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Improper practices of land use and land cover (LULC) including deforestation, expansion of agriculture
and infrastructure development are deteriorating watershed conditions. Here, we have utilized remote
sensing and GIS tools to study LULC dynamics using Cellular Automata (CA)–Markov model and pre-
dicted the future LULC scenario, in terms of magnitude and direction, based on past trend in a hydro-
logical unit, Choudwar watershed, India. By analyzing the LULC pattern during 1972, 1990, 1999 and
2005 using satellite-derived maps, we observed that the biophysical and socio-economic drivers includ-
ing residential/industrial development, road–rail and settlement proximity have influenced the spatial
pattern of the watershed LULC, leading to an accretive linear growth of agricultural and settlement
areas. The annual rate of increase from 1972 to 2004 in agriculture land, settlement was observed to be
181.96, 9.89 ha/year, respectively, while decrease in forest, wetland and marshy land were 91.22, 27.56
and 39.52 ha/year, respectively. Transition probability and transition area matrix derived using inputs of
(i) residential/industrial development and (ii) proximity to transportation network as the major causes.
The predicted LULC scenario for the year 2014, with reasonably good accuracy would provide useful
inputs to the LULC planners for effective management of the watershed. The study is a maiden attempt
that revealed agricultural expansion is the main driving force for loss of forest, wetland and marshy
land in the Choudwar watershed and has the potential to continue in future. The forest in lower slopes
has been converted to agricultural land and may soon take a call on forests occurring on higher slopes.
Our study utilizes three time period changes to better account for the trend and the modelling exercise;
thereby advocates for better agricultural practices with additional energy subsidy to arrest further forest
loss and LULC alternations.

1. Introduction

Today, there is increased recognition that land use
and land cover change (LULCC) is a major driver

of global change, through its interaction with cli-
mate, ecosystem processes, biogeochemical cycles,
biodiversity and even more importantly the human
activities (NRC 1999). In the last two decades,
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the magnitude and spatial reach of human impacts
on the earth’s land surface is unprecedented
(Lambin et al. 2001). Changes in land cover (bio-
physical attributes of the earth’s surface) and land
use (human modified earth’s surface) has been
accelerating as a result of socio-economic and bio-
physical drivers (Turner et al. 1995; Lambin et al.
1999) and are closely linked with the issue of the
sustainability of socio-economic development since
they affect essential parts of our natural capital
such as vegetation, water resources and biodiver-
sity (Mather and Sdasyuk 1991). Improper prac-
tices of LULC including deforestation, uncontrolled
and excessive grazing, expansion of agriculture,
and infrastructure development are deteriorating
watershed conditions (Bishaw 2001), at various
temporal and spatial scales (Bisht and Tiwari
1996). The analysis and modelling of LULC
dynamics in a hydrological unit of a watershed
provides understanding in totality. It is a two-way
process when LULCC in watershed changes the per-
formance characteristics of watershed which includes
the water infiltration rate, soil erosion rate, runoff,
etc., and vice versa (Zhang et al. 2007).

A decision-maker will be interested to know;
what and where changes have occurred, and also
why such changes happened, at what pace such
change will happen, and what it will look like
if the driving factors continue to function in the
same or alternative way. The answer to these ques-
tions lies on a reliable LULCC model, which aims
at predicting the spatial distribution of the spe-
cific LULC classes in a later year by utilizing
the knowledge gained from previous years. Among
the numerous efforts developed in this category,
the spatial transition-based models, i.e., Markov
Chain model and Cellular Automata (CA) model
have played a central role. Markov chain is one of
the most accepted method for modelling LULCC
using current trends; because it uses evolution from
‘t − 1’ to ‘t’ to project probabilities of land use
changes for a future date ‘t + 1’ (Thomas and
Laurence 2006). The method is based on proba-
bility that a given piece of land will change from
one mutually exclusive state to another (Thomas
and Laurence 2006). These probabilities are gener-
ated from past changes and then applied to predict
future change. However, a stochastic Markov model
is not appropriate because it does not consider spa-
tial knowledge distribution within each category
and transition probabilities are not constant among
landscape states; so it may give the right magni-
tude of change but not the right direction (Boerner
et al. 1996). In a Markov process, there is a dis-
crete set of states S. In each state, there are a num-
ber of possible events that can cause a transition.
The event that causes a transition from state i to
j, where j 6 = i, takes place after an exponential

amount of time, say with parameter qij. As a result,
in this model transitions take place at random
points in time. Cellular Automata (CA) incorpo-
rates the spatial component (Soe and Le 2006)
and thereby adds direction to modelling. It has the
ability to change its state, based on a rule that relates
the new state to the previous state and those of its
neighbours (Clarke and Gaydos 1998). It is imple-
mented in LULC models that are able to simulate
multiple land use types (Thomas and Laurence
2006). Hence, Cellular Automata Markov (CA–Markov)
allows any number of categories and can simulate
the transition from one category to another.

CA–Markov is an interesting approach to model
both spatial and temporal changes:

• the Markov process controls temporal dynam-
ics among the LULC types through the use of
transition probabilities,

• spatial dynamics are controlled by local rules
through a CA mechanism considering either
neighbourhood configuration and transition
probabilities (Sylvertown et al. 1992),

• GIS and remotely sensed data is used to define
initial conditions, to parameterize CA–Markov
model, to calculate transition probabilities and
to determine the neighbourhood rules (Wang and
Zhang 2001).

Soe and Le (2006) used multi-criteria decision mak-
ing (MCE) technique for LULC change detection
and for prediction of future scenarios in which
decision of land allocations was done by consider-
ing the different criteria. The criteria development
depends upon the weight allocation to the LULC
changing drivers; more the relative importance of
driver, higher the weight allocated to the driver
in criterion development (Malczewski 1999). Here,
we have analyzed and modelled the LULCC with
CA–Markov model by considering the biophysi-
cal and socio-economic drivers in Choudwar water-
shed falling in Mahanadi river basin, India. Change
detection of LULC was done by using multi-date
images for the year 1972, 1990, 1999 and 2004. The
final results of prediction showed the CA–Markov
usefulness to build more plausible future states in
different scenarios of LULC change with influence
of different biophysical and socio-economic drivers,
and their relative importance in LULC change in
watershed through the utility of remote sensing
and GIS tools.

2. Methodology

2.1 Study area

Choudwar watershed, the study area chosen is
located at the north side of Cuttack city, Odisha,
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India falls in delta of Mahanadi river basin
(figure 1). The geographical boundary of the catch-
ment lies between latitude 20◦29′33′′–20◦40′21′′N
and longitude 85◦44′59.33′′–85◦54′16.62′′E. The
drainage area of the watershed is about 196 km2.
It is bounded by Mahanadi river at south side
and the Kapilas hill ranges with reserved forest
on the north side while the Choudwar industrial
area on east side and Dhenkanal district boundary
on west side. It comprises of varied LULC includ-
ing forest land, agriculture land, marshy land,
wetland, fallow and barren land; and proximity
to Choudwar industrial area. Much of the forests
and wetlands, however, have been removed as a
result of agricultural expansion and residential area
development.

2.2 Satellite data: Mapping and change

In this study, we selected one Landsat MSS, two
Landsat TM and one Landsat ETM+ images per-
taining to the years 1972, 1990, 1999 and 2004
for LULC mapping (table 1). Coincidentally, all
the images belonged to the month of November.
The study area was extracted from the acquired
satellite images using watershed boundary gen-
erated from SRTM DEM using the Arc hydro
tool in ArcGIS. We used UTM coordinate system
with zone 45 north and datum WGS for satel-
lite imagery registration. A classification scheme
was developed to obtain a broad level of classifi-
cation, to derive various LULC classes, i.e., agri-
culture, settlement, forest, wetland, marshy land,

Figure 1. Location map of the study area, Choudwar watershed.

Table 1. Satellite data specifications.

Resolution Band Date of

Year Satellite (m) Path/row combination procurement

1972 Landsat, MSS 79 150/46 1,2,3,4 7 November 1972

1990 Landsat, TM 30 140/46 1,2,3,4,5,7 28 November 1990

1999 Landsat, ETM+ 30 140/46 1,2,3,4,5,7 29 November 1999

2004 Landsat, TM 30 140/46 1,2,3,4,5,7 2 November 2004
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Legend:    Road-rail network,  Agriculture, Settlement, 

Forest ,         Wetland,           Marshy land,

Fallow and Barren Land, Water Body

(a) (b)

(c) (d)

Figure 2. Land use land cover classification for years (a) 1972, (b) 1990, (c) 1999 and (d) 2004.
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Table 2. Socio-economic and physiognomic data utilized.

Sl. no. Data type Year Source

Socio-economic

1 Population 1971, 1981, 1991, 2002 Census of India

2 Residential development 1971, 1981, 1991, 2002 Statistical handbook

3 Industrial development 1991, 2001, 2004, 2007 Statistical handbook

4 Road network Topomap and reference map

5 Railway network Topomap and reference map

6 Total area under winter crops 1991, 2001, 2004 Statistical handbook

Physiognomic

1 Drainage network ASTER DEM

2 Slope ASTER DEM

Table 3. LULC distribution for years 1972, 1990, 1999 and 2004.

Year 1972 1990 1999 2004

LULC class Area (ha)* Area (ha) (*) Area (ha) (*) Area (ha) (*)

Agriculture 3055 (15.35) 4500.03 (22.82) 8194 (41.57) 8878 (44.93)

Settlement 422 (2.12) 549.73 (2.79) 575.9 (2.92) 738.63 (3.74)

Forest 11608 (58.35) 10182 (54.86) 8624 (43.76) 8098 (40.98)

Wetland 1043 (5.24) 693.17 (3.52) 430 (2.18) 160.92 (0.81)

Marshy land 1578 (7.93) 1427.29 (7.24) 331.3 (1.68) 313.29 (1.59)

Fallow and barren land 1749 (8.79) 1354.51(6.87) 1124 (5.70) 1119 (5.66)

Water 442 (2.22) 377.29 (1.91) 430.9 (2.19) 451 (2.28)

*Percentage area is given in parenthesis.

fallow and barren land and water body (figure 2).
The field visits were made to complete reconnais-
sance survey, ancillary data collection and LULC
classification and validation (tables 2, 3, 4, 5).
LULC classification was performed using unsuper-
vised classification technique for years 1972, 1990,
1999 and 2004 (figures 2, 3). An unsupervised clas-
sification approach allows the spectral clustering
which gives high degree of objectivity (Yang and
Lo 2002). Classification accuracy assessment was
performed for each LULC maps based on the col-
lected GCPs (Ground Control Points) using GPS,
and additional information from Google Earth. In
this context, multi-date images were collected
along with field investigations and socio-economic
statistical data since 1972. The spatial layers
of ancillary database including different socio-
economic and biophysical drivers of LULC change
were prepared using data from Indian census,
statistical handbook and NRIS (table 2). CA–
Markov model was employed to predict future
LULC dynamics in the watershed using a multi-
criteria decision-making approach. This task was
accomplished by using IDRISI software package
developed in Clark Labs, Worcester, Mass.

2.3 Multi-criteria evaluation (MCE) technique

It is impossible to find a single solution that
can fulfill all of the objectives simultaneously for

multiple objective problems of watershed. The
decisions that we need to take in general include
site selection or land allocation decisions that sat-
isfy multiple objectives, each relating to its own
suitability level of land conversion (Soe and Le
2006). To achieve the said objective, multi-criteria
evaluation approach was adopted, that deals with
situations in which a single decision-maker is faced
with a multiplicity of usually incompatible cri-
teria or in which a number of decision-makers
must consider criteria, each of which depends
on the decisions of all the decision-makers (Ade-
miluyi and Otun 2009). Here, we integrated socio-
economic data with biophysical data of watershed
through multi-criteria evaluation (MCE) technique
and CA–Markov. To use MCE technique, there is
need to develop criteria for making decision about
various land uses.

2.3.1 Criterion development: Constraints
and factors

We considered different criteria to determine which
LULC classes of watershed are suitable for chang-
ing from one class to another with time including
proximity from road–rail network and settlement;
socio-economic drivers, biophysical drivers. In this
study, we divided these criteria into different types:
factors and constraints, and can pertain either to
attributes of the individual or to an entire decision set.
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Table 4. Accuracy assessment of classified LULC maps for the years 1972, 1990, 1999 and 2004.

1972 1990 1999 2004

Producers Users Producers Users Producers Users Producers Users

Class name accuracy accuracy accuracy accuracy accuracy accuracy accuracy accuracy

Agriculture 80 100 90.9 90.9 94.7 85.7 95.7 95.7

Settlement 100 100 100 100 100 100.0 100 100

Forest 96.4 93.1 89.7 96.3 87.5 91.3 91.7 91.7

Wetland 100 100 100 100 100 100 100 100

Marshy land 100 75 100 75.0 100 100 100 100

Fallow and 75 75 100 75 50 100 75 75

barren land

Water body 100 100 100 100 100 100 100 100

Year 1972 1990 1999 2004

Overall classification accuracy (%) 92 92 90 92.31

Overall kappa statistics 0.873 0.872 0.838 0.893

Here, three constraints were considered, exist-
ing settlement, river course and road and railway
network. Since new developments cannot usually
come-up on river beds, existing settlement, and on
road–rail networks, these classes were put under
constraints for LULC change (figure 3). The river
course considered as a constraint for all the LULC
classes except water body. The constraint images
for river course, existing settlement and existing
road–rail network were expressed in the form of
a Boolean (logical) map in which areas excluded
from consideration being coded with a zero and
those open for consideration being coded with one
(Kallali et al. 2006) as shown in figure 3 (e and f).
These constraint images were further added up to
produce a single image of suitability for each land
class.

We attributed nine different factors as driving
forces or decision variables for LULC change, viz.,
proximity to road–rail network, settlement, pop-
ulation, residential development, industrial devel-
opment, slope, agricultural expansion, drainage

network and associated LULC classes. These fac-
tors served as criteria that defined some degree
of suitability for an activity under considera-
tion and accordingly individual factor scores were
assigned. Individual factor scores either enhanced
or weakened the overall suitability of an alterna-
tive, depending on the relative importance factor
(Soe and Le 2006). In this study, criteria used
might be complex as threshold applied to a multi-
ple criterion such as, all regions with slopes more
than 15% were considered as non-suitable for new
settlement. Areas with settlement distance within
300 m and road–rail network distance from 50 to
200 m are more suitable for new settlement (Liang
and Ding 2006) which involved the comparison of
several multi-criteria evaluations.

The different factors and constraint criteria for
different class’ suitability

• For agricultural suitability
Factors: slope <15%, settlement distance >100 m,
population >25, residential development >6.

Table 5. Area estimates of LULC change in the watershed (*percentage area); ‘−’ sign indicates decrease
in area.

Annual rate of

Change area (in ha)* change (ha/year)

LULC class 1972–1990 1990–1999 1999–2004 1972–2004

Agriculture 1445.03(47.3) 3694.38 (82.1) 683.59 (8.34) 181.96

Settlement 127.73 (30.27) 26.18 (4.76) 162.72 (28.25) 9.89

Forest −790.68 (−14.62) −2194.2 (−43.38) −871 (−9.27) −91.22

Wetland −349.83 (−33.54) −263.17 (−37.97) −269.08 (−62.58) −27.56

Marshy land −150.71 (−9.55) −1096.0 (−76.79) −18.00 (−5.43) −39.52

Fallow and −394.49 (−22.56) −230.68 (−17.03) −4.83 (−0.43) −19.68

barren land

Water body −64.71 (−14.64) 53.63 (14.21) 20.08 (4.66) −0.28
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(a) (b)

(c) (d)

(e) (f)

Figure 3. Watershed LULC change drivers (a) slope %, (b) population, (c) distance from road–rail network; and
(d) distance from settlement and constraints, (e) existing settlement, and (f) existing road–rail network.

Constraints: river course, road-rail network and
existing settlement.

• For forest suitability

Factors: road rail network distance >1000 m,
slope 2–65%, settlement distance >4000 m, pop-
ulation <200, residential development <50.
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Constraints: existing agriculture area, river
course, road–rail network and existing settlement.

• For settlement suitability
Factors: settlement distance >400 m, road–rail
network distance 20–500 m, slope <15%, popu-
lation <150, residential development <30.
Constraints: existing settlement, river course and
road–rail network.

• For wetland suitability
Factors: slope <1%, settlement distance >4000 m,
population <100, residential development <20.
Constraints: existing agriculture area, river course,
road–rail network and existing settlement.

• For marshy land suitability
Factors: drainage distance <5 m, slope <1–2%,
population <100.
Constraints: river course, road–rail network and
existing settlement, existing agriculture area.

• For fallow and barren land suitability
Factors: slope <10%, settlement distance 10–
500 m, population <1000, residential develop-
ment <200.
Constraints: river course, road–rail network and
existing settlement.

• For water body suitability
Factors: slope <1%, drainage distance 5–15 m,
population 100–1000, residential development
<30–200.
Constraints: road–rail network and existing
settlement.

2.3.2 AHP and fuzzy standardization of factors

We used MCE process that involves criteria of
varying importance in accordance to decision mak-
ers and information about the relative importance
of the criteria. This is usually obtained by assign-
ing a weight to each factor. Here, agriculture suit-
ability map was prepared by assigning weights for

factors like population, residential development,
settlement distance and slope as 0.184, 0.206, 0.567
and 0.044, respectively. The larger the weight, the
more important is the criterion in the overall utility
(Malczewski 1999). The weights assigned to differ-
ent factors were obtained by analytical hierarchy
process (AHP).

To provide a systematic procedure for developing
factor weights, we used AHP in which a pairwise
comparison matrix created by setting out one row
and one column for each factor (Satty and Vargas
2001). Since the matrix is symmetrical, only the
lower triangular half actually filled in (figure 4). In
developing the weights, an individual factor com-
pared with every other possible pairing, entered the
ratings into a pairwise comparison matrix. To illus-
trate this process, first few ratings were considered.
It was observed that settlement distance was very
important than slope, and thus received a rating
of 7 (figure 4). Importance of settlement distance
relative to other factors such as population, road–
rail network distance and residential development
were rated to the relative significance of strongly
important (4), moderately important (6) and more
important (3), respectively. The next ratings were
then based on the second column as shown in fig-
ure 4. This procedure then continued until all of
the cells in the lower triangular half of the matrix
were filled. The final factor weights obtained were
assigned to specify the relative importance of each
factor in determining the aggregate output value.

The final weights generated were not applied to
the factor images as a whole; rather they were
applied ‘pixel by pixel’ in the order of suitabil-
ity scores. The final maps of continuous suitabil-
ity were the result of criteria aggregation using
an operation that is said to be exactly halfway
between the AND and OR operations. In this
study, Weighted Linear Combination (WLC)
method was used for aggregation of parameters.

Figure 4. Pairwise comparison approach to derive the factor weights.
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(a) (b)

(c) (d)

(e) (f)

Figure 5. Suitability maps for (a) agriculture, (b) settlement, (c) forest, (d) wetland (e) barren and fallow land and
(f) water body.
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Table 6. Transition area matrix for prediction of LULC in year 2004 by using LULC images of
1990 and 1999.

LULC Marshy Fallow and Water

classes Agriculture Settlement Forest Wetland land barren land body

Agriculture 67984 2875 6842 581 3010 6264 0

Settlement 2092 3466 399 22 90 264 0

Forest 21976 1576 70953 269 781 3005 100

Wetland 1930 0 45 2602 68 0 34

Marshy land 2450 58 392 83 627 5 779

Fallow and 2523 419 2460 32 12 6090 3527

barren land

Water body 111 2 0 135 34 940 3527

Table 7. Continuous rating scale.

This process carries the lowest possible risk as the
areas considered suitable are those considered suit-
able with all criteria fulfilled. The effect of ‘order of
weights’ is most easily understood in terms of lev-
els of risk and trade off. It was neither extremely
risk-averse nor extremely risk-taking (Soe and Le
2006). Any factor could compensate for any other
according to its factor weight. At both extremes
of the continuum, tradeoff is not possible, but in
the middle there is the potential for full trade off.
Here, the suitability of areas were determined with
consideration of drivers or factors, i.e., population,
residential development, slope, drainage network,
distance from settlement and distance from road–
rail network. The suitability map for each LULC
class in watershed was prepared with different
criteria and relative weights (figure 5).

2.3.3 Markov chain and cellular automata

A Markovian process is one in which the state
of a system at time (t2) can be predicted by
the state of the system at time (t1) (Thomas
and Laurence 2006). In this study, Markovian pro-
cess was used to obtain a transition area matrix
from transition probability matrix. In a transi-
tion probability matrix, the transition probabili-
ties express the likelihood that a pixel of a given
class will change to any other class (or stay the
same) in the next time period. It is a text file
that records the probability that each LULC cate-
gory will change to every other category. A transi-
tion area matrix expresses the total area (in cells)
expected to change in the next time period. It is
also a text file that records the number of pixels

that are expected to change from one LULC type
to other over the specified number of time units.
It is produced by multiplication of each column in
transition probability matrix by number of pixels
of corresponding class in the later image. Transi-
tion probability matrix is represented in a text file
that records the probability that each LULC cate-
gory would change to any other category; while the
transition area matrix, also represented in a text
file records the number of pixels that are expected
to change from one LULC type to the other over
specified number of time units. The transition area
matrix obtained from two time period was used as
the basis for predicting the future LULC scenario.

The 1972 LULC image of Choudwar watershed
was used as the base (t1) image while 1990 LULC
map as the later (t2) image in Markov model to
obtain the transition area matrix between 1972 and
1990 years for prediction of LULC in 1999 (table 7).
The same image of 1990 was used as base image
to obtain the transition area matrix between the
year 1990 and 1999 for prediction of LULC of 2004
(table 6). The Markov’s module in IDRISI cre-
ated conditional probability images that report the
probability of any LULC class to be found at a
location. Even though, the transition probabilities
were accurate on a per category basis, there was
a salt and pepper effect in the output image, since
this model did not consider the spatial distribution
of the occurrences within each category (Soe and
Le 2006).

We used CA–Markov model, wherein the tran-
sition area files were obtained from a Markov
Chain analysis (using the MARKOV module) from
1999 and 2004. The weights were assigned to
different drivers according to their importance,
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Table 8. A case of a pairwise comparison matrix for assessing the comparative importance
of four factors to dense forest suitability.

Residential Road-rail network Slope

Factors Population development distance gradient

Population 1 – – –

Residential 1 1 – –

development

Road–rail network 1/2 1/3 1 –

distance

Slope gradient 3 4 5 1

which addressed the past LULC trends for future
prediction. The weights obtained were based on
the importance of drivers like increase in popu-
lation, residential development, distance to road–
rail network; and settlement distance for increase
or decrease in LULC class for which suitability
map was obtained. Based on the weights allocated
to drivers; suitability maps for each LULC was
produced using MCE that establishes the inher-
ent suitability of each pixel for each LULC type
(table 8). The 2004 LULC map was used as the
base map for estimating future LULC scenario for
the year 2014.

3. Results and discussion

3.1 LULC dynamics

The LULC change dynamics of Choudwar water-
shed was studied over more than three decades dur-
ing the year 1972 to 2004. The results of LULC
distribution for years 1972, 1990, 1999 and 2004
showed that forest area was the dominant land
cover category (table 3). The overall classifica-
tion accuracy for all the four time period maps
was more than 90% (table 4). There has been
a significant increasing trend for agriculture and
settlement classes, whereas decreasing trend was
observed for forest, wetland, marshy land, and
fallow/barren lands (table 3). The change in agri-
culture, forest, wetland and marshy land classes
during 1990 to 1999 was very high when com-
pared with the change between 1972 and 1990,
and 1999 and 2004 (table 5). The annual rate of
increase from 1972 to 2004 in agriculture land, set-
tlement was observed to be 181.96, 9.89 ha/year,
respectively, while decrease in forest, wetland and
marshy land were 91.22, 27.56 and 39.52 ha/year,
respectively (table 5). The transition area matrix
obtained (table 6), was used as the basis for future
LULC change prediction for year 2004. Table 6
showed that 21,976 ha of forest area has the proba-
bility of converting into the agriculture class; while
1930, 2450 and 2523 ha area of wetland, marshy

land and fallow and barren land have the proba-
bility to get converted into agricultural class from
1999 to 2004. The statistical values in table 6
showed the probable area that might convert from
one class to another in 2004. The prediction results
for 2004 on the basis of transition area matrix
and past trends of both socio-economic and bio-
physical drivers resulted in 84.34% accuracy. The
results of predicted LULC scenario showed dras-
tic increase in agriculture and settlement area to
9677.79 and 1092.6 ha, respectively for the year
2014 (figures 6 and 7); decrease by forest, wetland
and marshy land reduction to 6750, 125.82 and
281.29 ha, respectively.

3.2 Prediction and validation

In assessing LULC classification accuracy (table 4),
it was observed that only water body, wetland
and settlement provided the highest producer’s
accuracy (100%) and user’s accuracy (100%)
respectively. The forest and agriculture categories
reached above 90% producer’s accuracy and user’s
accuracy. The lowest producer’s accuracy and
user’s accuracy (75%) were produced by wetland
and marshy land, respectively. It could be due
to some overlapping between wetland and marshy
land; while in fallow and barren land lower accu-
racy were observed due to seasonal variations of
fallow and barren land in Mahanadi river course,
which results in overprediction of fallow and bar-
ren land in 2004. In both the cases, the marshy
land and fallow and barren land contributed to
higher omission and commission errors (table 4).
The changes in forest land, wetland and marshy
land of watersheds during 1990 to 1999 were high;
because east side of Choudwar watershed has been
started developing with Kalinga industry produc-
tion units in the early 1980. This resulted in dras-
tic increase in agriculture area and settlement area;
while reduction in forest, wetland and marshy land.
In the prediction of future LULC scenarios, the
expected area to change in transition area matrix
was observed to be forest, wetland and marshy
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Figure 6. Predicted land use land cover map for years 2004 and 2014.

land. It could be due to agricultural expansion
and involvement of both socio-economic and bio-
physical drivers. In multi-criteria decision-making

Figure 7. LULC area (ha) predicted scenarios for years 2004
and 2014.

process, different biophysical and socio-economic
drivers and their relative importance for change
in watershed dynamics were considered. Our study
investigated the human induced LULC patterns,
land cover change and hydrologic change in LULC
of watershed.

It was observed that agricultural expansion is the
main driving force for change in forest, wetland and
marshy land due to increase in population, residen-
tial development and proximity to rapidly develop-
ing Choudwar industrial area. While the change in
fallow and barren land is due to conversion to set-
tlement area, rapidly increasing village population
in Choudwar watershed brought the pressure on
existing agriculture land by replacing forest, wet-
land and marshy land. The statistics in table 5
provided the average annual rate of reduction from
year 1972 to 2004 in the area of forest, wetland
and marshy land is 91.22, −27.56 and 39.52 ha per
year. The area estimate provided the forest shrink-
age; and this area became the main region where
forest had been converted to agricultural land due
to rapidly increasing population that brought the
pressure on existing agriculture.

3.3 Driving forces for major LULCC

The settlement distance acting as proximate cause
for deforestation due to human agriculture activity
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at the local level in Choudwar watershed, that
intended change in LULC might have an impact on
forest cover (Geist and Lambin 2002). The settle-
ment distance played an important role in changes
in LULC of Choudwar watershed by reduction in
forest area and increase in new settlement area.
This observation indicated that deforestation was
the heaviest around the existing settlement area.
Another proximate cause for change in LULC of
watershed was distance from road–rail network. In
this study, it was one of the drivers for change in
forest area due to development on new settlements
near the existing settlement. It was observed that
the area within the 50 to 400 m distance from
road–rail network was more suitable for new settle-
ment, beyond the 400 m distance, the development
and growth of new settlement reduced. The new
settlements area increased from year 1990 to 2004
due to forest road network leading to increase in
the agriculture area. The effects of road–rail net-
work in Kapilas hill range resulted in fragmenta-
tion in the forests and created high contrast edges.
The changes in landscape structure of Kapilas hill
range forest are somewhat localized. The forest
areas within the slope of 1◦–4◦ mostly converted
into the agricultural land while the areas having
the slope between 5◦ and 40◦ had slowly converted
into the agricultural land.

The prediction of LULC in watershed for the
year 2014 was based on change in driver’s impact
with time and trend of LULC change from 1972 to
2004 and the weight applied for different factors in
LULC prediction for years between 1999 and 2004.
It was found that the integration of Markov model
and Cellular Automata was effective for project-
ing future LULC scenario. It produced an over-
all accuracy of 88.5% when compared to predicted
LULC map with the original satellite image using
a stratified random approach. This is well above
the acceptable limit of accuracy (Anderson et al.
1976). We performed accuracy assessment at the
pixel level to compare classes at every pixel in
an image with a reference source that consid-
ered all cells by directly comparing projected
results against the classified output is also convinc-
ing (76.26%). Hence the LULC change projected
based on the four time period 1972, 1990, 1999
and 2004 LULC changes (more than three decades)
and considering the impact of biophysical and
socio-economic drivers in watershed showed the
potential of modelling exercise for LULC change in
the watershed.

4. Conclusions

This research work demonstrated utilization of
remote sensing and GIS tools to analyse and

model the LULC dynamics in a hydrological unit
Choudwar watershed using CA–Markov model and
predicted the future LULC scenario for years 2004
and 2014 with reasonably good accuracy. Future
LULC change scenarios were addressed based on
past three-decade old LULC change trends con-
sidering biophysical and socio-economic drivers.
The overall accuracy of LULC change prediction
for the year 2004 was 85.5%; it showed that CA–
Markov model can be used to analyze and capture
future spatial-temporal LULC change dynamics
of any watershed. Attempt was made to ana-
lyze the dynamics of watershed for the year
2014 as accurately as possible with seven LULC
classes, in consideration with biophysical and
socio-economic factors. The CA–Markov modelling
approach described in this paper showed the influ-
ence of spatial relationships between biophysical
and socio-economic drivers and LULC changes,
which have to be taken into account to consider its
impact on watershed. The area statistics (table 5)
showed that agriculture and settlement expansion
due to increase in population, residential develop-
ment, industrial development were responsible for
reduction in forest, wetland and marshy lands that
are continuously changing the LULC dynamics of
Choudwar watershed.

The usefulness of a holistic model that com-
bines Markov and CA models for modelling, ana-
lyzing and predicting the changes in watershed
LULC dynamics is demonstrated here. The main
advantage of the modelling and prediction exer-
cise is the suitability rating using multi-criteria
decision-making. The LULC plausible states could
be predicted by integrating biophysical and socio-
economic factors with the current LULC change
in a watershed. The trends of increase in popu-
lation, industrial development, agricultural expan-
sion and forest degradation have led to increased
LULCC. As per Soe and Le (2006), future LULCC
models should be based on the change dynamics
between several different periods of time instead
of the change between only two time periods. In
this study, the three time period changes were
used to study the changes happened in more than
three decades. The study revealed that agricul-
tural expansion (triggered by increase in popu-
lation, residential development and proximity to
rapidly developing Choudwar industrial area) is
the main driving force for loss of forest, wetland
and marshy land in the watershed and has the
potential to continue in future. The effects of con-
nectivity, viz., road–rail network in Kapilas hill
range has resulted in forest fragmentation and cre-
ation of high contrast edges. The forest of simpler
terrain, i.e., within the slope of 1◦ to 4◦ was con-
verted to agriculture land and threaten to climb
beyond the slope range.
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This study has demonstrated some guidelines to
foresee and examine possible future LULC growth
in the watershed with different suitability rank-
ings in multi-criteria decision-making in relation
to different environmental, economic, planning and
land development settings with effective use of the
CA–Markov model. It would be helpful for plan-
ning and management of watershed resources also
for restoring water availability, and improving eco-
logical condition of watershed could be helped by
the identification of areas suitable for water and
soil conservation structures to restore the water-
shed dynamics. The LULC management prescrip-
tions for the Choudwar watershed can include
(i) construction of small water and soil conserva-
tion structures such as check dams, percolation
ponds, irrigation tanks, etc., at gullies, (ii) partici-
pation of rural people and stakeholders to prevent
further land degradation, and (iii) improvement
in agriculture production following better agricul-
tural practices and additional energy subsidy.
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