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Abstract 

This study proposes a time-domain spectral finite element (SFE) model and investigates 

nonlinear guided wave interaction at a breathing crack. An extended time-domain SFE 

method based on the Mindlin-Hermann rod and Timoshenko beam theory is proposed to 

predict the nonlinear guided wave generation at the breathing crack. An SFE crack 

element is proposed to simulate the mode-conversion effect, in which a bilinear crack 

mechanism is implemented to take into account the contact nonlinearity at the breathing 

crack. There is good agreement between the results calculated using the proposed time-

domain SFE method and three-dimensional (3D) finite element (FE) simulation. This 

demonstrates the accuracy of the proposed SFE method in simulating contact 

nonlinearity at the breathing crack. Parametric studies using the fundamental symmetric 

(S0) and anti-symmetric (A0) modes of guided waves are also carried out to provide 

physical insights into the higher harmonics generated due to the contact nonlinearity at 

the breathing crack. The magnitude of the higher harmonics generated as a function of 

the crack depth is investigated in detail. The results show that the mode-converted 

higher harmonic guided waves provide valuable information for damage detection. 
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1. Introduction 

Detecting and identifying damage at its early stages is essential for maintaining the 

safety and serviceability of structures in a wide range of engineering fields, including 

aerospace, civil and mechanical engineering. Different non-destructive damage 

detection techniques have been developed for safety inspection. For example, low 

frequency vibration [1-3], acoustic emission [4] and conventional ultrasonic techniques 

[5]. Recently, guided waves have been shown to provide a potential cost-effective and 

reliable safety inspection of structures [6]. Guided waves have been sucessfully applied 

in plates [7-11], beams [12], and rods [13, 14] for damage detection. Numerous guided 

wave-based damage detection techniques have been developed, such as time-of-flight 

approach [15], maximum-likelihood estimation [16], damage imaging [17-21], phase 

array beamforming [22], model based approach [12, 23] and time-reversal techniques 

[24]. 

 

1.1. Nonlinear guided wave 

Most of the aforementioned guided wave-based damage detection techniques assume 

that the geometry of the damage (e.g. open crack) remains unchanged during the 

inspection process. The damage detection relies on the linear signal from the damage-

wave interaction, i.e. signals at the same frequency as the incident wave. Contact 

nonlinearity induced by the contact behaviour between crack interfaces was 

experimentally observed in the literature [25, 26]. Early developments in contact 

nonlinearity focused on bulk waves; later, nonlinear guided waves attracted significant 

research attention because of their ability to inspect larger areas compared to bulk 

waves. When guided wave interacts with a contact-type damage, the compressive 

pressure of the wave closes the crack, and the tensile pressure opens the crack [6][27]. 

This phenomenon alters the stiffness of the structure, and produces nonlinear guided 

wave in the measured signal. In order to improve the accuracy of identification, 

implementation of the nonlinear guided waves for different types of damages, such as 

fatigue crack [28], kissing bond [29, 30], delamination [31, 32] and breathing crack [33] 

have been investigated. 

 



1.2. Numerical methods for predicting nonlinear guided waves  

Different methods have been developed to simulate the guided wave propagation in 

structures [34]. Numerical methods, such as the conventional finite element (FE) 

method [35, 36], have been used for simulating guided wave propagation in complex 

structures. However, the FE method is computationally inefficient because the size of 

the FE elements should be sufficiently smaller than the wavelength of the guided wave 

to ensure the simulation accuracy. The fast Fourier transform (FFT) based spectral finite 

element (SFE) method [37-39] is computationally efficient in simulating the guided 

wave propagation, but it is limited in simulating the cases of finite-length waveguides 

due to the wrap-around effect [40]. The wavelet spectral finite element (WSFE) 

overcomes this problem by using the Daubechies scaling functions to approximate the 

time-dependant variable [41, 42], while it is a semi-analytical method that is impractical 

for simulating geometrically complicated structures. Other numerical methods also have 

their limitations in simulating guided wave propagation. For example, the boundary 

element method [43] would also be significantly inefficient in simulating guided wave 

propagation when the structure is large. The finite difference (FD) method is unable to 

simulate guided wave propagation in the waveguide that material property changes with 

geometry [44]. The finite strip element method [45] is also unsuitable for simulating the 

geometrically complicated structures.  

       Recently, the time-domain SFE method has been used to study the guided wave 

propagation [46], and damage detection [47-50]. The time-domain SFE method [51, 52] 

has the same flexibility as the FE method in structural discretisation, but it requires 

fewer elements because it uses high-order shape function to achieve the same level of 

accuracy as the FE method. The time-domain SFE method applies the Gauss-Lobatto-

Legendre (GLL) nodes in the formulation; as a result, a diagonal form of the mass 

matrix can be obtained. By using the explicit central difference method, therefore, the 

wave propagation problem can be solved efficiently.  

       In the literature modelling nonlinear guided waves caused by contact 

nonlinearity, has been investigated using different methods. These include the FE 

method [53], FD method [54], local interaction simulation approach (LISA) [55], and 

the FFT-based SFE method [40, 56]. However, an efficient time-domain SFE method 

has not yet been developed for this purpose. In this study, the time-domain SFE method 

is extended to simulate the nonlinear guided wave generated at cracks, where the 

nonlinear crack-wave interaction is simulated by contact mechanism. This study also 



provides physical insights into the generation of nonlinear guided waves (e.g. higher 

harmonics) resulting from the contact nonlinearity. This helps to further advance the use 

of the nonlinear guided waves in damage detection. 

 In practical situations, the mode-conversion phenomenon occurs when guided 

waves interact with an asymmetric discontinuity. Specifically, the mode-conversion 

effect of guided waves is a phenomenon by which a purely axial input gives rise to 

flexural response and vice versa. The fundamental anti-symmetric mode (A0) guided 

wave can be generated when the fundamental symmetric mode (S0) guided wave 

interacts with an asymmetric discontinuity and vice versa. In the literature, the study of 

the mode-conversion effect has been limited to linear guided waves. For example, the 

mode-converted linear guided wave signal has been employed to detect delaminations 

in composite laminates [23], and cracks in aluminium beams [57]. In contrast, there are 

a very limited number of studies focused on the mode conversion of nonlinear guided 

waves. In this study the mode-conversion effect of the nonlinear guided waves is 

investigated using the proposed time-domain SFE method and the SFE crack element. 

The mode-conversion effect of A0 guided waves converted to S0 nonlinear guided 

waves, and vice versa, is studied in detail. 

 The paper is organised as follows. The time-domain SFE method is first 

presented in Section 2, where a bilinear crack model is embedded in the SFE crack 

element to simulate contact nonlinearity at the breathing crack. In Section 3, the 

proposed time-domain SFE method is validated using the conventional 3D FE method. 

This section compares SFE and 3D FE simulated signals with generated higher 

harmonics that result from the contact nonlinearity at the breathing crack. The detailed 

comparison examines both time and frequency of the signals. Section 4 provides an 

observation of the generated nonlinear guided waves and investigates the mode-

conversion effect of the nonlinear guided waves at the crack. Section 5 presents a series 

of parametric studies that investigate the characteristics of the generated, higher 

harmonic guided waves, in which the magnitude of the generated higher harmonics as a 

function of the crack depth is studied. Finally, the conclusions are drawn in Section 6.  

 



2.  Time-domain spectral finite element method 

2.1. Spectral finite element (SFE) formulation 

The SFE method employs a similar time-domain dynamic equilibrium as the 

conventional FE method, which has the following form [52, 58, 59] 

  (1) 

where U,  and  are the global vectors corresponding to nodal displacement, 

velocity and acceleration, respectively. M, C, K and  F t  denote the global mass 

matrix, global damping matrix, global stiffness matrix and global force vector at time t, 

respectively. Specifically, the damping matrix C is proportional to the global mass 

matrix as C M , where   is the damping coefficient. In addition, the global matrixes, 

M and K and the global force vector  F t , are assembled from their corresponding 

elemental terms Me , Ke  and Fe , which can be expressed as 
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where n  is the node number in the element,  fe i  is the external force and i  is the 

local coordinate of the node i in the element, respectively.   J x    is the Jacobian 

function mapping the local coordinate   to the global coordinate x. Distinct from the 

conventional FE method, the nodes in the SFE are called GLL nodes [57]. The local 

coordinate   of each node in the SFE can be obtained as the roots of the following 

equation 
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where 1nL  is the Legendre polynomial in (n-1)-th order and the symbol “  ” denotes the 

differential operation. iw  is the weighting function of node i  and it can be calculated as 
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 is the shape function matrix defined as 
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where 
   
S = [ S

1
(x) ... S

n
(x) ]T , ‘  ’ is the Kronecker product and I  is a square 

identity matrix having the same size as the number of nodal degree-of-freedoms (DoFs), 

respectively. 
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(x)   is the spectral shape function value for node i defined as  
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Due to the Kronecker property of the shape function value, the mass matrix achieves a 

diagonal form. It can be solved efficiently by the explicit central difference method. The 

number of elements needed to capture guided wave propagation accurately can be 

significantly reduced by using the GLL nodes, thus improving the computational 

efficiency of the SFE method.  

In this study, Equation (1) is governed by the Mindlin-Herrmann rod theory and 

Timoshenko beam theory. The independent lateral contraction  x  is introduced to 

account for the Poisson effect. The first order shear deformation is considered by 

employing an independent rotation  x . Based on the Mindlin-Herrmann rod theory 

and Timoshenko beam theory, the displacement field of the beam is 

      ,  u x y u x x y   

      ,  v x y v x x y  (9) 

where  u x  and  v x  are the longitudinal and transverse displacements at x axis, 

respectively. The strain field  at the x axis of the beam can be obtained in a matrix 

form as 

   (10) 

where 
  
q = u y v jé

ë
ù
û

T

 is the displacement field vector and 
  
B

e
 is the constitutive 

relation between strain and displacement. It is defined as 
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According to the Mindlin-Herrmann rod and Timoshenko beam theories the mass 

density matrix e  and the stress-strain matrix E
e  in Equations (2) and (3) have the 

following form 
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where  , A  and I  denotes the density of the material, the cross-section area of the 

beam, and the moment of inertia, respectively. E , G and n  are the Young's modules, 

shear modules and Poisson's ratio, respectively. 
1

M
K , 

2

M
K , 

1

T
K  and 

2

T
K  are adjustable 

parameters that calibrate the accuracy guided wave propagation simulation. In this paper, 

the value 
1

M
K  

= 1.1, 
2

M
K  

= 3.1 and 
1

T
K  

= 0.922 are determined from the experimental 

data in our previous study [57], by which the SFE simulation has the best fitting to the 

experimental data. 2

T
K  is set as 2

112 /T
K   to match the cut-off frequency of guided 

wave modes.  

 



2.2. Open crack model 

An SFE crack element was developed to model an open crack [57]. The mode-

conversion effect is simulated by coupling the longitudinal, transverse and rotational 

DoFs in the crack element. The crack element has two nodes and has a very small 

length, i.e. 0.1l  mm. As shown in Figure 1, in the aluminium beam with thickness b 

and height h, the crack is located at cl  in the SFE crack element. The cross-section of the 

crack is rectangular, where the width and depth are b and 
cd , respectively. In the crack 

element, lateral contraction due to the longitudinal guided wave propagation is not 

considered because the length of the element is very small. Hence, the nodes in the 

crack element consider only the longitudinal, transverse and rotational DoFs. The 

stiffness matrix K c

e
 is developed for the crack element using a similar approach, [60] but 

it has been modified because of the rectangular cross-section of the beam in this study. 

 

[Figure 1. Schematic diagram of the two-node crack element for simulating an opened 

crack. (a) Discretization of a cracked beam; (b) SFE crack element] 

 

In this paper, the crack element stiffness matrix K c

e
 has the form 

 1K PG Pc T

e c  (14) 

where P  is the spatial transformation matrix as a function of the crack element length 

l  
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G  is the flexibility matrix given as follows 
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where 10(1 ) / (12 11 )      is the shear coefficient for the rectangular beam cross 

section. 1g
I , 2g

I , 3g
I  and 4g

I  are functions of the crack depth, defined as 
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where /  cd h . 1F , 2F  and IIF  are the empirical boundary calibration factors 

accounted for tension, bending and shear for the surface crack, for which formulations 

are given as Tada, Paris, Irwin and Tada [61] 
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According to Tada, Paris, Irwin and Tada [61], the factors 1F , 2F  and IIF  produce less 

than 0.5% errors for a crack with any depth cd . It should be noted that if the crack is 

closed, the crack element is treated as an intact SFE beam element, and its stiffness 

matrix K c

e
 in Equation (14) becomes 

 1K PG Pc T

e e
 (22) 

where Ge  is the flexibility matrix for the closed crack element as follows 
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2.3. Crack-breathing mechanism 

When the incident guided wave interacts with the crack, the contact nonlinearity occurs 

due to the crack-breathing phenomenon. There are numerous methods for simulating the 

contact nonlinearity of guided waves, but the bilinear crack model is one of the most 

commonly used approaches [33, 62]. In this paper, a bilinear crack mechanism is 

proposed for taking into account the contact nonlinearity effect, and it is incorporated in 

the SFE crack model. Specifically, when the out-of-plane excitation is applied, the 

nodal rotations 1  and 2  of the two-node crack element are examined at each step. On 

the other hand, when the in-plane excitation is applied, the nodal longitudinal 

displacements 1u  and 2u  are examined. These are shown in the following equations 

 

Out-of-plane excitation: 

Crack open: 

 1 2 0    (25) 

Crack closed: 

 1 2 0    (26) 

 

In-plane excitation: 

Crack open: 

 1 2 0 u u  (27) 

Crack closed: 

 1 2 0 u u  (28) 



These mechanisms are indicated in Figure 2. If the crack is open, the proposed SFE 

open crack element is used. When the crack is closed, the SFE crack element is treated 

as an intact SFE beam element. By replacing the stiffness matrix of the crack element, 

the contact nonlinearity effect can be simulated. 

 

[Figure 2. Degrees-of-freedom at the crack element when the crack is (a) opened and (b) 

closed] 

 

3. Validation using three-dimensional finite element simulation 

In order to verify the accuracy of the proposed SFE method, the results of a beam 

modelled using the time-domain SFE method are compared with the results calculated 

using the conventional explicit three-dimensional (3D) FE method. The verification is 

conducted in two different situations: 1) exciting S0 and 2) A0 incident guided waves. It 

is assumed that the beam is made of aluminium and the material properties are shown in 

Table 1. The width and height of the beam are b = 12 mm and h = 6 mm, respectively. 

A schematic diagram of the beam is shown in Figure 3. The beam length, crack location 

and number of SFE elements used for these two different situations are shown in Table 

1.  

 

[Figure 3. Schematic diagram of a beam with a surface breathing crack] 

 

[Table 1. Summary of the time-domain SFE models used in the validation] 

 

The excitation signal is a f0 = 25 kHz, narrow-band, 5-cycle sinusoidal tone burst 

modulated by a Hanning window [63]. Using this frequency is to ensure that only the 

fundamental guided wave modes (e.g. A0 and S0) are generated in both the fundamental 

and higher harmonic frequencies. The excitation signal was induced by applying a 

boundary displacement in the in-plane and out-of-plane directions of the SFE node at 

the beam’s left end (x = 0 m) to generate the S0 and A0 incident guided waves, 

respectively. According to the dispersion relation predicted by the SFE model in Figure 

4, only the S0 and A0 incident guided waves are generated. The nodal velocity is 

calculated at x = 0 m, which is the same location as the excitation. The calculated 

velocity is normalised by the maximum amplitude of incident wave velocity. The 



calculated duration is long enough to cover the incident guided wave propagates from 

the excitation to the right beam end, and back to the measurement location. The 

damping coefficient   is chosen to be 550 s-1 [57]. Eight GLL nodes in each SFE beam 

element are used in the model. The time step for solving the dynamic Equation (1) is 

0.25×10-7 s. 

 

[Figure 4. Dispersion relations for an aluminum beam predicted by the SFE model 

(a) Phase velocity; (b) Group velocity] 

 

For the 3D FE model, commercial FE software, ABAQUS v6.12-1, is used to 

simulate the guided waves in the beam. Eight-node 3D incompatible modes solid brick 

elements (C3D8I) are employed to model the cracked beam and the second-order 

accuracy is enabled in the modelling. The S0 and A0 incident guided wave are generated 

by applying the excitation signal as a surface traction in in-plane and out-of-plane 

direction, respectively, at the vertical surface of the beam’s left end. The mesh size of 

the FE element is 0.4mm×0.4mm×0.4mm to ensure the stability of the simulations. The 

dynamic problem is solved by explicit solver, ABAQUS/Explicit. The time step in the 

FE simulation is automatically controlled by ABAQUS/Explicit. The breathing crack is 

modelled by duplicating the nodes at the crack surfaces and the ‘frictionless hard 

contact’ property is assigned to the crack surfaces, which allows the simulation of the 

contact nonlinearity when guided waves interact with the crack. 

The comparison of the SFE and explicit 3D FE simulated results are shown in 

Figures 5 to 6, where S0 guided wave is used as the incident wave first. Figures 5a and 

5b show the in-plane and out-of-plane velocity in time-domain. The signals are 

normalized such that the maximum amplitude of S0 incident wave package is unity. For 

the incident S0 guided wave, there is good agreement between signals calculated by the 

time-domain SFE method and the explicit 3D FE method in the arrival time, amplitude 

of in-plane velocity (S0 guided wave), the mode-converted out-of-plane velocity (mode-

converted A0 guided wave) and the signal distortion due to the contact nonlinearity at 

the crack. The corresponding normalized spectral amplitudes of the Fourier-transformed 

time-domain velocity are shown in Figures 6a and 6b, respectively. There is good 

agreement between the results of the Fourier-transformed velocity responses calculated 

using SFE and explicit 3D FE methods at the excitation frequency and higher harmonic 

frequencies. Comparing Figures 6a and 6b, it indicates that the energy of higher 



harmonics generated due to the interaction of the S0 incident guided wave with the crack 

is mainly concentrated in the mode-converted A0 nonlinear guided waves. 

 

[Figure 5. Time-domain (a) in-plane and (b) mode-converted out-of-plane velocity at x 

= 0 m for incident S0 guided wave from time-domain SFE and 3D FE simulation] 

 

[Figure 6. Fourier-transformed (a) in-plane and (b) mode-converted out-of-plane 

velocity at x = 0 m for incident S0 guided wave from time-domain SFE and 3D FE 

simulation] 

 

Figures 7 and 8 show the time domain velocity response and the corresponding 

spectral amplitude when the incident wave is the A0 guided wave. Similar to the 

incident S0 guided wave, there is good agreement between the time-domain SFE and 

explicit 3D FE simulations. However, there is a slight difference in the out-of-plane 

velocity responses as shown in Figure 8a. The very small discrepancy shown in Figure 

8a is mainly due to the one-dimensional (1D) assumption in the time-domain SFE but 

the FE simulations are in 3D, and the limitation of the first order beam theory used in 

the SFE beam formulation. Comparing Figure 8 with Figure 6, it shows that the energy 

of the higher harmonics in the mode-converted S0 guided wave, which is induced by the 

crack-wave interaction using the A0 incident guided wave, is much less than that in the 

mode-converted A0 guided wave when the incident wave is the S0 guided wave. 

The results in Figures 5 – 8 show reasonably good agreement, including the 

generated higher harmonics due to contact nonlinearity at the breathing crack. 

Therefore, the proposed time-domain SFE model is able to simulate the nonlinear 

guided wave induced due to contact nonlinearity and the mode-conversion effect 

accurately.  

 

[Figure 7. Time-domain (a) out-of-plane and (b) mode-converted in-plane velocity at x 

= 0 m for incident A0 guided wave from time-domain SFE and 3D FE simulation] 

 

 [Figure 8. Fourier-transformed (a) out-of-plane and (b) mode-converted in-plane 

velocity at x = 0 m for incident A0 guided wave from time-domain SFE and 3D FE 

simulation] 

 



 

4.  Higher harmonics generation due to contact nonlinearity at 

breathing crack 

The generation of higher harmonics is studied in this section using the time-domain SFE 

method. An aluminium beam is modelled, which has the same cross-section and 

material properties as the aluminium beam used in Section 3. Two scenarios, S0 and A0 

incident guided waves, are considered separately. The length L of the beam, the crack 

locations cL  and the measured locations are different in these two scenarios, and they 

are summarised in Table 2. For each scenario, we investigate four different cases 

considering different effects of the contact nonlinearity and mode-conversion. The 

excitation signal is an f0 = 25 kHz, narrow-band, 5-cycle sinusoidal tone burst 

modulated by a Hanning window, and it is applied as a force at the left end of the beam.  

 

[Table 2. Summary of case studies for higher harmonic generation due to contact nonlinearity 

at the breathing crack] 

 

 

4.1. Incident S0 guided wave 

The incident S0 guided wave is excited by applying the in-plane external force to the left 

end of the beam. The in-plane response is investigated in subsection 4.1.1 and the 

mode-converted out-of-plane response is studied in subsection 4.1.2. 

 

4.1.1. In-plane response 

In this subsection the excitation is applied in the in-plane direction to generate the 

incident S0 guided wave. Four different cases, S1, S2, S3 and S4, as shown in Table 2, 

are considered in studying the generation of higher harmonics due to the S0 guided 

wave’s interaction with the breathing crack. Case S1 does not simulate the contact 

nonlinearity and mode-conversion effect at the breathing crack. The mode conversion 

effect is not considered by removing the coupling terms e.g., 
12g and 

13g  in Equation (17) 

in the SFE crack element. Case S2 only simulates the contact nonlinearity effect by 

utilising the bilinear crack model. Case S3 simulates both contact nonlinearity and the 



mode-conversion effect.  Case S4 considers only the mode conversion effect without the 

contact nonlinearity. 

The S0 guided wave propagation is studied first. Figure 9 shows the in-plane 

velocity time histories at different locations along the beam for Case S3, in which both 

contact nonlinearity and the mode-conversion effect are considered. It should be noted 

that Figure 9 only shows the in-plane velocity, where only the linear and second 

harmonic S0 guided waves are visualized in the time histories. Figure 9 shows that when 

the incident S0 guided wave (indicated by the solid red lines) encounters the breathing 

crack, it separates into two wave packages: transmitted waves and reflected waves. The 

second harmonic guided wave, indicated by the blue dashed line at the frequency 2f0, 

which occurred induced due to the contact nonlinearity effect, is not observed from the 

in-plane velocity in the time-domain. This is because the linear (f0) and the second 

harmonic (2f0) S0 guided waves have very similar group velocities as shown in Figure 4. 

As a result, they mix together during the wave propagation.  

 

 [Figure 9. In-plane velocity of S0 guided wave time histories at different locations 

along the beam for Case S3] 

 

In order to investigate the higher harmonics induced by the contact nonlinearity 

at the breathing crack, the energy density spectrum for each damage case is calculated 

using the Gabor wavelet transform [17, 64]. The baseline subtraction technique [17] is 

used to extract the scattered wave signals from the breathing crack, i.e. the linear 

scattered S0 guided waves and the nonlinear S0 guided waves. The S0 guided wave 

signal is measured at x = 5 m and the baseline data is obtained from an intact SFE beam. 

The extracted wave signals for Cases S1-S4 are shown in Figure 10. Figure 10 shows 

that the time-domain response is plotted from 900 to 2400 μs because there is no 

extracted guided wave signal before 900 μs, where each of the wave packages can be 

identified using Figure 9. Note that resulting from the similar group velocity of S0 

guided wave for each harmonic shown Figure 4, each guided wave package contains 

both the fundamental and second harmonics if considering the contact nonlinearity 

effect. 

 

 [Figure 10. Extracted time domain in-plane velocity signal from 900 - 2400 μs at x = 5 

m for (a) Cases S1, (b) S2, (c) S3 and (d) S4] 



 

Figures 10a considers no contact nonlinearity and mode-conversion effect. Each 

guided wave package has the largest amplitude compared with other cases. Comparing 

Figures 10b and 10d, it is shown that when the mode conversion effect is considered 

alone, the amplitude of each guided wave package decreases less than that only 

considering the contact nonlinearity. While in Figure 10(c), where both the contact 

nonlinearity and mode conversion effect are considered, the amplitude of each guided 

wave package becomes the smallest compared with other cases. 

 

[Figure 11. Energy density spectrum of the in-plane velocity signal from 900 - 2400 μs 

at measurement location x = 5 m for (a) Cases S1, (b) S2, (c) S3 and (d) S4] 

 

The corresponding energy density spectra are shown in Figure 11. It should be 

noted that the magnitude of the energy density spectrum is normalized to 1 for the first 

wave package of the extracted signal of the transmitted guided wave. Figure 11a shows 

the energy density spectrum of Case S1, in which the contact nonlinearity and mode-

conversion effect are not considered. Hence, the energy of the extracted wave signals 

concentrates at the excitation frequency (f0 = 25 kHz) and no higher harmonics are 

generated.  

Case S2 considered the contact nonlinearity effect. As shown in Figure 11b, the 

second harmonic at the frequency 2f0 = 50 kHz is observed in the energy density 

spectrum. This shows that the nonlinear S0 guided wave is generated due to the contact 

nonlinearity effect.  

Case S3 in Figure 11c considers both the contact nonlinearity and mode-

conversion effect. The energy at the second harmonic frequency (2f0 = 50 kHz) is 

weaker compared to that in Case S2. This indicates that part of the energy of the S0 

nonlinear guided wave is converted to the A0 nonlinear guided wave due to the mode-

conversion effect. However, the linear components of the energy spectrum are similar to 

Figure 11b. This is because the spectral amplitude of the higher harmonic is very small 

compared to the linear component, and the energy spectrum has linear relation to the 

square of the spectral amplitude, this results a small change to the linear component 

than the higher harmonic in the energy spectrum in Figure 11c. 

Case S4, as shown in Figure 11d, considers only the mode conversion effect 

without the contact nonlinearity. It is shown that the energy spectrum at the frequency f0 



of each guided wave package is slightly less than that in Figure 11a. Also, no higher 

harmonics are generated. The results of the out-of-plane velocity, i.e. the A0 linear and 

nonlinear guided waves are presented in the next sub-section. 

 

4.1.2. Mode-converted out-of-plane response 

The mode-converted out-of-plane velocity at different locations along the SFE beam for 

Case S3 is shown in Figure 12, in which both the contact nonlinearity and the mode-

conversion effect are considered in the simulation. As shown in Figure 12, the mode-

converted S0-A0 guided waves (i.e., A0 guided waves converted from S0 incident-guided 

waves) are generated when the S0 incident-guided wave interacts with the crack. Due to 

the contact nonlinearity effect, higher harmonics with frequencies at f0, 2f0, 3f0 and 4f0, 

are generated in the out-of-plane velocity. These mode-converted A0 higher harmonic 

guided waves propagate at different velocities, in which the first harmonic has the 

lowest group velocity, while the fourth harmonic has the highest group velocity. As 

shown in Figure 12, the S0-A0 guided waves at frequency f0, 2f0, 3f0 and 4f0 are denoted 

by a solid red line, a dash-dot blue line, a dashed blue line and a dotted red line, 

respectively. This shows that the mode-conversion effect induces not only the linear 

mode-converted waves but also the nonlinear mode-converted guided waves due to the 

contact nonlinearity at the asymmetrical breathing crack.  

 

 [Figure 12. Out-of-plane velocity of mode-converted S0-A0 guided wave time histories 

at different locations along the beam for Case S3 (the normalised amplitude is amplified 

by a factor of 3)] 

 

The energy density spectrum of the mode-converted A0 guided wave measured 

at x = 5 m is shown in Figure 13. There are four wave packages as shown in Figure 13a, 

and the corresponding energy density spectrum of the first (f0) and the second (2f0) 

harmonics are shown in Figure 13b. The energy of the third (3f0) and the fourth (4f0) 

harmonics are too small to be shown after the normalisation. Hence, the energy density 

spectrum only shows the first and the second harmonics. The results in Figure 13 

successfully demonstrate mode-converted A0 higher harmonic guided waves generated 

as a result of the contact nonlinearity effect. 

 



[Figure 13. Time history and energy density spectrum of the out-of-plane velocity signal 

from 900 - 2400 μs at measurement location x = 5 m for Cases S3] 

 

 

4.2. Incident A0 guided wave 

The incident A0 guided wave is excited by applying the out-of-plane external force to 

the left end of the beam. The out-of-plane response is investigated in subsection 4.2.1 

and the mode-converted in-plane response is studied in subsection 4.2.2. 

 

4.2.1. Out-of-plane response 

This subsection investigates the nonlinear guided wave generated due to the interaction 

of the A0 guided wave with the breathing crack. The calculated time histories at 

different locations along the beam for Case A3, in which both contact nonlinearity and 

mode-conversion effect are considered, are shown in Figure 14. When an f0 = 25 kHz 

incident A0 guided wave encounters the crack, a linear reflected wave and a linear 

transmitted wave (f0 = 25 kHz) occur, which are indicated by solid red lines in Figure 14. 

Due to the contact nonlinearity, the higher harmonic A0 guided waves (2f0 = 50 kHz) 

are also generated. They propagate in forward and backward directions from the crack, 

and they are indicated by dashed blue lines. Because of the dispersive nature of the low 

frequency A0 guided waves, the A0 guided waves at f0 and 2f0 frequency propagate at 

different group velocities. Since the crack is asymmetric, the S0 guided wave is also 

converted from the incident A0 guided wave. It is not shown in the Figure 14, however, 

because only the out-of-plane velocity is shown. When the mode-converted S0 guided 

wave interacts with the asymmetrical crack, it induces the mode-converted A0 guided 

wave, i.e. A0-S0-A0 guided waves. The A0-S0-A0 guided waves at f0 and 2f0 frequency 

are indicated by the dotted red line and dashed-dotted blue line, respectively. 

 

 [Figure 14. Out-of-plane velocity of A0 guided wave and mode-converted A0-S0-A0 

guided wave time histories at different locations along the beam for Case A3] 

 

[Figure 15. Extracted time-domain out-of-plane velocity signal from 500 - 2100 μs at x 

= 1.65 m for (a) Cases A1, (b) A2, (c) A3 and (d) A4] 

 



Figures 15a, 15b, 15c and 15d show the out-of-plane velocity time history at 

measurement location x = 1.65 m for Cases A1, A2, A3 and A4, respectively. The 

scattered wave is extracted using a baseline subtraction technique [17]. Figure 16 shows 

the corresponding energy density spectrum of the time histories depicted in Figure 15. 

The energy density spectrum is used to investigate the influence of the contact 

nonlinearity and mode-conversion effect. The magnitude of the energy density spectrum 

is normalised to 1 for the extracted, transmitted guided wave package, i.e., GW-1 shown 

in Figure 15a. Figure 16 only shows the magnitude in the range from 0 to 0.2 for the 

normalised energy density spectrum.  

For Case A1 no contact nonlinearity or mode-conversion effects are considered. 

There are only two guided wave packages: the forward scattered wave passing through 

the crack, and its reflection from the right beam end, which are labelled as GW-1 and 

GW-2 in Figure 15a, respectively. The corresponding energy density spectrum shown in 

Figure 16a indicates that there is no higher harmonic. In contrast, the results from Case 

A2, in which the contact nonlinearity effect is considered, indicate the existence of 

higher harmonic guided waves in Figure 16b. In that figure, guided wave packages, 

GW-1 and GW-2, contain signals at two different frequencies: the excitation frequency 

f0 and the second harmonic frequency 2f0, respectively. For GW-3, it only has signal at 

the second harmonic 2f0. Case A3 considers both contact nonlinearity and the mode-

conversion effect. In addition to GW-1, GW-2 and GW-3, a guided wave package GW-

4 is observed in Figure 16c. GW-4 contains the mode-converted A0-S0-A0 guided waves 

at the excitation frequency f0 and at the second harmonic frequency 2f0. They are 

induced by the contact nonlinearity and mode-conversion effect at the asymmetric 

crack. In Case A4, the contact nonlinearity is removed and only the mode-conversion 

effect is considered in the simulation. The guided wave package GW-3 caused by 

contact nonlinearity is disappeared in Figure 15d. The guided wave packages GW-1 and 

GW-2 and GW-4 only contain the linear component as shown in the energy spectrum in 

Figure 16d. 

 

[Figure 16. Energy density spectrum of the out-of-plane velocity signal from 500 - 2100 

μs at measurement location x = 1.65 m for (a) Cases A1, (b) A2, (c) A3 and (d) A4] 

 



4.2.2. Mode-converted in-plane response 

Figure 17 shows the propagation of the mode-converted A0-S0 guided waves. The 

amplitude is increased by a coefficient of 5. The mode-converted A0-S0 guided wave is 

generated at the moment when the incident A0 guided wave encountered the 

asymmetrical crack. Due to the contact nonlinearity effect, both mode-converted A0-S0 

guided waves at f0 and 2f0 are generated. The solid red line and dash-dot blue line 

indicate the f0 and 2f0 mode-converted A0-S0 guided waves, respectively. As they have 

similar group velocities, they are mixed together in the time-domain. The reflected, 

mode-converted A0-S0 guided waves are then reflected from the beam’s left end. These 

waves propagate forwards and encounter the breathing crack. They then generate the 

mode-converted A0-S0-A0 guided waves observed in Figure 14 (dotted red line for the 

linear A0-S0-A0 guided waves and dashed-dotted blue line for the second harmonic A0-

S0-A0 guided waves). 

 

[Figure 17. In-plane velocity of mode-converted A0-S0 guided wave time histories at 

different locations along the beam for Case A3 (the normalised amplitude is amplified 

by a factor of 5)] 

 

The velocity time history and the corresponding energy density spectrum of the 

mode-converted A0-S0 guided waves at the measurement location x = 1.65 m for Case 

A3 are shown in Figures 18a and 18b, respectively. The mode-converted A0-S0 guided 

waves at frequencies f0 and 2f0 are mixed together in the time-domain as they have 

similar group velocities. This is consistent with the energy density spectrum as the 

energy for each guided wave package in Figure 18b is centred at both the f0 and 2f0 

frequencies. In addition, by comparing the energy density spectrum in Figure 18b with 

that in Figure 16c, we can see that the mode-converted A0-S0 higher harmonic guided 

waves are easier to observe as they have larger magnitudes. 

 

[Figure 18. Energy density spectrum of the in-plane velocity signal from 500 - 2100 μs 

at measurement location x = 1.65 m for Cases A3] 

 



5.  Parametric studies 

This section investigates the characteristics of incident guided waves and mode-

converted higher harmonic guided waves for different crack depths. In each study, the 

excitation force was an f0 = 25 kHz, narrow-band, 5-cycle sinusoidal tone burst 

modulated by a Hanning window. The excitation is applied in both in-plane and out-of-

plane directions to generate the S0 and A0 guided waves, respectively. The length of the 

aluminium beam is 1 m and the crack location is x = 0.5 m. The baseline subtraction 

technique [17] is used in the study to extract the scattered wave signals from the 

breathing crack. The signal is calculated at both ends of the beam to capture both the 

forward and backward scattered guided wave signals. The measurement duration covers 

the incident guided wave propagating to the beam end and reflecting back to the 

measurement location. 

 

5.1. Incident S0 guided wave 

The first parametric study investigates the spectral amplitudes at the excitation 

frequency and each higher harmonic frequency as a function of crack depth when the 

incident wave is S0 guided wave. Without loss of generality, the crack depth to beam 

height ratio (dc/h) is used to present the results. A comparison of the Fourier-

transformed in-plane velocity (S0 guided wave) and mode-converted out-of-plane 

velocity (A0 guided wave) is shown in Figure 19 for the backward crack-scattered 

guided wave and Figure 20 for the forward crack-scattered guided wave. It should be 

noted that the spectral amplitudes of the S0 and mode-converted A0 guided waves are 

normalised to the incident S0 guided wave magnitude at f0 =25 kHz.  

Comparing Figure 19 with Figure 20, we can see that the FFTs of the backward 

and forward scattered guided wave signals from the crack are almost identical when 

using S0 incident guided waves. Specifically, the spectral amplitudes at f0 and 2f0 of the 

in-plane velocity, as shown in Figures 19(a) and 20(a), increase with the crack depth to 

beam height ratio dc/h. We found that the spectral amplitude at f0 increases sharply with 

dc/h while that at 2f0 increases slowly and stably. We can see that the normalised 

spectral amplitude of the in-plane velocity at 2f0 is comparable to that at f0 when dc/h is 

less than 0.3. This indicates that the nonlinear in-plane response is very sensitive to 

small cracks when using S0 incident guided waves. 



The spectral amplitudes of the mode-converted out-of-plane A0 guided waves 

are shown in Figures 19(b) and 20(b). We can see that the normalised spectral 

amplitude of the fundamental harmonic (f0) increases significantly with dc/h and reaches 

its maximum at around 1.2 at dc/h = 0.87. Then it decreases to 0.9 at dc/h = 0.99. The 

normalised spectral amplitude of the second harmonic (at 2f0) begins to increase slowly 

with dc/h. It reaches the maximal value just below 0.3 when dc/h = 0.65. Later, it starts 

to decrease stably with dc/h and finally reaches 0.13. Overall, the amplitude of the 

second harmonic is small when compared with the linear signal in the mode-converted 

out-of-plane velocity. 

 

 [Figure 19. Fourier-transformed (a) in-plane and (b) mode-converted out-of-plane 

velocity as a function of crack depth to beam height ratio (dc/h) at measurement 

location x = 0 m when the incident wave is S0 guided wave] 

 

[Figure 20. Fourier-transformed (a) in-plane and (b) mode-converted out-of-plane 

velocity as a function of crack depth to beam height ratio (dc/h) at measurement 

location x = 1 m when the incident wave is S0 guided wave] 

 

Comparing Figures 19(a) and 20(a) with Figures 19(b) and 20(b), the results 

show that the normalised spectral amplitude of the second harmonic (at 2f0) of the 

mode-converted A0 guided waves are generally larger than the S0 guided waves when 

the crack is small (i.e., dc/h < 0.65). As the crack continues to grow (i.e., dc/h > 0.75), 

the normalised spectral amplitude of the second harmonic (2f0) of the mode-converted 

A0 becomes smaller than that of the S0 guided wave signal. This indicates that the 

second harmonic of the mode-converted out-of-plane A0 guided wave is more sensitive 

than the in-plane S0 guided wave in detecting smaller cracks when the incident wave is 

the S0 guided wave. 

 

5.2. Incident A0 guided wave 

The second parametric study examines the A0 guided wave excited in the aluminium 

beam. The Fourier-transformed out-of-plane (A0 guided wave) and in-plane (S0 guided 

wave) velocities are shown in Figures 21 and 22. The spectral amplitudes are 



normalised to the maximal spectral amplitude of the A0 incident wave at f0 =25 kHz. 

Figure 21(a) shows the FFT out-of-plane velocity of the backward scattered guided 

wave induced by the crack. The normalised spectral amplitude of the fundamental 

harmonic (f0) increases significantly from 0 to just below 0.4 at dc/h = 0.65. Then it 

decreases sharply with the crack growth, to around 0.05 when dc/h = 0.99. This pattern 

is different to that using the S0 incident guided wave in Figure 19(a) due to the 

difference of the mode-shape between S0 and A0 guided waves [65]. In contrast, the 

normalised spectral amplitude of the second harmonic (2f0) increases slowly from 0 to 

0.11 at dc/h = 0.55, while it decreases to 0.8 when dc/h = 0.85. After that, it increases 

suddenly to 0.35 at dc/h = 0.99.  

 

[Figure 21. Fourier-transformed (a) out-of-plane and (b) mode-converted in-plane 

velocity as a function of crack depth to beam height ratio (dc/h) at measurement 

location x = 0 m when the incident wave is A0 guided wave] 

 

On the other hand, Figure 22(a) illustrates the FFT out-of-plane velocity of the 

forward scattered A0 guided wave induced by the crack. The normalised spectral 

amplitude of the fundamental harmonic (f0) increases with dc/h. When dc/h < 0.65, it 

increases significantly from 0 to around 0.5. When 0.65 < dc/h < 0.9, it slowly increases 

from 0.5 to 0.6. After dc/h > 0.9, the amplitude increases dramatically to just below 1. In 

comparison, the spectral amplitude of the second harmonic of the forward scattered 

guided wave has a similar trend to the backward scattered guided wave as shown in 

Figure 21. The amplitude of the second harmonic forward scattered guided wave is 

larger than the backward scattered guided wave. As shown in Figure 22(a), the second 

harmonic has the first peak at dc/h = 0.55 with a normalised amplitude around 0.18, then 

it reduces to 0.15 at dc/h = 0.85. Finally, it increases to around 0.6 when dc/h = 0.99.  

 

[Figure 22. Fourier-transformed (a) out-of-plane and (b) mode-converted in-plane 

velocity as a function of crack depth to beam height ratio (dc/h) at measurement 

location x = 1 m when the incident wave is A0 guided wave] 

 

Figures 21(b) and 22(b) show the normalised spectral amplitude of the mode-

converted S0 guided wave (in-plane velocity), which are almost identical. We can see 

that the normalised spectral amplitude of the mode-converted fundamental harmonic 



increases with the crack growth, and peaks at dc/h = 0.9 with the value 0.28. After that, 

it decreases to just above 0.2 at dc/h = 0.99. The amplitude of the second harmonic 

increases slowly to around 0.08 at dc/h = 0.65, then it decreases slightly to 0.07 at dc/h = 

0.9. After that, it increases again to 0.11 at dc/h = 0.99.  

Comparing Figure 21 with Figure 22, it is shown that the energy of the reflected 

out-of-plane linear guided wave decreases from dc/h = 0.65, while that of the 

transmitted out-of-plane guided wave increases. This indicates that the energy of the 

reflected out-of-plane linear guided wave converts to that of the transmitted out-of-

plane guided wave from dc/h = 0.65. After dc/h = 0.85, the energy of the reflected out-

of-plane linear guided wave decreases dramatically. Also, the energy of both the mode-

converted reflected and transmitted in-plane linear guided waves decrease from dc/h = 

0.85. However, the energy of the transmitted out-of-plane linear guided wave and the 

energy of all the in-plane and out-of-plane nonlinear guided waves increase 

significantly from dc/h = 0.85. This demonstrates the energy conversion from the 

reflected out-of-plane linear guided wave and the mode-converted in-plane guided 

waves to transmitted out-of-plane linear guided wave and other nonlinear guided waves. 

Comparing Figures 19 and 20 with Figures 21 and 22, we can see that when the 

incident wave is an S0 guided wave, the spectral amplitudes of the second harmonics 

due to contact nonlinearity are larger than that of using the A0 guided wave as the 

incident wave for small crack (e.g. dc/h <0.3). When the crack becomes large (e.g. dc/h 

>0.8), the second harmonics induced by contact nonlinearity when using an S0 incident 

wave becomes smaller than when an A0 incident wave is used. This indicates that the S0 

guided wave is more suitable as the incident wave for detecting small cracks when we 

consider contact nonlinearity and the mode-conversion effect. In contrast, A0 guided 

waves are more suitable for larger cracks.  

 

6. Conclusions 

This study has proposed the modelling and investigated of the interaction of nonlinear 

guided waves at breathing cracks. An extended time-domain SFE method has been 

proposed to improve the efficiency of simulation. The method considers the coupling of 

longitudinal, transverse and rotation DoFs based on the Mindlin-Hermann rod and 

Timoshenko beam theories. An SFE crack element has been developed to simulate the 

mode-conversion effect of guided waves when they interact with an asymmetric crack. 



A bilinear crack mechanism has been proposed to simulate the crack opening and 

closing. This has been embedded in the SFE crack element to simulate contact 

nonlinearity.  

This paper has presented numerical verification to demonstrate the accuracy of 

the proposed SFE model in simulating the contact nonlinearity. Very good agreement 

has been found between the time-domain SFE and explicit 3D FE results, which shows 

the accuracy of the proposed SFE model. The characteristics of the higher harmonics 

generated by the contact nonlinearity and mode-conversion effect at the asymmetric 

crack have been studied in detail using the extended SFE model. This paper has also 

presented parametric studies to investigate the magnitude of the higher harmonics 

generation by S0 and A0 guided waves. The normalised spectral amplitude as a function 

of the crack depth to beam height ratio has been investigated. The paper has shown that 

with the consideration of the mode-conversion effect, the higher harmonic generation by 

the S0 incident guided wave has a larger magnitude than that by the A0 incident guided 

wave. 

Overall the study has provided physical insights into the higher harmonic 

generation at the breathing crack by S0 and A0 guided waves. The simulation has been 

conducted using the proposed computationally efficient SFE model. This SFE model 

can be further applied in the fields of damage identification. 
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Tables 

 

Table 1. Summary of the time-domain SFE models used in the validation 

Incident guided wave S0 A0 

Beam length L (m) 1 

Crack location Lc (m) 0.5 

Crack depth dc (m) 0.003 

Young’s modulus (GPa) 70 

Density (kg/m3) 2700 

Poisson’s ratio 0.3 

 



Table 2. Summary of case studies for higher harmonic generation due to contact nonlinearity at 

crack 

Incident guided wave S0 A0 

Damage cases S1 S2 S3 S4 A1 A2 A3 A4 

Beam length L (m) 6 3 

Crack location Lc (m) 1.9 0.95 

Crack depth dc (m) 0.003 

Measured location (m) x = 5 x = 1.65 

Contact nonlinearity effect No Yes Yes No No Yes Yes No 

Mode conversion effect No No Yes Yes No No Yes Yes 

 

 



Figures 

 

 

[Figure 1. Schematic diagram of the two-node crack element for simulating an opened 

crack. (a) Discretization of a cracked beam; (b) SFE crack element] 



 

[Figure 2. Degrees-of-freedom at the crack element when the crack is (a) open and (b) 

closed] 



 

[Figure 3. Schematic diagram of a beam with a surface breathing crack] 

 



 

 

[Figure 4. Dispersion relations for an aluminum beam predicted by the SFE model (a) 

Phase velocity; (b) Group velocity] 



 

[Figure 5. Time-domain (a) in-plane and (b) mode converted out-of-plane velocity at x 

= 0 m for incident S0 guided wave] 



 

[Figure 6. Fourier transformed (a) in-plane and (b) mode converted out-of-plane 

velocity at x = 0 m for incident S0 guided wave] 

 



 

[Figure 7. Time-domain (a) out-of-plane and (b) mode converted in-plane velocity at x 

= 0 m for incident A0 guided wave] 



 

[Figure 8. Fourier transformed (a) out-of-plane and (b) mode converted in-plane 

velocity at x = 0 m for incident A0 guided wave] 

 



 

 

[Figure 9. In-plane velocity of S0 guided wave time histories at different locations along 

the beam for Case S3] 

 



 

[Figure 10. Extracted time domain in-plane velocity signal from 900 - 2400 μs at x = 5 

m for (a) Cases S1, (b) S2, (c) S3 and (d) S4] 



 

[Figure 11. Energy density spectrum of the in-plane velocity signal from 900 - 2400 μs 

at measurement location x = 5 m for (a) Cases S1, (b) S2, (c) S3 and (d) S4] 



 

[Figure 12. Out-of-plane velocity of mode converted S0-A0 guided wave time history at 

different locations along the beam for Case S3 (the normalized amplitude is amplified 

by a factor of 3)] 



 

[Figure 13. Time history and energy density spectrum of the out-of-plane velocity signal 

from 900 - 2400 μs at measurement location x = 5 m for Cases S3] 



 

[Figure 14. Out-of-plane velocity of A0 guided wave and mode converted A0-S0-A0 

guided wave time histories at different locations along the beam for Case A3] 



 

[Figure 15. Extracted time-domain out-of-plane velocity signal from 500 - 2100 μs at x 

= 1.65 m for (a) Cases A1, (b) A2, (c) A3 and (d) A4] 



 

[Figure 16. Energy density spectrum of the out-of-plane velocity signal from 500 - 2100 

μs at measurement location x = 1.65 m for (a) Cases A1, (b) A2, (c) A3 and (d) A4] 



 

[Figure 17. In-plane velocity of mode converted A0-S0 guided wave time histories at 

different locations along the beam for Case A3 (the normalised amplitude is amplified 

by a factor of 5)] 



 

[Figure 18. Energy density spectrum of the in-plane velocity signal from 500 - 2100 μs 

at measurement location x = 1.65 m for Cases A3] 



 

[Figure 19. Fourier transformed (a) in-plane and (b) mode converted out-of-plane 

velocity as a function of crack depth to beam height ratio (dc/h) at measurement 

location x = 0 m when the incident wave is S0 guided wave] 



 

[Figure 20. Fourier transformed (a) in-plane and (b) mode converted out-of-plane 

velocity as a function of crack depth to beam height ratio (dc/h) at measurement 

location x = 1 m when the incident wave is S0 guided wave] 

 



 

[Figure 21. Fourier transformed (a) out-of-plane and (b) mode converted in-plane 

velocity as a function of crack depth to beam height ratio (dc/h) at measurement 

location x = 0 m when the incident wave is A0 guided wave] 



 

[Figure 22. Fourier transformed (a) out-of-plane and (b) mode converted in-plane 

velocity as a function of crack depth to beam height ratio (dc/h) at measurement 

location x = 1 m when the incident wave is A0 guided wave] 

 


