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1. Introduction

The therapy for cancer is determined on the stage of the
disease. The TNM technique is used to describe the stage of
cancer depending on the growth of tumor (T) and indicates
spreading to lymph nodes (N) or if it has metastasized (M) to
other sites of the body. Generally, cancer is discussed in five
stages. Stage 0 and 1 are considered as initial stages for tumor
and are in the place where it starts. Stages 2 and 3 indicate
spreading to the nearby cells/tissues and lymph nodes. Stage
4 indicates the spreading of cancer has been started and
affects nearby tissues. As per the stage of cancer, different
treatments are suggested to the patients, such as immuno-
therapy, immunotherapy, and chemotherapy. In some cases,
more than one treatment is advised as a combination to
shrink the size of tumor and for the removal of the tumor. In
this series of treatments, virotherapy is considered as a
promising therapy for cancer. Development in genetic re-
search, mainly in genetic engineering which involves
modification of viruses genetically for enhancement of the
oncolytic efficacy and selectivity, has advanced and
accelerated the research. These viruses hit the tumor and
replicate the harmful cells without affecting the healthy cells.
Measles and chickenpox are reported as useful viruses for
leukemia treatment [1, 2]. For understanding the interaction

between viruses and tumor cells, developing clinically
predictive virotherapy models is difficult [3]. Nevertheless,
this model presents precious biological insight. For im-
proving the outcome of this therapy, there are a variety of
treatment options that might be proposed. The dynamic
behavior of virotherapy is described by many mathematical
models. Some of them only describe the interaction between
virus-infected and uninfected tumor cells [4, 5]. Meanwhile,
many discus the dynamics through immune response to-
ward viruses [6, 7]. Moreover, there are some models which
work on free viruses without taking immune response into a
reaction of considering viruses [8-12]. Many models dealt
with immune reaction as a separate model [13]. Moreover,
the growth of tumor with undamped oscillatory cancer cells
is used to transient diminution of the severity of disease.
Wodarz et al. found that oscillatory behavior occurs in
model simulations [4, 8] and in vivo tests, and it is also
observed clinically [10, 14]. Despite all these promising
results found through clinical studies, the antitumor
intended results (treatment) of viral therapy alone are
limited and placed in stage 3 or higher. The efficacy can be
improved by a combination of therapies for stage 3 or later
stages. Synergistic therapeutic effects are found through
experimental data as demonstrated by Freytag et al. [15] and
Touchefeu et al. [16] or chemotherapy by You et al. [17].
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Furthermore, for numerical experimentation, the model by
Dingli etal. [18] and Tao [19] evaluated a combination of two
effects, that is, radiotherapy and virotherapy. Dingli et al.
[18] proposed a model for treatment in the first phase for the
dynamic of tumor undergoing virotherapy. Then, later on,
the extension is made to the model for the second phase
treatment. The models are driven by first-order ordinary
differential equations (ODEs) and are based on population
dynamics. The qualitative evaluation revealed the existence
of equilibrium point and success ratio that is fully or partially
successful.

In this recent work, a model presented is considered as a
special case of Dingli et al.’s model [18]; in this, assumption
is made on logistic growth of a tumor, and this model
discussed cancer that is aggressive in nature. Thus, the
replication of tumors is accordingly to their size. So, cancer
spreads fast and is considered as stage 3 cancer, in a very
short period. It is considered an approximation that is
reasonable for growth of the tumors under the influence of
virotherapy, since the time of interaction is very short [12].
Moreover, this model is different from Dingli et al.’s model
[18]. According to Bajzer et al. and Tian et al. [8, 9], if a virus
infects a cell, then it is capable of infecting other cells. As a
result, the mathematical term (—SIV) describes the elimi-
nation of viruses included in free viruses (V) due to in-
tection of uninfected cells (I). In this work, the virotherapy is
evaluated for the investigation of possible ways for successful
treatment of cancer.

The solutions of mathematical models grab the attention
of researchers and were solved by many local and global
search techniques. Many nature-inspired and hybrid
methods were introduced. Solution through soft computing
is much effective and interesting. Few of them include the
corneal model for eye surgery solved by fractional-order
DPSO algorithm [20], model for the oscillatory behavior of
the heart solved by the neuroevolutionary approach [21],
temperature profiles in longitudinal fin designs by the
neuroevolutionary approach [22], hybrid metaheuristic
based on neurocomputing [23], dust density model solved
through finite difference-based numerical computing [24],
flow with stream-wise pressure gradient [25], influenza
disease modelling through soft computing [26], nonlinear
SITR model for novel COVID-19 dynamics [27], SIR
nonlinear model based on dengue fever [28], magnetic di-
pole, higher-order chemical process for steady micropolar
fluid, NAR-RBFs neural network for a nonlinear dusty
plasma system [29], tumour virotherapy model with stan-
dard incident rate [11], NIS reporter gene for optimizing
oncolytic virotherapy [30], PV-wind-fuel cell system [31],
coronavirus disease (COVID-19) containing asymptomatic
and symptomatic classes [32], discovery in the diagnosis of
coronary artery disease [33], fractional-order modified SEIR
model [34], and rainfall-dependent model for the seasonal
Aedes [35]. In a similar way, we present an artificial neural
network-based hybridization of Sine-Cosine Algorithm
(SCA) and the Sequential Quadratic Programming (SQP)
technique for solving cancer virotherapy. The dynamics of
the cancer virotherapy model is evaluated as follows:
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(i) Variation in stages of cancer, i.e., initial condition of
the model

(ii) Variation in the burst size parameter’s inverse g

(iii) Variation in f, i.e., the ratio between tumor growth
(r) and rate of cell lysis (J)

(iv) Variation in A, i.e., the ratio between viral decay («)
and rate of cell lysis (6)

The rest of the paper is arranged as follows: Section 2
presents the model description and its stability, Section 3
presents the proposed methodology for the solution of the
CVRT model, Section 4 consists of discussion and results,
and five problems are given based on different values of
parameter and initial conditions, and Section 5 concludes
the work.

2. Model Description

For the treatment of cancer, this mathematical model de-
scribes the interactions between cancer and virus. The model
is described by a nonlinear ODE system given in (1); all of
the variables and parameters in this system are nonnegative.
In the model, the population is described in the following
three variables:

(i) I(¢): the population of uninfected cells
(ii) U (¢): the population of infected cells
(iii) V' (¢): the population of free viruses

t represents time. The tumor is assumed as aggressive,
which means that the replication of cells is proportional to
its size. That is why exponential growth is considered as a
growth rate r. Furthermore, when the free cells start
encountering the uninfected cell, the cells infect with rate
p. Moreover, the population of viruses decreases ac-
cordingly. The replication of virus is performed within
infected cells, spreading to its lysis with rate 8. In response
to this, fresh virion particles are being created having
burst size b. All particles of free virus should be removed
from the body with rate a. Details of parameters are given
in Table 1.

For modelling cancer virotherapy, mass action law is
utilized. We consider the proportionality of rate of infection
of uninfected cells to the population of virus [36]. Many such
models were presented which have resemblance with this
model [8, 37, 38]. The mathematical model is described with
the help of ODEs as follows:

drI

—=rl-BIV,

o rl —pIV

dUu

& v -eu, 1
i PIV - 8U (1)
dUu

= = bdU - BIV - aV,
m boU - aV

with the following initial conditions:
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TaBLE 1: Parameters and values for system (1) taken from [10, 41].
Parameter Description Value Units
r Tumor growth rate 2x1072 1/h
B Infection rate of the virus 7/10 x 1077 mm?®/hvirus
) Death rate of infected tumor cells 1/18 1/h
b Burst size of free virus 50 Viruses/cell
o Clearance rate of the virus 0.00842 1/h
1(0)=1,>0, 2.1. Equilibrium Points. In order to discover the model’s
equilibrium points, all the equations of model (4) are put
U(0)=U,20, @) equal to zero. In such a way, two states are achieved. The first
V(0)=V,>0. state is the equilibrium point at which the cells and tumors

To reduce the number of the parameters in the model,
system (1) is nondimensionalized by setting

1
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To make things easier, we will remove all of the bars and
write 7T as t; thus, system (1) takes the form

%—fluv:o,
d—U—IV+U:0, (4)
dt

av
5 UV RV =0,

d
with the following initial conditions:
bpI,
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(0)==5
b
U = 2%, (5)
5
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tend to zero [37]. This shows the success of virotherapy
treatment. The point for equilibrium is E; = (0,0,0). The
second state is partial treatment, i.e., the cells with the ex-
istence of viruses such as E* = (h/1 — g, fh/1 — g, f). The
existence of E* corresponds with g <1, while E; exists al-
ways. Moreover, the system is dealt as

IV =0, (6)
IV-U =0, (7)
U-gIV-hV =0. (8)

In the abovementioned case, we suppose f =0. From
equation (6), we have that I = 0 or V = 0.If I = 0, we can get
E, = (0,0,0). When V =0, from equation (7), we obtain
U = 0, which gives from equation (8) —gIV = 0 for all I. This
concludes that I is arbitrary and, hence, for any I,, the
equilibrium point is E; = (I;,0,0). For the equilibrium
point, the initial condition is a main factor [12]; it tends the
equilibrium to E, or E,.

fI-1V =0, 9)
IV-U-=0, (10)
U-gIV=0. (11)

Now, in this case, h = 0 is considered for obtaining the
equilibrium point. From equation (9), we have I =0 or
V = f.ByI = 0, equation (10) gives U = 0, and for the value
of U, equation (11) implies —gIV = 0 for all values of V. So,
V is arbitrary. Thus, the equilibrium point becomes
E, = (0,0,V,). In a similar way, for V = f, the equilibrium
point tends to E; = (0,0, f) as a spacial case of E,. The initial
condition affects the size of viruses [8].

2.2. Stability Analysis. In this section, local and global sta-
bility of the equilibrium point are investigated. For inves-
tigation of local stability, the linearization method [39] is
implemented, and for global stability, Lyapunov function
[40] is implemented. First, the local stability of E, and E* is
investigated by implementing the linearization method.
System (4) will be locally stable if f >0, and the equilibrium
point E, is an unstable saddle point. So, the Jacobian of
model (4) at E, can be written as
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By solving, the eigenvalues of J(E,) are

fs
1, (13)
h.

A=
A =—
Ay =—

Hence, A, and A; are nonpositive, while A, is
positive since f > 0. Thus, for f >0, E, is an unstable saddle
point.

Now, for investigation of global stability, the Lyapunov
function is implemented. The equilibrium point E; will be
globally stable if I, <h/1 - g'. By considering the Lyapunov
function,

I
L(LU,V) =(1 —g)(I—Il -1, ln<1)> +U+V.  (14)
1
It is clearly observed that L(I,U,V) is positive definite
because g is negative. Analysing the derivative of L with the
positive solutions of model (1), we get

(jTIt“ =(1 —g)(l —I—Il)(—IV) +1V —gIV - hV,

=(1-g),V+IV-hV, (15)

=(L(1-g)-h)V.

As I, <h/1 - g, dL/dt <0. This shows that E, is globally
stable.

3. Proposed Methodology

The proposed scheme for the solution of the mathematical
model of cancer virotherapy (CVRT) is presented here.
Firstly, the mathematical model of CVRT is designed in
terms of an Artificial neural network (ANN). Secondly,
based on mean squared error, fitness function is con-
structed, and lastly, the proposed optimization scheme is
described.

3.1. Mathematical Model of CVRT. The artificial neural
network-based model is designed for the solution of CVRT.
The activation function is used, given in equation (19), for
the approximation of the solution of CVRT. The model
proceeds as
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Equations (16)-(18) represent the artificial neural net-
work-based model of CVRT. Here, 6 represents the log-
sigmoid activation function defined in equation (19). The
log-sigmoid function gives the values between 0 and 1. It has
a smooth gradient preventing jumps which helps the net-
work in a rapid convergence. It normalizes the output for
each neuron. It can show the probability of the output of the
network. The ANN form of the activation function and its
derivative is given in equations (20) and (21), respectively.

9(t)=1 5 (19)

k
é(t) = Zui<%+b.))’ (20)
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_ k — (w;t+b;)
0 (1))=Y aw,| —

= m (21)

Equation (20) is based on variables known as weights,
represented by set W, where W = [a;, w;,b;] and its con-
stituents a; = a,,a,,d;,...a;, W; = Wy, W,, W5, ... W, and
b, =b,,b,,b;,...b;.

3.2. Fitness Function for the Model of CVRT. The fitness
function for the mathematical model of CVRT is based on
the mean square error of the differential equation of the
model, given in equation (4), and associated initial condi-
tions, given in equation (5). The fitness function is defined as
follows:

E=E, +E;+E,+E, (22)

where, E}, E;;, and E;, are errors associated with differential
equations of model (4) written as

2

1 & dr, - - -
Ep = Z (dt—flm +Ime) , (23)
m=1
— 2
1 ¥ /du, - o -
EU:N"‘ZZ; <t_Ime+Um> N (24)
— 2
1 ¥ /dv, - S _
E, =— —"_ 1 . 25
v Nn;(dt Um+ngm+th) (25)

Also, E, is associated with initial conditions given as

E, =§<(T—IO)2+(U—UO)2+(\7—V0)2). (26)

3.3. Optimization Scheme. The scheme is designed by in-
tegrating the unsupervised scheme Sine-Cosine Algorithm
(SCA) and the supervised technique Sequential Quadratic
Programming (SQP). The SCA was first introduced by Syed
Ali [42]. The technique is designed for the solution of op-
timization problems. Its phenomena are based on trigo-
nometric functions sine and cosine. Normally, the
population-based technique generates several solutions that
are further modified by utilizing the strength of that tech-
nique. For improvement, the set of rules called the kernel of
optimization technique is used. The population-based
technique is not necessary to get the optimal solution in a
single run. However, the population of solutions increases
the probability of getting the global optimal solution.
Generally, regardless of the difference between stochastic
algorithms, the works in two phases are called exploration
and exploitation. In the first phase, a highly random set of
solutions is generated to find a feasible region. Also, that

region is gradually exploited for the best optimal solution.
However, the variation is less as compared to the explora-
tion. The following equations are used in SCA for updating
the position in both phases:
X = X{ + ) xsin(r,) x|rs P - XY,

t+1 t 13 t (27)
X" = X; +1r; xcos(r,) x|r3Pl - X |
where the position of the current solution in the i di-
mension at the t% iteration is denoted by X!, r,/r,/r; are
random numbers, and P; indicates the position of the
destination point and denotes the absolute value.

Equation (27) with parametric values can be written as

X: +ry xsin(ry) x|rsP) = Xi|, 1, <0.5,

X = (28)

t t t
X, + 1, xcos(r,) ><|r3Pl - XL[|, r4>0.5,

where r, indicates a random value in [0, 1]. In the above-
mentioned equation, there are four parameters r, ,, 5, and
r4. 1y indicates the movement direction which could be
feasible or outside that region. Parameter r, describes the
distance from the region, that is, how far the direction is
toward or outward the target. Parameter r; defines weights
for target value, and r, equally operates the sine and cosine
constituent of equation (26). This method is integrated with
sequential quadratic programming to improve the quality of
the generated solution. As the SCA is a global search un-
supervised algorithm and based on a random population,
some time is stuck in the local search. The SQP is a local
search algorithm and supervised method. The generated
solution of SCA is used as an initial point for SQP. Sequential
quadratic programming is an effective technique to solve
nonlinear optimization problems. The SQP has a strong
theoretical and computational background due to which it
generates promising results. That is why the integration of
SQP with SCA improves the local performance of the SCA.
The flow chart of the ANN-SCA-SQP procedure is given in
Figure 1. The integration of these techniques is based on the
strength of the artificial neural network. This gives quality
and effective results. The scheme throughout the text is
abbreviated as ANN-SCA-SQP algorithm. To validate the
performance of the ANN-SCA-SQP algorithm, different
performance indicators are implemented.

3.4. Performance Indicators. Statistical performance opera-
tors are utilized to validate and evaluate the performance of
the proposed methodology, i.e., ANN-SCA-SQP algorithm.
The implemented performance indicators are Mean Abso-
lute Deviation (MAD), Root Mean Squared Error (RMSE)
and Error in Nash-Sutcliffe Efficiency (ENSE) based on
Nash-Sutcliffe (NSE). The performance operators are de-
fined for each variable of the model of CVRT. The definition
of performance indicators is given in the following math-
ematical forms:
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Flow Chart of ANN-SCA-SQP

F1GURE 1: The flow chart of the proposed methodology ANN-SCA-SQP. Here, SCA generates a number of random solutions and evaluates it
on its fitness; then, it is provided to SQP as an initial point for further refinement. The fittest weights are obtained for the solution of CVRT.

(18, . 1 1 -
[[MADI MAD; MADy] = m ZlIi ‘Iil m Z|U, _Ui| m Zlvi -V ”’ (29)
L i=1 i=1 i=1
[ 1 & v |1 & 2 1 & ~\2
[[RMSEI RMSE; RMSE,] = \jﬁ ZI(I -1,) \jﬁ ZI(U -0)) \j; E(Vi -V) H (30)
L i= i= i=
r ~\2 ~ \2 ~\2
[NSE, NSE, NSE,]=|1- Py (Ii B Ii) _ e (Ui B Ui) 1 X (Vi - Vi) ]:|’ (31)
m =2 —\2 — 2
L Zi:l (Ii - Ii) Z,=1 (Ui - Ui) Zi:l (V,» - Vi)
[[ENSE, ENSE;, ENSE,]|=[[1- NSE,| |1 - NSEy| |1-NSE,|]], (32)

where m denotes the input points, while I, U, and V are
reference solutions of the CVRT model found through the
Runge-Kutta order four technique (RK4) and I,U,and V
are the approximated solutions of the proposed method-
ology. The desired value of MAD, RMSE, and ENSE is 0,
while the suitable value for NSE is 1.

GMAD; GMAD; GMADy, | =
I U v

[ GRMSE; GRMSE; GRMSEy, | =

Moreover, to verify the quality, efficiency, and effec-
tiveness of the proposed scheme, the global extension of the
performance indicator is also utilized. The global version of
MAD, RMSE, and ENSE is denoted by GMAD, GRMSE, and
GENSE. The definition of global performance operators is as
follows:

(33)

>

(34)
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[ GENSE; GENSE,; GENSE; |

%é(l_ZZZ (Ii_Ti) )
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In equations (33)-(35), I represents the number of runs.
The scheme is executed for multiple runs. The global op-
erators depend on the average values of their respective
operators.

i=1

4. Discussion and Results

In this section, the dynamic characteristic of the CVRT
model is given. The discussion on CVRT is split into different
problems. The problems depend on the variation of the
initial condition and its parameters f, g, and h. The results
are based on 100 execution (runs).

4.1. Problem 1. In this problem, the dynamic characteristic
of the CVRT model, given in equation (4), is assessed by
taking values of tumor growth ratio (r) to rate of cell lysis (J)
f =0, the inverse of burst size parameter g = 0.02, and the
viral decay (a) ratio to rate of cell lysis (6) h =0.15. The
problem is executed multiple times. The fitness function with
10 input points can be updated as

18 ((dl, - -\ (d0, - -\
E_<E Z((F—o.lmumv,n) +<?—1me+Um>

m=1

av,, - o _\
H =g~ U+ 0,02V, + 015V,

+ % ((TO ~0.6) + Ty +(V, - 0.5)2)>.
(36)

Also, the associated initial conditions are
1(0) =0.6,U(0) =0, and V (0) = 0.5.

The proposed scheme ANN-SQP-SCA is implemented
to optimize the fitness function. The solution is compared
with the solution of Range-Kutta order 4 (RK4). The set of
weights for each variable, I (¢),U (¢), and V (), is found with
fitness between 10~%7 to 10~ 2. The fitness values are shown

graphically in Figure 2(a). The result of RK4 is obtained by

E( o) 0

Yo (Ui~ T,

B hy (Vi - Vi)z (35)

i (vi- )”

implementing Matlab’s built-in function Ode45. The solu-
tions are graphically compared with RK4 given in
Figure 3(a). Each variable I(¢), U (t), and V (t) is drawn
separately for 100 independent runs in Figures 3(c)-3(e).
The obtained variable, known as weight, is also plotted in
Figure 3(b). The weights are plotted with a 3D bar graph. The
fitness value of the problem is evaluated through statistical
operators minimum (MIN), maximum (MAX), and mean
(MEAN). Data for statistical operators are given in Table 2.

The trained weights used in equations (22)-(25) to get
the solution for the CVRT model are given as

<)

i=1

l+e™ ’ I+e™ '

U= —(_—12.(’)75%182E0 wes) Tt 7(_7(()).31222%2 3175)° (37)
l+e ™ ’ 1+e" ™ '

7 = 0.4388 R 0.1590

e—(—1.5128t—0.9588) —0.1085¢t-2.2570)"

1+ 1+e™

The full form of a solution in (37) is given in Appendix
with 14 decimal places to avoid any roundoft error. The
overlapping of solutions with the results of RK4 shows the
convergence of the proposed scheme. The solution is ob-
tained for t € [0,1] with step size 0.01, which gives 101
points. The small step size is taken to verify small variation in
the solution.

From Figure 3(a), it can be seen that, initially, with the
increase in viruses (V (t)), the uninfected cells (I(t)) also
increase. It can be observed that, with the passage of time, all
the variables move toward equilibrium point (0,0,0). The
initial condition or stage of cancer is highly effective in the
cancer virotherapy.

4.2. Problem 2. 'This problem is taken for values of tumor
growth ratio (r) to rate of cell lysis (§) f = 0, the inverse of
burst size parameter g = 0.02, and the viral decay («) ratio to
rate of cell lysis (8) h = 0.15. The fitness function for this
problem can be updated as

)
3
N————
[3S]
+
o,
2|
I
c

2
o+ 0.02I V., + 0.15\7m) >
(38)
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FIGURE 2: Fitness graphs of all the problems. (a) Fitness of problem 1, (b) fitness of problem 2, (c) fitness of problem 3, (d) fitness of problem

4, and (e) ditness of problem 5.

The associated conditions are I(0) = 0.4,U (0) = 0, and
V(0) = 0.1.

The proposed scheme is, as discussed in Section 3, used
to solve the problem. The proposed scheme ANN-SQP-SCA
is implemented to optimize the fitness function. The solution
is compared with the solution of Range-Kutta order 4
(RK4). The set of weights for each variable, I(¢),U (¢), and
V (t), is found with fitness 10~° to 107!, The fitness values
are shown graphically in Figure 2(b). The result of RK4 is
obtained by implementing Matlab’s built-in function Ode45.
The solutions are graphically compared with RK4 given in
Figure 4(a). Each variable I(¢), U(t), and V (t) is drawn
separately for 100 independent runs in Figures 4(c)-4(e).
The obtained variable, known as weight, is also plotted in
Figure 4(b). The weights are plotted with a 3D bar graph. The
fitness value of the problem is evaluated through statistical
operators minimum (MIN), maximum (MAX), and mean
(MEAN). Data for statistical operators are given in Table 3.

The trained weights are used to get a solution for CVRT
model. The obtained set of the weight of ANN is drawn
graphically. By putting weights in equations (22)-(25), the
solution for each variable should be obtained as

Tipy __ ~0.0060 0.2378
(1) _WJF.“JFW’
. —-1.8494 -0.3929
U(t) = W e 1 4 ¢ (203986402293 (39)
70 = 0.5100 R —-0.2720
1 4 o (70-46421-0.5303) ] 4 o ("122626+0.0342)°

The full form of (39) is given in Appendix with 14

decimal places to avoid roundoft issues. The set of weights is
plotted with a 3-dimensional bar graph. The overlapping of
solutions with the results of RK4 shows the convergence of
the proposed scheme. The solution is obtained for ¢ € [0, 1]
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(0)=0,and V (0) =0.5, (b) weights obtained by ANN-SCA-SQP for CVRT, (c) solutions of 100 independent runs of uninfected cells, I (t), (d)

solutions of 100 independent runs of infected cells, U (¢), and (e) solutions of 100 independent runs of free viruses, V (z).

with step size 0.01, which gives 101 points. The small step size
is taken to verify small variation in the solution.

Figure 4(a) shows that, with same values of f, g, and h
but different initial conditions, the infected cells (I (t)) are
less than 0.05 and rapidly decrease with passage of time.

E — m=1

Associated condition are I(0)=0.4,U(0) =0, and
V(0) = 0.1.

The proposed scheme ANN-SQP-SCA is implemented to
optimize the fitness function. The solution is compared with
the solution of Range-Kutta order 4 (RK4). The set of weights
for each variable, x, y, and v, is found with fitness 10~ and
10" 12, The fitness values are shown graphically in Figure 2. The
result of RK4 is obtained by implementing Matlab’s built-in
function Ode45. The solutions are graphically compared with
RK4 given in Figure 5(a). Each variable I (¢), U (t), and V (¢) is
drawn separately for 100 independent runs in Figures 5(c)-
5(e). The obtained variable, known as weight, is also plotted in
Figure 5(b). The weights are plotted with a 3D bar graph. The
fitness value of the problem is evaluated through statistical
operators minimum (MIN), maximum (MAX), and mean
(MEAN). Data for statistical operators are given in Table 4.

The trained weights are used in equations (22)-(25) to
get the solution for the CVRT model as follows:

1 & //dl - - o\ (40, - o\ {4V, - o =Y
10 Z((d—;"—o-%lmﬂme) +<d—t’"—1mv +Um> +(d—tm—Um+0.021me+0.Vm)

4.3. Problem 3. In this problem, the model is discussed for
values of tumor growth ratio (r) to rate of cell lysis (&)
f =0.36, the inverse of burst size parameter g = 0.02, and
the viral decay («) ratio to rate of cell lysis (§) h = 0. For these
values, the fitness function is updated as

(40)
T(t) _ 0.0001 P 3.3697 )
| + o (279681+3.8980) | 4 ¢ (17235-12550)
U= —((—);)95};77;—0 o) T ;(()) ;;325—30 ooy (41)
l+e ) l1+e™ :
N 0.2015 0.1802
V() = m teeet (~5.51911+0.2220)"

l+e

The full form of a solution in equation (41) is given in
Appendix with 14 decimal places to avoid any roundoff
error. The overlapping of solutions with the results of RK4
shows the convergence of the proposed scheme. The solution
is obtained for ¢ € [0, 1] with step size 0.01, which gives 101
points. The small step size is taken to verify small variation in
the solution.

As shown in Figure 5(a), if the tumor growth ratio (r) to
rate of cell lysis (J), f, with a decrease in the viral decay («)
ratio to rate of cell lysis (§), h, the viruses increase very
rapidly but the infected cell decreases with passage of time. It
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of 100 independent runs of U (¢), and (e) solutions of 100 independent runs of V (¢).
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independent runs of U (), and (e) solutions of 100 independent runs of V (¢).
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shows the stability of equilibrium point (0, 0, f); that is, with
the existence of viruses, the infected cells decrease.

4.4. Problem 4. 'The problem shows dynamics of the CVRT
model for tumor growth ratio (r) to rate of cell lysis (J)

1 10

2

m=1

10
E=

Do 036 479, ) +(Cn 7 ¢
dt : m m’ m dt m

Complexity

f =0.36, the inverse of burst size parameter g = 0.02, and
the viral decay (a) ratio to rate of cell lysis () h = 0. These
values update the system as

(42)

+§ ((TO - 0.4)2 + ﬁé +(\70 - 0.5)2)

Associated condition are I(0)=0.4,U(0) =0, and
VvV (0) = 0.5.

The proposed scheme ANN-SQP-SCA is implemented
to optimize the fitness function. The solution is compared
with the solution of Range-Kutta order 4 (RK4). The set of
weights for each variable, I (¢),U (¢), and V (), is found with
fitness 10-%° and 107!'. The fitness values are shown
graphically in Figure 2. The result of RK4 is obtained by
implementing Matlab’s built-in function Ode45. The solu-
tions are graphically compared with RK4 given in
Figure 6(a). Each variable I(¢), U (t), and V (t) is drawn
separately for 100 independent runs in Figures 6(c)-6(e).
The obtained variable, known as weight, is also plotted in
Figure 6(b). The weights are plotted with a 3D bar graph. The
fitness value of the problem is evaluated through statistical
operators minimum (MIN), maximum (MAX), and mean
(MEAN). Data for statistical operators are given in Table 5.

The trained weights are used in equations (22)-(25) to
get the solution for the CVRT model as follows:

The full form of a solution in equation (43) is given in
Appendix with 14 decimal places to avoid any roundoff
error. The overlapping of solutions with the results of RK4
shows the convergence of the proposed scheme. The solution
is obtained for t € [0, 1] with step size 0.01, which gives 101
points. The small step size is taken to verify small variation in
the solution.

4.5. Problem 5. This problem is discussed for tumor growth
ratio (r) to rate of cell lysis (§) f = 0.36, the inverse of burst
size parameter g = 0.02, and the viral decay («) ratio to rate
of cell lysis (8) h = 0.15. These values updated the fitness
function as

—-0.0000

-0.3924

HOE 1 4 ¢ (0-14001-0.0905) tooet 1 4+ ¢ (1-40781-05155)°
U@ = {(3.34816142#4 ey Tt 7(20. ioS;iZJro 5714) (43)

l+e" ™ i 1+e™ ’
V(t) = {(}1(33619?—1 se) Tt 7(11.§9iitl+0 0706)"

1+e" ~ ' 1+e™ '

10 - 2 . 2 _
L mz((“dlf- 0.361, +Tm\7m) +<dgtm 1,7+ Um> +(dd"tm -
E =

1/,- IO
+3 <(10 —0.4) + Ty +(V, - 0.5)2>

2
U, +0.021,V, + 0.15\7m) >

(44)

The associated condition are I(0) = 0.4,U (0) =0, and
V(0) = 0.5.

The proposed scheme ANN-SQP-SCA is implemented
to optimize the fitness function. The solution is compared

with the solution of Range-Kutta order 4 (RK4). The set of
weights for each variable, I(¢),U(t), and V (t), are found
with fitness 1071%, 1071, and 1.22 x 1071, respectively. The
fitness values are shown graphically in Figure 2. The result of
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FIGURE 6: Problem 4: graphical evaluation for tumor growth ratio (r) to rate of cell lysis (6) f = 0.36, the inverse of burst size parameter
g = 0.02, and the viral decay («) ratio to rate of cell lysis (§) h = 0. (a) Solution f=0.36, g=0.02, and h = 0 with initial conditions I (0) =0.4, U
(0) =0, and V (0) = 0.5, (b) weights obtained by ANN-SCA-SQP for CVRT, (c) solutions of 100 independent runs of I (), (d) solutions of 100
independent runs of U (f), and (e) solutions of 100 independent runs of V (¢).
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RK4 is obtained by implementing Matlab’s built-in function
Ode45. The solutions are graphically compared with RK4
given in Figure 7(a). Each variable I(t), U (t), and V (t) is
drawn separately for 100 independent runs in Figures 7(c)-
7(e). The obtained variable, known as weight, is also plotted
in Figure 7(b). The weights are plotted with a 3D bar graph.
The fitness value of the problem is evaluated through sta-
tistical operators minimum (MIN), maximum (MAX), and
mean (MEAN). Data for statistical operators are given in
Table 6.

The trained weights are used in equations (22)-(25) to
get the solution for the CVRT model as follows:

T4) = 1.0000 1.1039
(t) = 1 4 ¢ (-0-10026-0.4692) ot 1+ o (151286741819
N 1.6107 —0.9486
U(t) = 1 4 ¢ (0-2301t-03940) toeet | 4 ¢ LA7121-0.1529) (45)
= -0.2229 —-1.5497
Vi) = ] + o (T113426+0.3495) toet | 4 ¢ (17010003150

The full form of the solution in equation (45) is given in
Appendix with 14 decimal places to avoid any roundoff
error. The overlapping of solutions with the results of RK4
shows the convergence of the proposed scheme. The solution
is obtained for t € [0, 1] with step size 0.01, which gives 101
points. The small step size is taken to verify small variation in
the solution.

This problem concerns the equilibrium point (0,0, V). If
V = f, then it will become (0,0, f). Here, V is arbitrary, but
with the existence of viruses, the infected cells I (t) decrease.

4.6. Evaluation of the Proposed Scheme by Performance
Indices. To verify the reliability and consistency of proposed
methodology, the proposed scheme is evaluated by per-
formance indices, as defined in equations (29)-(32). The
scheme is executed 100 times to collect large data for
evaluation. The global optimizer SCA is executed in terms of
ANN for generation of ANN weights. Then, the weights are
provided to SQP as an initial point for further refinement.
The calculated values of performance matrices are drawn in
Figures 8 and 9 with line plots by taking log on the Y-axis for
observing the small variation. For plotting, the data are
arranged in descending order. It can be seen that the value of
performance operator MAD lies between 10~ %-10"%; the
same values are obtained for RMSE, and the values of ENSE
are in between 10~% and 10~ !2. The graph is drawn for each
variable, I (t), U (t), and V (t), separately. The values of each
variable are similar; that is, they lie in the same range which
shows the consistency of the proposed scheme. Moreover,
the scheme is evaluated by the global extension of perfor-
mance operators named GMAD, GRMSE, and GENSE. The
values for global operators are given in Table 7. The values of
GMAD lie in 10~%*-10"%, GRMSE between 10~**-10",
and the values of GENSE are in between 10~%-10716.
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As the values of performance operators MAD, RMSE, and
ENSE tend to zero, it verifies the consistency and reliability of
the proposed methodology. The values of performance oper-
ators depend on the average value of number of runs. The fewer
number of runs cannot verify the consistency of a technique.
Therefore, the ANN-SCA-SQP algorithm is executed 100 times
to collect a large dataset for better evaluation. The range of
values for all the operators is impressive and shows the reli-
ability of ANN-SCA-SQP algorithm. Furthermore, the con-
vergence of the proposed algorithm is tested by using box plots.
The obtained fitness values of each problem are drawn with the
help of a line graph in Figure 2 and box plots in Figure 10. Each
figure consists of three box plots for I (), U (), and V (£). The
box plot shows five numerical values, for each variable, i.e.,
minimum, first quartile, median, third quartile, and maximum.
This illustrates the fitness of solutions.

4.7. Complexity Analysis. For complexity analysis, the
proposed scheme is executed 100 times to critically observe
the convergence rate of the scheme. The found solutions
through these executions are drawn graphically. As the
solved problem is a 3 by 3 system of ODEs, solutions for each
variable, i.e., I (t), U(t), and V (t), are drawn.

In problem 1, Figure 3(c) shows the result for I (¢), and it
seems that the scheme is converged on each run and no worst
result is shown. Similarly, the same phenomena can observed
for the other variables, U (t) and V' (t), in Figures 3(d) and 3(e).
It concludes the best performance of the scheme.

For problem 2, the solutions for I (¢), U (¢), and V (¢) are
shown in Figures 4(c)-4(e), respectively, From the figures, it
is observed that, for I (), no jumps are found meaning that
the worst solutions are not computed by ANN-SCA-SQP
algorithm. But, for U(t) and V (¢), a few slightly worst
solutions seem for 5-10 runs out of 100. But, overall con-
vergence is better. In problem 3, by observation
Figures 5(c)-5(e) for each variable I (t), U (t), and V (), out
of 100, about 10-15 are such solutions which are slightly
behind the numerical solution of RK4. In problem 4, all the
solutions are smoothly converged to the numerical solution
as can be observed from Figure 6(c)-6(e). Similarly, for
problem 5, it can be seen from Figures 7(c)-7(e) that few
solutions out of 100 are slightly behind numerical solutions.

The overall discussion concludes that the convergence
rate of the scheme is high and the convergence of the scheme
ensures. Also, the scheme is applicable for the solution of a
large number of problems in comparison with state-of-the-
art techniques.

4.8. Tuning of Parameters. The ANN-SCA-SQP algorithm is
evaluated by tuning its parameters, population size, and the
number of neurons. The proposed algorithm is executed
with 30 population size and 45 neurons. The results in term
of absolute errors of each variable I (t), U (t), and V (t) are
reported in Tables 8-10. Tables 8 and 9 show the data for
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FIGURE 7: Problem 5: graphical evaluation for tumor growth ratio (r) to rate of cell lysis (6) f = 0.36, the inverse of burst size parameter
g = 0.02, and the viral decay («) ratio to rate of cell lysis (§) 1 = 0.15. (a) Solution f=0.36, g = 0.02, and h = 0.15 with initial conditions I (0) =
0.4, U(0)=0, and V (0) =0.1, (b) weights obtained by ANN-SCA-SQP for CVRT, (c) solutions of 100 independent runs of I (t), (d) solutions
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TaBLE 7: Values of global performance operators.

Problem Operator I1(t) U (1) V(1)
GMAD 4.18E - 06 7.31E-06 5.63E—06
1 GRMSE 1.58E-06 345E-06 2.33E-06
GENSE 532E-11 1.04E-14 2.86E—14
GMAD 7.16E — 04 3.15E-04 8.83E—-04
2 GRMSE 3.02E—-04 1.28E-04 3.56E—-04
GENSE 1.09E-10 1.65E—-09 496E-11
GMAD 1.17E-04 7.28E—05 1.47E-04
3 GRMSE 494E - 05 3.23E-05 5.80E—-05
GENSE 4.29E-08 9.64E — 09 2.23E-12
GMAD 5.71E - 06 6.64E — 06 1.63E—-05
4 GRMSE 2.18E-06 2.56E — 06 6.78E—06
GENSE 1.11E-11 8.85E—11 8.23E-16
GMAD 8.64E — 05 3.70E—-05 8.40E - 05
5 GRMSE 3.89E-05 1.43E-05 3.34E-05
GENSE 1.38E-07 6.03E—-12 1.50E - 08
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FiGuRre 10: Fitness evaluation through box plots. (a) Fitness of problem 1, (b) fitness of problem 2, (c) fitness of problem 3, (d) fitness of

problem 4, and (e) fitness of problem 5.

TaBLE 8: Problem 1: analysis based on the variation of population size.

Variable I(t) U (1) V(1)
Input(t)\population 20 30 40 20 30 40 20 30 40

0 1.54E-06 3.77E-12 1.26E - 05 1.54E-06 1.35E-09 126E-05 247E-06 3.07E-07 6.67E-06
0.1 299E-05 1.17E-10 2.82E-05 299E-05 1.94E-11 2.82E-05 296E-05 6.13E—08 1.17E-05
0.2 748E—-05 1.38E-10 0.000132 748E—-05 2.80E-10 1.32E-04 7.36E-05 1.83E-07 1.82E-05
0.3 0.00019 2.42E-09 0.000313 0.00019 410E-10 0.000313 7.28E-05 843E-08 3.96E-05
0.4 0.00026 2.28E—12 0.000416 2.60E—04 8.88E—11 0.000416 3.38E—-05 1.53E-08 6.47E-05
0.5 0.00027 2.18E-11 0.000408 2.70E-04 8.07E—11 0.000408 2.59E—-05 5.49E-08 8.96E-05
0.6 0.000227 4.00E-10 0.000308 227E-04 6.59E-11 0.000308 8.43E-05 4.21E-08 1.10E-04
0.7 0.000157 2.69E-12 0.00017 0.000157 5.84E-11 0.00017 1.11E-04 4.76E-08 1.10E-04
0.8 7.82E—-05 3.77E-12 419E - 05 7.82E-05 4.88E-11 4.19E-05 9.70E—-05 1.61E—07 8.80E—-05
0.9 271E-06 949E-10 4.32E-E-05 271E-06 883E-11 4.32E-05 528E-05 6.42E-08 5.73E-05
1 6.38E—05 5.16E-11 7.24E - 05 6.38E—05 1.52E—13 7.24E-05 8.01E-07 8.51E-09 3.58E-05

variation of population size, and Table 10 presents data for
variation of neurons.

The variation of population is tested on problem 1 and
problem 5. From Tables 8 and 9, it can be observed that,
for 20 population size, the absolute errors are between
10-% and 107 %, the errors for 30 population size lie
between 10~% and 107 !2, and the errors for 40 population
size are in between 107% and 107 %. It can be clearly
observed that the performance of ANN-SCA-SQP

algorithm on 30 population is much better than the rest of
the population.

Similarly, the performance of ANN-SCA-SQP algorithm
is evaluated on the basis of variation of neurons. For this, the
proposed technique is executed for problem 3 only. Table 10
reports the errors for 27, 45, and 90 neurons. From the table,
it is clearly observed that the technique outperformed 45
neurons because the error in the model for 45 neurons is
much less than the rest of number of neurons.
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TaBLE 9: Problem 5: analysis based on the variation of population size.

Variable I(t) U (1) V (t)
Input(t)\population 20 30 40 20 30 40 20 30 40

0 5.02E-05 1.01E-10 1.28E-03 592E-05 1.18E-09 290E-04 1.89E-05 264E-11 1.74E-04
0.1 1.07ZE-05 6.19E-10 280E-03 233E-04 111E-09 296E-04 1.50E-04 398E-12 229E-04
0.2 0.000104 143E—-10 0.004184 0.00014 1.57E-11 0.000293 5.21E-05 1.34E-08 2.35E-04
0.3 0.000203 1.43E-10 0.005459 0.000115 1.80E—09  0.000252 0.000109  6.61E—12 0.00025
0.4 0.000257 7.50E—-12 0.006644 0.000396  5.03E-09 0.000171 0.000242 9.66E—12 0.000296
0.5 0.00026 8.52E—10 0.007765 0.000612 746E-13 6.01E-05 3.05E—-04 2.71E-—10 3.86E-04
0.6 0.000225 4.85E-10 0.008851 0.000717 149E-10 5.71E-05 281E-04 1.21E-09 5.28E-04
0.7 0.00017 5.89E—11 0.009934 0.000695 5.48E-10 0.000154 0.000178 1.44E-12 0.000726
0.8 0.000111 6.83E—12 0.011046 0.00057 6.61E—13 0.000202 2.34E-05 2.79E-10 9.69E-04
0.9 6.11E-05 2.75E-11 122E-02 383E-04 7.87E—-12 174E-04 149E-04 146E-09 1.24E-03
1 239E-05 239E-11 135E-02 169E-04 6.44E-11 559E-05 3.12E-04 243E-11 1.54E-03

TaBLE 10: Problem 3: analysis based on the variation of the number of neurons.

Variable I(t) U () V(1)
Input(t)\neurons 27 45 90 27 45 90 27 45 90

0 0.000172 1.06E-09 2.18E-05 0.000172 8.12E—-12 0.000125 0.001216  8.06E—10 5.50E-05
0.1 0.000312 7.40E-10 0.000361 0.000312 1.92E-08 0.0001 0.002978  5.13E-09 0.000204
0.2 0.00073 7.90E—11 0.000519 0.00073 4.04E-10 0.000211 0.004477  4.29E-09 0.00027
0.3 0.001279 848E-11 0.000507 0.001279 5.15E-09 0.000239 0.005745 5.58E-12 0.000277
0.4 0.00187 3.82E-09 0.000375 0.00187 1.47E-09 0.00021 0.00681 6.30E—10 0.000244
0.5 0.002463 1.10E-09 0.000166 0.002463 9.94E-11 0.000145 0.007697  4.60E—11 0.000187
0.6 0.003044 1.08E—-11 828E-05 0.003044 3.60E—10 6.02E—-05 0.008431 416E-10 0.00012
0.7 0.003607 4.46E-12 0.00034 0.003607 7.72E-15 2.80E-05 0.009035 2.70E—10 5.55E-05
0.8 0.004154 2.73E-10 0.000583 0.004154 2.71E-09 0.00011 0.009526 290E-10 7.59E-07
0.9 0.004689 5.12E-10 0.000793 0.004689  3.08E-09 0.000183 0.009922 4.65E-12 3.95E-05
1 0.005218 1.18E-10 0.000958 0.005218 1.08E - 08 0.000242 0.010237 1.49E-09 6.19E-05
5. Conclusions that the scheme is consistent, robust, and effective. The same

scheme can be modified by implementing different activa-
The oncolytic viruses are considered an effective treatment tion functions. The methodology can be further utilized
of cancer. But, the effectiveness of oncolytic viruses is solving biomathematics, ~engineering, and physical
limited, especially in aggressive tumors. In this work, the problems.
model is proposed to enhance the treatment of cancer
through virotherapy with aggressive tumors. The model
dynamics are evaluated in many parameters such as the ~ Abbreviations
absence of tumor growth and viral decay given in ratios of
tumor growth (r) to rate of cell lysis and the viral decay (&) ANN:  Artificial neural network
ratio to rate of cell lysis, respectively. For simplicity, the =~ SCA:  Sine-cosine algorithm
parameters of the system are transformed and derived from  SQP: Sequential quadratic programming
system (4). For the solution of system (4), a hybridized =~ CVRT: Cancer virotherapy
technique of SCA and SQP is proposed with the worth of =~ MAD: Mean absolute deviation
ANN. For a solution of system (4), the model is transformed RMSE: Root mean squared error
to an ANN form and a fitness function is constructed using ~ ENSE: Error in Nash-Sutcliffe efficiency.
mean square error. A large dataset is calculated for multiple
runs for the evaluation of the ANN-SCA-SQP algorithm. Appendix
The scheme is evaluated by performance operators and its
global extensions. Moreover, the fitness is evaluated  Full forms of all the solutions are given in this section.
graphically such as box plot. Through evaluation, it is found Solution of problem I:
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~ —0.01908663071991 0.57636851069413
I(t) = 1+ e—(—1.7427587553733t+0.43880676467695) 1+ e—(—2,05483312206432[—1.51279831940580)
0.11348110707162 1.02716171085393
+ 1+ e—(—0.26680586948821t—0.95880080821399) + 1+ e—(—0.75107277522778t+0,02119782447704)
N —0.12265909533986
1+ e—(—2.38784594782571?—0.61954169304901)’
~ 3 —1.06738510783545 0.00005698831622
u(t) = —(=2.4095986340855—2.36669544479462) + —(0.01707353586923¢+0.00516606039046)
l1+e l1+e
1.44274124201514 —1.58315352377259
1+ e—(—0.61114780109026t+0455443859010272) 1+ e—(—0460000125315628t—0.53538611019809)
—0.54498890438087
+1 —(—0.60046414945646¢—0.23752663059692)’
+e
~ B 0.83230461358761 —1.15725352490915
Vi) = —(-0.21553261740414t+0.32088763825645) + —(~0.6601729156889¢+0.60367078501160)
l+e l1+e
0.83190784385561 0.52678493269401
1+ e—(—0.13937605750615t+0.15897785716152) 1+ e—(—0.32518905233754t—0‘10854076304947)
0.7149907129149
+ ] 4 ¢ ("2-31745054344404-2.25697503050407)°

Solution of problem 2:

= —0.00599366116434 0.29870864258774
1) = 1 4+ ¢ (71:84937629052043¢+0.5099928234099) + 1 1 ¢ (0:433315469984781-0.46419231250538)
0.01374287509385 0.70984937925103
1 4 ¢ (222357196646945t-0.53031108198807) |, ,—(-0.323340724789981+0.4383595914203)
—0.28141365492929
+ 1 + ¢ (015686110604005¢+0.10576235234503)°
+e
~ 3 0.46576409855291 —0.11973901454464
U= 1 + ¢ (-0-25778414421679(-0.01232021800099) + 1 4 ¢ (F0-0558784821408£+0.05072281204498)
—0.13271601599839 —0.41736785455915
+ 1 4 o (0:05320845584616¢+0.09704140793661) + 1 4 ¢ (F0-33972792127982t+0.01773769436056)
0.13203992298900
1 —(1.86201909140970¢+1.61046234132630)°
+e
~ 3 1.06397800332594 —1.10908696525454
Vi) = ] 4+ ¢ (70-140968383660401+0.28136014150827) + ] 4+ ¢~ (7025673459511011¢+0.25692882213688)

0.23783569093672 0.07011107915698
o~ (70:39293380250354¢-0.27200551063120) + o~ (72:03980243421242¢-1.22616152138698)

1+ 1+

0.00059941626893
o (0:22930304523515¢+0.03417748600235)°

1+

Solution of problem 3:

Complexity

(A1)

(A.2)
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~ 0.00005064671963 2.79676131118331
I(t) = 1 4+ ¢ (091739425391987¢+0.20151282655898) ' | | ,~(~0.58716175066135¢+3.08097561264812)
3.89798395539748 —2.35177680987183
+ 1 4 ¢ (F0-938575984208931+5.45455853699118) + 1 4 ¢ (-0-50105792267907¢+1.70417416852641)
. —4.20850681202890
] 4 ¢ (70.786669718259201+4.57594710022521)°
~ a 0.29465880974700 —0.28100336217337
u(t) = (<0.462053543731981—0.03717537716431) T —(~0.63651781531408¢—0.09419821618922)
1+e 1+e
3.44926321894795 —0.02533517624382
—(—0.87499797267719t+5.84323751817002) —(-2.80345714283232t—0.26839438345355) (A.3)
l1+e l+e
—3.45987601105871
+ —(—0.83183083661539¢+5.10453738628266)’
1+e
~ a —1.14533668686484 0.26341954223219
Vi) = ~(<0.57409231224049(+2.42523658199856) T —(0.36109769125255¢—3.75115778978136)
1+e 1+e
3.36966873878923 1.72348033989928
—(—0.293326415336671+0.18023795880885) —(0.87636550576763t—5.51906035772170)
l1+e l+e
—1.25503997625527
+1 —(—0.60474451884446+0.22203891361175)"
+e
Solution of problem 4:
Tg) = —0.00000391767700 0.14004409904071
(t) = —(0.43115288195420¢+0.09163208113352) —(~3.856440234994711—1.44692152222607)
l+e l+e
—0.09050817566168 1.76864504058779
+ (21435070907 1546/—1.11859678583174) —(~0.73019391914329¢+1.84447982846083)
l1+e l1+e
—1.31074125251591
+ —(—0.70597808230969¢+1.84300062930665)’
1+e
~ 3 —0.01290829995855 —0.39298288557352
u() = (1.08634050052199¢0.30271510287789) T —(-0.51127509262411+0.69613204466806)
l+e l+e
—4.91583487264401 0.66123356250200
—(—0.86869421466160¢—2.28617515420093) —(~1.14912984669606t—0.40490975740441) (A.4)
l1+e l1+e
0.49651982078025
+1 —(—0.65549713563820¢+2.44121814992890)°
+e
\7(t) B 1.89212889740980 —1.10136760888200

1+ e—(0.572211478213()1[—1.27442482230087) + 1+ e—(0.4()426872098468t—().71783640953013)

—-0.39237666404926 1.40777398462851
o (2154229590306671-+1.86510320642869) + 1 + ¢ (030714424357335¢+1.09277874606487)

1+

—0.51552118752434

+ e*(0.57138735375854t+0.07062208745045) :

1+

Solution of problem 5:



Complexity

(A.5)

28
~ —0.00859463071392 1.13640297774529
I(t) = | + ¢ (70:87024115209508¢+0.39460896786322) —(~0.59905049527660¢+0.17088883788221)
+e 1+e
0.33741608774768 —0.78464197267168
+ 1 4 ¢ (-0-18960399251998:-0.79411661042353) + 1 4 o (F0-838534804315526+0.42518124831745)
. 0.29534056262380
] 4+ ¢~ (T0-41116980035838¢+0.13986062121403)°
~ o —0.12118520694302 0.73349234278055
v = 1 + o (0-291467800784671+0.64950809421930) —(0.66394205424639¢0.21318282907264)
+e 1+e
-1.67135056809850 0.51102395623546
1 4 o (0-411388870246621+0.04878744456714) —(2.12697609049951¢+1.31616368533260)
+e 1+e
0.54806198119498
+ —(0.58145219794766t-0.51570357305880)
1+e
N —-0.64200372200432 0.64463738623510
Vi) = 1 4 o~ (0-61755947255081¢+0.11456773690377) —(0.44484405350485¢-0.51037698474455)
+e 1+e
—1.18609854644186 1.90430292536142
+ —(~0.49027595136870¢-+0.68477500730206) ~(~2.05047903280200¢-3.57238361188037)
1+e 1+e
2.01506128595190
+ 1 4+ ¢ (-0-164916988244661+0.67240990771832)°
+e
Data Availability with effect of the immune system,” Jordanian Journal of

The data used to support the findings of this study are
available from the corresponding author upon request.
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