs.

Boolean networks have proved successful in modelling real world regulatory
networks [14, 27]. However, their application in practice is hindered by a number
of shortcomings. In particular, analysis can be problematic due to the exponen-
tial growth in Boolean states and the lack of tool support in this area. They
are also unable to cope with the inconsistent and incomplete regulatory network
data that often occurs in practice. For this reason we consider extending the
Boolean network approach by developing a Petri net based Boolean model.

2.2 Petri Nets

The theory of Petri nets [21, 18] provides a graphical notation with a for-
mal mathematical semantics for modelling and reasoning about concurrent, dis-
tributed systems. A Petri net is a directed bipartite graph and consists of four
basic components: places which are denoted by circles; transitions denoted by
black rectangles; arcs denoted by arrows; and tokens denoted by black dots. A
simple example of a Petri net is given in Figure 2. The places, transitions and

n OL

Legend ¢

t
O Place 8

HE Transition

A Arc i

° Token B

Fig. 2. A simple example of a Petri net.

arcs describe the static structure of the Petri net. Each transition has a number
of input places (places with an arc leading to the transition) and a number of out-
put places (places with an arc leading to them from the transition). We normally
view places as representing resources or conditions and transitions as represent-
ing actions or events [21]. Note arcs that directly connect two transitions or two
places are not allowed.

The state of a Petri net is given by the distribution of tokens on places within
it, referred to as a marking. The state space of a Petri net is therefore the set
of all possible markings. The dynamic properties of the system are modelled
by transitions which can fire to move tokens around the places in a Petri net.
Transitions are said to be enabled if each of their input places contain at least
one token. An enabled transition can fire by consuming one token from each of
its input places and then depositing one token on each of its output places. For
example, in Figure 2 both transitions ¢; and ¢, are enabled. Firing transition
t; would result in a token being taken from place p; and a new token being
deposited on place ps. Often, more than one transition is enabled to fire at any
one time (as in the example above). In such a case, a transition is chosen non—
deterministically to fire. A marking ms is said to be reachable from a marking
my if there is a sequence of transitions that can be fired starting from m1 which
results in the marking m2. A Petri net is said to be k—bounded if in all reachable
markings no place has more than k tokens. A Petri net which is 1-bounded is

said to be safe. Safeness is an important property since any safe Petri net has a
restricted state space which is well-suited to automatic analysis [22].

An important advantage of Petri nets is that they are supported by a wide
range of techniques and tools for simulation and analysis [22, 28]. For example,
Petri nets can be automatically checked for boundedness and the presence of
deadlocks (markings in which no transitions are enabled to fire) [28]. A Petri net
can also be analysed by constructing its reachability graph [18] which captures
the possible firing sequences that can occur from a given initial marking. A range
of techniques based on model checking [7, 15] have been developed for analysing
reachability properties of a Petri net and these provide a means of coping with
the potentially large state space of a Petri net model.

3 Modelling Genetic Networks using Petri Nets

In this section we present a new qualitative model for gene regulatory networks
based on Petri nets [18] and detail a process for automatically constructing these
models using logic minimization [4].

3.1 Deriving Regulatory Relationships using Logic Minimization

Given a set of truth tables defining the Boolean behaviour of all the entities in a
genetic network we would like to extract a compact representation of the regula-
tory relationships between entities. We address this using well-known techniques
from Boolean logic [4, 10] which allow us to derive Boolean terms describing the
functional behaviour of each entity. The idea is to consider the truth table for
each entity and to list all the states which result in a next state in which the
entity is active (i.e. in state 1). For example, consider the truth table given in
Figure 1.(b) for a simple Boolean network (see Section 2.1). Then by consider-
ing the truth table for g; we can see that states 010, 011, 110, and 111 result
in g; being 1 in its next state (where zyz denotes the state g1 = =, g2 = v,
and g3 = z). We can represent each state as a product term, called a minterm
[10], using the and Boolean operator, where the variable g; represents that an
entity g; is in state 1, and the negated variable g; represents that an entity g;
is 0. So the state 010 for g; is represented by the minterm gy g2 3. Applying
this approach and then summing the derived minterms using the or Boolean
operator allows us to derive a Boolean term in disjunctive normal form [10] that
defines the functional behaviour of an entity. Continuing with our example, we
derive the following Boolean term for gene g;:

919293 + 919293 + 919293 + 919293

Note that this term completely defines the functional behaviour of g1, i.e. when-
ever the term above evaluates to 1 in a state we know g; will be active in the
next state, and whenever the term is 0 we know g; will be inactive. Using this

technique we can construct a Boolean network that completely specifies the func-
tional behaviour of a genetic network. In our example, we derive the following
terms defining the behaviour of g1, g and gs:

=019293 + 919293 + 919293 + 919293,
=g19293 + 919293,
935=919293 + 919293 + 919293 + g1 92 gs-

The Boolean terms derived above are often unnecessarily complex and can
normally be simplified using logic minimization [4, 10]. From a biological point of
view, this simplification process is important as it helps to identify the underlying
regulatory relationships that exist between entities in a genetic network. The idea
behind logic minimization is to simplify Boolean terms by merging minterms that
differ by only one variable. As an example, consider the term g7 g2 g3 + 1 92 93
which contains two minterms that differ by only one variable gs. This term can
be simplified by merging the two minterms to produce a simpler term g7 g2 which
is logically equivalent [4, 10]. For brevity we omit the full details of Boolean logic
minimization here (we refer the interested reader to [4]) and instead illustrate
the idea behind the algorithm using our running example:

919293 + 919293 + 9192093 + g1 9293 = G192 + 9192 = G2,
919293 + 919293 = 9193,
919293 + 919293 + 919203 + g1 9293 = G192 + G192 — G1i-

Note that the final minimized Boolean terms presented above correctly corre-
spond to the Boolean network definitions given in Section 2.1.

3.2 Modelling Boolean Networks using Petri Nets

While the Boolean terms derived in Section 3.1 compactly capture the behaviour
of a Boolean network they are not amenable to analysis in their current form.
We address this by translating these terms directly into appropriate Petri net
control structures. The resulting Petri net model can then be simulated and
analysed using the wide range of available tool support [28].

The approach we take is to represent the Boolean state of each entity g;
in a Petri net by the well-known approach (see for example [21, 5]) of using
two complementary places Pi and Pi, where a token on place Pi indicates the
entity is active, g; = 1, and a token on place Pj that it is not, g; = 0. Note the
total number of combined tokens on places Pi and Pi will therefore always be
equal to 1. Since Petri nets fire transitions asynchronously it is straightforward
to model the asynchronous behaviour of a Boolean network in this setting (see
[5] for a related approach). We focus on modelling the synchronous behaviour
of a Boolean network [8] here and make use of a two phase commit protocol to
synchronise updates in our model. In the first phase of the protocol each entity
g; in the model decides whether it should be active or not in the next state.
This decision is recorded using two places, Pi_-On and Pi_Of f, where a token

on Pi_On indicates g; is active in the next state and a token on Pi_Of f that
it is not. When all the entities have made a decision about their next state the
second phase of the protocol begins and the state of each entity is synchronously
updated according to the recorded decision.

P1 P

Pl_O@ Q
N
P1_Sta©/' O

0O OO

P3 P3

Fig. 3. A transition for gene g modelling the minterm g1 g2 3.

Let us consider how we construct the appropriate Petri net structure to model
the decision process for an entity g; in the first phase of the protocol. We begin
by considering under what conditions the entity will be active (i.e. in state 1)
and use the process detailed in Section 3.1 to derive a minimized Boolean term
which compactly captures these conditions. We model this minimized Boolean
term in our Petri net by adding a separate transition to represent each minterm
it contains. The idea is that each transition will fire, placing a token on Pi_On,
precisely when the corresponding minterm is true. As an example, consider the
Boolean term

919293 + 919293 + 919293 + 919293

derived for gene ¢g; in our running example (see Section 3.1). Then the first
minterm g7 go g3 tells us that gene g; should be expressed, gy = 1, in the next
state when genes g1 = 0, go = 1, and g3 = 0 in the current state. We model this
minterm using the transition depicted in Figure 3. This transition fires when
places P1, P2, and P3 contain a token (i.e. when g; = 0, go = 1, and g3 = 0)
and results in a token being placed on P1_On (indicating g; is expressed in the
next state). Note the use of read arcs [18] here, i.e. bidirectional arcs which do
not consume tokens but just check they are present. This ensures the tokens on
places P1, P2, and P3 are not removed at this stage (doing so would corrupt
the current state of genes g1, g2 and g3). The start place P1_Start is used as a
control input to the transition to ensure only one decision is made for gene ¢,
during a single protocol step (update transitions can only fire if a token is present
on P1_Start). The place P1_Syn is used to indicate when an update decision has
been made for gene g;, information needed by the protocol to determine when

the first phase is complete. This process is then repeated to add transitions to
model the remaining three minterms in the Boolean term for g;.

It remains to model the complementary decision procedure for deciding when
an entity is inactive in the next state, that is when Pi_Of f should be marked.
To do this we simply apply the process detailed in Section 3.1 again amended
to derive a Boolean term which compactly captures the conditions under which
the entity becomes inactive. We then repeat the procedure detailed above for
modelling a minterm as a transition except this time we mark place Pi_Of f
to record the decision for the next state instead of Pi_On. Note the resulting
Petri net structure will contain at most n2" transitions where n is the number
of entities and k is the maximum neighbourhood size. Since k is usually small in
practice [8] the size of the model is normally linear with respect to n.

Pi Pi_On

P1_SyrP2_Syn Pn_Syn Pn_Don

PO_Done P1_StartP2_Start Pn_Start

(a) Initiate update (b) Update geneg; (c) Reset
Fig. 4. Petri net fragments for controlling synchronous updates.

After all the entities have made their update decisions all the synchronisation
places will be marked and this allows the control transition depicted in Figure
4.(a) to fire, initiating the second phase of the protocol. This phase performs a
synchronised update step in which the state of each entity g; is updated in turn
by placing a token on Pi if place Pi_On is marked or on Pi if place Pi_Off
is marked. An example fragment of the Petri net structure used for this update
is given in Figure 4.(b) for an arbitrary gene g;. The fragment contains four
transitions which represent the four possible update situations that can occur:
move token from place Pi to Pi; leave token on Pi; move token from place Pi
to Pi; leave token on Pi. Only one of these transitions will be enabled to fire.
Once the gene g; has updated its state a token is placed on place Pi_Done to
indicate that the next entity can be updated. When the last entity g, has been
updated place Pn_Done will be marked and the control transition depicted in
Figure 4.(c) initiates a reset step which re-marks the start places, allowing the
whole synchronisation protocol to begin again.

So far we have assumed that we are always able to derive complete and con-
sistent truth tables which correctly capture the behaviour of each entity in a
regulatory network. However, in practice it is rarely the case that a regulatory

network is fully understood and indeed, this is one important reason for mod-
elling such networks. The data provided may be incomplete in the sense that
information is missing about what happens in certain states, or it may be in-
consistent in that we have conflicting information about states. The result is
that the behaviour of some entities under certain conditions may be unknown.
Such incomplete and/or inconsistent information is problematic for the standard
Boolean network model which is unable to represent the possibility of more than
one next state. However, Petri nets are a non-deterministic modelling language
[21] and so are able to represent unknown behaviour by incorporating all possible
next state transitions. The idea is to simply allow the states with unknown be-
haviour to be used when deriving both the active and inactive Boolean formulas
for an entity. The resulting non-deterministic choices within the Petri net model
can then be meaningfully taken into account when analysing its behaviour.

The Petri net modelling approach presented above, while theoretically well—
founded, is not practical by hand for all but the smallest of models. To support
our modelling approach we have developed a prototype tool to automate the
model construction process detailed in Sections 3.1 and 3.2. The tool takes as
input a series of truth tables describing the behaviour of the entities in a Boolean
network. These input tables are allowed to contain inconsistent and incomplete
data as discussed above. From these tables the tool is able to automatically
construct a Petri net model which is based on either the synchronous or asyn-
chronous Boolean network semantics [8]. This prototype tool is freely available
for academic use and can be obtained from the project’s website!.

4 Case Study: Nutritional Stress Response in FE. coli

In this section we present a detailed case study to demonstrate the modelling
techniques we have introduced and the practical application of Petri net analysis
techniques. We consider the bacterium E. coli which under normal environmental
conditions, when nutrients are freely available, is able to grow rapidly entering
an exponential phase of growth [13]. However, as important nutrients become
depleted and scarce the bacteria experiences nutritional stress and responds by
slowing down growth, eventually resulting in a stationary phase of growth. In
this case study we model a simplified version of the genetic regulatory network
responsible for the carbon starvation nutritional stress response in E. coli based
on the comprehensive data collated in [20]. We validate and analyse the resulting
Petri net model using PEP [29], a leading Petri net support tool.

4.1 Constructing the Petri Net Model

The genetic regulatory network underlying the stress response in E. coli to car-
bon starvation is shown abstractly in Figure 5 (adapted from [20]). The network
has a single input signal which indicates the presence or absence of carbon star-
vation and uses the level of stable RNA (ribosomal RNA and transfer RNA) as

! http://bioinf.ncl.ac.uk/gnapn

indicative of the current phase of E. coli, i.e. during the exponential phase the
level of stable RNA is high to support rapid growth, while under the station-
ary phase the level drops, since only a maintenance metabolism is required [20].
The carbon starvation signal is transduced by the activation of adenylate cy-
clase (Cya), an enzyme which results in the production of the metabolite cAMP.
This metabolite immediately binds with and activates the global regulator pro-
tein CRP, and the resulting cAMP.CRP complex is responsible for controlling
the expression of key global regulators including Fis and CRP itself. The global
regulatory protein Fis is central to the stress response and is responsible for pro-
moting the expression of stable RNA from the rrn operon [13, 20]. Thus, during
the exponential phase high levels of Fis are normally observed and the mutual
repression that occurs between Fis and cAMP.CRP is thought to play a key role
in the regulatory network [20]. The expression of fis is also promoted by high
levels of negative supercoiling being present in the DNA. The level of DNA su-
percoiling is tightly regulated by two topoisomerases [13, 20]: GyrAB (composed
of the products of genes gyrA and gyrB) which promotes supercoiling; and TopA
which removes supercoils. An increase in DNA supercoiling results in increased
expression of TopA and thus prevents excessive supercoiling. A decrease in su-
percoiling results in increased expression of gyrA and gyrB, and the resulting
high level of GyrAB acts to increase supercoiling.

Stable RNA

Legend

@ Entity
Implicit Entity

——p» Activation
cAMP.CRP
' ——@ Inhibition

Fig. 5. Genetic network for carbon starvation stress response in E. coli.

Super

Coiling

Using the data provided in [20] we are able to derive truth tables defining
the Boolean behaviour of each regulatory entity in the nutritional stress response
network for carbon starvation. As an example, consider the truth table defining
the behaviour of Cya shown in Figure 6 below. Note following the approach in
[20], the level of cAMP.CRP and DNA supercoiling are not explicitly modelled
as entities in our model.

|CRP | Cya| Signal| | Cya|

0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 0

Fig. 6. Truth table defining the Boolean behaviour of Cya.

The next step is to apply logic minimization to the truth tables we have
derived to extract Boolean expressions which compactly define the qualitative
behaviour of each regulatory entity. This process is automated by our prototype
tool and the result is the following set of Boolean equations:

Cya = Signal + Cya + CRP, Cya = Signal Cya CRP,
CRP =Fis, CRP = Fis,

GyrAB = (GyrAB Fis) + (TopA Fis),
GyrAB = (GyrAB TopA) + Fis,

TopA = GyrAB TopA Fis, TopA = GyrAB + TopA + Fis,

Fis = (Fis Signal GyrAB TopA) + (Fis Cya GyrAB TopA)
+ (Fis CRP GyrAB TopA),
Fis = (CRP Cya Signal) + Fis + GyrAB + TopA,

SRNA = Fis, SRNA = Fis.

The above equations can then be used to construct a Petri net model of the
nutritional stress response regulatory network for carbon starvation by applying
the approach detailed in Section 3.2. The result is a safe Petri net model that
contains 45 places and 49 transitions (based on the synchronous update seman-
tics). The above process can be automated using our prototype tool and the
resulting Petri net can then be exported to a wide range of Petri net tools [28].

4.2 Analysing the Petri Net Model

We now consider analysing the Petri net model which results above using the
PEP tool [29] and in particular, make use of model checking techniques [7, 15].

Our aim is to illustrate the range of analysis possible using available tools, from
simple validation tests to more in—depth gene ‘knockout’ analysis.

We begin our analysis by performing a series of simple validation tests to
check the model is able to correctly switch between the exponential and station-
ary phases of growth. The idea is to initialise the Petri net to a given state and
then simulate it, observing the states that occur after each application of the two
phase commit protocol. The results of these simulations can then be compared
with the expected behaviour [13, 20, 2] to validate the model. As an example,
we consider validating that the model correctly switches from the exponential to
the stationary phase of growth. We initialise the Petri net to a state representing
the exponential phase but activate Signal to represent the presence of carbon
starvation. The resulting simulation run is presented in Figure 7, where the first
row represents the models initial state and each subsequent row the next state
observed. It shows that the model correctly switches to the stationary phase by
entering an attractor cycle of period two (see last three rows in table) in which
stable RNA is not present in significant levels (i.e. SRNA remains inactive).

‘Signal|CRP|Cya| GyrAB | TopA|Fis|SRNA|
0 1 1 0 1

e
O OO =

0
1
1
1

(o] Newl Nanl oy
(o] Neol Hen] Nean)

0
1
0
1

= O = =

Fig. 7. Simulating the switch from exponential to stationary phase.

To investigate the behaviour of the model in more detail we make use of
the extended reachability analysis provided by the model checking tools of PEP
[7, 15]. For example, it appears from the literature that the entities GyrAB
and TopA should be mutually exclusive, i.e. whenever GyrAB is significantly
expressed then TopA shouldn’t be and vice a versa. We can verify this in our
model by formulating the following constraint on places:

GyrAB + TopA > 1, GyrAB Done = 1

which characterises a state in which the mutual exclusion property does not
hold (where the condition GyrAB_Done = 1 is used to ensure we only consider
states reached after a complete pass of the two phase commit protocol). The
model checking tool is able to confirm that no state satisfying this constraint
is reachable from any reasonable initial state and this proves that GyrAB and
TopA must be mutually exclusive. We can attempt to prove a similar mutual
exclusion property for CRP and Fis using the same approach. However, this time
the model checking tool confirms that it is able to reach a state satisfying the

constraint, proving that CRP and Fis are not mutually exclusive in our model.
In fact, the tool returns a witness firing sequence which leads to such a state
to validate the result and we are able to automatically simulate this to gain
important insight into how this behaviour occurs.

We can extend our analysis further by experimenting with the underlying
structure of the Petri net model, adding or removing regulatory relationships to
test possible experimental hypotheses. To illustrate this we can consider inves-
tigating the effect of fixing the level of the global regulator CRP which is the
target of the carbon starvation signal-transduction pathway [20]. We do this by
simply omitting the truth table for CRP from the construction process, resulting
in CRP being treated as an input entity (i.e. like the entity Signal) whose state
becomes fixed once initialised. We start by ‘knocking out’ c¢rp so that it cannot
be expressed and then simulate the amended model to investigate the impact
of this change. As expected the results show that the transition from exponen-
tial to stationary phase is blocked; the lack of CRP prevents the formation of
cAMP.CRP which is needed to initiate the phase transition. Next we fix c¢rp to
be permanently expressed and again simulate the model. Interestingly the re-
sults show that the behaviour of the network is largely unaffected by this change;
both the transition from exponential to stationary phase and vice a versa are
able to occur as normal.

5 Conclusions

The standard approach of using Boolean networks [1, 3] to model genetic regu-
latory networks has a number of shortcomings: Boolean networks lack effective
analysis tools; and have problems coping with incomplete or inconsistent data.
In this paper we addressed the shortcomings of Boolean networks by presenting
a new approach for qualitatively modelling genetic regulatory networks based
on Petri nets [18]. The idea was to use logic minimization [4] to extract Boolean
terms representing the genetic network’s behaviour and to then directly trans-
late these into Petri net control structures. The result is a compact Petri net
model that correctly captures the dynamic behaviour of the original regulatory
network and which is amenable to detailed analysis via existing Petri net tools
[28].

We illustrated our approach by modelling and analysing the genetic regula-
tory network underlying the carbon starvation stress response in E. coli [20, 2].
This case study demonstrated how the PEP tool [29] can be used to validate
and analyse our Petri net models. In particular, we considered using simulation
tests to validate the correctness of our model and model checking tools [29, 15]
to investigate the detailed behaviour of the genetic regulatory network.

The results we have presented significantly extend existing work on using
Boolean models to analyse genetic regulatory networks (e. g. [5]). In particular,
we see the key contributions of this paper as follows: i) A new compact approach
to qualitatively modelling genetic regulatory networks based on using logic min-
imization and Petri nets; ii) Both synchronous and asynchronous semantics of

Boolean networks [8] are catered for; iii) Provision of tool support to automate
model construction; iv) A detailed case study exploring the application of exist-
ing Petri net tools to analyse a Boolean model of a genetic regulatory network.

One drawback of Boolean models is that the high level of abstraction used
means behaviour crucial to the operation of a regulatory network may be lost.
In future work we intend to address this problem by extending our modelling
approach to multi-valued network models [16]. We intend to incorporate our
qualitative modelling tools into related work on Stochastic Petri net modelling
[23, 24] and so provide much needed support in this important area.

Acknowledgments. We are very grateful to O. J. Shaw, M. Koutny and V.
Khomenko for many useful discussions concerning this work. We would also like
to thank the EPSRC for supporting R. Banks and the BBSRC for supporting
this work via the Centre for Integrated Systems Biology of Ageing and Nutri-
tion (CISBAN). Finally we acknowledge the support of the Newcastle Systems
Biology Resource Centre.

References

1. T. Akutsu, S. Miyano and S. Kuhara. Identification of genetic networks from small
number of gene expression patterns under the Boolean network model. Proceedings
of Pacific Symp. on Biocomputing, 4:17-28, 1999.

2. G. Batt, D. Ropers, H. de Jong, J. Geiselmann, R. Mateescu, M. Page and D.
Schneider. Validation of qualitative models of genetic regulatory networks by model
checking: analysis of the nutritional stress response in FEscherichia coli. Bioinfor-
matics, 21:119-128, 2005.

3. J. M. Bower and H. Bolouri. Computational Modelling of Genetic and Biochemical
Networks. MIT Press, 2001.

4. K. J. Breeding. Digital Design Fundamentals. Prentice Hall, 1992.

5. C. Chaouiya, E. Remy, P. Ruet, and D. Thieffry. Qualitative modelling of genetic
networks: From logical regulatory graphs to standard Petri nets. In: J. Cortadella
and W. Reisig (Eds), Proc. of the Int. Conf. on the Application and Theory of
Petri Nets, Lecture Notes in Computer Science 3099, pages 137-156, Springer—
Verlag, 2004.

6. J.-P. Comet, H. Klaudel and S. Liauzu. Modeling Multi-valued Genetic Regulatory
Networks Using High-Level Petri Nets. In: G. Ciardo and P. Darondeau (eds), Proc.
of the Int. Conf. on the Application and Theory of Petri Nets, Lecture Notes in
Computer Science 3536, pages 208-227, Springer—Verlag, 2005.

7. J. Esparza. Model checking using net unfoldings. Science of Computer Program-
ming, 23(2-3):151-195, 1994.

8. C. Gershenson. Classification of random boolean networks. In: R. K. Standish et
al (eds), Proc. of the 8th Int. Conf. on Artificial Life, p.1-8, MIT Press, 2002.

9. P. J. E. Goss and J. Peccoud. Quantitative modelling of stochastic systems in
molecular biology by using stochastic Petri nets. Proceedings of the National
Academy of Sciences of the United States of America, 95(12):6750-6755, 1998.

10. P. Grossman. Discrete Mathematics for Computing. Palgrave MacMillan, Second
Edition, 2002.

11. M. Heiner, I. Koch, and K. Voss. Analysis and simulation of steady states in
metabolic pathways with Petri nets. In K. Jensen (ed), Workshop and Tutorial on
Practical Use of Coloured Petri Nets and the CPN Tools (CPN’01), pages 15-34,
Aarhus University, 2001.

12. M. Heiner, I. Koch, and J. Will. Model validation of biological pathways using
Petri nets - demonstrated for apoptosis. Biosystems, 75(1-3):15-28, 2004.

13. R. Hengge-Aronis. The general stress response in Fscherichia coli. In: G. Storz and
R. Hengge-Aronis (eds), Bacterial Stress Responses, pages 161-178, ASM Press,
2000.

14. S. Huang. Gene expression profiling, genetic networks, and cellular states: an
integrating concept for tumorigenesis and drug discovery. Journal of Molecular
Medicine, Vol. 77:469-480, 1999.

15. V. Khomenko. Model Checking Based on Prefizes of Petri Net Unfoldings. Ph. D.
Thesis, School of Computing Science, University of Newcastle upon Tyne, 2003.

16. B. Luque and F. J. Ballesteros. Random Walk Networks. Physica A: Statistical
Mechanics and its Applications, 342(1-2):207-213, 2004.

17. H. Matsuno, A. Doi, M. Nagasaki, and S. Miyano. Hybrid Petri net representation
of gene regulatory network. Pacific Symposium on Biocomputing, 5:338-349, 2000.

18. T. Murata. Petri nets: properties, analysis and applications. Proceedings of the
IEEE, 77(4):541-580, 1989.

19. V. N. Reddy, M. N. Liebman, M. L. Mavrovouniotis. Qualitative analysis of bio-
chemical reaction systems. Computers in Biology and Medicine, 26(1):9-24, 1996.

20. D. Ropers, H. de Jong, M. Page, D. Schneider, and J. Geiselmann. Qualitative
Simulation of the Nutritional Stress Response in Escherichia coli. INRIA, Rapport
de Reacherche no. 5412, December 2004.

21. W. Reisig. Petri Nets, An Introduction. EATCS Monographs on Theoretical Com-
puter Science, W.Brauer et al (Eds.), Springer—Verlag, Berlin, 1985.

22. W. Reisig and G. Rozenberg. Lectures on Petri Nets I: Basic Models. Advances in
Petri Nets, Lecture Notes in Computer Science 1491, Springer-Verlag, 1998.

23. 0. J. Shaw, C. Harwood, A. Wipat, and L. J. Steggles. SARGE: A tool for creation
of putative genetic networks. Bioinformatics, 20(18):3638-3640, 2004.

24. O. J. Shaw, L. J. Steggles, and A. Wipat. Automatic Parameterisation of Stochastic
Petri Net Models of Biological Networks. FElectronic Notes in Theoretical Comput-
ing Science, 151(3):111-129, June 2006.

25. E. Simao, E. Remy, D. Thieffry, C. Chaouiya. Qualitative Modelling of Regu-
lated Metabolic Pathways: Application to the Tryptophan Biosynthesis in E. Coli.
Bioinformatics 21:190-196, 2005.

26. P. T. Spellman, G. Sherlock, M. Q. Zhang, V. R. Iyer, K. Anders, M. B. Eisen, P.
O. Brown, D. Botstein, and B. Futcher. Comprehensive identification of cell cycle-
regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization.
Molecular Biology of the Cell, 9(12):3273-3297, 1998.

27. 7. Szallasi and S. Liang. Modeling the Normal and Neoplastic Cell Cycle with “Re-
alistic Boolean Genetic Networks”: Their Application for Understanding Carcino-
genesis and Assessing Therapeutic Strategies. Pacific Symposium on Biocomputing
Vol. 3: 66-76, 1998.

28. Petrt nets World, http://www.informatik.uni-hamburg.de/TGI/PetriNets/,
2006.

29. PEP Home Page, http://parsys.informatik.uni-oldenburg.de/~pep/, 2006.

This article was processed using the I TEX macro package with LLNCS style

