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Abstract

Pattern Recognition (PR) in its standard form, which involves training and test-

ing classifiers on a representative set of data drawn from a domain of interest, has

been applied to automate an immense number of classification tasks. More recently,

a challenging set of so-called “one-class” classification problems have been identified

and explored. In this thesis, we introduce a further challenging class of PR problems,

involving the recognition of Stochastically Episodic (SE) events, and present a first

attempt at classifying them within their characteristic fields of background noise.

More specifically, this class of problems is characterized by the presence of an over-

whelming number of background measurements, which are acquired in the form of a

time-series. The time-series is, however, interwoven with a minute number of random

(in time, space and magnitude) SE events, which are deemed to be of considerable

interest and require classification. The rarity and random nature of the SE events,

along with their presence within a time-series of noise-like measurements, renders the

learning of their corresponding distribution extremely difficult, if not entirely impos-

sible. By extension, the classification of the SE events is an extremely interesting and

ambitious undertaking.

Since the acquisition of a sufficient number of SE events is, by definition, unachiev-

able, we propose a flexible framework for the modelling and simulation of such events,

as they propagate through a field of background noise. In practice, the initiator of the

SE event may take many forms, such as an earthquake, tsunami, erroneous release of

pollution into the environment, etc..

The thesis, thereafter, considers the PR of these events from two perspectives;

namely those of binary and one-class classification. The thesis contains an empirical

demonstration of all these concepts, based on the exemplary scenario that is suggested

by the verification of the Comprehensive Test-Ban-Treaty (CTBT).
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Chapter 1

Introduction

1.1 Introduction

Pattern Recognition (PR) systems, from simple instance-based learners [85] to the

state-of-the-art in support vector machines and artificial neural networks [49, 97],

have been widely applied to automate processes that previously required the active

involvement of human agents. This acceptance of PR systems within both the public

and private sectors stems from a long standing recognition of the fact that computer

automation can:

• Free humans from tedious tasks.

• Lower costs through a reduced reliance on domain experts.

• Amongst a host of other benefits, significantly increase accuracy and efficiency.

In general, the objective of PR, as a field of study within the broader domain

of machine learning, is to “learn” to distinguish between, what in the literature are

commonly referred to as classes, states-of-nature, and concepts [28, 68, 126].

In their standard formulations, PR systems assume the existence of two classes of

data, cancerous tissue and non-cancerous tissue, for example, which must be discrim-

inated between via the so-called learned discriminate function. The specifics of the

1



CHAPTER 1. INTRODUCTION 2

physical discriminate function are ultimately dependent upon the particular classifi-

cation problem to be solved, and are formulated during the “learning” (or “training”)

process. This process is largely unique to the individual PR algorithms; however, the

essential commonality that exists in all standard PR systems is their reliance on a

labelled set of training instances, which are assumed to be drawn independently and

identically from both states-of-nature. It is, indeed, such training sets that facilitate

the derivation of the discriminant function.

Recently, a new, and more challenging domain of PR problems have been iden-

tified. This new class of problems has previously been denoted as outlier detection,

novelty detection and one-class classification [34, 42, 111]. The key feature within this

class of problems is that a strong representative set of training instances can only be

acquired from a single class within the binary problem, thus, inhibiting the training

of a standard PR system.

The recognition of this problem has motivated significant research into the so-

called domain of one-class classification, with considerable success in spite of the

challenges introduced by the absence of a second class for use during training.

More in-depth discussion of PR, both binary and one-class PR, is conducted in

Chapter 3.

In the most extreme case, in particular, where not only is the data insufficient to

train standard binary classifiers, but where the supply of data drawn from the second

class is insufficient to test and validate one-class classifiers, alternative solutions for

model selection must be explored.

Indeed, this is the case in the newly defined sub-category of one-class learning

problems that we present and explore in this thesis. We observe that the charac-

teristics of this sub-category are such that the vast majority of instances extracted

from the application domain form a time-series of so-called background noise. How-

ever, the background noise is, under extremely rare and unpredictable circumstances,

interrupted by a minute number of random (in time, space and magnitude) Stochas-

tically Episodic (SE) events, which are of considerable interest, such as earthquakes,

tsunamis and erroneous releases of pollution into the environment.
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It is, indeed, a first attempt at the classification of such events, which we have

submitted for publication in [7], and that composes the body of this thesis. In addi-

tion, due to the rarity of these events, we explore and develop a strategy to model

and simulate SE events as they propagate through a field of background noise. Most

recently, a portion of this research on modelling and simulation was published in [8].

The framework is subsequently applied to generate artificial datasets suitable for the

exploration of PR within this new sub-category of one-class learning.

1.2 Goal

In this thesis, we aim to present a first attempt at classifying rare SE events, which,

as we previously noted, are interwoven in a field of background noise.

In doing so, we recognize that the limited presence of the SE events creates a

natural draw towards the use of artificial data. Thus, in the absence of an existing

framework, we propose a complementary objective. In particular, the derivation of

a modelling and simulation framework that simultaneously facilitates the scenario-

specific exploration of the SE events as they propagate through the system of back-

ground noise, and the generation of labelled PR datasets1.

1.3 Problem Statement

In this thesis, two very distinct, and yet complementary problems are solved. In

particular, we demonstrate how, through a framework that utilizes a divide-and-

conquer strategy, this relatively unexplored domain, which is characterized by a time-

series of well-defined background noise that is interwoven with a minute number of

unpredictable, random SE events, can be modelled and simulated.

The problem that is inherent in the modelling and simulation of such systems

is that the vast majority of measurements compose the so-called background noise.

1While Health Canada had kindly released data for the exploration of our demonstration domain
[106], our investigation showed that this data is neither appropriate for the exploration of the problem
in terms of SE events, nor does it, even remotely, reflect the a priori class probabilities of the problem.
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Thus, when combined with the random and unpredictable nature of the SE events,

few assumptions can accurately be made about the distribution of the class of such

events. This information is typically essential when modelling and simulating any

system.

In terms of PR, we have identified two scenarios in this particularly challenging

sub-category of problems. In the first scenario, we assume that although the SE

events are rare and difficult to identify, it is possible through clustering/PR means to

separate the SE events in the acquired time-series from the background data, and to

assign the appropriate labels to the instances of the training set. Thus, in this first

scenario, both binary and one-class classification have been explored.

More appropriately, given the reality of many SE events, the second scenario rec-

ognizes the extreme challenges that are inherent in manually identifying the presence

of a SE event in the acquired time-series. Thus, we propose a one-class PR task,

which insists that the PR system be trained only using noisy data. More specifically,

the one-class classifiers must learn from training data, which, while largely composed

of background instances, is distorted by a minute number of unidentifiable instances

of the SE event class.

1.4 Contribution

In summary, this thesis contains two substantial contributions; one related to the

field of modelling and simulation, and the other to PR.

In particular, we propose a novel framework that facilitates scenario-specific mod-

elling and simulation of SE events, both in terms of their unpredictable occurrences

within the system, and their subsequent propagation through the system. This frame-

work is applicable to the generation of labelled time-series datasets on which the PR

of SE events can be explored. In addition, it facilitates the exploratory modelling

and simulation of SE events, such as earthquakes, tsunamis and erroneous releases of

pollution into the environment, for preparedness and policy-making purposes.

Finally, we demonstrate how under the appropriate conditions, binary learners can

be applied to classify SE events. Moreover, we show how in SE event circumstances,
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such as in the verification of the Comprehensive Test-Ban-Treaty (CTBT), some

standard one-class classifiers can be trained on mislabelled data drawn directly from

the application domain to identify SE events. Furthermore, we modify the one-class

nearest neighbour algorithm [23] to significantly reduce its susceptibility to noise,

which considerably improves its overall applicability.

1.5 Scope

This thesis encompasses a broad swath of topics. As a result, we have limited our

exploration and assessments of some of the areas.

In particular, while we emphasize the temporal aspect of the SE event domain

to be of considerable importance from a PR perspective, we do not explore it in

this work. Instead, we opt to set it aside for future consideration, where it can be

approached with considerable care by a possible time-series analysis.

In addition, due to the constrained time requirements, we do not aim to optimize

the performance of the various classifiers studied, as this would require the rigorous

fine-tuning of numerous parameters. Rather, we aim to produce a set of baseline

scores by employing the “accepted” parameters of the software suite.

With respect to modelling and simulation, we submit that validation is an impor-

tant and time consuming, process. Fortunately, the atmospheric transport models

to be applied in this work have seen considerable application, and have been widely

validated. Thus, their strengths and weaknesses are well understood in general terms.

While our application is, in many ways, a novel one, for purpose of data generation,

and the exploration of SE event recognition, we consider the existing studies to have

sufficiently validated the models. However, specific validation for the SE event aspects

of this problem domain will be of interest in the future.

1.6 Organization

The remainder of this thesis is structured as follows. Chapter 2 reviews important

background material used in this thesis; in particular, that regarding meteorology.
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We discuss the state-of-the-art in related work in Chapter 3, highlighting research

areas in atmospheric transport modelling (ATM) as it applies to the modelling and

simulation framework, and in PR. Chapter 4 describes and demonstrates the proposed

modelling and simulation framework. In Chapter 5, we demonstrate two strategies

for classifying SE events. Finally, we conclude the thesis with a summary of the key

contributions made, and discuss potential future work in Chapter 6.



Chapter 2

Background

2.1 Introduction

This chapter provides a brief review of the primary atmospheric forces that affect

the dispersion of pollutants in the lower atmosphere. It is our objective that this

material provides the foundation for a better understanding of the remainder of this

thesis. The explanations provided are not, however, intended to form a comprehen-

sive description of the system. Thus, we encourage the reader to refer to the many

excellent texts on the subject (for example, [21, 48, 64]) in addition to the references

provided below.

The remainder of this chapter is organized as follows. Section 2.2, discusses the

conceptual layering of the atmosphere and the characteristics that affect dispersion

in the lower regions. The role of energy in the transport and diffusion of pollutants,

along with the sources of that energy, are considered in Section 2.3. The concept of

air stability, and in particular, the question of how it can be defined and also leads to

an estimation of dispersion, is highlighted in Section 2.4. Section 2.5 illustrates the

effects of air stability and inversion layers on airborne pollutants. Section 2.6 provides

a brief review of the local wind structure.The final section, Section 2.7, illustrates both

the Lagrangian and Eulerian frames of reference.

7
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2.2 Atmospheric Processes

Once emitted, pollutants enter the atmosphere and become subjected to the vari-

ous forces present at the time. These forces, which are the results of energy exchanges

in the atmosphere, along with the atmosphere’s interaction with the earth’s surface,

ultimately determine the fate of pollutants emitted into the lower portion of the

atmosphere.

Generally speaking, pollution is emitted into the lowest layer of the atmosphere.

Together, these layers, which have been defined on the basis of the prevailing tem-

perature gradient, are displayed in Figure 2.1. The lowest layer of the atmosphere is

referred to as the troposphere and is highly complex due to the fact that its lower

boundary is at the surface of the earth. The energy exchange that occurs at this

margin and propagates outward is largely responsible for the heat and moisture pro-

file present throughout [64]. These profiles subsequently effect the transport of the

pollutant. In addition, convective eddies, which are a key factor in the diffusion of

pollutants, are also produced as a result of the interplay between the lower atmosphere

and the earth’s surface.

For the above reasons, the troposphere is a highly complex slice of the atmosphere.

Fortunately, the balance struck within it suggests some further subdivision, which

proves informative in the development of an understanding of atmospheric dispersion.

The subdivided structure of the troposphere is presented in Figure 2.2. At the bottom

of this is the atmospheric boundary layer. Above this lies the convection boundary

layer, which is the region that contains the convective eddies. The lowest five to ten

percent of the convective boundary layer is most effected by the topography of the

the earth. Within this range, strong lapse rates occur along with significant wind

shear [100]. The convection boundary layer is bounded on top by an inversion layer.

This upper bound serves to limit the degree to which vertical mixing can take place.

As a result, when conditions in the atmosphere are such that the inversion layer is

relatively high, there is a greater degree of diffusion, resulting in lower pollution levels

on the ground. Conversely, when the inversion layer is relatively low, observers at the

surface of the earth will experience higher levels of pollution.
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Figure 2.1: Vertical temperature profile of the atmosphere (recreated from [21].)
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2.3 Energy Sources

The primary source of energy for the earth’s atmosphere is solar radiation, trans-

mitted directly from the sun. This energy facilitates the transport and diffusion of

pollutants within the atmosphere. Thus, it is informative to discuss the various forms

that this energy takes and how it is propagated through the system before moving

on to consider the forces that explicitly transport and diffuse pollutants within the

earth’s atmosphere.

In addition to transferring energy directly to the atmosphere, the sun also pro-

duces an influx of energy to the surface of the earth. Energy received at the earth’s

surface is subsequently transmitted to the atmosphere in the form of sensible heat,

latent heat and long-wave radiation. These energy exchanges are the secondary forces

behind both the local and global weather systems that transport and diffuse airborne

pollutants. The sea breeze is an example of a local phenomenon that is produced as

a result of the preferred heating of the earth’s surface in coastal areas. The warm

surface transfers heat to the parcels of air directly above the ground, causing them

to warm and rise. As they rise, they allow the cooler denser air, which resides over

the sea, to advect inward. As the cool parcels shift in over the warm surface, they

are heated and the process repeats while the ground remains warm. It is this cycle

of cool dense parcels of air replacing warmer ones that constitutes the sea breeze.

On a global scale, the cumulonimbus clouds of the inter-tropical zone, which are the

driving forces behind global circulation, acquire their energy from tropical oceans,

which, in turn, emit latent heat from their warm surfaces.

2.4 Air Stability

Within the atmosphere, stability refers to the degree to which individual parcels

of air shift vertically and horizontally, in addition to the transfer of individual parti-

cles between their encompassing parcels. This movement can be classified as either

advection, situations where the fluid flows as a whole, or convection, where the fluid
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doubles back on itself to form eddies. The latter is important as it enhances the mix-

ing of pollutants between adjoining parcels of air, producing a shift down the gradient

scale, while the former transports the pollutant in the direction of the mean wind.

In theory, the smaller, highly random eddies, are separated out of the larger class of

convective flows and referred to as turbulence. However, in practice, this is difficult

to do, as larger cells have a tendency to break down into smaller ones.

Convection may be induced by a number of sources. For example, it may occur

as a result of the flow over obstacles or rough surfaces. Alternatively, it may be a

product of instability resulting from density and buoyancy differences in the fluid, or

as a result of a heated surface. In practice, the disposition of these forces is to work

in concert to produce convective flows.

It is informative to consider the stability of the atmosphere in terms of adiabatic

processes, which provide insight into the amount of heat emitted from a parcel as it

rises and expands. In particular, a parcel is said to have undergone dry adiabatic

conditions, denoted by Γd, in the case where the temperature decreases at a constant

rate of 9.8Kkm−1. Under more realistic conditions, the parcel will contain some

moisture, resulting in an alternate rate of change in temperature.

The lapse rate, Γe, which is the measured or inferred rate of temperature change

in the environment, is defined by the following equation:

Γe = −dT

dz
, (2.1)

where Γe is the lapse rate, T is the temperature, z is the altitude and the negative

sign indicates a decrease in temperature with height. By comparing the lapse rate to

the rate of change for dry adiabatic conditions, 9.8Kkm−1, we can estimate the state

of stability in the lower atmosphere [64]. The conclusions that may be drawn from

this comparison are displayed in Table 2.1

Stability in the lower atmosphere has a strong effect on the vertical temperature

profile. During unstable conditions, characterized by large convective flows, mixing

destroys the pre-existing vertical temperature gradient. As stability in the lower

atmosphere increases, a well-defined vertical temperature gradient becomes more ap-

parent.
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Lapse Rate State of Stability Remarks
Γe = Γd Neutral or adiabatic Common conditions in the

UK, light winds and cloudy
skies.

Γe > Γd Strong lapse rate or super-adiabatic Unstable conditions, good
vertical mixing of pollution.

0 < Γe < Γd Weak lapse rate or sub-adiabatic Stable conditions, vertical
mixing is limited.

Γe = 0 Isothermal Stable conditions, vertical
mixing is very limited.

Γe < 0 Thermal inversion Very stable conditions, gen-
erally there is no vertical
mixing.

Table 2.1: Relationship between the lapse rate and the stability of the atmosphere
(recreated from [21]).

Generally speaking, a cyclical trend can be seen in the daily temperature profile.

Overnight, facilitated by the absence of solar energy, radiation inversion occurs. As

the hour of 10.00 approaches, and the sun’s energy is increasingly felt on the surface,

the inversion begins to break up. At approximately 16.00 hours a super adiabatic lapse

rate occurs resulting in a well-mixed lower atmosphere. Stability is re-established as

the sun recedes and the surface cools once again.

In addition to solar energy, humidity, cloud formation and wind are all factors in

the establishment of a strong vertical temperature gradient.

2.5 Implications for Pollutants

The stability of the atmosphere, and hence the prevailing meteorological condi-

tions affect the fate of pollutants emitted into the atmosphere. In Figure 2.3, the

influence that atmospheric stability has over a plume emitted from a stack is dis-

played. Each sub-figure relates a particular lapse rate of interest (Γe), indicated by a

solid line, to the expected plume shape for that lapse rate. Figure 2.3(a), provides an

example of looping. This occurs during super-adiabatic (unstable) conditions where

the presence of convective flows stretch the plume both upwards and back down upon
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itself. Figure 2.3(b), displays a coning plume, which is characterized by neutral con-

ditions where gentle winds allow the plume to spread in all directions. The fanning

plume of Figure 2.3(c), occurs when the plume is emitted into a zone bounded to the

top and bottom by inversion layers. The plume is, thus, restricted in its vertical ex-

pansion but free to spread across the horizon. Finally, Figures 2.3(d) and (e), display

the results of a plume being emitted below and above an inversion layer. Clearly, the

former will produce significantly higher levels of pollution at the surface.

In the case of a puff, which is a short term release of pollution from industry

and/or an explosion, the inversion layers act much the same forming a vertical barrier.

However, the distinction between mean and turbulent motion is rather delicate and

entirely dependent on the size of the system begin investigated. That is to say, for

fluctuations in wind larger than the puff itself, we tend to see them as contributing

to mean motion. Alternatively, smaller fluctuations tend to contribute to dispersion.

2.6 Local Wind Structure

The wind is a primary force in determining the fate of airborne pollution, as well

as being influential in the construction of heat and moisture profiles in the lower

atmosphere and the production of mechanical turbulence.

When fluids, such as air, flow across a surface, their momentum is impeded by

viscous forces. Thus, parcels of air coming in direct contact with a surface, such

as the earth’s surface, are obstructed and their velocity approaches zero. Shearing

forces then cause the parcels directly above these to be slowed, which in-turn affects

a decrease in the velocity of the next layer of parcels. As the elevation is increased,

the effect of the surface is reduced, and eventually the shearing forces completely

dissipate, leaving the horizontal pressure gradient and Coriolis forces to strike an

equilibrium. Through these forces, the wind speed becomes a function of elevation.

Generally speaking, the wind speed increases considerably in the first 10 meters, after

which the rate of change slows. Beyond 1 kilometre, shearing, or drag, due to the

surface is effectively zero. In practice, large-scale pressure distributions and weather

systems add a great deal of complexity to the system by altering both the speed of
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Figure 2.3: The relationship between the stability in the lower atmosphere and the
ultimate shape of plumes emitted from elevated stacks [10]. In the inset z vs T
diagram, the dashed line represents Γd and the solid line represents Γe.
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the wind and its direction with height. As a result, it can be difficult to build a

completely accurate model of the local wind structure.

2.7 Frames of Reference

There are two conceptual frames of reference inherent in the collection of data

from a fluid matter. When measurements are taken from a fixed position, the refer-

ence frame is considered Eulerian. In regards to the study of atmospheric flows and

airborne pollutants, this approach implies successive and sequential observations of

the meteorological conditions and pollutant volumes, taken with respect to individual

parcels of air, as they are advected past the observation point. Data measurements

collected within the Eulerian frame of reference is the simpler of the two techniques,

however, it is limited in its descriptiveness.

A particularly ubiquitous example of a meteorological instrument that operates in

the Eulerian frame of reference is the weather vane, which is commonly seen perched

on barns in the countryside, but also upon high-tech weather observatories spread

around the globe, feeding data to centralized computer models.

Alternatively, measurements may be extracted relative to a particular parcel of

air. This technique requires that the observer “ride” with the advecting parcel of

air. Thus, measurements of this form illustrate the evolution of an individual parcel

over time. The most notable meteorological instrument operating in a Lagrangian

reference frame is the weather balloon, which is a free-floating neutrally buoyant

device equipped with meteorological sensors.

Lagrangian measurements are particularly attractive, as they simplify the mod-

elling of turbulent diffusion by capturing the three-dimensional path of air parcels.

However, the realization that air parcels will inevitably traverse a largely unique and

convoluted route as they are acted upon by eddies in the turbulent flow, suggests

the difficulty of acquiring Lagrangian observations. As a result, a great deal of capi-

tal has been invested in an effort to develop theoretical and empirical techniques to

translate the more accessible Eulerian statistics into Lagrangian statistics. While the

theoretical means exist for doing so, their application in real flows is a significant



CHAPTER 2. Background 16

challenge.

2.8 Statistical Descriptions of Advection and Dif-

fusion

There are three relevant approaches to averaging when concerned with the mod-

elling of advection and diffusion in the atmosphere. Each of these is relevant to

a particular set of scenarios and modelling objectives. In particular, the averaging

techniques are temporal, spacial and ensemble averaging. Both temporal and ensem-

ble averaging are of significant interest in this thesis. As such, they are discussed in

greater detail below. While spacial averaging can be considered under much the same

guise as temporal averaging, interested readers should solicit further detail on spacial

averaging, in addition to temporal and ensemble averaging, from Arya, [5].

Temporal, or time, averaging is commonly applied during the analysis of data

collected from a fixed point in space, and gathered over a time period, T . Data

acquired in this way is of the Eulerian form, however, data acquired of a Lagrangian

process may also be analyzed in this manner. In particular, both the temporal and

spacial averages are the product of the specified sampling time, T , and possibly a

smaller averaging or interval time, t. The former refers to a period of continuous

measurement, which is averaged to produce a single observation point, while the

latter is indicative of a delay between the instantaneous discrete measurements taken

over T . In both the discrete and continuous circumstances, the result is a set of

observations that are combined to form the temporal average.

Time and space averaging are somewhat subjective, as they are invariably de-

pendent upon the selection of the sampling time, in the case of temporal averaging,

and length, where space is concerned. While the ideal value of these variables is not

clear, the effect may be pronounced. Indeed, the choice of sampling time may have

great implications on the result of the modelling phase. If, for example, the sampling

period is too long, the standard deviation will increase, and important trends, such

as the diurnal variations or urban/rural differences, inherent in the evolution of the
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component, may be masked. Conversely, it is necessary that the specified period be

large enough to both ensure a stable mean and to incorporate the effect of the largest

turbulent and diffusive features of interest to the modeller.

The degree to which diffusion occurs within the atmosphere is related to the

standard deviation of the above measurements. Moreover, it is also related to the

frequencies or the range of frequencies in the spectrum that compose the greatest

contributions to the total standard deviation [64]. This intuitively results from the

fact that distinct scenarios may produce the same or similar standard deviations.

To illustrate this, consider two environments, one of which is subjected to a few

large oscillations, while the second witnesses numerous small oscillations. While their

resulting standard deviations may be similar, their effects on an airborne puff are

quite distinct. Indeed, the former scenario will tend to transport the pollutant, while

the latter breaks it apart. This effect must be carefully considered when selecting the

appropriate averaging time.

Arya [5] describes the typical averaging time, T , for the ABL as ranging from

103 seconds to 104 seconds, and as being dependent upon the observation height,

ABL depth and the stability of the prevailing atmosphere during the period under

consideration. Furthermore, studies report that where air pollution and dispersion

are of concern, the sampling length applied to the derivation of the wind speed,

wind direction and the statistics of turbulence, must be consistent with those of the

concentration and dispersion parameters.

The ensemble average, which is sometimes referred to as a probability average,

is used almost exclusively as a theoretical tool. It is defined by a large number, one

which is approaching infinity, of realizations of a variable achieved through indepen-

dent, identical experiments. By definition, the derivation of an ensemble mean for

components of the earth’s atmosphere, is essentially impossible due to the high de-

gree of variability inherent in the atmosphere. However, this approach to averaging

is often favoured in theoretical work, as it is not dependent on a subjectively chosen

sampling period. A particularly desirable feature of the ensemble average, is that it

conforms to Reynold’s averaging rule, where other approaches may not.

Due to the divergence in application of the ensemble mean and the time and space
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averages, it is important to recognize the statistical relationship between them. For

the case of a stationary random variables, where stationarity indicates independence

from all mean variables and the turbulence statistics on time, the time average con-

verges to the ensemble average, as the number of observations goes to infinity [70].

Similarly for space, homogeneous field variables tend towards the ensemble mean as

the number of observations goes to infinity, where, homogeneity, in this case, refers

to independence from mean flows and the turbulence statistics on distance. The

natural variability of the atmosphere renders the necessary conditions of stationarity

and homogeneity infeasible in the strictest of senses. At best, quasi-stationary and

homogeneous conditions can be expected during short time periods in the overnight

hours and during the day, in situations where an individual large weather system

dominates the area. While these conditions remain, typically over a course of one

to three hours, approximate equivalence between the temporal and spacial averages,

acquired through experimentation or observation, and the ensemble averages can be

assumed.
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Literature Review

Researchers in machine learning have long relied on artificial data sets when consid-

ering the performance and stability of new and existing algorithms. A particularly

motivating factor behind the use of artificially generated data, is the flexibility which

it provides the researcher, and the accompanying power to acutely understand the

behaviour of the algorithm in question, along with the ability to rigorously test the-

oretical hypotheses. Alternatively, some research efforts are impelled to use artificial

data due to the limited availability of “real” data for their particular domain of in-

terest. Examples of the former justification can be viewed in [4, 56, 129], and of the

latter in [26].

The remainder of this chapter is bisected by the two fundamental topics of this

thesis. The processes that were informative to our formalization of a modelling and

simulation framework are described in the first half, specifically Section 3.1, and is

followed by a discussion on the state-of-the-art in PR, in Section 3.2. The section on

data generation contains a number of sub-sections, which are intended to inform the

reader on the choices made and the techniques used in simulating the dispersion of

radioxenon in the lower atmosphere. A short description of the individual objectives

of these sub-sections is provided below.

In subsection 3.1.1, we consider the important question of radioxenon emitters.

The purpose of this section is to provide the reader with an understanding of the

various sources of radioxenon, which include industrial emitters and the detonation

19
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of nuclear weapons. While this body of science is not fully developed, the discourse

includes a best estimate of emission rates from the primary sources. With respect

to subterranean nuclear detonations, the overlying material has an effect on time

lapsed before venting, the rate of venting and the percentage of radioxenon vented.

These points are considered, as they are crucial in developing our understanding of

how much and when pollution will be witnessed downwind. In addition, slow venting

rates and/or long lapses prior to venting may produce higher levels through a process

commonly referred to as chaining, or cumulative yields.

An integral part of this study involves estimating the state of the troposphere,

thus, approaches for doing so are presented in Subsection 3.1.2. While Chapter 2 de-

scribed the atmospheric processes involved in dispersing airborne pollutants, disper-

sion models rely on a variety of parameters that describe the state of the atmosphere

in order to predict how a pollutant will behave. In this chapter we will dedicate a

sub-section to highlight the practices used to determine the value of parameters such

as atmospheric stability, the effective stack height, the wind speed profile, the mixing

height and the variances for the Gaussian diffusion models.

In Subsection 3.1.3, we discuss relevant approaches to modelling atmospheric

transport. In particular, we articulate three approaches to modelling atmospheric

dispersion, the first of which is the modelling technique implemented in this the-

sis. Although they are not necessarily the most accurate approaches, collectively

they sufficiently demonstrate the considerable range of techniques appropriate for the

modelling and simulation aspects of this thesis.

3.1 Data Generation

3.1.1 Radioxenon Emitters

In conducting this research on the PR of, what we have identified as SE events (a

phenomenon that is described in greater detail in subsequent chapters), we recognized

that the CTBT verification problem presents itself as an exemplary demonstration

domain. In its essence, the CTBT bans all nuclear explosions in the environment,
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and its verification is based on the detection, identification and localization of possi-

ble detonations [94]. More specifically, verification has been proposed based on the

quantification of four xenon radioisotopes in the mass range of 131 to 135. Thus,

consideration of both the source and the nature of radioxenon is warranted.

Noble gases are, in general, produced in large quantities from nuclear fission and

are inherently difficult to contain [16]. This is particularly true for xenon. Thus, if

radioxenon were to be measured, it could indicate an earlier detonation of a nuclear

weapon. In that regard, Bowyer et al., in [16], specified the independent yields that

would result from a nuclear blast equivalent to one kiloton of TNT as follows:

131mXe − 5 × 109 Bq/kt,

13mXe − 2 × 1013 Bq/kt,

133mXe − 2 × 1014 Bq/kt,

135Xe − 2 × 1011 Bq/kt.

The cumulative yields, which result as a combination of the initial production and

chaining (specifically, decay from parent isotopes), are stated to be several orders

of magnitude higher than the independent yields alone. The cumulative yields are

considered, for example, when a detonation takes place in a containment cavity, from

which the release is delayed for a considerable amount of time. During the initial

period of containment, specifically while parent isotopes exist, the concentrations of

the four radioxenon isotopes will rise. Given that since 1963 most detonations have

occurred underground in order to limit the release of radioactive fission products into

the atmosphere [74], this accumulation could have a significant influence over the total

release. However, only a portion of the total production is expected to escape. This

is dependent upon a series of events subsequent to the test. Figuring prominently

in the degree to which accidental venting occurs, are blast induced fractures in the

containment facility and the overlying surface material. However, the inert property

of radioxenon dictates that a portion is likely to be vented from even the soundest

of containment facilities [15]. Indeed, as seen in the past, the containment of the

pollutants produced during subterranean nuclear detonation is not a straightforward

task [92].
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The four radioxenon isotopes that have been identified as forming a suggestive

fingerprint have radioactive half-lives of 11.9 days, 5.2 days, 2.2 days and 9.1 hours,

respectively. These durations have been identified as favourable because they are long

enough that when released into the atmosphere they can be dispersed and measured

at considerable distances. In addition, they are short enough that they do not linger

in the atmosphere, and hence, they have a relatively low ambient concentration.

Saey, in [94], noted however, that Medical Isotope Production Facilities (MIPF)

are the most prominent emitters of radioxenon into the earth’s atmosphere, with

other nuclear industries, such as power generation, taking ancillary roles in the overall

background levels.

There is little information known about the explicit rates of emission from stacks

associated with MIPFs. However, Saey reported an eight month study of 133Xe stack

emissions from a facility that utilized neutron irradiated highly enriched uranium

(this is reported to be the most common practice in MIPFs), and five years of emis-

sions data from a facility that utilized low enriched uranium, in [95]. The former

site released between 1012 and 1013Bq/day, with a mean of 4.6 × 1012Bq/day. Al-

ternatively, the longer study indicated that the latter site released between 1011 and

1012Bq/day, with a mean of 7.5× 1011Bq/day.

More commonly, the literature reports radioxenon concentrations measured at

specific receptor sites. However, due to the complexity of the “airshed”, which is

responsible for the ultimate path traversed by an emitted plume, and, by extension,

the pollutant concentration at the measurement site, it is very difficult to associate

these levels with their sources. However, such studies do provide interesting insight

into the background (emission from “peace” nuclear industries) concentration distri-

bution for various locations across the globe. In Table 3.1, we have listed the mean

12 hour cumulative results, which were acquired from continuous sampling between

the years of 2003 and 2008, at four cities in Europe and four cities in North America.

These results were originally reported in [95].
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Mean
(mBq/m3)

Outliers
(mBq/m3)

NPP MIPF

Freiburg, Germany 6.0 up to a few 100 30 +1
Dubna, Russia 3.0 up to a few 100 30 +1

Stockholm, Sweden 0.4 up to a few 100 6 0
Spitsbergen, Norway 0.2 up to a few 100 1† 0
Ottawa, Canada 300.0 frequent spikes

between 1-10
13 1

St. John’s, Canada 3.0 - 1† 1
Charlottsville, USA 4.0 - 24 24
Yellowknife, Canada 0.2 - - 1‡

Table 3.1: This table reports the mean 133Xe concentrations, which were measured
cumulatively over consecutive 12 hour intervals between the years of 2003 and 2008.
In the two instances where the number of Nuclear Power Plants (NPP) are accented
by the † symbol, the closest plants are at a distance of 1,300 km. Alternatively, the ‡

symbol indicates that the nearest MIPF is 2,000 km away.

3.1.2 Estimating the State of the Troposphere

The challenges inherent in accurately describing the behaviour of pollutants in an

environment as complex as the earth’s lower atmosphere are grand, indeed. For this

reason, despite considerable effort, no single physical model is capable of completely

articulating the significant aspects of the problem [64]. Alternatively, many workers

have concentrated on a particular aspect, or process, within the broader atmospheric

system in order to model the subsystem, which can ultimately be included as com-

ponents in the overall atmospheric transport models.

Of primary importance to the degradation, or diffusion, of a pollutant body within

the earth’s atmosphere is the mixing height, which caps vertical dispersion, stability,

the wind speed and the elevation from which the pollutant is emitted. These four

essential topics are discussed in the following subsections.
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Mixing Height

The mixing height is an extremely important parameter, as it places a ceiling on

vertical diffusion. Physically, the top of the mixing layer is restricted by an over-

lying stable body of air, which impedes vertical motion. It has been demonstrated

that atmospheric transport models are extremely sensitive to specified mixing heights

[24, 25]. More specifically, an erroneous estimation of the mixing height can result

in a significant under or overestimation of the downwind concentrations. Therefore,

modellers attempting to recreate specific scenarios require extremely accurate esti-

mations of the mixing height. One particularly favourable approach, is to rely on

physical measurements of the mixing height [3, 19]. In the absence of physical mea-

surements, the bulk Richardson number can be utilized to estimate the mixing height

under specific conditions [57, 105, 109]. Alternatively, empirical observations of a

mixing heights, under various atmospheric conditions, can be compiled and utilized

as a simple approximation. Clark, in [20], defines a table that relates the mixing

height to atmospheric stability and wind speed, while Slade, in [103], and Hanna et

al. in [39], articulate that mixing heights can range from 1 to 2 kilometres above the

surface.

Stability Classification

Estimations of the prevailing stability and/or turbulence within the atmosphere are

generally required by dispersion models in order to simulate an appropriate degree of

diffusion in the vertical and cross-wind directions. The most appropriate parametriza-

tion of overall stability in the ABL is the ratio,

h

L
= − hk

u3
∗

g

To

Ho

ρcp
=

hk

u2
∗

gθ∗
To

, (3.1)

which is based on similarity theory in the ABL, and is recommended by most bound-

ary layer and air pollution meteorologists [5]. The individual components of the ratio

are described as follows,

• L: Obukhov (buoyancy) length,

• h: boundary layer depth,
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• k: von Karman constant,

• u∗: frictional velocity,

• g: acceleration due to gravity,

• To: air temperature at the reference height,

• Ho: sensible heat flux at the surface,

• ρ: mass density of the air, and

• cp: specific heat at constant pressure.

In scenarios where the required measurement of the surface fluxes of momentum and

heat are unavailable, Arya, in [5], suggests the application of the bulk Richardson

number for the ABL,

Rih =
g

To

∆θh

V
2

h

, (3.2)

in which ∆θ is the potential temperature difference across the ABL depth and Vh is

the mean wind speed at the top of the ABL.

In the absence of on-site turbulence measurements, the standard deviations of the

wind velocity fluctuations can be utilized. For the ABL as a whole, the following

empirical similarity relations,

σu

u∗

= 2.5

(

1 − z

h

)a

(3.3)
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, (3.4)

where σu,v,w are the standard deviations of wind fluctuations in the three component

directions, and a ranges from 0.5 to 1 under neutral and stable conditions, accord-

ing ABL data [61, 62, 72, 73, 80], is recommended. Alternatively, for unstable and
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convective scenarios, the following form is suggested,

σu

w∗

=
σv

w∗

=
σw

w∗

≃ 0.6. (3.5)

The most prevalent characterization of the stability and turbulence for dispersion

model parametrization within the regulatory realm, is the stability categorization

proposed by Pasquill, in [77], and subsequently modified by Turner, in [121]. Pasquill’s

classifications, commonly referred to as Pasquill stability classes, are favoured for their

simplicity, and in particular, their applicability in models with analytical solutions.

Unlike the continuous function defined by h
L

and Rih, Pasquill defines six discrete

categories, each of which result as a function of routinely available meteorological

data, including wind speed, insulation and solar radiation. The major weakness

inherent in the stability classes is the vast range of physical conditions within each

stability class.

Diffusion as a Function of Stability

When incorporating horizontal diffusion in a dispersion model, Ayra recommends a

formulation based on the statistical theory relation as a best estimate,

σy = σvtfy

(

t

TL

)

, (3.6)

or its equivalent form with the Taylor transformation, t = x/u,

σy = σθxfy

(

x

uTL

)

, (3.7)

where TL is the Lagrangian time scale, which may be specified as a function of sta-

bility.

Due to the uncertainty that exists around quantification of TL, Pasquill, in [79],

suggests an abbreviation of σy, and specifies the function, f(x), in tabular form, which

simply requires the measurement of σv or σθ at the release site.

The best practices, when estimating vertical dispersion are described as those

considering the ratio of the ABL height, h, to the Obukbov length, L, or the bulk

Richardson number, based on the height of the ABL, and the potential temperature

difference across the ABL.
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In scenarios characterized by diffusion from an elevated source, where σz is less

than the source height, the standard deviation should be estimated from the statistical

theory relationship,

σz = σwtfz

(

t

TL

)

(3.8)

or

σz = σθtfz

(

x

uTL

)

, (3.9)

where the function, fz, is presented by Draxler, in [27], over a large range of x for

elevated sources and unstable stratification.

The Pasquill-Gifford (P-G) scheme is widely used in the estimation of dispersion

within Gaussian models. The technique, originally proposed by the British Meteoro-

logical Office, and published by Pasquill, in [77], defines lateral plume spread, θp, and

vertical plume spread, zp, as functions of the downwind distance and the prevailing

atmospheric stability, which is categorized according to the Pasquill stability classes

defined above. Gifford, in [36], converted the original parameters to a representation

of the standard deviation of the concentration in the horizontal and vertical directions

as follows,

σy
∼= xtan(θp/2)

2.15
(3.10)

σz
∼= zp

2.15
.

In [78] and [35], Pasquill and Gifford, respectively, review the major limitations

of the P-G approach to the parametrization of diffusion. The primary difficulty

with P-G estimation of diffusion is that the functions are derived from data gathered

during a small-scale field experiment, and are thus not widely applicable. In addition,

the utilization of discrete stability classes induces abrupt shifts in diffusivity as the

atmosphere moves between stability classes.

Because the P-G dispersion scheme is an empirical result stemming from a study

of dispersion from a continuous point source, there is no theoretical justification for its

application in instantaneous point source models. Indeed, few field experiments have

been conducted to study the dispersion of pollutant clouds emitted from instantaneous

point sources. However, Slade, in [103], provides a table which summarizes horizontal
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and vertical diffusion as a function of downwind distance. In addition, a power law

is suggested based on three discrete stability classes.

Wind Speed Profile

Within the lower levels of the ABL, a wind speed profile arises, which is dominated by

the frictional drag inflicted on the overriding atmosphere by the earth’s surface. This

effect is often characterized by a mathematical power law, in pollutant dispersion

models [5, 120], which takes the following form,

V

Vr

=

(

z

zr

)m

, (3.11)

where Vr represents the wind speed at the reference height of zr, andm is an exponent,

which takes a value between zero and one. Empirical studies suggest that the value of

m is dependent upon surface roughness and stability, with the value increasing during

stable conditions and over rough surfaces. However, the power law is most applicable

in the lower regions of the ABL. At higher elevations the rate may be linear or even

constant, and moreover, the physical direction may change.

Izumi and Caughey, in [47], presented a graphical comparison of observed wind

speed profiles and their corresponding m values at the various sites. For neutral

stability conditions over smooth water, snow or ice, the m is assumed to range from

0.15 to 0.4 over well-developed urban areas. Over moderately rough areas, the value

ranges from 0.4 in unstable or convective conditions and approaches 1 as stability

increases. While the power law, in general, is not based upon a theoretical foundation,

it has been known to produce satisfactory results.

Plume Rise

Plume rise is particularly important due to its effect on the location of the maximum

downwind concentration. More specifically, the maximum concentration is generally

expected to occur at a distance inversely proportional to the square of the plume

centre-line. In general, plume rise can be expected to have a large elevating effect on
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the plume’s centre-line, increasing it by as much as ten times the stack height when

winds are light [5].

Plume rise calculations in Gaussian models are generally conducted separately,

and subsequently added to the source height. Briggs, in [17], derived a set of plume

rise equations for a variety of effluents in various atmospheric conditions, each of which

relies on a different empirical constant. Briggs’ 1968 formalization has proven quite

consistent in comparison with plume rise data, and has been utilized in a number

Gaussian models, including [6]. In addition, his proposed plume rise model was

applied by the USEPA, in [123].

3.1.3 Modelling Atmospheric Transport

By definition, a mathematical model is an abstraction. As such, some components,

or features, considered to be of less importance to the problem under examination

are excluded from the modelled system. Mathematical models have long been used

in a variety of fields, both to help humans understand complex processes and to pre-

dict future behaviour of elaborate systems. Their application spans from computer

networks to global climate change and well beyond. Indeed, mathematical models

have been integral in our ability to predict the atmospheric transport and diffusion of

dangerous and undesirable airborne pollutants. Within the domain of environmental

assessment, models are deployed to aid in the understanding of the fall-out from, and

resulting health effects of, industrial accidents [25, 46, 104]. Furthermore, govern-

ments regularly apply models in order to estimate the effects of proposed emitters as

a part of the regulatory process [71, 99].

Atmospheric transport models take on a variety of forms and entail a wide range

of complexities. The most general of these apply the Gaussian assumption to the

dispersion of airborne pollutants. While models based on the Gaussian principle are

not as accurate as other, typically, more complex models, the relative ease of im-

plementation and the satisfactory results, which have been observed to produce an

acceptable upper bound, make Gaussian models a popular choice among researchers

and government regulators alike [64]. Indeed, Batchelor surmised that the Gaussian
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function may provide a general description of the average plume diffusion because of

the essential random nature of the phenomenon, by analogy with the central limit the-

orem of statistics [103]. For these reasons, the Gaussian assumption has been applied

to the study of pollutants emitted from a range of scenarios including point, area and

line sources. Emissions from these sources may be considered either instantaneous

or continuous (i.e., short term or long-term releases of pollutants from a source of

emissions). Examples of these are on the one hand, the massive cloud resulting from

the detonation of a nuclear weapon, and on the other, the relatively continuous plume

emitted from nuclear power plants along with other industries.

Gaussian Models

The Gaussian model, and its derivatives, have been widely applied in order to develop

an understanding of the transport and diffusion of radionuclides, in particular, and

pollution in general, within the lower atmosphere (see [14, 9, 122]). Awasthi et al.

[6], developed a model based on the standard advection-diffusion equation, which was

described in [51]. The resulting Gaussian Plume model was assessed by comparing the

predicted SO2 levels at four receptors surrounding the Dadri thermal power plant in

Uttar Pradesh, India, with the physical measurements being recorded by ground-level

receptors at the sites. Furthermore, the USEPA’s Gaussian Plume-based, namely the

Industrial Source Complex Long Term (ISCLT) model, has been widely applied in

the field. For example, a commercial variant of the model was utilized to predict

the concentration of radionuclides emitted from a nuclear fuel fabrication plant in

northwest England [3].

Despite its widespread acceptance and its considerable application, it is broadly

recognized within the community that the Gaussian model suffers from some signifi-

cant limitations. Specifically restricting, is the requirement of homogeneous, station-

ary conditions within the modelled scenario. This limitation enables the diffusion

problem to be stated as a straightforward Fickian differential equation [64, 69]. Im-

plicit in this requirement are the following assumptions:

A1: Continuous emission from the source, or emission times equal to or greater than
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travel times to the downwind position of interest. This assumption is required

in order to facilitate the disregard of diffusion in the direction of mean trans-

port, which is a requirement in the derivation of the Gaussian Plume diffusion

equations. The Gaussian Plume model is not applicable in the case of short

release or travel times, and instead, the puff model must be applied.

A2: The material released is a stable gas or aerosol.

A3: The equation of continuity holds. Specifically, this assumes that none of the

emitted pollutants are removed from the plume and that there is complete

reflection at the earth’s surface. Reflection can also be added at the inversion

layer.

A4: Unless otherwise indicated, the pollutant body is assumed to follow the Gaus-

sian form in the vertical and horizontal directions.

A5: The Gaussian model assumes steady-state conditions during its application.

Typically, this suggests steady-state conditions over the period of one hour.

A6: Constant wind speeds and direction with height is assumed. This assumption,

however, is never realized in the lower atmosphere.

A7: The wind-shear effect on the horizontal diffusion of the pollutants is not consid-

ered. This is a good approximation over short distances, but it may introduce

significant error at distances greater than 10 Km [130].

A8: The dispersion parameters σy and σz are assumed to be independent of the

elevation above the earth’s surface and, instead, assumed to be functions of

mean wind speed alone, which is not reflective of actual atmospheric flows.

A9: The averaging time of all the pertinent quantities, and in particular, of the wind

speed, the diffusion parameters and the predicted concentrations, are the same.

Bearing the above concerns in mind, an approach that treats the plume emitted

from a continuous source as a series of puffs has been developed. This formulation al-

lows the wind speed and its direction to be heterogeneous within the horizontal space
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of interest. In practise, this amounts to dividing the plume into a series of puffs, which

are emitted according to a predefined, generally small, time interval. Once emitted

into the lower atmosphere, the transportation and diffusion of that particular puff is

able to reflect the current atmospheric conditions. In this manner, models based on

a series of puffs, are able to simulate complex wind and diffusion fields. For example,

the authors of [69] applied the “series of puffs” approach in order simulate the disper-

sion of non-reactive pollutants from a combination of line sources and a single area

source under non-homogeneous wind conditions in the topographically complex city

of Lisbon, Portugal. Hargreaves and Baker applied this modelling approach to the

dispersion of pollution emitted from motor vehicles in an urban street canyon [41]. In

this approach, vehicles proceed in time steps based on the respective speeds. At the

beginning of each step the vehicle emits a single puff, which is subsequently dispersed

based on the complex wind and turbulence fields present within the street canyon at

the time.

The momentum of air parcels travelling at the interface between the atmosphere

and the earth’s surface is significantly impeded by frictional forces inherent in the

relationship, although, these forces decrease with altitude. Thus, air parcels at greater

heights generally have considerably more forward momentum. This creates a wind

speed profile which runs counter to assumption A6 of the Gaussian model, which

requires a constant wind speed with height. The logical result of such a wind speed

profile on a body of advecting pollution in the lower atmosphere, is that particles

presently at the top of the body will have a greater rate of advection than those

nearest to the surface. As a result, the cross-section of a cloud of particulate matter

should appear skewed, to some degree, in the direction of the mean wind [124]. Models

that simulate this process are commonly referred to as Skewed Puff models. An

application of the skewed puff model was verified against both the Prairie Grass data

set and the Copenhagen data set [119]. In addition, a skewed puff models was applied,

by Oliveira, to investigate the dispersion of radionuclides from a nuclear facility in

Brazil[75].

Recently, Ainslie and Jackson [2] developed a method to identify the average

influence of regional waste wood, “slash”, burning in a 40km2 area centred at the city
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of Prince George, British Columbia, Canada, for a range of meteorological conditions,

burn locations and dispersion characteristics.

The Prince George region is both complex in terms of geography and meteorology,

as it is situated in central British Columbia at the confluence of the Fraser and

Nechako rivers valleys. These characteristics, combined with considerable emissions

from local industry, affect levels of PM2.5 that often exceed the national 24 hour

standard.

The dispersion model, CALPUFF, in conjunction with the meteorological model,

CALMET, which was supplemented by three years of weather data, gathered at six

ground-level sensors and one upper air sensor, was utilized to calculate the regional

effect of burning slash piles in the regions outlying Prince George.

CALPUFF is described in [99], as a multi-layer, multi-species non-steady-state

puff dispersion model. Much like the approach discussed above, CALPUFF divides

the pollutant stream emitted from a continuous source into a series of puffs, each of

which contains the total mass of the pollutant emitted over the short time period that

composed the puff. In this way, the model is able to simulate the effect of time- and

space-independent meteorological conditions on dispersing pollutants. More specifi-

cally, the evolution of each puff takes place in a stepwise fashion. For the duration

of each time step, the simulated puffs evolve in a manner that is particular to the

conditions in the current time- and space-interval.

DERMA, the Dansish multi-puff, long-range atmospheric transport model, was

examined by Sorensen in [105]. The DERMA model linearly interpolates meteorolog-

ical data generated by numerical weather prediction models as a means of determining

the paths of a series of puffs released from a point source. Upon release, the puffs

are assumed to be well-mixed below the ABL in the vertical direction. Horizontally,

the puffs diffuse according to the Gaussian equation illustrated in [128]. During the

dispersion simulation, pollutant concentrations are calculated at individual locations

based on the combined effect of the modelled puffs.

In experimentation with the ETEX dataset, DERMA was found to be quite ca-

pable of predicting the arrival time of tracer clouds, along with the duration of the
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tracer cloud at individual locations. In addition, when high resolution data was uti-

lized, the model was able to capture the effect of a mesoscale anti-cyclonic eddy on

the tracer gas.

Gradient-Transfer Models

Pollution models developed on the basis of K-theory, adhere to the hypothesis of

gradient-transfer. This hypothesis assumes a net shift of material down the gradient

scale, at a rate proportional to the magnitude of the gradient itself. The proportion-

ality factor is analogous to the coefficients of viscosity or conductivity in the laws of

molecular transfer of momentum or heat in laminar flows. A particular strength of

the K-theory approach is that it provides the modeller with the ability to produce

a comprehensive description of the movement of pollutants through the atmosphere.

By design, it can account for variations in the wind and diffusivity fields in the three

component directions. Put differently, K-theory offers an anisotropic description of

diffusion in the lower atmosphere. In addition, this approach allows the modeller to

account for spacial variations in the diffusivity. However, Lyons and Scott [64] note,

that its inability to account for an increase in Kz over time as the plume expands,

is a significant limitation of the model. The implication of this restriction is that

in the absence of stable conditions, the simulated dispersion near the source may be

overestimated.

Some further objections are raised by Kamst and Lyons [50] and Corrsin [22].

Corrsin observes that the length- and time-scales of the transporting action should

be sufficiently uniform and small compared with the length- and time-scales of the

variation in the mean field gradients of the property undergoing transport. Further-

more, he contends that such a scenario is highly unlikely in the real atmosphere.

Kamst and Lyons noted that a plume cross-section affected by eddies larger than

itself cannot be described by the gradient-transfer relation. However, during stable

conditions, characterized by small eddies, gradient-transfer is justifiably applicable.

Despite this, Pasquill [78] notes that the approach which is known to give useful

results for momentum transfer in the atmospheric boundary layer.

Alternatively, a notable strength of the K-model is its ability to describe diffusion,
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in the three coordinate directions, Kx,y,z, not only as a function of stability, but of

the surface roughness, space and time as well. As a result, researchers have taken

considerable interest in defining the diffusivity parameters for both particular and

general atmospheric conditions.

Shir and Shieh [102], for example, noted that horizontal diffusion appeared to have

no significant effect on model prediction. In addition, they highlight the fact that the

process of horizontal dispersion is not well understood, particularly during stable

conditions. As a result, their solution to the advection-diffusion equation assumed

horizontal diffusion, Ky, to be equal to the diffusion in the direction of the mean wind,

specifically, Kx = 500 m2 s−1. Furthermore, Kx,y were presumed to be independent

of space and time. Diffusion in the vertical direction was calculated based on the

turbulent transport model described in [101]. This model was assigned to predict

SO2 levels in the metropolitan area of St. Louis, Missouri, USA, over a twenty-five

day period. The results were subsequently compared with measurements from the

same version and found to be an acceptable approximation. The strongest predictions

occurred during scenarios characterized by either strong or light winds. In general,

the authors found the model to be an improvement on the Gaussian approaches for

which the experiment was originally established.

The air quality model developed by MacCracken, [65] was designed to simulate

numerical dispersion in the highly complex topography and meteorology of the San

Fransisco Bay Area. Due to the limited understanding of the vertical structure present

during inversion conditions, they apply a version of the advection-diffusion equation

that has been integrated vertically through the well-mixed region. In particular, the

area between the surface and the inversion base was assumed to be well-mixed in

their simulation of horizontal dispersion. By assuming the region below the inversion

base to be well-mixed, the authors incorporate a simplification which particularizes

the model to the most interesting atmospheric condition. Specifically, this involves

inversion conditions which trap pollution and are thus characterized by a significant

degradation of air quality. Subsequent testing of the model, demonstrated promising

agreement with measurements taken in the San Fanatic Bay Area [29].
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A slightly less restrictive solution to the advection-diffusion equations is the prob-

abilistic assessment model proposed by Lauritez and Mikkelsen [60], in which they

aimed to provide a first estimation of European-scale risk. The derived model was

applied to estimate the fallout of radionuclides from the Chernobyl accident, and al-

though not as accurate as implementations that incorporate complex real-time mod-

els, and in particular, those that utilize numerical weather prediction schemes, it does

provide an “ensemble mean” without the considerable overhead inherent in the more

complex approaches.

Langner in [57], describes an operational emergency response model, termed MATCH

(Multiscale Atmospheric Transport and Chemistry model), used to predict the impact

of industrial accidents. MATCH is fundamentally a K-model that has been extended

to utilize a Lagrangian particle approach in the initial ten hours of a simulated dis-

persion process. Subsequent to the preliminary dispersion process, the particles are

introduced into a Eulerian grid as instantaneous point sources. The system requires

that atmospheric weather data be provided by an external source, typically, a numeric

weather prediction model. MATCH was evaluated on the European scale against both

the ETEX dataset and Chernobyl data. The latter included concentration and depo-

sition measurements taken after the accident, while the ETEX data is the result of a

controlled experiment which involved the release, and the succeeding measurement at

a variety of sites across Europe, of the released inert, non-depositing tracer. The stan-

dard version of the model was found to overestimate the ETEX data, however, when

compared with the previous attempts to model deposition and the air concentration

of radionuclides released from the Chernobyl accidents, the authors determined that

their system produced sharper and more realistic gradients.

The CANadian Emergency Response Model (CANERM), which is similar in de-

sign to the above model, was found to produce an analogous agreement with the

ETEX data [30]. In particular, CANERM demonstrated the ability to recreate the

major features of the dispersing cloud, although, also remnant of the MATCH, it had

a tendency to overestimate the concentration of pollutants on the ground.
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Probability Risk Assessment (PRA), is an area within pollutant transport mod-

elling that aims to address the impact of long- and short-term releases into the en-

vironment for regulatory and defensive purposes. A quantitative estimate of risk for

a particular scenario can be extracted from a generated Probability Density function

(PDF). Consider, for example, an accidental release of radionuclides from a point

source. In this case, the PDF would produce an estimate of risk by indicating the

total concentration or deposition over an ensemble of weather conditions.

Lauritzen et al. in [59], introduce a simplified approach for the estimation of

PDFs for long-range dispersion scenarios, which is less demanding on computer re-

sources and provides more generic results than numerical approaches. The technique

utilizes a two-dimensional solution to the advection-diffusion equation in order to

produce ensemble-average (climatological mean) concentration fields. In comparison

with DERMA [60, 58], the Danish numerical dispersion model, the model of Lau-

ritzen et al. is found to be flexible in terms of parametrization, and to also provide

sufficient approximations of the mean results.

Subterranean Venting

The hybrid Eulerian-Lagrangian, Atmospheric Diffusion Particle-In-Cell (ADPIC)

moded [55] was utilized by Rodriguez and Peterson, in [92], to simulate the disper-

sion of the radionuclide, 131Xe, vented from a subterranean nuclear explosion. More

specifically, the authors aimed to unambiguously determine the source strength of

the underground detonation, engineered by the former Soviet Union at Semipalatinsk

in February of 1987, through the comparison of modelled and measured levels of

radioxenon isotopes in Freiburg, West Germany.

As a means of assessing the source strength, the simulation was repeated numerous

times, commencing at 0500 on the day of the detonation. Each iteration of the

simulation utilized the archived weather data for the period and varied the rate of

release at intervals and vertical distributions of the vented radioxenon. Each release

in the simulation lasted for twelve hours, the rates of release (venting rates) were

normalized to be uniform, the distribution of the radioxenon was assumed to be

Gaussian with cut-offs at one standard deviation (±500), and the cloud heights were
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set to be either 500 metres or 1,500 metres. These variations produced six distinct

simulation scenarios. Subsequent to the six dispersion experiments, the predicted

concentrations were compared with the measured, twenty-four hour samples. An

analysis of the results suggested the detonation of a 40 kiloton yield bomb. This

result assumed the following: (a) that the pollutant was dynamically vented to an

elevation of 1,000 metres over a period of 36 hours; (b) that there was no delay in the

migration of the precursor; (c) that the in-growth by the decay of the 131Xe precursor

was total; and, (e) that no 131Xe was incorporated into the melt.

Schwarz et al., in [98], simulated the dispersion of CO2 leaked from an underground

reservoir, by applying a prevalent analytical solution to the standard advection-

diffusion equations. The following encompasses but a few examples of this approach

in previous literature, [5, 80, 110].

In a comparison with TOUGH2 [82, 83], an integral finite difference code, which

simulates both the initial dispersion of CO2 within the earth’s surface, its venting and

its subsequent dispersion throughout the atmosphere, the authors found the solution

to the advection-diffusion equation to be simple and useful as a predictor of pollutant

plumes for specific application domains. In particular, they noted that the approach

applies to dispersion over a flat terrain where the wind and diffusivity profiles are

known, and where the problem involves steady-state conditions.

Lagrangian Dispersion Models

As introduced in Chapter 2, the Lagrangian frame of reference represents an alter-

native to the fixed position Eulerian view, which, when considering the turbulent

dispersion of pollutants, conceptually forms a more natural approach. Lagrangian

stochastic models are particularly interesting techniques which can be applied to

model dispersion with a Lagrangian frame of reference. In particular, models of this

form utilize a statistical definition of the random velocity field in order to describe

the path of individual particles in the modelled system [125]. In terms of atmospheric

dispersion, each particle in the modelled system is analogous to an advecting and

diffusing parcel of the pollutant in question.

In broad terms, Zannetti in [128] describes particle models as a set of algorithms
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applied to the generation of realistic trajectories that simulate atmospheric flow.

At each time step, the particles are moved at a pseudo-velocity, which accounts for

transport, due to the mean fluid velocity; turbulent fluctuations within the wind com-

ponents; and, molecular diffusion if it is considered a significant factor. An additional

benefit of particle models is that each particle within the larger simulation may be

tagged with domain specific information. When modelling dispersion from a contin-

uous point source, the particles are analogous to puffs of the particular pollutant of

interest. In this case, each particle is assigned an initial pollutant mass, which may

be adjusted for chemical decay and other transformations over time. Thus, particle

models enable the development of three-dimensional concentration fields. Further-

more, each particle can easily be attributed to a specific emitter within the modelled

scenario, thus, facilitating superior analyses and understanding of the simulation re-

sults.

Lagrangian models have been applied to a wide variety of domains, indeed, those

as minuscule as molecular dynamics and as astronomical in scale galaxy dynamics

[43].

Taylor, in [113], initiated the application of Lagrangian frame methods to the de-

scription of pollutant dispersion within the turbulent atmosphere. However, this ap-

plication was restricted to scenarios characterized by homogeneous turbulence. More

recent developments in this field have facilitated considerable advances in the descrip-

tive capabilities of Lagrangian stochastic models. In particular, Thomson, in [117],

articulated the extremely helpful criteria for modelling neutral tracers; this effort

resolved many of the outstanding difficulties with Lagrangian stochastic models.

Wilson and Sawford, in [125] describe the significant advantage inherent in the

utilization of the Lagrangian frame. In particular, they postulated that the La-

grangian framework benefits from the fact that, unlike its Eulerian counterpart, the

time derivative following particle motion implicitly includes the nonlinear advection

term, without requiring an approximation. As a result, closure approximations for

velocity do not require the nonlinear terms. In the case of the scalar concentration,

and specifically where the Reynolds number is approaching infinity, molecular dif-

fusion can be ignored. The resulting conservation equation for scalar concentration
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simplifies to the trivial specification that the fluid particle retains its original con-

centration as it travels through the fluid; this is mathematically formalized as the

following differential equation,

dc/dt = 0. (3.12)

This result dictates that particles conserve their initial mass, and thus, changes in the

mass distribution within the concentration field must result from the re-distribution of

the particles within the fluid. Therefore, the concentration statistics that summarize

the pollutant body in question are directly related to the displacement statistics

that characterize the general path of the particles. The ensemble mean can thus be

articulated as [115],

< c(x, t) > =

∫ t

−∞

∫

V

P (x, t;x′, t′)S(x′, t′)dtx′dt′, (3.13)

where V represents the volume of the entire fluid, P (x, t;x′, t′) is the probability

density function describing the particle transition from point x′, at time t′ to point x

and S(x′, t′) indicates the pollutant’s distribution at the source.

Numerical approaches are often applied to generate the trajectories of marked

particles in Lagrangian stochastic simulation models in order to estimate concentra-

tion statistics such as that of Equation (3.13). The overriding challenge is to generate

Lagrangian particle statistics from the available Eulerian measurements that are both

physically satisfying and self-consistent. With that in mind, individual particle tra-

jectories are calculated by assuming that the particle velocity within the system can

be simulated as a Markov process [37, 86, 116, 125], which implicitly evolves according

to the Langevin equation described below.

The Langevin equation initially resulted from the study of Brownian motion,

thus, it formalizes the motion of a particle subject to a retarding force and random

acceleration [125]. In its general form, the Langevin equation is,

du/dt = − a1u + bξ(t), (3.14)

where u is the particle velocity, t represents time, and a1 forms a damping coefficient

associated with the viscous drag on the particle. The final term, bξ(t), in which b
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is a coefficient and ξ(t) is a random function, is a rapidly fluctuating acceleration

component. An in-depth examination of the equation and its evolution is provided

in [91].

Most relevant to a description of particle paths of this nature are the techniques

founded on the idea of first-order Random Flights, or Markov-chains. As indicated

earlier, these models assume that the particles within the system evolve as a Markov

process. Moreover, the theory of first-order Random Flights postulates that the

position vector, X, and the velocity vector, U, are jointly Markovian. Although, the

hypothesis of a joint Markovian process for (X,U) cannot be rigorously justified, it

is arguably a reasonable assumption for dispersion models characterizing a turbulent

atmosphere with a high Reynolds number [125].

Based on this Markovian assumption, the most general equation applied to artic-

ulate particle velocity is the Stochastic Differential Equation (SDE):

dUi = ai(x,u, t) + bij(x,u, t)dωj, (3.15)

where dωj is a component of Gaussian white noise, which is uncorrelated with the

other components and also uncorrelated with time. The particle’s position can sub-

sequently be determined through the integration of the velocity equation. Equation

(3.15) comprises the foundation of the Lagrangian particle models, which we will

subsequently discuss. The functions a and b, however, remain an outstanding ques-

tion, for which a variety of approaches have been applied. Notably, Thomson in [117]

formulated the two functions through the implementation of two fundamental con-

sistency conditions. Thomson’s approach continues to be broadly applied and can be

assumed throughout. Where counter examples exist, however, they will be discussed

individually.

For a simplistic example of a Lagrangian particle model, consider a geographic

region in which lies a single industrial emitter whose effect on regional air quality is to

be determined. One particular solution to this modelling task would be to coordinate

the geographic area by the superimposition of a three-dimensional concentration grid.

Subsequently, particles are generated above the point source and through a Markov-

chain or random walk process, and are then dispersed downwind. At any point
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during the execution of the simulation, the pollutant concentration can be calculated

by simply computing the summation of the masses of the individual particles in each

cell. However, a more rigorous approach to this calculation, one involving weighted

contributions from each particle based on its duration in the cell at each time step,

is suggested by Lamb [54].

Gariazzo et al., in [32], apply SPRAY, a three-dimensional Lagrangian particle

dispersion model, to assess the impact of harbour, industrial and urban activities in

the topographically complex region of Taranto, Italy. In the interest of capturing

seasonal variations in the local meteorology, the experiment was conducted both in

the winter and the summer.

The SPRAY dispersion model [33, 118], more specifically, is a three-dimensional

solution to the Langevin stochastic equation with Gaussian random forcing [117]

This solution is applicable in complex scenarios involving non-homogeneous and non-

stationary conditions. The time- and space-specific meteorological inputs, which are

required by SPRAY, were calculated by the meteorological model, MINERVE [114],

and SURFPRO, a turbulence pre-processor, in conjunction with data from a network

of weather sensors.

The model was used to calculate the three-dimensional hourly concentration of

NOx, CO, SO2 and primary PM10 within a 35 km× 35 km× 1.5 km cube superim-

posed on the greater Taranto region.

SPRAY was evaluated via comparison with hourly observations, the result of

which indicates a tendency on the part of the model to underestimate pollutant con-

centrations. The notable exception was SO2, which was overestimated by the model.

While the authors suggested some factors that were likely to have degraded the accu-

racy of the model, they indicate that the SPRAY model was successful in capturing

general trends in the concentration distribution. For example, seasonal variations in

exposure resulting from cyclical alterations in local meteorological conditions, were

highlighted.

In addition, the model was applied to test the effects of individual sources and

found that the harbour, whose regional effect had previously been unidentified, was

not the main contributor of airborne pollutants in the city.
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In the aftermath of the nuclear accident at the Chernobyl power plant in 1986,

researchers and government regulators amassed meteorological data along with mea-

surements of the airborne and ground-level concentrations of radionuclides from across

Europe and the former USSR. This data was critical in the development of an expe-

dient and realistic risk analysis as a mean of assessing the potential impact on the

citizenry. Subsequent to the period of assessment and defensive reaction, this data

has been utilized in the development and validation of new atmospheric dispersion

models. In particular, researchers have employed the extensive meteorological data

from the period to simulate the dispersion of 137Cs and 131I from the Chernobyl power

plant across Europe. A number of exemplars are briefly discussed below.

Izraehl et al. in [46], for example, utilized a Lagrangian particle model to investi-

gate the intermediate and regional scale fallout from the Chernobyl nuclear accident.

In particular, the trajectory model accounted for the 137Cs and 131I emitted from a

continuous point source which was dispersed in different directions by variable winds.

Furthermore, the model simulated diffusion both vertically and horizontally.

A statistical comparison was undertaken in order to assess the predicative capa-

bility of the model in terms of cumulative fallout and maximum concentration. For

the majority of receptor sites, the authors report quite acceptable agreement between

the simulated and observed values.

Bonelli et al. in [13], applied STRALE, a Lagrangian puff trajectory model, to

simulate the three-dimensional transport and diffusion of 137Cs released during the

accident, on the European scale. During simulation, the STRALE model creates a

series of puffs above the source at each time step. Each puff is defined by a mass

percentage, which is a portion of the total mass released over the experiment, and

vertical depth over which the pollutant is uniformly distributed. Subsequently, the

puffs are dispersed based on routinely available meteorological data. This data is

utilized in the derivation of time- and space-independent, three-dimensional wind

fields employed to update the positions of the puffs at each time step.

By varying the number of puffs emitted at each time step, together with the lower

and upper bound of the emission layer, practitioners are able to recreate any emission

profile as a function of the puff mass and the effective height reached above the source.
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The concentration of 137Cs is computed at each time step within each set of cubes

superimposed on the domain of interest. In particular, the cubes are defined by regular

latitude and longitude grids, and a height determined by the top of the mixing layer

over a given time interval. Within a grid, the concentration is determined through

the summation of the masses of the puffs within.

Through statistical comparisons, the authors cite a correlation coefficient of 0.63

between the predicted and measured results, which they suggest, implies good agree-

ment for a model of this type.

APOLLO, a long-range Lagrangian particle model, was applied by Desiato in [25]

to the predict the ground and air concentrations of 137Cs. The results from this

validation exercise indicate similar success as the STRALE model. In particular,

the APOLLO model simulates dispersion through the release of a large number of

passive particles tracked by a three-dimensional wind field, on which turbulent motion

is superimposed.

At each time step, the position of each particle is updated in order to capture

dispersion under the current meteorological conditions. The single advection com-

ponent is determined by the space and time interpolation of the three-dimensional

wind field. Alternatively, diffusion is simulated both in the vertical and horizontal

directions. Vertical diffusion is considered both above and below the mixing height,

however, only particles below the mixing height contribute to the ground-level air con-

centration. Conversely, cross-wind diffusion is simulated by assigning each particle a

Gaussian kernel density distribution σ, which is dependent on time.

The NAME model, for long-range transport and dispersion, developed by the

U.K. Meteorological Office, was found to produce marginally satisfactory results by

Maryon and Best in [67]. The model was applied to reconstruct the dispersion process

as it occurred in the first 108 hours after the Chernobyl accident.

NAME is a Lagrangian model, in which plume spread is simulated by the release of

a large number of passive puffs into the modelled atmosphere above the point source.

After release, the puffs are advected by the mean winds extracted from the weather

data generated by the Meteorological Office’s operational NWP model. Diffusion

results both from a “random walk” process, and the interaction between the local
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wind shear and the degree to which vertical mixing exists. While the former perturbs

the particle position at each time step, the latter affects a horizontal fanning of the

plume. Vertically, it is assumed that the plume is well-mixed within the mixing layer.

More recently, Suh et al. in [109] performed sensitivity analysis on the Long-range

Accident Dose Assessment System (LADAS), developed for the purpose of radiolog-

ical emergency preparedness in Korea. LADAS is a three-dimensional Lagrangian

particle model; it was designed to estimate air concentrations, wet deposition and

dry deposition over a field of several thousand kilometres from a point source. The

model was evaluated for a variety of different parameter inputs, based on a statistical

comparison of the predicted dispersion of 137Cs and measurements taken following

the Chernobyl accident. In general, the results showed good agreement with levels

witnessed around Europe in the days following the incident. In addition, the authors

found the model to produce superior concentration distributions when the Richardson

number was utilized in the calculation of the mixing height, rather then the simplified

scenario where a constant mixing height over the computation domain was assumed.

Beyond nuclear disasters, long-range dispersion models have been applied to sim-

ulate the transport and diffusion of a variety of airborne pollutants. The FLEXPART

package is one such example. The model, in general, was designed to simulate the

transport and dispersion of non-reactive tracers over long distances. In particular,

it is a Lagranian particle model that treats advection and diffusion calculating the

trajectory of a multitude of particles. Stochastic fluctuation of the three wind com-

ponents, obtained by solving the Langevin equation [108], are superimposed on the

grid-scale winds interpolated from ECMWF data to simulate transport by turbulence.

Tracer concentrations on the three-dimensional grid are calculated by applying a ker-

nel method, which is equivalent to, but more accurate than a simple summation of

the masses of all the particles within the grid cell and the subsequent division by the

total volume of the cell.

Previously Stohl, et al. in [107], validated FLEXPART with data resulting from

three large-scale tracer experiments in North America and Europe to very satisfactory

ends.

More recently, Forster et al. in [31], applied FLEXPART to recreate burning
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scenarios in order to assess the breadth of CO emitted from forest fires in Canada.

The results from their study unambiguously demonstrated that emissions from fires

in the boreal forests of Canada can be dispersed across the Atlantic ocean, affecting

a large-scale layer of haze over Europe. In addition, their simulations indicate that

forest fire emissions from Canada are capable of influencing the concentrations of CO

and other trace gases at the surface station in Mace Head, Ireland over a period of

weeks.

3.2 Classification

This section serves to motivate PR as a particularly interesting discipline within

computer science. In addition, it presents an overview of the field based, primarily,

on the informative work of Duda, et al., in [28]. In that regard, Duda et al. describes

pattern recognition as follows:

“The act of taking in raw data and taking an action based on the

‘category’ of the pattern.”

It is, indeed, natural that we should desire to ‘teach’ machines to recognize sets

of patterns that are easily recognizable to humans, such as handwritten characters,

speech and faces, as computers present the possibility of increased efficiency and do

not become tired of mundane tasks. Furthermore, the benefits of training machines

to classify complex patterns, typically left to doctors and scientists with considerable

specialization in the domain, are equally apparent. Thus, researchers have continued

to push the state-of-the-art in Pattern Recognition (PR) systems since the advent of

the modern computer.

Components of PR Systems

From the practitioner’s perspective, a PR system can be viewed as a simple black

box, into which the subject of the categorization process is inserted, and from which

a classification decision is produced.

Internally, PR systems can broadly be decomposed into four components:
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a) pre-processing component, which aims to reduce noise and to focus the input

without losing important information;

b) feature extraction component, which derives or calculates the values that com-

pose the feature vector of the current input;

c) classification component, which suggests the encompassing category of the in-

put, based on a learned discriminating function; and,

d) post-processor, which combines the classification decision suggested by the clas-

sifier with an assessment of the costs and/or risks associated with the particular

decision, in the derivation of the final determination.

Supervised Learning

Prior to application, the PR system must be trained to discriminate between the

objects of interest in its particular application domain. For multi-class problems,

such as discrimination between handwritten characters, the PR system is said to

learn a mapping that discriminates between the individual inputs by directing them

to their corresponding categories. Alternatively, in the special scenario, which is of

primary interest in this work, termed one-class learning, instances of a single target

category are available for the training of the PR system. As a result, the system

takes a recognition-based approach, and attempts to learn a function that maps novel

instances of the target category to the target class, and all others to the outlier class.

Broadly speaking, standard PR systems for supervised learning are trained on

datasets drawn from their prospective application domains, in which each feature

vector has been accented with its corresponding class label. The objective of the

training process is the derivation of a set of models that articulate the individual

characteristics of the classes. Thus, while the performance on the training set is of

little interest, rather, the focus shifts to the selection of a model that will perform well

on novel instances in the future. The derivation of these models is algorithm-specific,

however, there exists commonalities between all learners. Generally speaking, regard-

less of the learning strategy, the accuracy of the derived model on novel instances will
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increase with the size of the training set. In addition, all learners strive to optimize

the balance between specialization and generalization.

The decision boundary described by a highly specialized model becomes extremely

complex as the classifier learns the minute details of the training set. This scenario is

typically referred to as over-fitting. A highly specialized model of a two-dimensional

feature space is depicted in Figure 3.1.
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Figure 3.1: This figure demonstrates the results of a training process that focuses on
reducing error on the training data.

Models of this nature are not expected to perform well during future application,

because the minute details captured are unlikely to be characteristic of the category

in general. At the other extreme, exists the fully generalized model seen in Figure

3.2, which, in this particular circumstance, is the result of a linear classifier. Over

generalization, which is alternatively referred to as under-fitting, reduces the decision

boundary to a straight line in a two-dimensional space or a hyperplane in higher

dimensional spaces. Excessive generalization, like specialization, can also be expected

to produce a faulty model, as it fails to depict the important characteristics of the

data.

Superior classifiers are expected to achieve an optimal balance between special-

ization and generalization, i.e., to produce a model that ignores the irregularities of a

particular training set, while remaining specific enough to distinguish the important

characteristics of the data in general. One such potentially optimal decision boundary
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Figure 3.2: This figure demonstrates the result of a training process that focuses on
generalization.

for the above demonstration scenario is displayed in Figure 3.3.

Figure 3.3: This figure demonstrates the result of a training process that attempts to
find an optimal balance between specialization and generalization.

Under ideal circumstances, the training procedure for a binary learner is able to

rely on an ample supply of data that has been uniformly drawn from both classes. As

a result, increasingly accurate models of the classes in question can be constructed,

and therefore, an effective classifier of novel instances is produced. In order to assess,

or validate, the derived model’s predictive capabilities, a typical procedure is to set a

certain number of the training instances aside, or held-out, for a validation phase. The
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standard hold-out approach was demonstrated by Lubinsky in [63], in an imbalanced

scenario. The use of novel instances is essential to the validation phase in order to

assess the performance in a manner that is independent of the training process. When

the hold-out technique is applied to imbalanced classification problems, the results

depend on extremely small training and/or validation sets, thus, limiting the confi-

dence which can be placed on the future performance of the PR system. In general,

but particularly where data is difficult to acquire, the more sophisticated technique

of cross-validation [12] is preferred to the simple hold out method, for assessment

during the validation phase. However, cross-validation alone, cannot account for the

absence of a representative supply of training data.

As previously stated, there exists a particularly difficult family of classification

tasks, namely one-class problems, in which an accurate description of one or more of

the two classes is exceptionally difficult to acquire.

One-class learning problems characteristically involve scenarios in which the avail-

able class is easily acquired and exists in abundance, while the second class is excep-

tionally difficult to acquire, or naturally rare [112]. During extreme class imbalance,

the majority class can be expected to compose as much as ninety-five percent of the

data. In such scenarios, it is typical that the class we are most interested in identifying

is the minority class, as is the case in automated mammogram scans and many other

medical disciplines [111]. Japkowicz, in [49], and Kubatet al., in [53], demonstrate

scenarios in which acquiring instances is both difficult and expensive. In particular,

the challenge of Kubat et al. requires the hand-labelling of satellite imagery, while

the former involves fault detection in helicopter gearboxes, which are expensive to

run. Moreover, the derivation of the outlier class would require the destruction of the

gearboxes in an infinite number of ways. Alternatively, under certain conditions, the

second class might be so large as to render the accumulation of a sufficient supply a

seemingly insurmountable challenge. This scenario is well illustrated by the continu-

ous typist recognition problem described by Hempstalk et al., in [42]. The objective

of the depicted classification challenge is to distinguish the sole legitimate terminal

user from all other users. A proper training set, therefore, would be drawn uniformly

from the set of all people, which is clearly infeasible.
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A variety of approaches have been applied to one-class classification. The more

traditional of these involve extensions to existing binary classifiers or density estima-

tions. The density estimation approach fits a statistical distribution, such as Gaus-

sian, to the target data, and classifies novel instances based on the learned probability

of their occurrences. Such a technique has been applied by the authors of [11, 88, 111].

Techniques that extend existing classifiers typically modify the inner structure of the

classifier to fit boundaries around the target class, and classify those novel instances

falling outside the boundary as outliers, as is demonstrated by [49, 96]. These two

approaches, in addition to some alternative approaches to one-class learning, such as

[42], which is a combination of these two techniques, are discussed in the sections to

follow.

3.2.1 Density Estimation

Density estimation is, perhaps, the most elementary of all approaches to one-class

classification. The fundamental idea behind this one-class classification technique is

the estimation of a Probability Density Function (PDF), P̂ (x), based on a training

set, Dn = {x1,x2, ...,xn}, drawn independently and identically from the underlying

distribution, P (x), of the target class. Subsequent to the estimation of the PDF,

novel instances are classified according to a predefined target threshold or statistical

tests.

Under ideal circumstances, and in particular, where sufficient training data is

accompanied by a substantial understanding of the background distribution, or a

flexible density estimation technique, density estimation-based classifiers are known

to produce strong results [112]. However, a significant quantity of training data is

required to overcome the curse of dimensionality, as is described by Duda et al, in

[28].

Bishop, in [12], discusses three approaches to PDF estimation; the first of these

techniques requires the modeller to provide an initial specification of the functional

form of the underlying distribution, such as Gaussian or Poisson. An iterative process

based on the predefined distribution, is applied to fit the density function to the
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training data through the optimization of the corresponding PDF parameters. The

application of the parametric method is significantly limited by the fact that in many

cases the specified PDF may be incapable of describing the training data.

Non-parametric estimation techniques represent a more flexible approach, as they

do not assume a particular functional form, and instead allow the training data to

completely specify the PDF. As a result, the PDF is not limited to a small set of

standard distributions, and does not have to be provided at initialization. However,

the fact that the number of parameters to be optimized expands quickly as the dataset

increases in size, can prove to be prohibitive.

Yeung and Chow, in [127], applied the non-parametric method for probability

density estimation, introduced by Parzen, in [76], to the development of an intrusion

detection system. More specifically, their approach utilized the Parzen-window esti-

mation of P̂ (x), with a Gaussian kernel, on a dataset composed of normal network

activities. The generalized Parzen-window estimation of P̂ (x), based on an n element

dataset D, takes the following form:

P̂ (x) =
1

n

i
∑

i=1

δn(x− xi), (3.16)

where δn(·) is the kernel function (in this case, Gaussian in form), the exact form of

which depends upon the number of instances in the training set. Subsequent to the

training process, novel instances are classified based on their log-likelihood.

In addition, the Parzen-window approach was previously applied by Tarassenko

et al., in [111], to the classification of anomalous mammograms.

A final approach, sometimes referred to as semi-parametric estimation, attempts

to strike a balance between the previous two methods. This approach enables a

general class of functional forms, in which the number of adaptive parameters is

increased systematically to build a progressively more flexible model.

The mixture of Gaussians approach is a particular category of semi-parametric

estimation, which has received considerable application, as it is analytically attractive.

This approach to semi-parametric estimation was applied in [89, 90], to the detection

of novel instances in a series of medical datasets and as a procedure of noise removal
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on an image processing task.

In its essence, the mixture of Gaussians method is composed of a linear combina-

tion of j Gaussian distributions, each of which is uniquely parametrized according to

its particular mean, µj, and covariance, Σj, such that

p̂MoG(x) =
1

NMoG

∑

j

αj pN(x;µj,Σj), (3.17)

where the αjs are the mixing coefficients.

3.2.2 One-Class Extensions to Binary Classifiers

Autoassociator

An autoassociator in an example of a feedforward Artificial Neural Network (ANN).

However, unlike its more prevalent binary counterpart, the Multi-Layer Perceptron

(MLP), which aims to produce a classification decision at the output layer, the au-

toassociator is trained to reconstruct the input vector at the output layer [93]. The

general architectures for both forms of ANNs are illustrated in Figure 5.1.
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Figure 3.4: This figure demonstrates two possible feedforward artificial neural network
architectures. Subfigure (a) illustrates the general form of the Multi-Layer Perceptron
(MPL). In Subfigure (b), the essential structure of an autoassociator is displayed.

The theoretical basis for the autoassociator relies on the fact that it is trained
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to compress and decompress instances of the concept class exclusively. Thus, dur-

ing application, novel instances of the concept class should compress and decompress

successfully. More specifically, the reconstruction error resulting from a novel mem-

ber of the concept class, during application, is expected to be small. Alternatively,

non-members of the target class are characterized by large reconstruction errors.

Therefore. the classification procedure entails a comparison of the reconstruction er-

ror and a user-defined threshold. All instances reproduced with an error less than the

threshold are considered to be members of the concept class, while the remainder are

labelled as outliers, or non-members.

The one-class classifiers of the above form have been applied in a number of

domains with considerable success. Hanson and Kegl, in [40], introduced an au-

toassociator system, namely PARSNIP, developed to reconstruct syntactically cor-

rect sentences using the backpropigation procedure described by Rumelhart et al., in

[93]. The PARSNIP system, trained on the Brown University Corpus of Present-Day

American English, in which the words of each sentence are tagged with their active

syntactic category, learned to accurately identify sentences that were syntactically

correct and reject those that were incorrect.

Subsequently, Petsche et al., in [81], developed a system similar to a fuel gauge

based on the principle of the autoassociator. The system described in that work,

learned to predict the impending failure of a motor. Its intended application domain

is characterized by a high cost associated with failures, such as the fire pump on navy

vessels.

More recently, Japkowicz, [49], examined the performance of the autoassociator

in comparison with a variety of binary learners on three domains. In particular,

the case studies utilized a CH46 Helicopter gearbox dataset, with the objective of

predicting the failure of the gearbox based on vibration time signals, and the sonar

and DNA promoter datasets from the U.C. Irving Repository of Machine Learning.

The recognition task in the former was to distinguish mines from rocks in sonar data,

while the objective in the DNA promoter dataset was to classify promoters in a DNA

sequence. The autoassociator was found to be robust relative to the other classifiers

in all three case studies, and more accurate on both the helicopter gearbox and DNA
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promoter tasks.

One-Class Support Vector Machines

Schölkopf et al., in [97], proposed a one-class extension to the existing support vector

techniques, for the estimation of support in high-dimensional spaces. In general terms,

their approach maps the training data into a dot product feature space, and inserts a

hyperplane in a manner that separates the origin from the data with maximal margin.

In their work on one-class SVMs, Schölkopf et al. explored their implementation

on both artificial and real-world data. For the latter category, the US Postal Service’s

handwritten digits dataset was utilized.

The handwritten digits dataset was converted to facilitate two distinct set of

experiments. In the first experiment, tests that specified a random set of instances

drawn from a single class to composed the target data, and left all instances from

the remaining nine classes to form a large set of outliers, were conducted. On this

experiment, the one-class SVM was found to correctly identify the target class 91%

of the time, and had a false positive rate of 7%.

In the second experiment, ten binary features were added to the handwritten digits

dataset; one new feature for each of the possible digits. These features were included

to identify the class to the classifier during train, with the notion that the classifier

would learn to recognize what each digit should look like. For this experiment, the

one-class classifier was trained on instances drawn from each class, with the additional

features. The authors found that the one-class SVM learned to accurately identify

anomolous patterns, and erroneously labelled instances.

Similar implementations of the one-class SVM have subsequently been applied to

a large number of problems. Manevitz and Yousef, in [66] for example, applied the

one-class SVM to discover text documents of similar topics to those in the training set,

and compared the results to a set of alternate one-class classifiers. They concluded

that, while the one-class SVM is very sensitive to parametrization, with the right

parameter set, it outperformed the other classifiers, with the exception of the one-

class ANN consider in the study.

Some further examples of previous applications of one-class SVMs are to classify
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yeast gene regulation predictors in [52], and for image retrieval in [18].

3.2.3 Nearest Neighbour

The standard Nearest Neighbour (NN) algorithm is a binary classifier that takes a

non-parametric approach to PR. More specifically, in its simplest form, the training

process involves “remembering” all of the training instances and their corresponding

labels. During application, a novel instance x is classified according to a majority

vote rule, in which the k (k is an odd number specified by the user) NNs of x, in the

training set, are polled for their respective classes. The novel instance is subsequently

assigned to the class that is occupied by the majority of its neighbours [28].

The NN algorithm has seen considerable application, Horton and Nakai, for ex-

ample, compared NN to näıve bayes and decision trees, in [44], on the problem of

predicting the cellular localization sites of proteins in yeast and ecoli. In their study,

Horton and Nakai reported favourable results for the NN classifier.

More recently, modifications have been made to the NN classifier to facilitate one-

class classification. Datta, in [23], adapted the standard NN algorithm to preform one-

class classification through the utilization of a threshold learned during the training

phases. More specifically, the algorithm searches the training set for the pair of NNs

that are separated by the greatest distance, which is denoted τ . When classifying

a novel instance, the distance between it and its NN is compared to the learned

parameter. If the distance is less than or equal to τ , the novel instance is assigned to

the positive class. Otherwise it is assigned to the negative class.

The author applied this implementation of the one-class NN algorithm to a number

of UCI datasets and found it to be comparable with other one-classifiers. It was

additionally found to be comparable with the binary C4.5 decision tree classifier

on some classes of the Breast Cancer Wisconsin, Pima Indian Diabetes and Wine

domains.

Tax, in [112], provided a comprehensive survey of the performance of one-class

classifiers on a number of artificial domains, in which an alternate adaptation of

the standard NN algorithm for one-class learning was included. Notably, the author



CHAPTER 3. LITERATURE REVIEW 57

identified the one-class NN algorithm as a poor performer in a general analysis of

robustness against outliers. This is, indeed, a problem that we identify and address

in regard to Datta’s one-class adaptation of the NN algorithm in Chapter 5.

3.2.4 Combined Density and Class Probability Estimation

Hempstalk et al., in [42], introduced a technique for converting one-class classifica-

tion problems into binary tasks, based on a two-fold strategy. The initial phase of the

strategy involves an examination of the training data for the concept class in order to

determine its distribution. This knowledge is subsequently utilized in the generation

of a non-concept, or outlier, class. In the second phase, a standard binary classifier

is trained based on the concept class and the generated class. Most standard classi-

fication techniques are applicable here. The single limiting factor in the selection of

a binary classifier is the requirement that the classifier of choice can produce a class

probability estimate at prediction time. Using Bayes’ rule, the authors demonstrate

how the class density function can be combined with the class probability estimate

to yield a description of the concept class.

The performance of the combined density and class probability estimation tech-

nique was examined on a multitude of datasets, the bulk of which result from the U.C.

Irving Repository of Machine Learning. In addition, the performance was gauged on

the very interesting task of recognizing a “continuous typist”. This latter application

required the validation of individual computer terminal users based on their learned

typing patterns. With considerations founded upon these experiments, the authors

concluded that the combination of the density function with a classification model

can produce an improvement in accuracy beyond that which resulted from the density

function or the classification model alone.



Chapter 4

Simulating Stochastically Episodic

Events

4.1 Introduction

Three categorical strategies for modelling the dispersion of pollutants in the earth’s

atmosphere were introduced in Section 3.1.3. In this chapter, we initially motivate the

application of simulated data in the training, testing and validation of PR systems1.

In particular, we focus on an intriguing subset of classification challenges, which are

oriented to the identification of events that are stochastically episodic in nature. The

subsequent sections, Sections 4.3 through 4.5, which compose the bulk of the chap-

ter, articulate both the applied modelling techniques and the simulation framework.

Finally, in Section 4.6, the results the simulation process are demonstrated.

4.2 Motivation

Throughout history, modelling and simulation have been critical aids in human progress.

Indeed, they have proven essential in our ability to understand, predict and often

benefit from the behaviour of complex systems, natural or otherwise. Early models,

derived to articulate the motion of celestial bodies, for example, enabled generations

1Some of the work presented in this chapter has been published in [8].
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of farmers to predict annual planting and harvesting cycles. In addition, such models

were utilized to aid travellers with regional and global navigation. Over the past

half century, advanced computer models have been developed to explore technologi-

cal systems themselves, such as TCP and telephone networks, in addition to natural

phenomena ranging from seismic waves to the dispersion of pollutants and climate

change. Phenomena of the latter classes are the focus of this chapter. Indeed, as

we shall argue, they possess certain unique characteristics, which make them hard to

both simulate and study.

A typical focus of existing modelling experiments has been to simulate a particular

hypothetical event, or to re-create actual scenarios as accurately as possible. Moti-

vating the derivation of these models is often the requirement for (policy-making)

regulatory regimes and safety guidelines, or to facilitate effective reaction to ongoing

events, such as the failure of a node on a network, or more seriously, a nuclear acci-

dent. Alternatively, modelling and simulation have occasionally been utilized in order

to generate classes of data for the training and validation of PR, and for example,

Disease Contagion Prediction (DCP) systems, as was fundamental to the study of

the SARS crisis.

While it is customary for PR and DCP systems to be trained, tested and validated

on data sets drawn directly from the domain of interest, there are scenarios where

simulated data is advantageous. Additionally, in many cases, where real-life data is

unavailable, such generated data is actually mandatory. In the general case, arbitrary

probability density functions can be applied to model a particular set of classes in

a PR problem, and subsequently, utilized in the exploration of PR systems or to

demonstrate their performance.

Aláız-Rodŕıguez and Japkowicz, in [4], utilized an artificially generated medical

domain in their study of the effects of changing environments on classifier perfor-

mance. By generating artificial data, Rendell et al. in [87], avoided the uncontrolled

scenarios presented by natural data sets, and described the speed and accuracy of

the classifier as a precise function of a predefined set of data characteristics. Alterna-

tively, Quilan, in [84], examined the effect of noise on the performance of the classifier

by generating artificial noise in class membership and attribute instances.
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Data generation is conceivably beneficial for the training and validation of clas-

sifiers in highly imbalanced classification tasks, such as the automated satellite de-

tection of oil spills at sea [53] or the continuous typist recognition problem [42]. The

concept of modelling artificial data as per specific domain characteristics was initially

proposed by Aha in [1]. This was conducted for the purpose of generalizing from

case-studies, and thereby producing a better understanding of overall performance of

the classifier. Dietterich et al., in [26], extended Aha’s generalizing strategy to derive

an artificial dataset that was characteristically similar to data extracted from the

target domain, as a means of overcoming the deficient supply of positive instances.

These studies, however, relied on an underlying understanding of the class data being

generated, which is typically elusive in domains composed of SE events.

The above-mentioned notion of data generation for imbalanced scenarios leads to a

very interesting, and yet considerably less studied topic. Particularly pertinent, is the

relationship between the measured characteristics (or features) of the SE events under

examination, such as earthquakes or the massive short-term releases of pollutants into

the environment, and the background levels of these measurable characteristics, which

exist as noise, and are expelled from alternate sources. In terms of modelling and

simulation, this can be conceptualized by the existence of two classes of data, namely

the background data and the SE event data. The background class is considered to

be relatively well understood, and in particular, strong estimates of its distribution

are assumed to be known. Alternatively, the SE events, which are characteristically

random and unpredictable in time, space and magnitude, rarely occur. Thus, the

details of their distributions are extremely difficult – if not impossible – to estimate

in general terms. Moreover, the relationship between the two phenomena, and the

effect of one on the other is inherently difficult to determine.

4.3 Modelling System

As previously mentioned, this chapter considers a relatively new field, namely that of

modelling SE events, which are characteristically random in space, time and magni-

tude. It also explores the relationship between these SE events and the well-defined
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background data. The difficulty with such a modelling process is that most of the

observations appear as noise. However, when the SE event does occur, its magni-

tude and features far overshadow the background, as one observes after a seismic

event. In particular, we demonstrate how modelling and simulation can be applied

to superimpose SE events on, and propagate their effects through, the background

noise.

In doing this, we divide the modelling process into two phases, the effects of which

are subsequently merged, in order to project the impact of the various processes

on the receptor site. Indeed, the division into two distinct modelling scenarios is

required as both the physical processes responsible for, and the duration of, such

events, are inevitable novel occurrences, particularly in comparison to the generally

consistent nature of the background noise. The details of the two phases, and in

particular, the modelling of the background and the SE events, are discussed in detail

in the following subsections. Before proceeding, however, it is important to note that

while this particular simulation scenario is optimized for the airborne dispersion of

pollutants, such as radionuclides emitted from the nuclear industry and the detonation

of nuclear weapons, the theoretical concepts extend to any scenario characterized by

SE interludes into a well-defined background distribution.

We can summarize our hypothesis by the following:

1. The simulation of background noise-like non-SE pollutants is best modelled by

the Gaussian plume model;

2. The simulation of SE contaminants is best modelled by the Gaussian puff model.

These issues are clarified in the following sections.

Modelling SE Events

The SE events modelled in this simulation are highly discernible from the background

noise effected by the series of industrial emitters. This is specifically a result of the

divergent emission scenarios, and requires a distinct set of modelling principles.

In contrast to the generally constant and predictable nature of the industrial

sources, the SE events in this simulation scenario, are representative of short-term
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massive releases of pollutants into the environment from a random point in space and

time. Following the release, however, the pollutant cloud is propagated through the

atmosphere by the same forces effecting the pollutant plumes emitted by industry.

Thus, at certain locations, the influence of the puff may eventually be observed at

the receptor site as a deviation from the background distribution, which is physically

realized as a sharp spike in the background concentrations.

The Gaussian puff technique is employed in the simulation of the dispersing pol-

lutant cloud. While the puff model is fundamentally applicable to the dispersion

of neutrally buoyant trace materials resulting from an instantaneous point source,

its notoriety, and indeed, the vast majority of its application, has resulted from the

simulation of dispersing pollutants emitted from continuous sources as a “series of

puffs”, as explained in [2, 41, 69, 75]. The particular advantage of the puff model is

that it frees the modeller from the steady-state requirement of the plume model, and

allows the simulation to model the effects of time- and space- varying meteorological

conditions. However, for the purpose of the present simulation, the Gaussian puff

model is most desirable by virtue of its traditional function of modelling dispersion

from a single instantaneous point source.

4.3.1 Modelling the Background

In this particular application of the theoretical model alluded to above, the back-

ground data is modelled as per pollutant observations made at a receptor site. More

specifically, we assume the existence of one or more industrial emitters, which are

commonly referred to as continuous point sources. This reflects the fact that their

emissions are continuous, if not constant, over some time period, t. Each industrial

emitter is positioned at a static location and characterized by an emission rate that

is subjected to Gaussian fluctuations. The effect of the various sources on the recep-

tor site is calculated based on the widely applied Gaussian plume model, which was

initially introduced in Chapter 3.

In the subsequent sections, we follow the results of [21] in demonstrating the
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derivation of both the Gaussian plume equation for continuous sources, and the Gaus-

sian puff equations for instantaneous sources. We achieve this first by deducing the

K-model for atmospheric dispersion from the main equation of advection-diffusion,

and then, through a series of simplifying assumptions and an integration with respect

to time, we settle on the two Gaussian equations.

4.3.2 Derivation of Fundamental Equation of K-Theory

The derivation of the fundamental equation of K-theory begins with what Slade [103]

identifies as the starting point for most mathematical treatments of diffusion from

a source. Specifically, this refers to a generalization of the classic equation for the

transfer of heat in a solid, and is essentially a statement of the conservation of the

suspended material. If χ represents the local concentration, quantified in terms of

mass per unit volume of fluid, and assuming the fluid to be incompressible, then the

transport of the conservative material can be described with the following Partial

Differential Equation (PDE) [64]:

∂χ

∂t
= −

(

∂(uχ)

∂x
+

∂(vχ)

∂y
+

∂(wχ)

∂z

)

, (4.1)

where the quantities u, v, w and χ are represented as the sum of a mean and eddy

fluctuation. By expanding the terms and averaging the PDE, we get:

∂χ

∂t
+ u

∂χ

∂x
+ v

∂χ

∂y
+ w

∂χ

∂z
= −

(

∂u′χ′

∂x
+

∂v′χ′

∂y
+

∂w′χ′

∂z

)

. (4.2)

Finally, replacing the eddy flux terms by the simple gradient-transfer forms and ex-

changing the left-hand side of the equation with the Lagrangian time derivative (cf.,

Equation 4.4), produces the general form of the K-theory model, commonly referred

to as the K-model. The model is depicted in Equations (4.3), and 4.4) as:

Dχ

Dt
=

∂

∂x
(Kx

∂χ

∂x
) +

∂

∂y
(Ky

∂χ

∂y
) +

∂

∂z
(Kz

∂χ

∂z
) (4.3)

Dχ

Dt
=

∂χ

∂t
+ u

∂χ

∂x
+ v

∂χ

∂y
+ w

∂χ

∂z
, (4.4)
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where χ is the predicted mean concentration at point x, y, z; t is time; and the Kx,y,z

terms represent the diffusion in each of the coordinate directions. Both analytical

and numerical solutions to Equation (4.3) have been utilized in regulatory processes

around the world [38].

In order to simplify this equation to its Gaussian form, it is typical to either

assume that diffusivity is constant and independent of spacial direction (i.e. isotropic

as opposed to anisotropic), or for further simplification, to apply the Fickian Diffusion

assumption. For isotropic diffusion, Equation (4.3) is simplified to the following form:

Dχ

Dt
= Kx

∂2χ

∂x2
+Ky

∂2χ

∂y2
+Kz

∂2χ

∂z2
. (4.5)

Alternatively, under the Fickian assumption, Equation (4.3) is further simplified to:

Dχ

Dt
= K∇2χ, (4.6)

with:

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
, (4.7)

and:

K = Kx = Ky = Kz.

Equation (4.6) can be applied to model atmospheric transport in one, two or

three dimensions. For example, Equation (4.8) is the one-dimensional realization of

the Fickian equations. In this equation, the first term represents the rate of change

of the mean concentration, χ, with respect to time, and the second term corresponds

to the advection of χ at velocity u.

∂χ

∂t
+ u

∂χ

∂x
= K

∂2χ

∂x2
(4.8)

Gaussian Puff Model

The solution to the one-dimensional form of the Fickian equation, derived previously

as Equation (4.8), for an instantaneous point source of emission strength Q is given

by:

χ(x, t) =
Q

(4πKt)
1
2

exp

[

− (x− ut)2

4Kt

]

. (4.9)
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For a three-dimensional model, the solution to the Fickian equation is expanded to

the following form:

χ(r, t) =
Q

(4πKt)
3
2

exp

[

− r2

4Kt

]

, (4.10)

where:

r2 = (x− ut)2 + y2 + z2, (4.11)

and:

K = Kx +Ky +Kz. (4.12)

Finally, for non-isotropic diffusion in the three coordinate directions, the Gaussian

puff equation expands as follows:

χ(x, y, z, t) =
Q

(4πt)
3
2 (KxKyKz)

1
2

exp

[

− (x− ut)2

4Kxt
+

y2

4Kyt
+

z2

4Kzt

]

. (4.13)

This solution to Equation (4.3) is obtained according to the following boundary con-

ditions:

i The concentration at all points approaches zero as time goes to infinity, and

thus,

χ → 0 as t → ∞, ∀x, y, z, (−∞ < x, y, z < +∞)

ii The concentration goes to zero for all points except the source location, as time

approaches zero, and so,

χ → 0 as t → 0, ∀x, y, z, x, y, z 6= 0

iii The total mass of the pollutant present at any particular time is equal to the

total mass release, implying that,

∫ ∞

−∞

χdxdydz = Q
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Gaussian Plume Model

While the Gaussian plume model has seen considerable application in the past, it is

regularly noted that, in the strictest of terms, the Gaussian model is limited in its

applicability, as it requires large diffusion times and homogeneous, stationary con-

ditions. However, we cite Batchelor’s supposition that the Gaussian function may

provide a general description of the average plume diffusion because of the essen-

tial random nature of the phenomenon, by analogy with the central limit theorem

of statistics [103]. Batchelor’s assessment, in combination with the ease of imple-

mentation inherent in the Gaussian models, provide significant justification for the

application of both Gaussian models in our modelling task. Moreover, as we aim

to both simulate the variability and the mean tendencies at hypothetical receptor

sites, within extremely complex, fabricated environments, and for utilization in PR

experiments, the Gaussian models present themselves as well-suited frameworks.

The Gaussian plume dispersion equation has its foundation in the basic advection-

diffusion equation, which through the series of assumptions previously described,

can be solved analytically to produce the Gaussian puff equation, Equation (4.13).

The Gaussian puff equation models the three-dimensional advection and diffusion

of a neutrally buoyant cloud of tracer material in the atmosphere from the source

to a receptor. By considering the continuous plume exiting from a source stack

as an infinite number of Gaussian puffs, one arrives at the Gaussian plume model.

Mathematically speaking, this implies integrating the Gaussian puff equations from

t = 0 to t = ∞. After making a few simplifying assumptions, the Gaussian plume

equations takes the following form, which was articulated by Lyons in [64] as:

χ(x, y, z, t) =
Q

2πσyσzu
exp

(

− y2

2σ2
y

)

(4.14)

[

exp

(

− (z −H)2

2σ2
z

)

+ exp

(

− (z +H)2

2σ2
z

)]

,

and describes the air pollutant concentration, χ, in mass units m−3, at the receptor

location, (x, y, z), where the x-axis is assumed to be parallel to the mean direction of

the wind. The parameter Q in the above equation represents the pollutant emission
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rate from the source in mass units s−1, the value u takes the mean wind speed in

m s−1, and the values of sigma represent the crosswind and vertical dispersion as a

function of the downwind distance, in meters. Finally, H takes the effective value of

the pollutant plume’s centre-line.

Turner, in [120], conveniently expressed the equation in terms of four distinct

factors, which are combined to produce the final estimate. These factors represent

the dependence upon emissions released from the source and the time-averaged at-

mospheric conditions. The emissions factor, Q, indicates that the concentration at

the receptor site is directly proportional to the emissions. The downwind factor, 1

u
,

specifies that parallel to the x -axis, the concentrations are inversely proportional to

the wind speed. Parallel to the y-axis, the crosswind factor,

1

(2π)1/2σy

exp

[

− y2

2σ2
y

]

,

indicates that the concentrations are inversely proportional to the crosswind spread-

ing, σy, of the plume. The greater the downwind distance, the greater the horizontal

spreading, implying a lower concentration. The exponential involving the ratio of y

to σy provides a correction factor for the distance of the receptor from the center of

the distribution – quantified in terms of the number of standard deviations. Finally,

parallel to the z-axis, the vertical factor,

1

(2π)1/2σz

{

exp

[

− (z −H)2

2σ2
z

]

+ exp

[

− (z +H)2

2σ2
z

]}

,

specifies that the concentrations are inversely proportional to the vertical spreading,

σz, of the plume. Once again, as the downwind distance increases, so does the vertical

spreading, implying a lower concentration of the pollutant. The sum of the exponen-

tial terms in the vertical factor represents how far the receptor height, z, is from the

plume’s center-line, H, in the vertical direction. The first term represents the direct

distance, H − z, of the receptor to the center-line. The second term represents the

reflected distance, the distance from the plume’s center-line to the ground and back

up to the receptor. The last term accounts for the reflection of the spreading plume

off the earth’s surface.
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Through iterative evaluations of Equation (4.14) over the experiment, with some

location-specific fluctuations in the parameters over time, it becomes apparent that

the background distribution at the receptor site is a function of the receptor’s location

relative to the industrial emitters, along with the mean tendencies of the individual

industrial emitters and the overlying atmosphere.

4.4 Demonstration of the Dispersion Models

Before preceding to a demonstration of the simulation system in Section 4.5, we first

examine the individual “plume” and “puff” components of the model, in order to

understand the effect of the various atmospheric forces acting on them.

Regardless of the source type, plume or puff, the atmospheric forces play an

integral role in determining their fate. Moreover, these forces often have similar

effects on the various pollutant bodies. Thus, whenever possible, in the subsequent

sections we explore the effect of these forces on a pollutant plume, and implicitly

extrapolate the results to the puff scenario.

Atmospheric Stability

Chapter 2 first introduced the notion of atmospheric stability and its effect on pollu-

tant concentrations. In this simulation, we characterize atmospheric stability based

on the five Pasquill-Gifford (P-G) stability categories. The P-G class six signifies a

stable atmosphere, which affects little dispersion, while category one signifies a highly

unstable environment, and one that is very conducive to the dispersion of pollution.

In addition, to the influence of wind speed and plume height, Figures 4.1 through

4.3 illustrate the effect atmospheric stability on pollutant concentrations. In regard

to the Gaussian plume model, there are two key diffusion parameters, the crosswind

and vertical variances, which are determined as a function of the stability and the

downwind distance. These parameters ultimately determine the degree to which the

pollutant plume is diffused in the horizontal and vertical directions.

In Figure 4.1, the effect of stability on crosswind diffusion is most clearly demon-

strated. Each plot in this figure has a constant, and equivalent, wind speed, receptor
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height, and plume height. Thus, the only variable is the stability, measured in terms

of the P-G categories. The emission rate Q, was not selected to emulate any par-

ticular nuclear point source, but for demonstration purposes. The first two plots in

this figure, along with those in the two following figures, illustrate simulation results

produced during P-G classes one and two. Alternatively, the third and fourth plots

correspond to stability classes of five and six. More specifically, the results presented

in the first two plots of Figures 4.1 through 4.3 were produced during stable atmo-

spheric conditions, while the latter two are the results of unstable conditions.

Internally, the individual plots demonstrate the simulated concentration at six

horizontal distances from the plume’s centre-line, ranging from zero metres (solid red

line) to 25 metres (dashed pink line). Intuitively, as the observations occur further

from the plume centre-line, the overall concentration decreases. Once again, the short

distances were selected for demonstration purposes. The general shape of the curves,

however, extend to longer distances with large emission rates.

Generally speaking, two key results are depicted by these figures. The first of these

is that as stability increases, so does the maximum detected concentration. This is

demonstrated by the increased magnitudes realized in the successively more stable

plots. The second result that is demonstrated is that the pollutant concentration

remains at elevated levels for longer durations during stable atmospheric conditions.

Once again, this is visualized in the successive plots. However, this notion is seen by

the increasing width of the curves.

An additional result is realized through the comparison of the consecutive plots

in this figure. The unstable environment present during the first simulation produced

a quick dispersion of the pollutant concentration. Thus, there is only a minute delay

in terms of downwind distance prior to each successive inward plot reaching its peak

concentration. In contrast, the centre-line plot arrives at its maximum magnitude at

approximately 150 metres downwind, while the most inward does not arrive at its

maximum until after 250 metres.

Vertical dispersion is contrasted in Figures 4.1 and 4.3. In the former, the plume

height is elevated 25 metres above the ground, while in the latter, it is elevated 50
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metres. As previously demonstrated, during stable conditions, diffusion is signifi-

cantly slower. Because there is a greater distance between the plume height and the

receptor height in the latter figure, we expect that during similar conditions, the peak

concentrations will occur at greater downwind distances. This is, indeed, confirmed

by comparing the two figures.

Wind Speed

Wind speed, very clearly, has a profound effect on pollutant bodies in the earth’s

atmosphere. We introduced, for example, the concept of mechanical turbulence in

Chapter 2. Mechanical turbulence has a mixing effect, and, in the atmosphere, is

generated as the wind traverses rough surfaces. Thus, a decrease in concentration is

observed with increased wind speeds.

The shift down the gradient scale, which is affected by an increase in the rate of

advection on a stack emitted plume at various downwind distances, can be observed

through careful examination of Figures 4.1 and 4.2. A considerable amount of infor-

mation is provided in these figures. However, for the moment, consider only the solid

red lines in the first plot of Figures 4.1 and 4.2. These plots illustrate the results of

simulations that were identical in all manners, except for the rate of advection. As

expected, the curves are very similar in shape, while the second figure has a lower

magnitude, resulting from increased mixing due to the elevated wind speed.

Indeed, the primary effect of the rate of advection on a pollutant body is the speed

at which the parcel is transported downwind. In terms of a pollutant plume, the effect

can be explored under two scenarios, with and without chemical decay. If decay is a

factor, an increase in the wind speed facilitates an increase in the area of influence

of the emission source. In particular, each parcel is able to travel greater distances

before chemical decay becomes a significant factor in removing the pollutant from the

environment.

The previously explored figures provide examples of the latter scenario, in which

the only change is a proportional decrease in the pollutant concentration due to

mixing. This is an intuitive result, when one recalls the earlier analogy of a plume

as and infinite number of puffs, or parcels. In a homogeneous environment, the wind
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Figure 4.1: The successive plots in this figure demonstrate the effect of an increas-
ingly stable atmosphere on downwind pollutant concentrations. The individual lines
plotted in each graph depicted the downwind concentrations at six specific crosswind
distances. In each simulation, the receptor height was 10 metres above the ground,
the plume centre-line was at 25 metres, and the wind was blowing at 2 metres per
second.

effects each parcel of air identically. Thus, as advection increases, the analogous

train of identical parcels, pi, emitted from an industrial stack, increase in momentum.

However, since each pi has an identical concentration, for a homogeneous environment
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the magnitude decreases. In our simulation, though, we did not experience the sharp

rise, and subsequent fall, that is synonymous with an advecting pollutant cloud, as

it passes over a receptor site.

As previously remarked, wind speed has a significantly more visible effect on

a puff of pollution. This is illustrated in Figure 4.5. The bottom graph in this

figure represents an increase in wind speed from 2 metres per second to 5 metres per

second. The x -axis in this figure specifies the time lapsed since the release of the

puff. The individual line plots articulate the change in the measured concentration

at five distinct downwind receptor sites over time. The two effects of wind speed on

a pollutant puff are soundly demonstrated in this figure. As the rate of advection

increases, the pollutant reaches the receptor sites quicker and its presence is detectable

for less time. This is visualized as both a shift to the left in the lower graph, and as

a narrowing of the bell shape.

Plume Height

Some interesting results appear in Figure 4.3 as a result of increasing the plume

height. The plume height in this figures is 50 metres, 25 metres above the previous

plume heights. In comparison with Figure 4.1, it is noticeable that the concentration is

consistently and considerably lower than seen in the previous figure. This results from

the fact the the pollutant must diffuse a greater vertical distance to reach the receptor.

An additional effect of the increased distance, is that the maximum magnitude is

achieved at a greater distance. Finally, in terms of the crosswind concentrations,

unlike the earlier plots, there is very little visible difference in the plotted crosswind

concentration. This results from the fact that the vertical distance is greater than all

of the horizontal distances plotted.

Seasonal Variations

To re-iterate our goal, we briefly explain the effect of seasonal variations in the atmo-

spheric means, such as the wind speed and direction, on pollutant concentrations at

the receptor site.
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Figure 4.2: The successive plots in this figure demonstrate the effect of an increasingly
stable atmosphere on downwind pollutant concentrations, at an elevate wind speed of
5 metres per second. The individual lines plotted in each graph depict the downwind
concentrations at six specific crosswind distances. In each simulation, the receptor
height was 10 metres above the ground, the plume centre-line was at 25 metres and
the wind was blowing at 5 metres per second.

Unlike the three previous sections, which considered short-term meteorological

averages, long-term season variability is only of interest when considering continuous

source emissions. This is because the SE events, which we model as instantaneous
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Figure 4.3: The successive plots in this figure demonstrate the effect of an increasingly
stable atmosphere on downwind pollutant concentrations, when the plume centre-
line is elevated from 25 metre to 50 metres. The individual lines plotted in each
graph depict the downwind concentrations at six specific crosswind distances. In
each simulation, the receptor height was 10 metres above the ground, and the wind
was blowing at 2 metres per second.

sources, are both rare and random (in time, space and magnitude) with relatively

short lifespans. Thus, no seasonal trend, such as that depicted in Figure 4.4, will

appear.



CHAPTER 4. Simulating Stochastically Episodic Events 75

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●
●
●●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●
●

●●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

0 200 400 600 800 1000

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

Time (hours)

C
o
n
c
e
n
tr

a
ti
o
n
 (

B
e
c
q
u
e
re

l)

Seasonal Variation

µws1
 = 4m/s  µws2

 = 6m/s  µwd1
 =  4°  µwd2

 = 30°  heigth = 10m

Figure 4.4: This figure illustrates the influence of seasonal meteorology on remote
receptor sites. In particular, two seasons, each with distinct mean wind speeds and
directions are simulated. The first five-hundred hours of the plot correspond to the
first season, which more directly effect the receptor site. Thus, the first five-hundred
hours display, on average, high pollutant concentrations.

Figure 4.4 demonstrates the simulated downwind pollutant levels in a hypothetical

environment with two characteristic seasons. During the first season, the mean wind

blows more directly at the receptor site and has a lower average velocity. Thus, in

general, higher concentrations are observed during the first half of the plot, which
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corresponds to the first season. We find it particularly interesting to simulate such

scenarios, not only for its practicality, but also for the effect such variability may

have on PR systems. It is notable that in this figure there exists a discrete shift from

one season to the next. The current approach was utilized to emphasize a possible

affect of changing seasons. In practice, however, when simulating seasonal changes,

we utilize a process of randomization to emulate both gradual, and less predictable

shifts.

4.5 Experimental Setup

In this study, we propose a modelling technique designed to facilitate the simulation of

SE events propagating through a modelled system. As a means of demonstrating this

theory, we utilize the particularly interesting scenario suggested by the verification of

the United Nations’ CTBT. The remainder of this section provides essential details

of the modelled system.

4.5.1 Motivation

The CTBT is a United Nations treaty, which, when it enters into force, will prohibit

the detonation of nuclear weapons by member nations. As a result, a number of

verification strategies are currently under study, aimed at ensuring the integrity of

the treaty. The primary verification technique being explored relies on the quantity

of radioxenon measured at sampling stations, otherwise referred to as “receptors”,

distributed throughout the globe [106].

In general, it can be assumed that radioxenon is present within the atmosphere

for one of two reasons, the primary been emissions from the nuclear industry. Al-

ternatively, the detonation of nuclear weapons are known to release mass quantities

of radionuclides into the atmosphere. This is particularly the case for surface and

airborne detonations, but is also true, although to a lesser extent, for subterranean

detonations.

Indeed, even in the most frightening of scenarios, it is expected that the testing
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Figure 4.5: This figure illustrates the effect of wind speed on a pollutant puff. In
both simulations, the P-G category was 4, the receptor height was 10 metres, and
the puff elevation was centred at 10 metres. The wind speed in the second simulation
was increased from 2 metres per second to 4 metres per second.

of nuclear weapons will be characteristic of an SE event. Alternatively, the opera-

tion schedules for individual nuclear industries are typically defined into the distant

future, and thus, in the medium-term, it can be assumed that their emission rates

are relatively consistent. We make this assumption with the above-defined modelling

and simulation task in mind, and consequently do not aim to articulate fluctuations



CHAPTER 4. Simulating Stochastically Episodic Events 78

that may result from cyclical production cycles within individual plants or resulting

from unexpected shutdowns. Instead, our objective is to model the general effect of

local industries on a particular receptor site, and to subsequently simulate the effect

of SE explosions propagating through the system.

4.5.2 Modelled System

For the purpose of this demonstration, we assume a simplified environment. In partic-

ular, we apply a few simplifying assumptions to the process of atmospheric dispersion,

industrial emissions and the SE emissions, in order to illustrate the general effects

of such events at the receptor site. In addition, to maintain simplicity in this illus-

tration, we utilized a small simulation domain with appropriately low emission rates.

However, the results are extensible to larger domains. Indeed, a significantly larger

domain is utilized in Chapter 5.

Atmosphere

Once emitted, an airborne cloud of pollutants becomes subjected to a complex array

of interdependent forces, which stretch, pull and fold the pollutant body. Theorists

and practitioners have attempted to classify the diffusive effect that results from

these processes in general, and in particular, from the over-riding stability of the

atmosphere, which we described in Chapter 2 as ranging from super-adiabatic to

inversion, in a variety of ways. The Pasquill-Gifford stability classes (P-G classes)

[35, 77] discretize atmospheric stability into classes ranging from A through D, where

A indicates unstable conditions, G, strongly stable, and D, represents a neutral, or

nearly adiabatic stability. The P-G classes were formulated based on a empirical

study, and are presented in tabular form with the corresponding class specified as a

function of wind speed, incoming solar radiation and cloud cover.

The Pasquill-Gifford dispersion parameters [99], which specify vertical and hori-

zontal diffusion as a function of downwind distance and stability, have experienced
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considerable favour within Gaussian dispersion models, and are applied for the deter-

mination of the K and sigma terms in Equation (4.13) and Equation (4.14). More re-

cently, new techniques have been proposed, which are subjected to fewer restrictions.

However, for the purpose this study, the former strategy is applied, as it effectively

captures the general nature of this study, and its can be efficiently implemented.

Diffusion aside, we choose to view both the atmosphere, and, indeed, the broader

environment, from a purely statistical perspective. Thus, we assume that over the

course of an experiment the wind speed and direction take independent Gaussian

forms with user-defined means and variances. In addition, we facilitate the user

definition of n seasons, each with a possibly distinct set of atmospheric tendencies.

The potential for season variability is an intuitive notion when considering the earth’s

atmosphere. Seasonal fluctuations are, of course, a regular phenomenon in regions

around the world. Such variations can have a significant effect on pollutant levels,

as demonstrated by Gariazzo in [32], where season variations in meteorology are

shown to transport, more or less, pollution from industrial sources depending on the

season. These fluctuations compose possibly complicating factors when it comes to

the detection of episodic events.

Background Emissions

Within this experiment, the background distribution is modelled as per the real-time

measurements of radioxenon at a selected receptor site. Also, as previously indicated,

in general, the background levels of radioxenon can be attributed to the nuclear

industry, with the primary sources being the production of medical isotopes and the

generation of nuclear power.

For the purpose of this experiment, we forgo the more realistic notion of cyclical

emissions cycles, which may result from refuelling, planned maintenance, safety in-

spections, etc., as a means of concisely achieving our overall objective. Furthermore,

the emissions rates and plume rise phenomena are assumed to take independent Gaus-

sian forms, with user-defined means and variances. Moreover, subsequent to exiting

the emissions stack, the plume is assumed to instantaneously reach its determined

center-line, and to begin its dispersion in the downwind direction under steady-state
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conditions over the course of a reasonable amount of time, say, one hour. Subsequent

to the hour of dispersion, the model parameters are randomly recalculated within

their respective Gaussian curves. In-line with the enabling assumption of homoge-

neous, stationary conditions for Gaussian dispersion models, the recalculated wind

speed and direction are assumed to hold for the entire model over the duration of this

hour.

SE Emissions

The SE events in this simulation take the form of clandestine nuclear explosions, the

magnitudes of which are assumed to be more than an order higher than the back-

ground rate of emission. Thus, the detonation is somehow contained in an attempt

to both conceal any visual evidence from satellites and other flyovers, which would

induce suspicion, and to restrict the release of radionuclides. As seen in the past,

however, the containment of the pollutants produced during a subterranean nuclear

detonation is not a straightforward task [92]. Moreover, the inert property of ra-

dioxenon dictates that large quantities are likely to be vented from even the soundest

of containment facilities, after a detonation [15].

Based on the evidence presented above, and consistent with [92], we assume that a

random portion of the produced radioxenon is immediately vented and subsequently

dispersed downwind. Furthermore, the total radioxenon produced by the detonation

is assumed to be large relative to the background levels, with a substantial portion

of it being vented into the lower atmosphere.

Being SE in nature, the occurrence of an explosion at any particular point in space

and time, is at best estimated by a uniform random event. Thus, at any specific point

in the simulation, it is unlikely that an explosion will occur, however, the remnant

cloud of an early explosion is expected to be present within the modelled system,

at trace levels, for some time. When a detonation occurs at a particular time, t,

for example, it promptly becomes subject to the atmospheric condition present at

that time, and continues to disperse until it exits the modelled domain or completely

decays.
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4.6 Results

This section details the results produced by the simulation processes and scenarios

described above. We begin, in the subsection that immediately follows, by demon-

strating how a single industrial emitter effects the radioxenon levels at a set of regional

receptor sites. The accompanying subsection, Subsection 4.6.2, illustrates how the

episodic events propagate through the otherwise consistent background distribution.

4.6.1 Background

In order to illustrate the propagation of episodic events through background noise,

we simulate a simplified version of the CTBT scenario. In particular, the modelled

environment is a five-hundred square meter site with a single industrial emitter and

four downwind receptor sites.

The receptor sites are situated 100, 130, 160 and 190 meters downwind from the

industrial emitter, at elevations of one meter. Upwind, the industrial pollutants are

emitted from a stack elevated to twenty-five meters, and are expelled at a mean rate

of 10,000 units per second and with a standard deviation of 10 units per second.

The overriding atmosphere is assumed to maintain a homogeneous, steady-state

condition for a period of one hour, at which time the key atmospheric parameters

are recalculated around their individually defined means. For the purpose of this

experiment, the mean wind speed has been specified at a velocity of 7 meters per

second, with a standard deviation of 5 meters per second. On average, the wind

direction is assumed such that it transfers the pollutant plume emitted from the

industrial source towards the receptor sites. Beyond this, it is subject to a standard

deviation of 5 degrees. Within this simplified model of the atmosphere, diffusion

is assumed to be approximately isotropic. Therefore, the σx,y,z values in Equation

(4.14) and Equation (4.13) assume a specified mean value of 15 with a standard

deviation of 5. However, we use the term “approximately isotropic” because, each σ

value oscillates independently about the mean, and therefore, they do not necessarily

realize the same values at any particular point in the simulation.

Based on the above details, ten experiments were run, each over a period of 1, 000



CHAPTER 4. Simulating Stochastically Episodic Events 82

hours, which is approximately forty-one days. Unlike “real world” scenarios, which are

subject to considerable uncertainty, and thus, require significantly longer experiments,

the duration of this experiment is sufficient to ensure stable results. This is specifically

a consequence of the fact that the means and higher order moments are known, and

is validated based on the stability displayed in Figure 4.6. During each experiment,

the mean hourly pollutant concentration was recorded. The resulting background

probability distributions for the four receptor sites are displayed in histogram form

in Figure 4.6.

By calculating the hour-on-hour mean over the ten iterations of the experiment,

we derive an ensemble average for each hour in the forty-one day period. For another

perspective, we also present the ensemble averages as illustrated in Figure 4.7. This

figure gives a scatter plot with the successive hours plotted on the x-axis and the

ensemble mean volume plotted on the y-axis.

4.6.2 SE Events

Unlike SE events, such as earthquakes and tsunamis, which radiate outward from the

epicentre in all directions, the body of a pollutant cloud is advected in the direction

of the mean wind. Moreover, the rate of advection often overshadows diffusion in

each of the three coordinate directions. Therefore, only those receptors located in

the general downwind direction can expect to be effected by a pollutant cloud. Thus,

events that occur upwind are of primary interest in this experiment.

Being cognisant of the above fact, and for demonstration purposes, we model

four upwind detonations at varying distances, thus, maximizing their effects on the

receptor sites. In particular, detonations are simulated at distances of 200, 150, 100

and 50 meters upwind. Their individual effects are superimposed on the time-series

scatter plot of the hourly ensemble means previously described in Figure 4.7. In

this figure, in order to illustrate the shape of the peaks, the effect of radioactive

decay was omitted from the simulation that produced these results. Alternatively,

the effects of the decay are demonstrated in Figure 4.9. In this figure Figure 4.8, the

solid blue circles indicate the background levels discussed earlier. The four peaks in
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Figure 4.6: The calculated probability distribution for pollutant levels resulting from
a single regional industrial emitter at each of the four receptor sites located 100, 130,
160 and 190 meters downwind. These results were calculated over a forty-one day
period.

this plot result from four subterranean detonations, each approximately four orders

of magnitude larger than the industrial emission rate. The four successively larger

peaks, demonstrate the effect of moving the denotation incrementally closer to the

receptor site. In particular, the taller, narrower peaks resulted from detonations that

occurred closer to the receptor site, and thus, had less time to diffuse. As a result, the
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Figure 4.7: The time-series scatter plot illustrating the mean hourly background
pollutant concentrations resulting from an upwind industrial emitter, for each of the
four receptor sites located 100, 130, 160 and 190 meters downwind. These results
were calculated over a forty-one day period.

majority of the pollutant concentration is witnessed over a shorter period of time and

at higher levels. Alternatively, the pollutant clouds characterized by the lower, wider,

peaks have travelled a longer distance, and thus, have had a greater opportunity

to diffuse. Consequently, the receptor site depicts lower pollutant levels although

their peaks are maintained for slightly longer durations. For detonations at greater
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distance, this effect is further amplified.
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Figure 4.8: The time-series scatter plot illustrating the effect of four episodic events
on pollutant levels at the receptor site nearest to the industrial emitter. The details
about the figure and its legend are found in the body of the paper.

The downwind propagation of an instantaneous vented cloud of radioxenon, re-

sulting from a subterranean detonation is depicted in Figure 4.9. The vented cloud

of radioxenon was four orders of magnitude larger than that resulting from the in-

dustrial emitter. In particular, this figure demonstrates the effects of both dispersion

and radioactive decay. By comparing the SE event’s spike in Figure 4.9 (Sub-figure
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1) with the third episodic spike in Figure 4.8 (which corresponds to a similar deto-

nation), it becomes apparent that the radioactive decay plays a fundamental role in

the removal of radioxenon from the atmosphere. In particular, the SE event peaks

slightly above a concentration of 2 in Sub-figure 1 of Figure 4.9, although it reaches

elevations greater than 8 in the previous figure, where the decay was not accounted

for. Dispersion and decay are also visible in the fading of the spikes at the successive

receptors depicted in the four sub-figures.

4.7 Discussion

An analysis of the accuracy of the Gaussian dispersion models presented above is

beyond the scope of this report. Indeed, as earlier indicated, these models, and their

variants, have received considerable application and analysis in the past. For in-depth

analyzes of these techniques, interested readers are directed to the earlier citations.

Of primary interest in this work, is the relationship between the background data

and the SE events, and in particular, how this relationship can be modelled. We the-

orize that over the long-term, in many instances, the background sources of features

deemed to be of particular interest, such as air polluting industries or regular p- and

s- wave generating small-scale tectonic movements, can be modelled in a probabilistic

manner based on a knowledge of their emission rates and the medium in which the

propagation takes place. Radionuclide emissions from the nuclear industry are used

to demonstrate this theory, and the results displayed in Figure 4.6 indicate that our

objective of demonstrating how the general characteristics of the background data

can be modelled has been realized. As expected, the model captures the key fea-

ture system under study. In particular, the simulation demonstrates the successive

movement of the distribution to the left of the histogram at greater distances from

the source. Furthermore, we witness a narrowing of the shape of the histogram at

a greater distance, which is indicative of the pollutant body becoming increasingly

well-mixed over an expanding area. Both of these results are confirmed in Figure 4.7

through the sequentially decreasing mean values and standard deviations. Larger-

scale and longer experiments, which include seasonal variations in the atmosphere,
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Figure 4.9: This figure illustrates the downwind propagation of a cloud of vented
radioxenon. In particular, the effects of diffusion and radioactive decay are demon-
strate through the incrementally decreasing concentrations of radioxenon (modelled
as smaller red spikes) measured at each successive receptor site.

and for more emitters at greater distances, will help to further validate this in the

future. However, we believe that the current model presents a solid foundation for

any future study.

SE events, which are characteristically random in a multitude of ways, are inher-

ently difficult to simulate. Moreover, the successful recreation of one event within a
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modelled domain does not imply a generally applicable model. A great deal of effort

must be applied to the proper tuning of most models in order for them to recreate

events with minimal error. However, often, as is the case for the generation of data for

PR systems, our desire is to produce a large number of plausible scenarios that cap-

ture the general relationship between the background and SE events. Moreover, we

are interested in how the rare SE events, which possess largely unknown distribution

in time, space and magnitude, can be simulated, and their effects subsequently prop-

agated through the model. Figure 4.8 and Figure 4.9, provided excellent depictions

of how a series of probabilistic choices can be applied to generate SE events in space,

time and magnitude, in addition to propagating the resulting phenomena through

the transmission medium. Indeed, the demonstrated model captures the subsequent

rise and fall that occurs in the feature space of an individual downwind receptor af-

fected by the episode. In particular, the slumping spikes in Figure 4.8 illustrates the

relationship between the dispersion and distance travelled, as does Figure 4.9, which

additionally demonstrates the modelling of radioactive decay.

Our proposed modelling framework, thus, provides an effective means by which a

researcher can execute the initial exploratory phase analysis within in a large number

of domains and scenarios, in addition to facilitating a domain-specific data generation

scheme for the training, testing, validating and debugging of PR systems.

4.8 Conclusion

In this chapter, we have considered a relatively new field, namely that of modelling

SE events such as earthquakes, nuclear explosions etc. The difficulty with such a

modelling process is that most of the observations appear as noise. However, when

the SE event does occur, its magnitude and features far overshadow the background,

as one observes after a seismic event.

In particular, we present a straightforward theory, which states that in the long-

term, measurable features produced by characteristically noisy background sources,

take a relatively consistent and recognizable form. Moreover, by using the knowledge

of the propagation medium and a general description of the background sources, the
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major features can be modelled sufficiently for the purpose of exploring the effects

of SE events. Given the largely random and sporadic nature of these SE events, we

argue that for exploratory purposes, they proceed through a series of probabilistic

decisions.

In the spirit of the radionuclide monitoring challenge suggested by the Compre-

hensive Nuclear Test-Ban-Treaty, we demonstrate how the nuclear industry can be

assumed to take the role of the background source, thus, affecting relatively consistent

levels of radioxenon at a set of receptor sites. Subsequently, we have demonstrated

how the consequence of detonations of nuclear weapons can be generated and propa-

gated through the modelled system.



Chapter 5

Classifying Stochastically Episodic

Events

5.1 Introduction

A common assumption within supervised learning is that the distributions of the

target classes can be learned, either parametrically or non-parametrically. Moreover,

it is assumed that a representative set of data from these classes is available for the

training of supervised learning algorithms; indeed, the latter implies the former1.

Beyond this commonly reported method of classification, there exists a special

form of PR. This “exceptional” category of binary classification is noteworthy in lieu

of the significant challenge that it presents. Escalating the difficulty, is the fact that

drawing a representative set of data to compose the second class, which is fundamental

to the derivation of a binary discriminant function, is abnormally arduous, if not

altogether impossible. The difficulty of acquiring a sufficiently symbolic set may arise

because of (a) the natural imbalance in the classification task, (b) the difficulty of

acquiring samples of the minority class, and (c) the task of obtaining representative

samples of the minority class is overwhelming.

PR tasks of this nature have previously been constituted as involving outlier (or

1Some of the research that is presented in this chapter has been submitted for publication in [7].

90
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novelty) detection due to the fact that the vast majority of the data takes a well-

defined form that can be learned, and that samples from the ω2 class will appear

anomalously – outside the learned distribution. Examples of such problems have

traditionally motivated research into the so-called area of “one-class” classification

[34, 42, 49, 53, 111]. Although these problems are significantly more difficult than

those that involve well-defined binary problems with ample data, the results in these

papers report state-of-the-art PR solutions.

To expand the horizon of the field, we observe that there exists a further, and

yet more challenging subset of the one-class classification domain of problems, which

remains unexplored. Typically, the accessible class, and in particular, the data on

which the one-class classifier is trained, is considered to be well-defined. Thus, it is

presumed that this data will enable the classifier to generalize an adequate function to

discriminate between the two conceptual classes. This, for example, was demonstrated

in [111], where the training set consisted exclusively of images of non-cancerous tissue.

Similarly, in [42], a representative set of the target computer user’s typing patterns,

which are both easily accessible and verifiable, were utilized in the training processes.

The classification task becomes considerably more difficult when deriving a strong

estimate of the target class’s distribution is unfeasible, and when the validity of

instances drawn from the target class are suspect, or if the occurrences of the minority

class are temporally (i.e., with respect to the time-axis) interwoven with the data from

the majority class. More specifically, the derivation of a suitable classifier is further

obstructed when the target class presents itself in the form of a time sequence that

is interwoven with a minute number of SE events, which must be distinguished.

Under these circumstances, we envision two possible techniques for discriminating

between the target class and the SE events of interest. If the incoming training

data contains a sufficient quantity of accurately identifiable, SE events, a standard

clustering/PR algorithm could be applied to label both the classes appropriately.

Subsequent to the labelling procedure, a standard binary classifier could be trained

and utilized to achieve the classification of novel instances. In this body of work, we

refer to this scenario as S1, and the subsequent scenario as S2.
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Alternatively, and more applicable in scenarios in which the SE events are ex-

tremely rare, all of the training data can be assigned to the target class, and a

one-class classifier can be applied. The details of, and justification for, this approach

are described in the subsequent sections. Our primary objective in this research is

to illustrate how standard supervised learning algorithms can be applied to discrimi-

nate rare SE events, which apart being unanticipated, are random in magnitude and

position within the sequence of background data.

The subsequent section, Section 5.2, proceeds to describe the target domain in

general terms, and to draw a conceptual distinction between it and those to which

one-class classifiers have traditionally been applied. The state-of-the-art in PR is

described in some detail in Section 5.3. In Section 5.4, we describe an experiment

based on the exemplary task of verifying the Comprehensive Nuclear Test-Ban-Treaty

(CTBT). The results of the two classification experiments are contained in Sections

5.5 and 5.6. Finally, a discussion of the results is undertaken in Section 5.7, and

Section 5.8, consists of our concluding remarks.

5.2 Characteristics of the Domain of Problems

In the introductory section, we presented an interesting sub-category of novelty de-

tection. We contend that this particular class of problems can be viewed in a manner

that separates it from the larger set of one-class classification tasks. To reiterate this,

we have identified a new sub-category of PR problems. This sub-category has a set

of characteristics that collectively distinguish it from its more general counterparts.

The characteristics of this category can be best summarized as follows:

• The data presents itself as a time sequence;

• The state-of-nature is dominated by a single class;

• The minority class is challenging to identify, even for domain experts, and occurs

both rarely and randomly within the data sequence.

To accentuate the difference between the problems that have been studied and

the type of problems investigated in this research, we refer the reader to Table 5.1.
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Dataset Temporal ID Imbalance Imbalance Interwoven
Challenge Type I Type II

Mammogram No Low Yes Medium No
Continuous typist recognition No Low Yes Medium No

Password hardening No Low Yes Medium No
Mechanical fault detection No* Low Yes Medium No

Intrusion detection No* High Yes High No
Oil spill No* High Yes Medium No*

CTBT verification Yes High Yes High Yes

Table 5.1: A comparison of well-known one-class classification problems. The expla-
nation about the entries is found in the text.

This table displays an assessment of six classification problems that have previously

appeared in the literature on one-class classification. In addition, we include the

CTBT verification problem that characterizes the problems analyzed in this research.

The first column indicates whether the problem has traditionally been viewed as

possessing an important temporal aspect. The three entries with an asterisk require

special consideration. In particular, we note that while traditionally these domains

have not been studied with a temporal orientation, they do indeed contain a temporal

aspect. The subsequent column signals whether the manual labelling of data drawn

from the application domain is a significant challenge. This is, for example, considered

to be a very difficult task within the field of computer intrusion detection, where

attacks are well disguised in order to subvert the system.

The following two columns quantify the presence of class imbalance. In the first

of these, we apply a standard assessment of class imbalance, one which relies on the

determination of the a priori class probabilities. Our subsequent judgement departs

slightly from the standard view, and considers class imbalance that arises from the

difficulty of acquiring measurements (due to cost, privacy, etc.). The final column

specifies if the minority class occurs rarely, and randomly (in time and magnitude),

and if it occurs within a time sequence dominated by the majority class.

To summarize, in this section we have both demonstrated the novelty of this newly

introduced sub-category of PR problems, and positioned the CTBT verification task

within it. We additionally note that the fault detection, intrusion detection, and
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oil spill problems could be reformulated to meet the requirements of our proposed

category. This, indeed, suggests a new angle from which these problems can be

approached.

5.3 Pattern Recognition Algorithms

In this section we present, in some detail, the algorithmic composition of five bi-

nary classifiers and four one-class classifiers, which were respectively applied to the

classification scenarios previously described as S1 and S2.

5.3.1 Binary Classification

Standard PR problems typically assume the existence of data that was drawn in-

dependently and identically from the application domain, and that the data can

be divided upon class lines into the (in our setting, two) representative sets. The

availability of such data facilitates the training of binary classifiers, which have been

demonstrated to be proficient at learning class distributions, and ultimately labelling

novel instances.

Bayesian Classification

Bayesian decision theory is the fundamental statistical approach to PR [28]. It as-

sumes both that the problem is stated in probabilistic terms, and that the relevant

parameters are known. More specifically, it is assumed that the a piori class probabil-

ities, P (ωi), for the i states-of-nature are known, and these are in practice, estimated.

Likewise, the class-conditional probability densities, p(x|ωi), are also assumed to be

known, in practice, they are derived from the training data.

With this essential information, Bayesian classifiers are able to assign novel in-

stances to the most probable state-of-nature [68]. In particular, a novel instance, x,

where x is a d -dimensional attribute vector, {x1, x2, · · · , xd}, is assigned to the class

with the Maximum A Posteriori (MAP) probability, formally denoted ΩMAP .
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The ΩMAP decision is arrived at via Bayes’ rule, and is formulated as follows:

ΩMAP =argmax
ωj∈V

P (ωj|x)

= argmax
ωj∈V

p(x|ωj)P (ωj)

p(x)
. (5.1)

Since the p(x) term is assumed for all the classes, it can subsequently be omitted, to

yield:

ΩMAP =argmax
ωj∈V

p(x|ωj)P (ωj), (5.2)

While the required a priori probability can be easily estimated from a sufficient

training set, procuring the class-conditional probabilities turns out to be an obstacle

to the application of the Bayesian classifier. The challenge results from the large

number of training instances required in order to derive a strong estimate of the

entire density for the class-conditional distributions. To demonstrate the magnitude

of this challenge, consider a binary classification problem in a d -dimensional feature

space, where each of the d attributes can take one of k nominal values. In this

scenario, the practitioner is faced with the problem of estimating Θ(kd) probabilities,

each requiring a considerable number of instances if one aims to obtain a strong

estimate.

Näıve Bayes

The Näıve Bayes (NB) classifier is founded on Bayes’ decision theory; however, it

simplifies the decision making process by involving an assumption that the attributes

are conditionally independent. Therefore, given class ωj, the probability of observing

the feature vector {x1, x2, · · · , xd}, is the product of the probability of witnessing the

individual attributes, calculated as:

p(x|ωj) =
∏

i

p(xi|ωj). (5.3)

Generally, the NB classifier takes the following form:

ΩNB = argmax
ωj∈V

P (ωj)
∏

i

p(xi|ωj). (5.4)
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As a result of the simplifying assumption of conditional independence, the NB

classifier, in accordance with our previous example, only requires the estimation of

Θ(dk) class-conditional probability densities.

Estimating Class-Conditional Probabilities

Generally, one of two approaches are utilized in the estimation of the class-conditional

densities during the training of the NB classifier. In the case of numeric attributes, a

statistical distribution, such as the Gaussian, is assumed to characterize the instances

of the attribute under consideration [126]. Thus, learning/training involves estimating

the required parameters for the underlying distribution, which must be achieved using

the set of instances.

If a Gaussian distribution is assumed (similarly for other distributions), the mean,

µ, and the standard deviation, σ, are estimated from the training instances. Subse-

quently, the probability density of the variables xi take the form

pN (xi) =
1√
2πσ

− e
(xi−µ)2

2σ2 , (5.5)

where xi is the attribute value of interest.

When nominal attributes are to be considered, the class-conditional distributions,

are calculated by observing the occurrence frequencies, within the class, as a propor-

tion over the total number of training instances. Although this approach generally

produces strong estimates, a good estimate is unlikely if the nominal value appears

only rarely in the training data. In particular, such scenarios produce biased under-

estimates, and the classifier becomes denominated by the infrequent nominal value,

due to the product found in Equation (5.4).

Mitchell, in [68], describes an approach to avoid this issue based on the so-called

m-estimate:
nc +mp

n+m
, (5.6)

where nc is the number of times the value occurs in the training set, and n is the

number of training instances. The quantity p denotes the estimated a priori proba-

bility of the nominal value, and finally, the quantity m is the equivalent sample size,

which dictates how heavily p is weighted relative to the observed data.
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Instance-Based Learning

Instance-based (IB) learning is, perhaps, the simplest form of machine learning. In its

generic form, all training instances are stored, or memorized, for use during testing,

and when the classifier is deployed. More specifically, when a trained IB classifier

is presented with a novel instance, the instance is labelled according to the class of

the most “similar” instance(s) in memory. As a result, it can be said that the IB

learners use the training data to represent knowledge rather than inferring a decision

boundary or a set of classification rules. Thus, the outstanding question is that of

deciding how one should approach the question of similarity.

The k -Nearest Neighbour (kNN) approach to IB learning assesses similarity ac-

cording to the distance between instances in their d -dimensional feature space. Thus,

for the base-case, where k = 1, a novel instance is assigned to the class of its nearest

neighbour in the training set. More generally, kNN classification takes the form of a

majority vote rule, where the novel instance is assigned to the class occupied by the

majority of its k -nearest neighbours.

Distance Measures

Within the feature space, distance is typically assessed as a Euclidean measurement

in kNN implementations [68]. The Euclidean distance between an arbitrary training

instance, x, and a novel instance, q, is measured as:

d(x,q) =

√

Σd
i=1

(

xi − qi

)2

. (5.7)

Since we are only interested in performing comparisons, within the kNN framework,

the square root can be omitted.

Alternative approaches to assessing distance include increasing the power factor

in the p-norm, where the exponent is replaced by a constant ‘p’. Such norms have

the effect of elevating the influence of larger spreads within the feature space on the

final result. Alternatively, the Manhattan distance has also been applied to measure

distance in k -NN implementations.
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Normalization

Prior to quantifying the measured and recorded distance, the attributes generally

require normalization, as they typically exist on different scales. Without normaliza-

tion, attributes whose instances span larger ranges, acquire a disproportionate influ-

ence over the resulting distance measure. The standard normalization procedure, as

described in [126], for an instance v of the ith attribute is:

ai =
vi −min(vi)

max(vi)−min(vi)
, (5.8)

where the minimum and maximum are taken over the set of training instances for the

attribute in question.

Decision Trees

Decision trees are one of the most widely-researched and applied forms of machine

learning utilized in the field of data mining [126]. The iterative process of deriving a

decision tree from a training set, D, can be concisely described as follows:

1. Select an attribute, Ai, to form the root;

(a) Make one branch for each nominal value, or numeric range of the attribute;

2. Repeat the process for each child node, Ni, while the instances of Ni are not

drawn from a single class.

The choice of which attribute to split on at each iteration of the tree’s construc-

tion is fundamental to the ultimate form of the decision tree. Thus, the goal when

selecting Ai, is to find the attribute that will most effectively split the training in-

stances along class lines, thereby producing the most compact tree. Unfortunately,

the determination of the smallest possible tree for a given training set is an NP-hard

problem [45]. Therefore, one seeks a method that can be applied so as to estimate

the best attribute upon which the tree can be split. This process is described in next

section.

A more accurate description of the stopping criteria for the iterative process that

was described above, contains two possibilities. The process either halts when each
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leaf is pure, or when splitting offers no improvements. Due to the inherent challenge

of selecting the “best” Ai to split on, the iterative process often results in a complex

tree that “over-fits the data” by inferring more structure than is warranted [85]. As a

means of reducing the effect of over-fitting, and in particular, to limit the degradation

of performance during application, the tree is pruned to a more general form in the

final stage. The process of pruning a learned tree is described in a subsequent section.

Calculating Information Gain

As a means of assessing the benefit of splitting on a particular attribute, the authors

of [126] describe a process that calculates the Information content of the attribute,

which measures the number of bits required to specify the class of a novel instance.

In particular, the information (or more formally the entropy) of each branch resulting

from a split on the attribute under consideration is calculated as follows:

Entropy(p1, p2, ..., pn) = − p1logp1 − p2logp2 − ...− pnlogpn, (5.9)

where, in a binary problem, the pi terms specify the ratio of instances from each class

at a particular branch. Therefore, if five instances (2 from class ω1, and 3 from class

ω2, for example) fall under the branch being considered, then the information for that

branch is estimated as:

Information([2, 3]) =− 2

5
log

2

5
− 3

5
log

3

5

=0.971.

In continuing with the example presented in [126], we assume three daughter nodes

are produced by branching on the attribute Ai, each with the following information:

Information([2, 3]) =0.971,

Information([4, 0]) =0.0,

Information([3, 2]) =0.971.

In order to derive the final assessment of information gain produced by Ai, the three
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values are first combined to form the average information:

information([2, 3], [4, 0], [3, 2]) =
5

14
× 0.971 +

4

14
× 0.0 +

5

14
× 0.971 (5.10)

=0.693,

where the previously calculated information scores are scaled according to the ratio

of instances in the branch over the total number of instances in the daughter nodes.

This value indicates the number of bits required to classify a novel instance.

Finally, to estimate the amount of information gained by splitting on Ai, the

average information calculated in Equation (5.10) is subtracted from the information

of the parent node. Thus, if we assume that the parent node contains nine instances of

class ω1 and five instances of class ω2, the information Gain (IG) takes the following

form:

IG(Ai) =Information([9, 5])− Information([2, 3], [4, 0], [3, 2])

=0.940− 0.693 = 0.247.

The IG quantity, thus, provides the necessary tools to estimate the best attribute

on which the tree can be split, based on the information available at the node under

consideration. In particular, the best attribute to split on is found by choosing the

attribute Ai that produces the largest IG.

This calculation, however, is biased towards attributes with a large number of

possible values, or ranges. In the worst case, for example, each instance has a unique

value, and therefore, the resulting average information equals zero. Thus, the IG

is equal to the information of the parent node, which is, by definition, the highest

possible information gain for the node. The structure that would result from this

choice, however, would not be informative.

This bias is neutralized by taking into consideration the number and size of daugh-

ter nodes produced by the split. More specifically, the information gain is divided

by the information for each branch, disregarding all class information, and is referred

to as the IG Ratio. This penalizes attributes that produce a large number of splits

and/or few instances per split.
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Finally, to prevent an overcompensation, the attribute identified by the IG Ratio

is selected if, and only if, its IG is at least as large as the average IG as calculated

over the set of alternate attributes.

Pruning

The pruning of the decision tree can either be commenced during the building of

the tree or after the complete tree has been learned from the training data. These

two approaches to generalizing decision trees are referred to as pre-pruning and post-

pruning, respectively. The widely applied C4.5 decision tree routine [85] utilizes a

specific form of pruning, referred to as subtree raising. The post-pruning process

begins with the leaves, and traverses up the tree, at each node considering whether

or not a pruning phase should be involved. This paradigm aims to find nodes, and

their subtrees, that can be replaced by their descendent nodes and their subtrees.

While this approach is implemented in C4.5, Witten and Frank note, in [126], that

the benefits of this complex replacement procedure are not obvious.

Alternatively, post-pruning can take the form of subtree replacement. This is a

considerably more routine procedure. The objective of this post-pruning procedure

is to iteratively progress from each of the leaves to the root, finding ascendents that

can be replaced by leaves.

Regardless of the approach, the pruning decision is made according to an estimate

of the error at the node. The standard verification technique, which holds back

some of the training data for use as an independent verification set, is referred to

as reduced-error pruning. Error estimation is subsequently performed according to

standard statistics, and is based on the error incurred during validation. The inherent

disadvantage of this technique is that the complete set of training data is not utilized

in the learning process.

The alternative approach, which is utilized in the C4.5 algorithm, performs error

estimation based on the training data itself. While this approach is based on weak

statistical reasoning, it generally works well [126]. In order to estimate the error at

a node without having to set aside a portion of the training data, the class of each

instance at the node is considered, and the node is assigned to the majority class.



CHAPTER 5. Classifying Stochastically Episodic Events 102

This assignment produces an error, E, for that node as a rate out of the total number

of instances, N . In estimating the error rate, we assume q is the true probability of

the error, and that the N instances are generated as Bernoulli random events, with

the parameter q, of which E are errors.

Finally, given a particular confidence limit, c (c = 0.25 in C4.5), the upper confi-

dence limit for z is found in the standard statistical way:

Pr

[

f − q
√

q(1− q)/N
> z

]

= c,

where f is the observed error rate. The upper confidence limit is then applied as a

pessimistic estimate of the error rate, e, for the node under consideration:

e =
f + z2

2N
+ z

√

f
N
− f2

N
+ z2

4N2

1 + z2

N

.

Multilayer Perceptron

The feed-forward Multilayer Perceptron (MLP) is a nonlinear classification strategy,

which is composed of perceptron-like models arranged into a hierarchical structure

with directed edges. A generic form of the MLP classifier with one hidden layer is

depicted in Figure 5.1.

Individually, perceptrons, which for the building blocks of MLP classifiers, are

capable of learning a linear discriminant function (linear discriminant functions are

commonly referred to as hyperplanes) to bisect the feature space, and separate the

class ω1 from class ω2. In terms of propositional logic, simple perceptron classifiers can

represent the AND, OR, and NOT connections. The XOR connection, however, is not

linearly separable, and thus, cannot be represented by a perceptron. This limitation

is overcome by the MLP classifier through the introduction of at least one hidden

layer composed of an arbitrary number of hidden perceptron units. An example with

a single hidden layer and three hidden units is illustrated in Figure 5.1. The first and

last layers of the figure are standard to all MLP classifiers. In particular, the first

layer is referred to as the input layer, it has one unit per component of the input

vector. The last layer contains a single output unit, which specifies the predicted

class.
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Xj
1 Xj

2

...
Xj

n−1
Xj

n
Input Layer

Ouput Layer

Multi-Layer Perceptron

yj1

Figure 5.1: This figure demonstrates the general form of the Multilayer Perceptron
(MPL).

Backpropagation

MLP classifiers learn through a process formally know as backpropagation. In essence,

this process enables the determination of the appropriate connection weights for each

edge in the network. The learning process deviates from that utilized by the simple

perceptron because the appropriate output for the inner units is unknown, and thus,

cannot be applied to verify the output and initiate an adjustment of the connection

weight when necessary. As a result, the necessity of weight adjustments must be

inferred from the success or failure of the output units prediction.

Subsequent to a miss-classification during training, the recalculation of the connec-

tion weights is treated as a problem of mathematical optimization, know as gradient

descent. This process, however, utilizes differential calculus to find the most direct

path (i.e., steepest slope) to the minimum error. Thus, the error function must be

differentiable. The square error loss function of the networks output is commonly

applied to quantify error in the network. For a single instance, the loss function takes

the following form:

E =
1

2

(

y − f(x)

)2

, (5.11)

where f(x) is the predicted class value, and y is the class label (0 or 1). The di-

rection that most significantly reduces the error on the training set can be found by
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differentiating Equation (5.11).

In addition to the error function, the prediction function, f(x), must be differen-

tiable. The standard step function:

f(x) =

{

1 if f(x) ≥ 0

0 otherwise,

which predicts class ω1 if the output is greater than zero, and class ω2 otherwise, is

utilized by the perceptron classifier. However, since this function is not differentiable,

one resorts to using an alternate function. The sigmoid function:

f(x) =
1

1 = e−y
, (5.12)

is differentiable and behaves similar to the step function, and thus, it is a good

replacement.

To reiterate, Witten and Frank describes the gradient descent process, in [126], as

one that iteratively adjusts the functions parameters in an organized manner, thereby

producing successive movements towards the optimal values. More specifically, the

result of the derivative is multiplied by the learning rate, which is a small constant

value (e.g., 0.1 [68]), and finally, the combined result is subtracted from the current

weight.

The purpose of the learning rate is to specify the size of the step taken in the

direction of the steepest descent at each successive iteration. Therefore, assigning

the learning rate to be a small value induces a slow progression towards convergence.

Alternatively, larger learning rates can reduce the time taken to converge to the min-

imum error. However, with larger steps there is a risk of over-stepping the minimum

error, and possibly oscillating about it.

The gradient descent strategy for minimizing error can be shown to converge to

the local minimum. When a series of local minima exist, it is often necessary to pass

through one or more hulls in the error curve in order to reach the global minimum. In

such scenarios an additional momentum parameter is required to propel the gradient

descent process through the valleys formed by the local minima to settle at the global

minimum [68].
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Gradient Descent

As previously described, the gradient descent algorithm iteratively differentiates Equa-

tion (5.11) in order to update each weighted edge, wi, in the network. Thus, the

derivative acquires the following form:

dE

dwij

= (y − f(x))f ′(x)f(xi), (5.13)

where f(xi) is the output of the ith unit, x is the weighted sum of the input, and

wij is the weight of the edge from the input unit j to the ith hidden unit. The wi

term denotes the weight of the ith hidden unit to the output layer, and finally, f(x)

and f ′(x), represent the classification decision, determined as a result of the sigmoid

function, and the derivative to the sigmoid function.

Updating the weights between the inner units involves a slightly more complex

derivative:
dE

dwij

= (y − f(x))f ′(x)
dx

dwij

, (5.14)

where, since

x =
∑

i

wif(xi)

dx

dwij

=wi
df(xi

dwij

.

Furthermore:
df(xi

dwij

= f ′(xi)
dxi

dwij

= f ′(xi)ai. (5.15)

Thus, the equation for the derivative of the error function with respect to the wij

weights is:
dE

dwij

= (y − f(x))f ′(x)wif
′(xi)ai. (5.16)

Equation (5.16) is evaluated for every training instance, and the modifications

associated with each wij are combined, multiplied by the learning rate, and subtracted

from the current value at the end of each iterative cycle.

For networks with multiple hidden layers, the process is easily extended. In the

case of two hidden layers, for example, the previous strategy is applied a second
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time. The weights of the second hidden layer are adjusted in the manner previously

described, and those of the first hidden layer are updated by propagating the error

from the output layer through the second hidden layer to the first hidden layer.

Support Vector Machines

Support Vector Machines (SVM) utilize linear models in the derivation of nonlinear

classifiers. This is achieved by mapping the input onto a high-dimensional space via

a nonlinear mapping. Through the mapping, a function that is linear in the original

feature space become nonlinear. Conversely, a decision boundary, which is linear in

the high-dimensional space, appears nonlinear in the original feature space.

A variety of possible mappings between lower and higher dimensional spaces exist,

one approach is to expand the feature space by replacing the original set of features

with all the products of n factors that can be constructed:

x = w1a
n
1 + w2a

n−1
1 a12 + ... + wna

1
1a

n−1
2 + wn+1a

n
2 , (5.17)

where x is the outcome, a1 and a2 are the original features in a 2-dimensional space,

and the wi terms are the weights that must be learned by, for example, a multi-

response linear regression classifier.

Polynomial mappings that are of this sort, and are of sufficiently high order can

approximate arbitrary decision boundaries of any required accuracy [126].

As it stands, two significant challenges effect the application of a classifier of this

form:

a) Computational Complexity: Mapping the feature space onto a higher dimension

causes the number of weight coefficients that must be learned to rapidly expand.

In a 10-dimensional feature space, for example, if the original feature set is

mapped according to all of the products with 5 factors, one must learn more

than 2,000 coefficients.

b) Over-fitting: In any scenario where the number of features is large relative to

the number of training instances, the derivation of a discriminant function that

overfits the training data is a risk.
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The fundamental strength of the SVM is that it reduces the computational com-

plexity and minimizes the risk of over-fitting through the application of a special

form of linear model, namely, the Maximum Margin Hyperplane (MMH). The MMH

is a linear model that separates the two classes of data in the training set, coming

no closer to either class then is absolutely necessary. More specifically, of the set of

separating hyperplanes that are appropriate for the training data, the MMH is the

hyperplane possessing the greatest distance from the convex hulls that encompass

each class. Recall that the two classes are linearly separable as a result of a map-

ping to a high-dimensional space, thus, the convex hulls are linearly separable by the

MMH. The MMH is further distinguishable by the fact that it is perpendicular to the

shortest path between the two convex hulls. Subsequent to the determination of the

MMH

Figure 5.2: This figure demonstrates the calculation of the Maximum Margin Hyper-
plane (MMH) for the SVM.

MMH, the support vectors are recognized as those vectors the reside closest to the

MMH. By definition, each class has at least one support vector, and often more than

one.

In a two dimensional space, the separating hyperplane can be defined as:

x = w0 + w1a1 + w2a2. (5.18)
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More generally, the MMH can be written in terms of its support vectors as follows:

x = b +
∑

i∈SV

αiyi a(i) · a, (5.19)

where SV is the set of support vectors, yi is the class value, and a(i) is the ith

support vector. The b and αi are numeric terms that must be learned, a denotes a

test instance, and a(i) · a signifies the dot product of the two terms.

The determination of the support vectors and the corresponding b and αi val-

ues can be viewed as an optimization problem, and in particular, can be solved via

constraint quadratic optimization. However, the complexity of the problem can be

reduced with SVM-specific training procedures [96].

Overfitting

In general, overfitting is associated with variability in the finally learned decision

boundary. In particular, over-fitting, as we previously discussed in Chapter 3, occurs

when the discriminant function incorporates the intricacies of the training data. Thus,

with high probability, when the training data changes, so does the discriminate func-

tion. This is largely avoided, however, in SVM classifiers, because the support vectors

are inherently stable across training sets. More specifically, the support vectors are

unlikely to change, and as a result, the MMH is unlikely to change.

Computational Complexity

The computation complexity that results from the application of Equation (5.19) in

high-dimensional spaces is significant due to the number of components in vectors

of the dot product, a(i) · a, which is computed both during training and testing.

However, much of this complexity can sufficiently be avoided by computing the dot

product prior to the nonlinear mapping. In doing so, Equation (5.19) is modified to:

x = b +
∑

i∈SV

αiyi (a(i) · a)n, (5.20)

where the terms in the dot product have not been mapped to the high-dimensional

space, and the n term denotes the number of factors in the transformation.
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When expanded, (a(i) · a)n contains all of the terms that were present in the

nonlinear transformation described by Equation (5.17). In addition, the expansion

contains some binomial coefficients, however, these are inconsequential to the final

result. Therefore, the constraint quadratic optimization problem can be evaluated

for (a(i) · a)n, where n is initialized to the value of 1, and is incremented until the

estimated error stabilizes.

This approach utilizes what is commonly referred to as the polynomial kernel,

(a(i)·a)n. Alternate techniques apply the radial basis function, or the sigmoid function

as the kernel [96].

5.3.2 One-Class Classification

As previously indicated, so-called one-class classifiers rely on instances drawn inde-

pendently from a single class in the derivation of a discriminant function. A broad set

of one-class classifiers exists in the literature, each of which applies a slightly different

strategy for the construction of a binary classifier using the data from a single class.

However, in simple terms, the process can be articulated as one in which the selected

classifier learns to recognize, in some general terms, novel instances that are similar

to those viewed during the training process. Should a novel instance be recognized, it

is subsequently labelled as a member of the positive class. In particular, this refers to

the class on which the one-class classifier was trained. Alternatively, if the novel in-

stance does not appear to fit into the learned distribution, it is identified as a member

of the outlier class.

As previously indicated, the standard motivation behind the use of a one-class

classifier is the presence of an underlying difficulty that hinders the acquisition of a

representative set of instances of the second class. Thus, the primary class, often

referred to as the target class [42], or the positive class [23], which is importantly

considered to be well-defined, is utilized alone in the derivation of the binary classifier.

This is, indeed, often the case in the first scenario (namely S1) that we described in

Section 5.2. However, the challenge inherent in the second scenario (S2) dictates that

the primary class will not be well-defined, as it is likely to contain erroneously labelled
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instances of the outlier class. This is a direct result of the impracticality of manually

identifying and labelling them.

In such a scenario, we propose the application of one-class classifiers as unsuper-

vised classifiers, that are trained on datasets in which the vast majority of instances

have correctly been extracted from the background class. However, the impractical-

ity of identifying outliers (rare SE events that are interwoven in the time-series of

background data), implies the probable presence of some näıvely labelled training

instance.

We propose that by utilizing estimates of the state-of-nature acquired, possibly,

from domain experts, the noisy training set can be overcome by setting the error-rate

(or rejection rate) parameter, which exists in many one-class classifiers, to account

for the a priori probability of the outlier class.

In the subsections that follow, we describe, in reasonable detail, the various re-

ported approaches for achieving one-class classification.

Nearest Neighbour

Datta, in [23], introduced a modified version of the standard nearest neighbour clas-

sifier, which was described in Section 5.3.1, for conducting one-class classification.

The proposed one-class Nearest Neighbour (ocNN) algorithm deviates from its

binary counterpart by searching the training set, X, for the target rejection rate

threshold, τ where:

τ = argmax
xi∈X

distance

(

xi, NN(xi)

)

, (5.21)

where xi is a training instance, and NN(xi) returns the nearest neighbour of the

instance xi. Thus, τ is the maximum distance between any two nearest neighbours

in the set of nearest neighbours constructed from the training data.

Given a novel instance, x, and the learned parameter, τ , x is classified by first

finding its nearest neighbour in the training set, and then comparing the distance

that separates them to the learned target rejection rate threshold.
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Formally, the ocNN classification decision is defined as:

f(x) =







1 distance

(

x, NN(x)

)

≥ τ

0 otherwise.

Therefore, if x deviates too much from the training data, it is assigned to the

outlier class (ω2).

Scaled Nearest Neighbour

In recognition of the proposed sub-category of the so-called domain of “one-class”

classification that we have introduced in this chapter, a corresponding modification

has been made to the ocNN classifier.

The modification was motivated by the second classification scenario, namely S2.

In particular, this scenario is characterized by a series of rare SE events where:

• The data exists as a time-series.

• The state-of-nature is dominated by a single class (the ω1 class composes more

than, for example 90% of the instances).

• The minority class is nearly impossible to manually identify. Thus, it näıvely

takes the ω1 label in the training set.

In this scenario, we have stated that due to the rarity of the outlier class, and the

extreme challenge of manually labelling those instances in the training set, it can be

näıvely issued to a one-class classifier. Moreover, this can be done with considerable

confidence, provided that an estimate of the a priori probability of the outlier class

can be acquired. This hypothesis relies on the availability of a so-called rejection rate,

which ensures a portion of the training set will be misclassified after the derivation

of the discriminant function.

However, the standard ocNN algorithm is intuitively unable to learn a threshold

capable of discriminating most of the erroneously labelled outliers, and is inherently

ineffective in the presence of noise. The problem, which is embedded in the ocNN

algorithm, is depicted in Figure 5.3. By definition, the näıvely labelled instances of
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Figure 5.3: This figure demonstrates the calculation of the τ parameter in the ocNN
classifiers, and the effect of erroneous instances in the training set on the learned
target rejection rate threshold.

the second class are outliers. Thus, they are expected to reside on the periphery of

the “real” background distribution. Therefore, with a high probability, the learned

parameter, τ , which is intended to record variability in the background class [23],

can be expected to represent the distance between a background instance and an

erroneously labelled member of the outlier class. A hypothetical learned distance of

this sort is illustrated in Figure 5.3 as τ1.

Ideally, however, the algorithm should learn the distance that is denoted as τ2,

because it is the maximum target rejection rate threshold found in the set of pure

background instances (represented as empty circles).

Because this scenario creates an unsupervised learning environment, in which we

cannot explicitly identify the members of the outlier class during training, we rely on

a rejection rate parameter to be engrained in the one-class classification algorithm in

order to facilitate the exclusion of these instances. However, while Datta coined τ as

the target rejection rate threshold, by definition it does not exclude any instances in
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the training set. Indeed, this was not the intention. Thus, in this exceptional domain,

it incorporates the erroneous information provided by the mislabelled members of the

outlier class into the learned threshold, as is depicted by τ1 in Figure 5.3.

As a means of accounting for the overestimate, we have added a scaling parameter,

ǫ, where 0 < ǫ ≤ 1, such that

τ ′ = ǫ · τ, (5.22)

with the understanding that the optimal value of ǫ will enable the rejection of the

majority of the outlier instances, by reducing the magnitude of the learned threshold.

Combined Density and Class Probability Estimation

The Combined Density and Class Probability Estimation (CDCPE) technique for

one-class classification is based on the generation of an artificial second class of data.

The artificial class is generated according to a user-specified reference distribution,

such as a multivariate Gaussian, which ideally reflects that of the available class, ω1.

In their introductory work, Hempstalk et al. [42] utilized Bayes’ rule:

P (ω1|x) =
p(x|ω1)P (ω1)

p(x)
, (5.23)

where ω1 is the background, or training class, x is instance drawn from the domain,

and P (ω1|x) is the true probability mass function, to illustrate how the density func-

tion of the reference distribution can be combined with the class probability estimate

of a classification model to yield a description of the background class.

They noted that in a binary scenario, the probability of an instance, x, includes

both the chance of it occurring as a member of class ω1 or class ω2, and thus, Bayes’

rule can be expanded to:

P (ω1|x) =
p(x|ω1)P (ω1)

p(x|ω1)P (ω1) + p(x|ω2)P (ω2)
. (5.24)

Of primary interest is the probability density function p(x|ω1), as it is utilized in

the one-class classification process. Through a series of algebraic operations p(x|ω1)

can be arrived at:

p(x|ω1) =
(1− P (ω1))P (ω1|x)
P (ω1)(1− P (ω1|x))

p(x|ω2). (5.25)
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Equation (5.25) relates the density of the artificial class p(x|ω2) to the density of

the background class p(x|ω2) via the class probability mass function and the a priori

class probability P (ω1).

Autoassociator

The Autoassociator (AA), introduced by Hanson and Kegl, in [40], functions in much

the same manner as its binary counterpart, the MLP. However, in the absence of

instances drawn from the second class, the AA is trained to reproduce the input

vector at the output layer [49]. Thus, it is assumed that the instances of training sets

were drawn purely from the background class.

As a result, the general structure of the AA network deviates from that of the

MLP. In particular, both the input and output layer of the AA network have l units,

where l is the number of features, or dimensions, in the dataset. In addition, the AA

has a single hidden layer with an arbitrary number of hidden units. The structure of

the AA, in this case with three hidden units, is depicted in Figure 5.4. As described

xj
1 xj

2

...
xj
n−1

xj
n

yj1 yj1 ... yjn−1 yjn

Input Layer

Ouput Layer

Figure 5.4: This figure demonstrates the neural structure of the autoassociator clas-
sifier.

in our presentation of the MLP classifier, the AA is trained using backpropagation

to minimize the squared error of the network (see Section 5.3.1 for further details on

the training process).

The primary concept that facilitates the application of the AA as a classifier is

the assumption that the training process enables it to infer a function, f(x), that
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captures the essence of the background class. Thus, when the trained classifier is

presented with a novel instance, its corresponding class can be determined according

to the AA’s ability to reconstruct the components of the instance at the output layer,

via the inferred function.

During testing, the quality of the reconstruction is quantified as the sum of the

squared error at each of the corresponding input and output units. This value is ulti-

mately required to formulate the class prediction for the novel instance. In particular,

if the reconstruction error exceeds the user-defined threshold, the instance is assigned

to the outlier class; otherwise, it is classified as a member of the background class.

Support Vector Machines

Schölkopf et al., in [97], modified the standard SVM classification algorithm to pro-

duce a similitude that is applicable to one-class classification problems. The one-class

Support Vector Machine (ocSVM) utilizes a function that returns +1 in a small region

that encompasses the majority of the training instances, and -1 elsewhere.

The proposed algorithm’s operations are largely consistent with the inner mech-

anisms of the binary SVM classifier. In particular, the data is initially mapped onto

an extended feature space via a kernel function. Subsequent to the mapping, the

process momentarily deviates from its binary counterpart due to the absence of a

second class. As a result, the Maximum Margin Hyperplane (MMH) that separates

the two classes of the binary problem, is found to divide the majority of the instances

in the training set from the origin.

Finally, novel instances are classified in the familiar manner according to their

position relative to the MMH, with those residing on the side of the majority of the

training data receiving a +1, and the others a -1.

In mathematical terms, the authors presented the algorithm as an initial mapping,

φ, of the training data {x1,x2, ...,xl} ∈ χ, where l ∈ N is the number of training

instances, from χ to F .

More specifically, the process, which corresponds to that of the standard binary

SVM, applies a mapping on to a dot product feature space F such that the dot

product in the image can be computed via a kernel function.
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To separate the training instances from the origin, the quadratic program:

min
ω∈F, ξ∈Rl, ρ∈R

(

1

2
||ω||2 +

1

vl

l
∑

i=1

ξi − ρ

)

,

subject to,

(ω · φ(xi)) ≥ ρ− ξi, i = 1, 2, ..., l ξi ≥ 0,

is solved. If w and ρ solve the problem, then the discriminant function takes the form:

f(x) = sgn

(

∑

i

αik(xi,x)− ρ

)

, (5.26)

where f(x) returns +1 for most instances in χ, while the support vector regulation

term ||w|| will be small. This trade-off is controlled by the value of v, where v ∈ (0, 1].

5.4 Experimental Setup

In this section, we present a series of experiments designed to both illustrate the

demonstration domain, and to exhibit a first attempt at classifying this sub-category

of PR problems.

5.4.1 Application Domain

The CTBT aims to prevent nuclear proliferation through the banning of all nuclear

detonations in the environment. A number of verification strategies are currently

under study; aimed at ensuring the integrity of the treaty. The primary verification

technique being explored relies on the quantity of radioxenon measured at individ-

ual receptor sites, distributed throughout the globe, and an ability to distinguish

background levels from those affected by clandestine detonations. As a result, verifi-

cation based on four radioxenon isotopes, i.e., 131Xe, 133Xe, 133mXe and 135Xe, has

previously been formulated as a PR task [106].

For the purpose of this thesis, we note that the presence of these xenon isotopes

in the atmosphere can be traced back to one of two scenarios. In general, they are

expected to have resulted from the nuclear industry. However, they are also the
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byproducts of the detonation of nuclear weapons, thus, presenting a standard binary

classification problem.

It must be emphasized, that if a member state were to conduct a test, it would be

in breach of international law. Thus, it is logical to assume that should a detonation

occur, it would likely be clandestine in nature, and inherently difficult to manually

detect within the background noise.

5.4.2 Simulation Aspects: Procuring Data Collection

As a means of acquiring experimental datasets for this research, we utilized the sim-

ulation framework presented in Chapter 4. The simulation framework models SE

events, such as earthquakes, nuclear explosions, etc., as they propagate through the

background noise.

In particular, when generalizing a case-study for a particular environment with a

set of means and higher-order moments, the simulation system requires two execution

phases. The simulation begins with the user’s specification of a set of input variables,

which define the nature of the generalized case-study. In particular, the industrial

and receptor locations are defined, along with the mean and variance of the pollutant

emission rates for each industrial emitter.

The simulation facilitates the definition of one or more seasons. Each user-defined

season is accompanied by a specified conceptual, mean wind field over the region of

interest, and the corresponding variances. This accounts for the seasonal variability

in the background pollutant levels, resulting from board shifts in meteorology, such

as those demonstrated in [32]. The variances are applied in the generation of random

hourly oscillations in the wind field and emission rates. Finally, the user defines a

desired simulation time in terms of hours. One cumulative hourly background result is

recorded for each hour of the simulation. Alternatively, the occurrence of an explosion

is probabilistic within the specified time period.

Both the background and the explosion execution paths of the simulator can be

executed in parallel, as they are independent of each other. The background gen-

eration path initiates by generating random Gaussian variations on the user-defined
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means, which remain constant for the duration of the hour, in accordance with the

steady-state principle for which the Gaussian functions apply.

The result returned from the Gaussian plume model corresponds to the average

pollutant volume expected at the receptor site for any one second interval during

the simulated hour. Therefore, the returned result is multiplied by 3,600 in order to

acquire an estimate of the cumulative pollutant concentration over the course of the

hour. Finally, the background prediction is scaled according to the rate of decay for

the individual isotope and written to the dataset with the background class label.

The initial stage of the explosion execution path runs a new instance of the back-

ground path, with the same environmental variable, in order to derive a new set of

background measurements for the region. Should an explosion occur at time i, and

subsequently become measurable to the receptor, the effect is added to the background

levels at the appropriate time. The Gaussian puff model is iteratively integrated over

successive one hour periods, and combined with the background measurements for

each time period, until the remnants of the detonation are no longer felt. In the last

stage, the results are labelled and written to the dataset.

While it is generally beneficial to develop and study classifiers on “real” data,

this is, indeed, impossible within the CTBT verification problem due to the ab-

sence of measured detonations, and the limited availability of background instances.

Moreover, it has previously been demonstrated that artificial data can be utilized

for development in the absence of “real” measurements, and to generate controlled

experiments, (generalized case-studies) for the exploration of PR performance [1, 26].

5.4.3 Source Position Recalculation

As a means of accounting for the indirect paths, which may be travelled by the

pollutant plume emitted from an industrial source or the pollutant puffs vented from

a detonation site, the relative position of the source with respect to the receptor site

is re-evaluated each time the mean wind field is updated during the simulation.

The repositioning of the source location according to the prevailing winds is illus-

trated in Figure 5.5. The source, I, and receptor, R, are illustrated on the map in red.
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I'

Shortest path

Wind directed path

Figure 5.5: This figure illustrates the process of recalculating the relative position
of an industrial emitter according to the mean wind field for a particular hour. The
relative repositioning of the industrial emitter from I to I′ accounts for the additional
travel time and distance resulting from the indirect path from the source to the
receptor.

A dotted black line connects the source to the receptor highlighting the shortest path.

This is the path that the pollutant plume would follow if the atmospheric flow were

to travel directly from the source to the receptor. However, this is highly improbable

over great distances.

In this figure, the short black arrows form a theoretical wind field, existing for

a period of time during the simulation. This wind field transports the plume on an

arched path from northern Canada, through eastern Ontario and up the St. Laurence

River, eventually arriving at the receptor site in Quebec city.

Fundamentally, the Gaussian models assume the dispersing pollutant is being

advected in a straight trajectory. In compensating for this, the relative position of

the source is recalculated each time the atmospheric conditions are recalculated, in

order to account for the additional travel time and distance. We can account for
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the indirect path by changing the relative position because we are only interested in

the concentration at the receptor site, and not the points in between. This process

is demonstrated in the figure by shifting the source location to position I′. More

specifically, the additional distance induced by the arched wind field is added to

the shortest path distance, and the standard Gaussian models are applied with the

adjusted wind path blowing directly from the source to the receptor.

5.4.4 Simulation Setup

The simulation framework previously described has been applied in order to demon-

strate classifier performance in a simplified, CTBT motivated domain. A similar

demonstration domain, is depicted in Figure 5.6, with the receptor site positioned at

the centre, and a single industrial emitter located at a radial distance of 3,000 km

and at a 180 degree angle from the directed x -axis.

Intuitively, we expect that those detonations occurring nearest to the receptor will

be most detectable. In order to test this hypothesis, and to approximate the distance

at which classifier performance degrades to unsatisfactory levels, we have formulated

our simulation to facilitate the specification of classifier performance as a function

of distance. To accomplish this, we have executed a script that iteratively calls

the simulator. At each iteration, the atmospheric means and higher-order moments,

along with the industrial and receptor parameters are held constant, although, they

are subjected to Gaussian fluctuations. The only variable over each iteration, is the

radial range of the random explosions. During the first iteration, all detonations occur

in a ring around the receptor, between 500 km and 1,000 km. As demonstrated in

Figure 5.6, at each successive iteration the upper and lower bounds are incremented

by 500 km. For the purpose of this experiment, 23 iterations were utilized, which

extended the upper bound of the radial distance to 12,000 km.

As a means of strengthening our results, the iterative process was repeated ten

times, creating ten datasets for each radial range, which resulted in a total of 230 inde-

pendent datasets, and the acquisition of ensemble mean estimates of the performance

of each classifier within each radial range.
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Figure 5.6: This figure demonstrates the iterative composition of the simulated do-
main. In each iteration of the simulation, a fixed number of explosions are proba-
bilistically generated as uniform, random events in time, space and magnitude, and
dispersed according to the prevailing meteorology, which may or may not carry the
pollutant cloud past the receptor site. The mean radial distance to the explosion sites
is incremented after each successive iteration.

5.4.5 Classification Scenarios

As mentioned in the introductory section, within this challenging domain of classifi-

cation problems, there exist two conceivable scenarios, which we have denoted as S1

and S2. These scenarios explicitly influence the choice of the classification scheme

applied to the task of recognizing the SE events.

Intuitively, the first scenario presents a slightly easier classification problem, be-

cause a set, albeit small, of SE events can be extracted from the application domain

and applied to train and/or test the PR systems. More specifically, within this sce-

nario, we assume that the outlier class is both identifiable and available in quantities
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that facilitate the training of binary classifiers. However, in many ways, the classifi-

cation problem still presents itself as a so-called one-class classification task, and thus

warrants exploration on both fronts.

Alternatively, the second scenario presents itself as a much more difficult PR task,

and in many ways more accurately reflects the PR problem suggested by the detection

of SE events, in general, and the verification of the CTBT, in particular.

In accordance with the general domain characteristics, as they were originally

defined, the data presents itself as a time-series of background measurements that are

interwoven with a minute number of SE events. However, unlike the ideal scenario

depicted in S1, here we attempt to assume a state-of-nature that is more appropriate

for the CTBT task. In particular, we assume that there is a 1% a priori probability

of a detonation, which, while still an overestimate, is a more accurate depiction, while

it still provides insight into the behaviour of PR systems on the SE event class.

Raising the difficulty further, is the recognition that in practice, the clandestine

nature of the SE events are such that manually identifying a distant clandestine occur-

rence in the acquired time-series of readings is extremely difficult, if not impossible.

Thus, this prohibits the derivation of a labelled training set, which dictates that prac-

titioners are left to utilize a training set composed largely of background instances,

but with a minute number of unidentifiable members of the SE event class.

In the absence of a labelled training set, we propose the application of standard

one-class learners as unsupervised classifiers. When applying one-class classifiers to

an unlabelled training set, the practitioner must rely on the knowledge of a domain

expert to acquire estimates of the individual a priori class probabilities.

In particular, estimates of the state-of-nature are required to appropriately specify

the parameters of the one-class classifiers, such as the rejection rate, or error rate. This

technique aims to prevent the inclusion of the SE event instances in the generalized

description of the background class. Our reliance on an error, or rejection rate,

presumes that the SE events will reside on the periphery of the background class,

and thus, by marginally tightening the generalization of the background class, those

instances of the SE event class will no longer be included.
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5.4.6 Classifier Assessment Criteria

As discussed in the previous section, this research considers classifier performance

within two distinct scenarios. Within each of the scenarios, namely S1 and S2, we

consider classifier performance according to a set of criteria. These criteria are sub-

sequently discussed in greater detail.

In particular, we examined the general performance of the classifiers across all

of the simulated detonation ranges. Performance in this category is particularly

important, as, in practice, the detonation ranges are largely unpredictable. The

results of this assessment are presented in Sections 5.5.1 and 5.6.1. In addition, we

explored classifier performance within two shorter detonation ranges, the result of

which is presented in Sections 5.5.2 and 5.6.2.

The classifier performance as a function of distance was also examined. The results

of this comparison are detailed in Sections 5.5.3 and 5.6.3.

Finally, in light of the inherent challenge of distinguishing these two very similar

classes according to the four radioxenon isotopes, we were motivated to explore an

expanded CTBT feature space. Based on the significant role held by meteorology in

affecting the pollutant levels at the receptor site, we surmised that the inclusion of

meteorological features would improve the performance of the classifiers. The results

of our experiments with an expanded feature space are provided in Sections 5.5.4 and

5.6.4.

5.5 Results: Scenario 1

In this section, we present the results that were obtained according to the four assess-

ment criteria that were motivated in the previous section, on the first classification

scenario. We commence our exploration of PR performance by examining the Area

Under the ROC Curve (AUC) scores produced by each classifier over the 23 detona-

tion ranges.
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5.5.1 General Performance

In this section, we present a general overview of the performance levels of each of the

considered classifiers on the simulated CTBT domain. More specifically, we present

an assessment of the five binary classifiers and the four one-class classifiers, in terms

of their AUC scores averaged over the 230 datasets that spanned the 23 detonation

ranges.

In light of the fact that the SE events, which are to be identified, will, in practice,

occur at random and unpredictable distances, these results are a particularly insightful

overview of the general performance levels.
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Figure 5.7: This figure displays the performance of the nine classifiers, in terms of
their AUC scores on the 230 generated CTBT datasets, in the form of a series of
boxplots.
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The results depicted in Figure 5.7 were compiled as a series of boxplots; one for

each classifier.

The solid lines that bisect the boxes represent the median AUC score produced by

the particular classifier. The box itself indicates the distribution of the middle half of

the AUC scores produced by the classifier. Thus, it stretches from the 25th percentile

(at the lower hinge) to the 75th percentile (at the upper hinge). The boxes that are

evenly divided indicate that the classifier’s scores are evenly distributed throughout

the central region. This is, indeed, the case for AA and NB.

The fact that there is no box around the median indicator for the SVM, suggests

that nearly all of the AUC results were equivalent, and in this case, approximately

0.5. The relatively large number of circles extending up from the median, individually

identify outliers. This suggests that, in general, the SVM classifier performed poorly,

but that it occasionally produced anomalously strong results, which stretched slightly

beyond 0.8.

Alternatively, the scenario where the median does not produce an even bisection

of the box indicates that the distribution of the inter-quartile range is skewed. This is

the case, for example, with PDEN, where the upper-quartile is large, indicating that

the points composing the upper-quartile are spread over a larger distance.

The dashed lines, or whiskers, stretch to either the maximum and minimum values,

where outliers do not exist, or to 1.5 times the range of the inter-quartile region in

scenarios with outliers, such as in the case with the SVM classification results.

The SVM classifier is, surprisingly, by far the worst performing classifier on this

data, and in spite of its bias, it is, on average, worse than the one-class classifiers,

AA and socNN. This is reiterated in Table 5.2, which contrasts the mean AUC scores

of AA and socNN as 0.656 and 0.603, respectively, with the mean value for the SVM

classifier of 0.528. Moreover, all four one-class classifiers appear superior to the SVM

when considered in terms of their maximum AUC scores.

When assessing the classifiers according to the boxplot, the median value provides

a good indication of their performances, in general. However, most interesting are the

ranges of the inter- and outer-quartiles along with the presence of the outliers, when

combined with a high median value, as these components provide a strong indication
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Mean Max Min STDV

NB 0.772 0.939 0.504 0.074
MLP 0.869 0.976 0.674 0.067
NN 0.741 0.913 0.584 0.071
J48 0.774 0.98 0.500 0.148
SVM 0.528 0.813 0.500 0.065
ocNN 0.540 0.875 0.496 0.087
PDEN 0.487 0.943 0.182 0.156
socNN 0.603 0.842 0.405 0.094
AA 0.656 0.970 0.251 0.140

Table 5.2: This table displays the general classification results, in terms of AUC.

of how likely it is that the classifiers will reproduce the median result.

In these terms, the binary classifier, the MLP, stands out as the superior classifier,

with J48, NN, and NB contending for the intermediate positions. The results posted

in Table 5.2 confirm that the MLP is the strongest of the classifiers considered here.

Furthermore, it indicates that the J48 and NB are very similar, and that the NN

is the fourth ranking binary classifier according to the mean and maximum scores.

However, the NN is second when ranked according to the minimum AUC scores.

Notably, of the set of one-class classifiers, PDEN produced the most variable

range of the AUC scores. It is our suspicion that this variability resulted from the

PDEN’s generation of an artificial second class in its training process. However,

further exploration of this matter is required.

In general, the AA classifier is identified as the strongest one-class classifier, both

with respect to its mean and median values. While the socNN classifier achieved

the second highest mean, it is more stable than the AA, and does not produce any

anomalous results. Indeed, the socNN has a lower standard deviation and its boxplot

spans a smaller range.

5.5.2 Performance on Short- and Long-Range Detonations

In Figure 5.8, we present the AUC results produced over two detonation ranges of

particular interest. Boxplot (i) in this figure contains the results for the datasets
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that included detonations ranging from 1,000 km and 5,500 km, while Boxplot (ii)

has those with detonations between 5,500 km and 10,000 km. Together, these plots

contrast the performance of the individual classifiers in the various detonation ranges.

This experimental setup demonstrates one technique through which the performance

of various receptor network topologies can be examined. For example, if PR within the

second range is found to be a considerable challenge, the shorter range may, perhaps,

be considered an upper bound on the acceptable distance between receptors.

There are two factors at play when hypothesizing about classifier performance

within these ranges. Intuitively, detonations closer to the receptor side will be more

visible at the receptor site, provided the meteorological conditions are such that the

emissions are advected in the direction of the receptor. Conversely, detonations that

occur farther afield are likely to have a smaller influence on the pollutant levels at the

receptor site, leading to a more challenging classification problem. On the surface,

then, it appears that nearby detonations should be easier to detect. Indeed, the very

near detonations are often easily identifiable. However, the scenario is made more

complex by the fact that during the simulation, the industrial source was positioned

approximately in the middle of the shorter range. Thus, there was, in a sense, a great

deal of competing background noise to distort the signal.

Indeed, Figure 5.8 demonstrates that within this scenario it is possible for the

performance of the classifiers to improve when detonations occur at greater distances.

However, the fact that this only occurred for the binary classifiers, highlights the

importance of the second class in the learning process. It turns out that the majority

of the binary classifiers are able to, through the training process, utilize the low

concentration instances of the detonation class, which resulted from explosions at

great distances, to specialize their models to the counter-intuitive point where many

of the instances with low concentrations were correctly identified as explosions.

Alternatively, the figure suggests that neither the one-class classifiers, nor the

SVM, were able learn a model with this characteristic. Moreover, the SVM exclusively

produces AUC scores of 0.5 within the second range, and the ocNN’s performance

was nearly equivalent. Finally, at greater distances, the PDEN’s performance fell

even further, with only a minute number of instances exceeding an AUC of 0.5.
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Figure 5.8: In this figure, Boxplot (i) displays the performance of the nine classifiers,
in terms of their AUC scores for detonations occurring between the distances of
1,000 km and 5,500 km, and Boxplot (ii) displays their performances for detonations
between the distances of 5,500 km and 10,000 km.

Within the shorter range, it is notable that the stronger one-class classifiers,

namely the AA and socNN, are very comparable with most of the binary classi-

fiers. However, the distinction in favour of the binary learners is emphasized for the

larger detonation range.

5.5.3 Performance as a Function of Distance

In this sub-section, we present the classifier performance as a function of distance.

Performance is assessed both according to the AUC and the False Positive Rate

(FPR).

A false positive occurs when the classifier mislabels a novel instance as a member

of the positive class (in this case, a member of the background class), when it is, in

fact, a member of the negative class (specifically, a member of the SE event class).

Thus, the FPR is the total number of false positives over the total number of negative

instances. As a metric, FPR provides insight into whether the model is overly biased

towards the positive class, which is a significant risk when the problem is extremely
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imbalanced.

These results are particularly interesting, as they provide greater insight into

performance trends. Moreover, these suggest a performance scale for successively

sparser receptor networks, and enable the interested parties to weigh the cost of

receptor stations against the probability of detection.

The performance plots depicted both in Figure 5.9 and Figure 5.10 were produced

by calculating the ensemble mean of each classifier’s performance at the 23 detonation

ranges, and then through the extrapolation of a performance function.

Within Figure 5.9, the MLP classifier is identifiably the superior classifier to the

remaining four binary learners in terms of the AUC, across the range of detonation

distances. In addition, it is not subject to the abrupt fluctuations that J48, and to a

lesser extent NB, incur.

All of the classifiers, with the SVM appearing as the sole exception, have notable

hulls in their performance curves that extend over varying distances and to distinct

depths. In each case, a slow descent begins immediately, and is subsequently accom-

panied by a slow ascent. Alternatively, the SVM classifier suffers from a similar initial

decline. However, it fails to recover from the degradation at greater distances.

In each case, the position of the performance hull roughly corresponds to the radial

distance between the industrial source of radioxenon and the receptor site. Thus, this

suggests that detonations occurring at approximately the same radial distance as

that of the primary background emitter are a significant challenge for the detection

systems.

Plot (i) in Figure 5.9 confirms our previous findings, which identified the MLP

as the top classifier in this domain, the SVM as the worst, and the remaining three

classifiers as contenders for the inner rankings. Indeed, while there are notable differ-

ences in the AUC plots for the J48, the NB, and the NN, the fact that their functions

cross at numerous points, prohibits the derivation of a general ranking over the entire

range of distances.

Plot (ii) in Figure 5.9 presents the performance of the one-class learners as a func-

tion of distance. In general, the plot demonstrates that all of the one-class classifiers

follow a similar downward trend from their initial peaks, which occurred between 0.8
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Figure 5.9: In this figure, plot (i) displays the performance of the five binary classifiers,
in terms of their AUC scores, as a function of distance. Similarly, plot (ii) displays
the performances of the four one-class classifiers as a function of distance, according
to their AUC scores.
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Figure 5.10: In this figure, plot (i) displays the performance of the five binary clas-
sifiers, in terms of their FPR scores, as a function of distance. Similarly, plot (ii)
displays the performances of the four one-class classifiers as a function of distance,
according to their FPR scores.
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and 0.9, towards, or beyond in the case of the PDEN, an AUC of 0.5.

Moreover, the performance functions are broadly divisible into two categories.

Both the ocNN and the PDEN descend relatively quickly, while the AA and the

socNN degrade in a slower, more linear fashion. Therefore, the AA and the socNN

are the more suitable of the four one-class learners, with the AA appearing generally

superior to the socNN.

The performance of the nine classifiers, measured in terms of the FPR metric, are

plotted as a function of distance in Figure 5.10. In this figure, plot (i) emphasizes the

significant challenge incurred by the binary learners when the detonations occur at a

distance similar to the noise source. Although we previously identified the MLP as

the strongest binary classifier on this domain, for a relatively broad range (roughly

between 25,000 km and 65,000 km), the vast majority of instances, which are truly of

the detonation class, were assigned to the background class. The results are similar

for J48. Interestingly, NB has the smallest area under its FPR curve. Thus, it least

often identified members of the SE event class as background noise. While we do

not consider the FPR results to be individually sufficient for model selection, they do

provide some very intriguing insight into the behaviour of the classifiers.

The trends for the one-class classifiers in plot (i) follow much the same trends

previously seen in Figure 5.9. In particular, the AA and the socNN are superior to

the PDEN and the ocNN. However, the distinction between the AA and the socNN

is less clear.

5.5.4 Expanded Feature-Space

Through our exploration of this most interesting of classification problems, we rec-

ognized both the inherent challenge presented in the classification of SE events that

are interwoven in background noise, and the role of meteorology in effecting the very

noise levels that make the task so difficult.

Our extensive consideration of this application domain has led us to identify the

particularly strong relationship between the wind direction and pollutant levels at

the receptor, which suggests a possibly informative feature.
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By expanding the standard CTBT feature space to include wind direction, we have

produced a significant increase in the AUC. In particular, the top classifiers (MLP,

AA, socNN), now demonstrate the ability to detect detonations that, when considered

solely on the basis of the four radioxenon measurements, fit into the background

distribution with high probability. This fact is, indeed, depicted for many of the

binary and one-class classifiers in Figure 5.11 and Figure 5.12.

In particular, while the depth to the hull in the performance of the MLP decreases

only slightly, the J48’s hull is entirely removed when the wind direction feature is

added. Thus, the J48 classification ceases to be affected by the detonation distance

when the new feature is included. In addition, its mean AUC is significantly improved.

The NN and SVM classifiers also benefit from the inclusion of the wind direction

feature. However, the new feature has a slightly negative effect on the NB. It has

been noted in the literature, that many of the PR algorithms, including the MLP,

SVM and NB may benefit from normalization of the features [28, 126]. Thus, it is

conceivable that the performance of these classifier may be improved to some degree.

However, these results provide a good baseline from which the individual classifiers

can be compared.

By expanding the feature-space to include the wind direction, the one-class learner,

socNN, improves significantly, and becomes, in general, the top learner amongst its

peers. The classifier, AA, also improves as a result of the new feature. However, its

AUC scores do not increase to the same extent as the socNN.

Similar to the socNN, the PDEN’s initial performance is lower in the newly ex-

panded feature-space. However, the majority of its performance function is elevated.

Finally, the ocNN benefits the least from the new feature, although, its initial perfor-

mance is improved.

Thus, in the worst case, the wind direction feature produces marginal improve-

ments in the performance of the four one-class learners. However, it significantly

improves both the AA and the socNN’s ability to perform in scenarios where the

detonations occur at distances equivalent to, and beyond the radial distance to the

background source.

In Figure 5.13, a series of boxplots are utilized to facilitate the comparison of
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Figure 5.11: This figure contrasts the performance of the binary classifiers, in terms
of the AUC as a function of distance, on the standard feature-space (see Plot (i)),
and when the feature-space is extended to include an assessment of the wind direction
(see Plot (ii)).
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Figure 5.12: This figure contrasts the performance of the one-class classifiers, in terms
of the AUC as a function of distance, on the standard feature-space (see Plot (i)), and
when the feature-space in extended to include an assessment of the wind direction
(see Plot (ii)).
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Figure 5.13: This figure utilizes a series of boxplots to compare the performance of the
nine classifiers and the standard feature-space, and with the extended feature-space,
which is augmented by a wind direction indicator.
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classifier performance in the two feature-spaces. Indeed, these results confirm the

trends that we have previously identified. Particularly noteworthy is the depiction

of J48’s performance; this plot emphasizes both the significant increase in the J48’s

median AUC score, and the impressive stabilization of its classification results when

the wind direction feature is added. The benefits to the SVM are also well visualized

in this figure.

It is, indeed, well demonstrated in Figure 5.11, Figure 5.12, and Figure 5.13

that the additional information has assisted many of the classifiers to overcome the

significant challenges inherent in identifying SE events within the field of background

noise.

5.6 Results: Scenario 2

In this section, we present the results that were produced on the four assessment crite-

ria that were motivated, and utilized in the previous sections. In this section, however,

as we explore the very intriguing classification scenario, which we previously denoted

S1. This exploration follows the same structure that was previously applied in the

exploration of the first classification scenario. Thus, we begin by examining the AUC

scores produced by each of the one-class classifiers over the 23 detonation ranges; we

then proceed to consider the performance over the two successive, smaller distances,

the performance as a function of distance, and finally the benefit of expanding the

feature-space to include an additional wind direction feature.

5.6.1 General Performance

In this section, we present a general overview of the performance of the set of one-

class classifiers on the simulated CTBT domain. More specifically, we present an

assessment of the four one-class classifiers, in terms of their AUC scores on the 230

datasets that covered the 23 detonation ranges.

Once again, in light of the fact that the SE event will, in practice, occur at random

and unpredictable distances, these results are particularly insightful.
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Figure 5.14: This figure displays the performance of the four classifiers, in terms of
their AUC scores on the 230 generated CTBT datasets, in the form of a series of
boxplots.
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Mean Max Min STDV

ocNN 0.505 1 0.496 0.042
PDEN 0.507 1 0.075 0.185
socNN 0.587 1 0.292 0.171
AA 0.621 1 0.024 0.225

Table 5.3: This table displays the general classification results, in terms of AUC.

The results that are depicted in Figure 5.14 were compiled as a series of boxplots;

one for each classifier. In addition, Table 5.3 contains a compilation of the mean,

maximum, minimum and standard deviation of the each classifier’s overall results.

Our assessments of both Figure 5.14 and Table 5.3 reveal that, similar to our

findings on the S1 scenario, the AA classifier is superior, in terms of its mean, and

median scores, to the other one-class classifiers. Indeed, on this, which is a more

challenging task, its mean and median values are only slightly lower than in the

previous task. However, within this second scenario, it has the lowest minimum AUC

scores, which appear as outliers in the boxplot. In addition, it is extremely unstable,

with results ranging from perfect to near zero.

The classifier, socNN, ranks second after the AA according to its median and

mean, and was considerably more stable, while the ocNN and PDEN classifiers pro-

duced values that were near or below 0.5.

5.6.2 Performance on Short- and Long-Range Detonations

In Figure 5.15, we present the results produced over two detonation ranges of par-

ticular interest. Specifically, Boxplot (i) in the figure contains the results for the

datasets that include detonations between the distances of 1,000 km and 5,500 km,

while Boxplot (ii) has those with detonations between 5,500 km and 10,000 km. To-

gether, these plots demonstrate, contrary to the previous results, that there is little

change in performance at greater distances.
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Figure 5.15: In this figure, Boxplot (i) displays the performance of the four classifiers,
in terms of their AUC scores for detonations occurring between the distances of
1,000 km and 5,500 km, and Boxplot (ii) displays their performances for detonations
between the distances of 5,500 km and 10,000 km.

5.6.3 Performance as a Function of Distance

In this sub-section, we present classifier performance as a function of distance. As

in the previous section, performance is assessed both according to the AUC and the

FPR.

The AA and socNN are, once again, roughly identifiable as the best of the four

classifiers in Figure 5.16 and Figure 5.17. However, all of the classifiers, with the ex-

ception of ocNN, which rapidly converges to 0.5, suffer from significant and essentially

random fluctuations. These fluctuations in performance suggest that the classifiers’

results were as dependent on the nature of the SE events in the 230 datasets, as on

the distance at which the events originally occurred.
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Figure 5.16: This figure displays the performance of the four one-class classifiers as a
function of distance, according to their AUC scores.
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Figure 5.17: This figure displays the performance of the four one-class classifiers as a
function of distance, according to their FPR scores.
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5.6.4 Expanded Feature-Space

In this final section, we consider the benefits of extending the feature space to include

a wind direction indicator. In Figure 5.18, both the original plot of the four classi-

fiers’ performances as a function of distance, and their performances on the extended

feature-space are plotted. For an alternate view, the comparison is composed of a

series of boxplots in Figure 5.19.

These figures illustrate that both the AA and the socNN significantly benefit

from the expanded feature-space. Indeed, the socNN benefits the most, as it becomes

superior to the AA for the vast majority of distances, and the variability in its results

are significantly dampened.

5.7 Discussion

In this section, we consider the results previously reported for the one-class classifiers

in comparison to those reported for the binary learners. In particular, Section 5.7.1

compares the two classification strategies within the first scenario, namely S1. Alter-

natively, the one-class classifiers are considered in comparison to the set of standard

binary classifiers on scenario S2 in Section 5.7.2.

5.7.1 Results: S1

The relatively low mean and median AUC scores produced by the one-class clas-

sifiers, combined with the considerable variability in their results on the standard

CTBT feature-space, particularly in comparison with the top binary learners, clearly

illustrate the many challenges inherent in applying one-class learning to the deriva-

tion of a binary classifier. However, Hempstalk et al., in [42], previously identified

similar comparisons between binary and one-class learners as “näıve” comparisons,

when applied to scenarios that are accurately identifiable as one-class problems.

In particular, in so-called one-class problems, such as the detection of SE events,

the second class is inherently ill-understood due to the fact that a characteristic

set cannot be drawn from it. Thus, training and testing a binary learner as if one
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Figure 5.18: This figure contrasts the performance of the one-class classifiers, in terms
of the AUC as a function of distance, on the standard feature-space (see Plot (i)),
and when the feature-space is extended to include an assessment of the wind direction
(see Plot (ii)).



CHAPTER 5. Classifying Stochastically Episodic Events 144

AA ocNN PDEN socNN

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Figure 5.19: This figure utilizes a series of boxplots to compare the performance of the
four classifiers and the standard feature-space, and with the extended feature-space,
which is augmented by a wind direction indicator.
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could draw a representative set from the second class, which is generally assumed

when training a binary classifier, provides an upper bound on the classifier’s future

performance.

The key differences in the performance of the two forms of classifiers is well illus-

trated in Figures 5.8 and 5.9. While the one-class classifiers are very competitive on

the initial radial ranges, when the detonation occurs further afield, their AUC scores

drop considerably in comparison to all of the binary classifiers, with the exception of

the SVM. The initial success of the one-class classifiers suggests that they are very

capable of associating anomalously high levels of radioxenon with the SE event class.

However, the binary learners are not only well adapted to classifying anomalously

highly levels as members of the SE event class, through the binary learning process

they are also capable of drawing on the anomalously low levels, which commonly result

from detonations that occurred well beyond the radial distance to the background

source, to specialize their decision boundaries such that similar events are recognized

as belonging to the SE event class in the future.

The results of expanding the standard CTBT feature-space to include an indicator

of the prevailing wind were, in general, very favourable, and lead to improved AUC

scores for most of the classifiers, with the NB being the sole exception.

In its essence, the wind direction feature enabled the classifiers to learn the di-

rection of the background source. As a result, the classifiers were able to identify

detonations, which occurred at similar radial distances to the receptor site as the

background emissions, and thus, had signatures that were similar to the background

levels, but were transported from a different direction. This result is identified very

clearly in Figure 5.11, and suggests that the further expansion of the feature-space

might additionally improve performance.

5.7.2 Results: S2

A considerable portion of the previous analysis is applicable to this second, more

challenging, classification scenario. Most importantly, the benefits of the extended

feature-space were witnessed within S2 as well. However, due to the nature of the
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problem, only the one-class classifiers were applied to this first attempt at performing

PR within this new domain.

As a result of the formulation of the problem, we proposed the use of standard

one-class classifiers as unsupervised learners, and relied on inner mechanisms of the

individual classifiers to facilitate the derivation of a model that segregated those

instances of the training set that were accurately of the background class from the

näıvely/erroneously labelled instances of the outlier class.

It is clear that the instability in performance that is depicted with respect to

distance, and which is significantly more apparent in S2 than S1, results both from

the erroneous instances in the training sets of S2, and the variability in classification

challenges presented by the few members of the SE event class in the test sets. Indeed,

the generation of random SE events over a domain as vast as the simulated CTBT

domain, will inevitably produce both very easy, and nearly impossible classification

tasks. Thus, when randomly including only a minute number of these events in

the test sets, it is probable that performance on the SE event class will fluctuate

significantly. This is, of course, why a large number of receptors are required in the

global receptor network.

However, while the ensemble mean performance fluctuates considerably over the

successive radial ranges, when considered in terms of the overall means, or medians,

the performance of the one-class classifiers on the S2 task is only slightly lower than

on the S1 task. In addition, this is true if in Figures 5.9 and 5.16, we were to conduct

our analysis according to a series of best-fit lines.

Finally, as is depicted in Figure 5.18, in addition to elevating the performance

of the top classifiers, the inclusion of the wind direction in the feature-space signifi-

cantly dampens the variability in their performance. Moreover, Saey, in an extensive

study of background radioxenon concentrations in Europe and North America, found

that a few outliers representing significant increases in the background concentrations

can be expected [95]. These outliers are attributed to alternate background sources,

and can be assumed to have arrived at the receptor site via short-lived, and anoma-

lous alterations in meteorology. Based on the standard CTBT feature space, such

events undoubtedly suggest the detonation of a nuclear weapon. However, provided



CHAPTER 5. Classifying Stochastically Episodic Events 147

a sufficient quantity of training data is available, it is conceivable that PR systems

functioning with the wind direction feature may appropriately identify outliers of the

background class.

5.8 Conclusion

In this research, we extend the frontiers of novelty detection through the introduction

of a new field of problems open for analysis. In particular, we note that this new realm

deviates from the standard set of one-class problems based on the presence of three

characteristics, which ultimately amplify the classification challenge. They involve

the temporal nature of the appearance of the data, the fact that the data from the

classes are “interwoven”, and that a labelling procedure is not merely impractical -

it is almost, by definition, impossible.

As a first attempt to tackle these problems, we presented two specialized classifica-

tion strategies as demonstrated within the exemplary scenario intended for the verifi-

cation of the CTBT. More specifically, we applied the simulation framework presented

in Chapter 4, to generate CTBT inspired datasets, and demonstrated these classifi-

cation strategies within the most challenging classification domain. More specifically,

we have shown that one-class classifiers can be successfully applied to classify SE

events, which are unknown, although present, at the time of training.

Finally, we have added a weighting parameter to the one-class nearest neighbour

algorithm, thereby significantly increasing its performance on our experimental do-

main, and demonstrated that the expansion of the CTBT feature space significantly

improves classifier performance on our simulated data, thus, motivating further explo-

ration of the expansion of the standard CTBT feature space to include meteorological

measurements.



Chapter 6

Conclusion and Future Research

This thesis was motivated by a desire to advance the state-of-the-art in PR by simulta-

neously promoting the existence of a novel and particularly challenging sub-category

of PR problems, and presenting a first attempt at utilizing PR algorithms to classify

the concepts within the domain.

Through our research, we recognized, as has previously been identified in other PR

domains [26], that in the absence of a sufficient supply of “real” data, appropriately

generated artificial data could facilitate insightful research into the classification of

SE events. In the following section of this chapter, we provide a synopsis of the key

contributions that arose first from our work modelling and simulating SE events, and

subsequently from the classification of these events in the generated data. Finally, in

Section 6.2, we suggest possible avenues for future work.

6.1 Contribution

In this section, we first discuss our contribution to the field of modelling and simula-

tion. This occurs in Section 6.1.1. Subsequently, we discuss our contribution to PR

in Section 6.1.2.

148



CHAPTER 6. CONCLUSION AND FUTURE RESEARCH 149

6.1.1 Modelling and Simulation

With this research, we have explored a relatively new field, namely the modelling and

simulation of SE events as they propagate through a time-series composed, primarily

of noise-like measurements.

The challenge, which inevitably arises when modelling systems such as these, that

contain rare and unpredictable components, is that the prerequisite knowledge of

the distribution is inaccessible. In overcoming this challenge, we demonstrated how,

through the application of a divide-and-conquer strategy, which utilized the accessible

domain knowledge, such as emission rates and the details of the propagation medium,

along with a series of probabilistic decisions, systems of SE events can be explored in

a scenario-specific fashion. In particular, we have provided a framework that can be

applied to explore such systems in their own right, or to generate labelled time-series

PR datasets.

Indeed, this framework was utilized in Chapter 5 to generate artificial datasets for

our exploration of SE event classification, and published in [8].

6.1.2 Pattern Recognition

The primary focus of this research examined how PR systems could be deployed in

the classification of SE events. Indeed, Chapter 5 discussed two distinct classification

scenarios within the domain of SE event recognition. Both of these scenarios contained

the following collective set of characteristics, which we demonstrated to be unique to

this sub-category of PR problems:

• The data presents itself as a time sequence;

• The state-of-nature is dominated by a single class;

• The minority class is challenging to identify, even for domain experts, and occurs

both rarely and randomly within the data sequence.

However, we formulated the first scenario in such a way that a sufficient, although

by no means optimal, set of SE events were available to train binary classifiers. Thus,
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we demonstrated how both binary and one-class classifiers could be utilized within

this scenario.

Alternatively, and more appropriate for many SE domains, in the second scenario,

the practitioners’ ability to manually identify the presence of a SE event within the

time-series of background noise is extremely limited. Thus, the acquisition of a dataset

that is entirely appropriate for training binary and/or one-class classifiers is essentially

unachievable.

Our research illustrates, however, that provided there is a mechanism built into

the one-class classifier that enables the practitioner to adjust, and in particular, to

reduce the portion the training set that is encapsulated by the learned discriminant

function, the family of one-class classifiers can by applied to classify this extremely

challenging second scenario. In addition, we provided a modified version of the one-

class nearest neighbour algorithm [23], which is significantly less susceptible to noise,

and is a strong classifier for the most challenging SE events.

Some of the research presented in this chapter has been submitted for publication

in [7].

6.2 Future work

This work can be seen to motivate a number of continuation and future endeavours.

In this section, we discuss the future work as it relates to modelling and simulation

in Section 6.2.1, and with respect to PR in Section 6.2.2.

6.2.1 Modelling and Simulation

With respect to modelling and simulation, there are a number of very interesting

extensions to this work. Most notably, and extremely relevant given the numerous

possibilities for environmental, and human by extension, catastrophe, which could

conceivable result from a host of SE events, this framework warrants the exploration

of SE events from a policy and preparedness perspective. In particular, this framework

is applicable to the exploration of events such as melt-downs at nuclear power plants
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or explosion on deep-sea oil platforms,

In addition, researchers interested in modelling and simulating scenarios with a

more acute set of parameters, within the air pollution domain, are directed to the

many sophisticated ATM discussed in Chapter 3. These models, in many ways, are

more suitable for studies that require increasingly sensitive analyses.

Finally, of significant interest to us is the the exploration of this framework in

more complex scenarios, which, for example, involve multiple sources, simultaneously

occurring SE events, the involvement of real meteorological datasets and more realistic

emission rates. Indeed, with respect to emission rates, researchers in the fields of

physics and chemistry continue to make advancements that will ultimately improve

the predictions of the model.

6.2.2 Pattern Recognition

Continuing with the theme of disaster preparedness, we view the task of SE event

recognition as having significant relevance with respect to earlier warning systems.

In PR, this can be viewed as time-lapse detection efficiency (i.e., how quickly after a

distant event can it be detected at the receptor site, and by extension how “early” is

the warning).

We demonstrated in Chapter 4 that certain SE events can be seen to produce an

approximately bell-shaped rise and subsequent fall in the features measured at the

receptor site. Thus, if PR systems could be derived that detect SE events early in the

initial rise, they would be very useful in evacuation scenarios. These systems could

conceivably be applied to earthquake, tsunami and pollution earlier warning systems.

More directly related to this thesis, we intend to continue our exploration of one-

class classifiers within the second scenario that was proposed in Chapter 5. In partic-

ular, the future work will include the examination of additional one-class classifiers

and further improvements to socNN. This will be conducted on a greater number of

test sets, which include more complex generalized case-studies. In addition, given the

nature of the second scenario, we view the state-of-the-art in clustering algorithms as

a relevant avenue for exploration.
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Finally, we intend to conduct more sophisticated comparisons between the binary

and one-class learners, such as those proposed in [42].
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