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Abstract 

The ability to generate a permanent, stable magnetic field unsupported by an electromotive force is 

fundamental to a variety of engineering applications. Bulk high temperature superconducting (HTS) 

materials can trap magnetic fields of magnitude over ten times higher than the maximum field 

produced by conventional magnets, which is limited practically to rather less than 2 T. In this paper, 

two large c-axis oriented, single-grain YBCO and GdBCO bulk superconductors are magnetised by the 

pulsed field magnetisation (PFM) technique at temperatures of 40 and 65 K and the characteristics 

of the resulting trapped field profile are investigated with a view of magnetising such samples as 

trapped field magnets (TFMs) in-situ inside a trapped flux-type superconducting electric machine. A 

comparison is made between the temperatures at which the pulsed magnetic field is applied and the 

results have strong implications for the optimum operating temperature for TFMs in trapped flux-

type superconducting electric machines. The effects of inhomogeneities, which occur during the 

growth process of single-grain bulk superconductors, on the trapped field and maximum 

temperature rise in the sample are modelled numerically using a 3D finite-element model based on 

the H-formulation and implemented in Comsol Multiphysics 4.3a. The results agree qualitatively with 

the observed experimental results, in that inhomogeneities act to distort the trapped field profile 

and reduce the magnitude of the trapped field due to localised heating within the sample and 

preferential movement and pinning of flux lines around the growth section regions (GSRs) and 

growth sector boundaries (GSBs), respectively. The modelling framework will allow further 

investigation of various inhomogeneities that arise during the processing of (RE)BCO bulk 

superconductors, including inhomogeneous Jc distributions and the presence of current-limiting 

grain boundaries and cracks, and it can be used to assist optimisation of processing and PFM 

techniques for practical bulk superconductor applications. 

  



1. Introduction 

The ability to generate a permanent, stable magnetic field unsupported by an electromotive force is 

fundamental to a variety of engineering applications. The magnetisation of conventional permanent 

magnets, such as NdFeB and SmCo, which is a useful measure of the ability to generate magnetic 

fields, is independent of sample volume and is therefore limited by the material properties of the 

permanent magnet (i.e., it cannot be increased by subtle changes to processing). Bulk high 

temperature superconducting (HTS) materials, on the other hand, trap magnetic flux via the 

generation of macroscopic electrical currents, which leads directly to an increase in magnetisation 

with sample volume. This, in turn, potentially overcomes this fundamental limit in the size of field 

generated by conventional permanent magnets.  

The peak trapped magnetic flux density, Btrap, at the centre of a (RE)BCO (where RE = a rare earth 

element or yttrium) single-grain bulk superconductor, oriented with its thickness parallel to the c-

axis, due to an induced, persistent supercurrent is given in its simplest form by 

Btrap = Aµ0Jcd   (1) 

where A is a geometrical constant, µ0 is the permeability of free space, Jc is the critical current 

density of the superconducting material and d is the sample diameter. This implies two main 

approaches for improving the field trapping ability of a bulk superconductor: 1) by enhancing the 

critical current density through improved flux pinning and increased sample homogeneity, and 2) by 

increasing the sample size. 

Bulk superconductors can trap magnetic fields of magnitude over ten times higher than the 

maximum field produced by conventional magnets, which is limited practically to rather less than 2 T.  

Indeed, the world record field generated by an arrangement of two bulk superconductors currently 

stands at 17 T at 29 K [1]. Bulk superconductors can exhibit Jcs of 5 x 10
4
 A/cm

2
 at 1 T and 77 K (the 

boiling point of liquid nitrogen), resulting typically in trapped fields of up to between 1 and 1.5 T for 

YBCO and greater than 2 T for (RE)BCO at this technologically important temperature, with the 

highest trapped field at 77 K currently standing at 3 T [2]. As a result, there is great interest in using 

these materials as trapped field magnets (TFMs) in a number of engineering applications, including 

magnetic levitation, magnetic bearings, energy storage flywheels, magnetic resonance imaging, 

magnetic separation and rotating machines [3]. Significantly, the higher magnetic loading in rotating 

machines would provide an increased torque/power density, resulting potentially in a machine that 

is smaller and lighter in weight than conventional devices of the same rating [4]. However, 

developing a practical magnetising technique is crucial to using bulk superconductors as TFMs in 

applications of these types. 

There are three magnetisation techniques for magnetising a bulk superconductor that are in 

common use: zero field cooling (ZFC), field cooling (FC) and pulse field magnetisation (PFM). In ZFC, 

the superconductor is cooled below its critical temperature, Tc, prior to the application of a large 

magnetic field, typically of several Teslas. A magnetic field of comparatively lower magnitude is 

applied in the FC process to a superconductor at a temperature above Tc, which is then cooled 

below Tc. In either case, to trap the maximum possible field corresponding to the sample’s flux-

trapping ability, the magnitude of the applied field needs to be at least Btrap (at least Btrap in FC; 2Btrap 

in ZFC), assuming Bean’s model [5,6]. This invariably requires large magnetising coils, which is 



impractical for most applications of these materials. The PFM technique is similar to ZFC, except that 

the large magnetic field is applied via a pulse on the order of milliseconds, rather than ramped up 

and down slowly over a period of many minutes or even hours. Achieving reliable, in-situ 

magnetisation is crucial to producing a competitive and compact machine design in trapped flux-

type rotating machines, and the PFM technique shows great promise as a compact, mobile and 

relatively inexpensive magnetisation technique for the magnetisation of such devices. However, one 

issue with this technique is that the trapped field produced using PFM is much smaller than that of 

ZFC or FC, due to the large temperature rise ΔT associated with the rapid dynamic movement of the 

magnetic flux in the interior of the superconductor during the PFM process [7]. Compared with the 

record trapped field (17 T at 29 K), which was generated by a field-cooled technique, the record 

trapped field produced by PFM is only 5.2 T at 29 K [8]. Therefore, it is important to understand the 

flux dynamics when magnetising a bulk superconductor using the PFM technique in order to achieve 

an optimum trapped field profile and to investigate how these results translate into a practical 

magnetising technique for a trapped flux-type superconducting electric machine.  

In this paper, we investigate the magnetisation of two, large c-axis oriented single-grain Y-Ba-Cu-O 

(YBCO) and Gd-Ba-Cu-O (GdBCO) bulk superconductors by the PFM technique at temperatures of 40 

and 65 K. We report the characteristics of the trapped field produced by this technique with a view 

to developing a practical in-situ magnetising process for TFMs in trapped flux-type superconducting 

electric machines. 

  



2. Bulk Superconductor Sample Details 

The pulsed field magnetisation of the YBCO and GdBCO single grain superconducting samples shown 

in Figure 1 has been investigated as part of this study. The YBCO sample has a diameter of 32 mm 

and thickness 15 mm. The GdBCO sample, which contains 10 wt% Ag2O, has a diameter of 41 mm 

and thickness 16 mm. Both samples were fabricated by the top-seeded melt-growth (TSMG) method, 

similar to that described in previous research [9]. Precursor powders for fabrication of the GdBCO 

sample with a composition 75 wt% Gd-123 + 25 wt% Gd-211 + 10 wt% Ag2O + 1.0 wt%BaO2 + 0.1 

wt% Pt were mixed and ground thoroughly using an electrical mortar and pestle. 190 g of this mixed 

powder was pressed uniaxially into pellets 50 mm in diameter and placed on ZrO2 rods inside a box 

furnace. A generic seed of composition 1 wt% MgO-NdBCO [9] was placed on the top surface of the 

pressed pellet to control both nucleation and grain orientation. The sample was heated to 1045°C, 

held for 1 hour, then cooled appropriately through its peritectic growth window, until finally being 

furnace cooled to room temperature. The as-grown single grain was then oxygenated in a tube 

furnace at temperatures between 360 and 440°C for 300 hours. The YBCO sample was fabricated 

using a similar process, but with the key processing temperatures varied accordingly for this system. 

The samples were mounted on a sample holder fabricated from 316 stainless steel of inner diameter 

46 mm and outer diameter 56 mm to match the dimensions of the available cold stage of the pulse 

system. Stycast 2850 FT, Catalyst 23 LV was used to mount the samples in the holder, with the epoxy 

set under vacuum to ensure void-free embedment.  

 

 

Figure 1. YBCO (left) and GdBCO (right) bulk superconductor samples. The growth sector boundaries 

(GSBs) are shown in each sample. 

The trapped field distributions at 77 K obtained by field cooling for each sample are shown in Figure 

2. This resulted in peak trapped fields at the centre of the top surface of each sample of 0.692 T 

(YBCO) and 1.19 T (GdBCO).  



 

Figure 2. Trapped field distribution at 77 K obtained by field cooling (FC) for each bulk 

superconductor: YBCO (left), GdBCO (right). The peak trapped field at the centre of the top surface 

of each sample was 0.692 T and 1.19 T, respectively. 

Figure 3 shows the magnitude of trapped field obtained by FC for each bulk sample as a function of 

temperature, in which the vertical axis shows the normalized trapped field divided by the sample 

diameter d, measured by a Hall sensor located at the centre of the top surface of the bulk samples. 

This normalisation accounts for the difference in sample sizes and can be considered an average 

critical current density for each sample, averaged over the sample volume and including the field-

dependent nature of the critical current density [10]. 

After initially magnetising the sample at around 40 K by FC with an applied field of 7 T, the 

temperature was increased slowly to 100 K at a rate of 0.3 K/min. The peak trapped field at the 

centre of the bulk at 46 K was 5.5 T for GdBCO bulk and 4.8 T for YBCO. After correcting the data for 

the difference in size of the bulk samples (the GdBCO is 41 mm and the YBCO is 32 mm), it is clear 

from this figure that pinning in the GdBCO sample is significantly stronger than that in the YBCO 

sample investigated in this study. 

 

Figure 3. Trapped field normalised to units of kA/cm
2
 obtained by FC for the GdBCO and YBCO bulk 

samples investigated in this study as the temperature is increased from 40 K to 100 K for an applied 

field of 7 T. The value of the vertical axis represents the pinning strength as the average critical 

current density of each sample. 



3. Pulsed Field Magnetisation Experimental Results 

An overview of the pulsed field magnetisation experimental arrangement is shown in Figure 4. The 

bulk samples were mounted tightly on the cold stage of a Gifford-McMahon (GM), closed cycle 

helium refrigerator, and a copper magnetising solenoid pulse coil, cooled using liquid nitrogen, was 

placed outside the vacuum chamber. This magnetising coil generates pulsed fields up to Bex = 6.4 T 

with a rise time of tr = 12 ms and duration of approximately td = 120 ms. The typical characteristics 

of the applied pulsed fields are shown in Figure 5. The time dependence of the applied pulsed field 

Bex(t) was monitored by the current i(t) flowing in a shunt resistor connected in series with the pulse 

coil. The central axis of the applied field coincides with that of the bulk, such that the direction of the 

applied field is perpendicular to the top surface of the samples. 

 

Figure 4. Schematic illustration of the pulsed field magnetisation experimental arrangement. 

 

 

Figure 5. Typical applied pulsed field characteristics. These fields were applied to the YBCO sample at 

65 K. 



Different amplitudes of pulsed fields of up to 6.3 T were applied to each sample and the two-

dimensional trapped field distributions were measured inside the vacuum chamber using an x-y 

stage controller and an axial-type Hall sensor positioned 1 mm above the top surface of each sample. 

The applied field and the trapped field close to the centre of the sample were measured dynamically 

during the application of each pulse using the same Hall sensor (located on the top surface of the 

samples).  

Figure 6 shows the typical evolution of the trapped field with time, measured close to the centre of 

the sample using a Hall sensor located on the top surface of the samples. These results are derived 

from measurements of the YBCO sample at 65 K for the applied pulsed fields shown in Figure 5. The 

value at t = 300 ms, after allowing for adequate relaxation of the magnetic flux, is referred to 

hereafter as Btrap, the trapped field at the centre of the top surface of the sample. 

 

Figure 6. Typical evolution of the trapped field with time measured close to the centre of the sample 

using a Hall sensor located on the top surface of the samples. These results are from measurements 

of the YBCO sample at 65 K for the applied pulsed fields shown in Figure 5. 

Two-dimensional trapped field distributions measured at 1 mm above the top surface of the YBCO 

sample at 65 K and 40 K are shown in Figures 7 and 8, respectively. Figures 9 and 10 show the 

trapped field distributions for the GdBCO sample at 65 K and 40 K, respectively. The central panels of 

Figures 7-10 show the maximum trapped field for fully magnetised samples and the trapped field 

close to the centre of the sample for cases where the sample was not fully magnetised. 

Figures 7 and 8 show that the YBCO sample becomes magnetised initially along the growth sector 

boundaries (GSBs), which are highlighted for reference in Figure 1. Of the four GSBs, two in 

particular exhibit preferential pinning along their length. Once the magnitude of the applied pulsed 

field is sufficiently high that it magnetises the sample fully, the trapped field distribution changes to 

a characteristic, approximately conically-shaped trapped field. The field required to fully magnetise 

the bulk sample will be hereafter referred to as the ‘activation field’ (for example, the activation field 

in Figure 7 is around 3.4 T). There is no significant increase in trapped field for larger applied fields 

than the activation field, and, in fact, the trapped field begins to reduce for a sufficiently large field 



due to the temperature rise in the bulk generated by the rapid movement of flux lines in the sample 

interior [11]. 

Cooling the sample to a lower temperature (e.g., from 65 K to 40 K) results in stronger flux pinning 

and a higher Jc within the sample, which results in much higher localised field densities (the 

behaviour seen in the trapped field distribution is qualitatively the same). However, the maximum 

trapped field is not increased significantly at 40 K, which differs from the slower ZFC and FC 

techniques (see Figure 3). With respect to the magnetisation of bulk superconductors in a trapped 

flux-type superconducting machine, the choice of temperature range is crucial, and for PFM, it is 

clear from these results that it is not necessarily true that a lower temperature results in a 

significantly higher trapped field as observed for the ZFC/FC techniques. The lower specific heat and 

stronger pinning forces at lower temperatures result in a larger amount of heat generated in the 

sample, which suppresses Jc and hence trapped field. As a result, these data show that sample 

performance in terms of trapped field is not improved significantly at 40 K compared to that at 65 K. 

The activation field for the YBCO sample is higher at 40 K (4.6 T at 40 K compared with 3.6 T at 65 K), 

although the resulting trapped field is only marginally bigger. This would justify, for example, the 

selection of a machine operating temperature range of 65-77 K, simplifying the cryogenics without 

compromising significantly on material performance. An additional consideration, and an argument 

for higher operating temperature, is that stronger pinning at lower temperatures (or between 

different samples, as described below) results in a higher activation field that would require a larger 

and more complex magnetising assembly. 

The trapped field distributions for the GdBCO sample are shown in Figures 9 and 10. The results 

indicate a much more homogenous sample in comparison to YBCO, which is particularly obvious for 

fields below the activation field. The bulk, single grain sample should be as homogenous as possible 

to enhance the trapped field produced by the PFM technique. If large inhomogeneities, such as 

those present in the YBCO sample, exist within the bulk between the GSBs and growth sector regions 

(GSRs), the trapped field profile becomes inhomogeneous, particularly for fields below the activation 

field. In addition, the magnetisation profile of the trapped field is not necessarily enhanced, even 

though the trapped field generated by ZFC/FC techniques may be maximised in the same samples. It 

is also clear from these results that the flux pinning strength is greater for the GdBCO sample, which 

results in a higher trapped field, but also in a larger magnetising device for an electric machine 

design due to the higher activation field, as described above. 

 



 

Figure 7. Trapped field distributions measured at 1 mm above the top surface of the YBCO sample at 

65 K. The central panel shows the maximum trapped field for fully magnetised samples and the 

trapped field close to the centre of the sample prior to full magnetisation. 



 

Figure 8. Trapped field distributions measured at 1 mm above the top surface of the YBCO sample at 

40 K. The central panel shows the maximum trapped field for fully magnetised samples and the 

trapped field close to the centre of the sample prior to full magnetisation. 



 

Figure 9. Trapped field distributions measured at 1 mm above the top surface of the GdBCO sample 

at 65 K. The central panel shows the maximum trapped field for fully magnetised samples and the 

trapped field close to the centre of the sample prior to full magnetisation. 



 

Figure 10. Trapped field distributions measured at 1 mm above the top surface of the GdBCO sample 

at 40 K. The central panel shows the maximum trapped field for fully magnetised samples and the 

trapped field close to the centre of the sample prior to full magnetisation. 

  



4. Modelling Inhomogeneous Behaviour 

In this section, the influence of inhomogeneities on trapped field is investigated qualitatively using a 

three-dimensional (3D) finite-element model. The finite-element model is based on the H-

formulation, which has been applied variously to analysing high temperature superconductors for 

over a decade [12-22], and is implemented using COMSOL Multiphysics version 4.3a [23]. To model 

the electromagnetic and thermal properties of a bulk superconductor in 3D, we have extended 

previous models of HTS coated conductors [17-19,21] and drawn additional inspiration from 

references [20,24,25]. 

Inhomogeneities occur during the growth process of c-axis seeded, single-grain (RE)BCO bulk 

superconductors, resulting in the formation of GSBs and GSRs described above and shown in Figure 

1, with a higher critical current density for the GSBs in comparison with the GSRs [26-29]. Here the 

trapped field distribution and maximum temperature rise for an applied pulsed magnetic field is 

compared for a completely homogeneous bulk superconducting sample with an ab-plane Jc of 1 x 

10
8
 A/m

2
 and an inhomogeneous sample with the same average Jc, but with Jc varying as a cosine 

function in the ab-plane [20], as shown in Figure 11. The thick, dashed lines represent the GSBs. 

Other than this spatial variation of Jc, a constant Jc approximation is considered for the in-field 

behaviour for the purposes of this analysis. The superconductor is modelled using an E-J power law 

relation [30,31], E α Jn
, where n = 21. An external pulsed magnetic field is applied to the bulk along 

the z-axis, perpendicular to the top surface of the sample, by setting appropriate boundary 

conditions such that 𝐵𝑒𝑥𝑡(𝑡) =  𝐵𝑎𝑝𝑝 𝑡𝜏  𝑒(1−𝑡𝜏)
  (2) 

where τ = 12 ms. This waveform approximates the typical experimentally applied pulsed fields 

shown previously in Figure 5, with a rise time of 12 ms and a pulse width of approximately 120 ms 

for; 

1) A homogeneous bulk sample with average Jc of 1 x 10
8
 Am

-2
 

2) An inhomogeneous bulk sample with Jc of 1 x 10
8
 Am

-2
 with x-y spatial variation ± 0.1 x 10

8
 

Am
-2

 



 

Figure 11. Spatial distribution of the critical current density Jc(θ) in the ab-plane (xy-plane) of the 

bulk superconductor for the two cases being analysed (homogeneous and inhomogeneous). 

In order to simulate the thermal effects of an external field on trapped field, a thermally-isolated 

model of a bulk superconductor is used. The simulation is carried out using the COMSOL Heat 

Transfer module, coupled with the H-formulation, which uses the general partial differential 

equation (PDE) module. The HTS bulk sample is assumed to be cooled by liquid nitrogen, with the 

sample environment described by the thermal model parameters listed in Table 1, which are typical 

for these (RE)BCO bulk superconductors [24].  

The thermal transient equation is used in this model: 𝜌 ∙ 𝐶 𝑑𝑇𝑑𝑡 = 𝛻 ∙ (𝑘𝛻𝑇) + 𝑄  (3) 

Jc0 (T) is the temperature dependent critical current density of the superconductor, given by:  

𝐽𝑐0 (𝑇) = 𝛼 �1− �𝑇𝑇𝑐�2�1.5
  (4) 

where α is the critical current density extrapolated to T = 0 K. The heat source Q in the thermal 

model is derived from the product of the electric field and current density throughout the bulk 

superconductor, defined as Q = Enorm∙Jnorm, where Enorm = √(Ex
2
 + Ey

2
 +Ez

2
) and Jnorm = √(Jx

2
 + Jy

2
 + Jz

2
). 

  



Table 1. Thermal model parameters 

PARAMETER DESCRIPTION VALUE 

Tc Transition temperature 92 K 𝜌𝑏  HTS bulk density  5.9 x 10
3
 kgm

-3 𝜌𝑛 Nitrogen density 808.4 kgm
-3

 

Cb Heat capacity of bulk  1.32 x 10
2
 Jkg

-1
K

-1 

Cn Heat capacity of liquid nitrogen at 77 K 1040 JK
-1

kg
-1

 

kab Thermal conductivity of bulk along ab-plane 20 Wm
-1

K
-1

 

kc Thermal conductivity of bulk along c-axis 4 Wm
-1

K
-1

 

kn Thermal conductivity of liquid nitrogen 0.026 Wm
-1

K
-1

 

E0 Characteristic voltage  1 x 10
-4

 Vm
-1

 𝛼 Critical current density extrapolated to T = 0 K 6.1 x 10
8
 Am

-2 𝜏 Rise time of applied magnetic field 12 ms 

Bapp Peak value of applied magnetic field 0-5 T 

 

The maximum trapped field at the centre of the top surface for the homogeneous and 

inhomogeneous Jc distribution models are compared in Figure 12. Pulsed fields of between 0 and 5 T 

are applied to the bulk sample at 77 K. Similar to the experimental results shown in the central 

panels of Figures 7-10, there is an optimal activation field, above which the trapped field reduces 

with increasing field magnitude due the temperature rise associated with the movement of flux lines. 

Figure 13 shows the two-dimensional trapped field distributions at the top surface of the bulk for a 

range of applied fields (Bapp = 1, 3 and 5 T) at time t = 300 ms, which gives the flux some time to relax 

after the pulse is applied. The inhomogeneous distribution of pinning sites results in a distorted 

trapped field profile, where flux is trapped preferentially in regions of stronger pinning (higher Jc). 

Although flux enters the superconductor more easily via the GSRs due to weaker pinning (lower Jc), 

it also leaves this region more easily and this results in localised heating acting to reduce Jc/pinning 

strength further. 

Figure 12 also shows the maximum temperature rise in the superconductor for each model for the 

same applied field pulse. The inhomogeneous model produces a larger maximum temperature rise, 

which results in a lower trapped field. The inhomogeneous distribution of pinning centres acts to 

reduce the maximum trapped field potential of the sample as described above. Finally, Figure 14 

compares the temperature distributions generated by the homogeneous (right) and inhomogeneous 

(left) models at the pulse peak (t = 12 ms) and pulse end (t = 120 ms) for an intermediate applied 

pulsed magnetic field Bapp = 3 T. There are contributions to the heat generated in the bulk 

superconductor from magnetic flux moving into (t ≤ 12 ms) and out of (t > 12 ms) the sample. 

This modelling framework allows the presence of the various inhomogeneities that arise during the 

processing of (RE)BCO bulk superconductors to be considered, including inhomogeneous Jc 

distributions (between top and bottom regions or between the seed and outer edge of the bulk 

[32,33], for example) and the presence of current-limiting grain boundaries and cracks. It can be 

used to assist optimisation of processing techniques, such as samples with novel seed arrangements 

[34-37], as well as PFM techniques and pulse coil design, for practical bulk superconductor 

applications. 



 

Figure 12. Maximum trapped field at the centre of the top surface, as well as the maximum 

temperature rise in the superconductor, for the homogeneous and inhomogeneous Jc distribution 

models. Pulsed fields of between 0 and 6 T are applied to the bulk samples at 77 K. 



 

Figure 13. Trapped field distributions for the homogeneous and inhomogeneous Jc distribution 

models for pulsed fields Bapp = 1, 3 and 5 T at time t = 300 ms, allowing flux to relax after the pulse is 

applied. 

 



 

Figure 14. Comparison of the temperature distributions generated by the homogeneous (right) and 

inhomogeneous (left) models at the pulse peak (t = 12 ms) and pulse end (t = 120 ms) for an applied 

pulsed magnetic field Bapp = 3 T. There are contributions to the heat generated in the bulk 

superconductor from magnetic flux moving into (t < 12 ms) and out of (t > 12 ms) the sample. 



5. Conclusion 

In this paper, two large c-axis oriented, single-grain YBCO and GdBCO bulk superconductors were 

magnetised by the pulsed field magnetisation (PFM) technique at temperatures of 40 and 65 K and 

the characteristics of the resulting trapped field were investigated with a view of magnetising such 

samples as trapped field magnets (TFMs) in-situ inside a trapped flux-type superconducting electric 

machine. 

Inhomogeneities within the bulk affect the dynamics of the flux entering the sample, causing a 

distorted trapped field profile with flux trapped preferentially in regions of stronger pinning (higher 

Jc). It was found by comparing the YBCO and GdBCO samples that the latter has stronger flux pinning, 

in addition to a more homogeneous distribution of pinning sites, resulting in an enhanced trapped 

field capability. 

It is apparent by comparing the temperature at which the pulsed magnetic field is applied that a 

lower magnetising temperature does not necessarily result in much higher trapped field for PFM, 

and this has implications for the optimum operating temperature for TFMs in trapped flux-type 

superconducting electric machines. The magnitude of trapped field increases with reducing 

temperature for slower zero field cooling (ZFC) and field cooling (FC) magnetising techniques, which 

require large magnetising fixtures and timescales. However, there is no such simple relationship for 

PFM due to the reduced specific heat of the material at lower temperature and the somewhat 

complex dynamics of the flux movement, which generates heat.  

The effects of inhomogeneities, which occur during the growth process of single-grain bulk 

superconductors, on the trapped field and maximum temperature rise in the sample were modelled 

numerically using a 3D finite-element model based on the H-formulation and implemented in 

Comsol Multiphysics 4.3a. The results agree qualitatively with the observed experimental results, in 

that inhomogeneities act to distort the trapped field profile and reduce the magnitude of the 

trapped field due to localised heating within the sample and preferential movement and pinning of 

flux lines around the growth section regions (GSRs) and growth sector boundaries (GSBs), 

respectively. The modelling framework will allow further investigation of various inhomogeneities 

that arise during the processing of (RE)BCO bulk superconductors, including inhomogeneous Jc 

distributions and the presence of current-limiting grain boundaries and cracks, and it can be used to 

assist optimisation of processing and PFM techniques for practical bulk superconductor applications. 
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