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Abstract In this paper, we formulate and study a new

fractional-order SIS epidemic model with fear effect of an

infectious disease and treatment control. The existence and

uniqueness, nonnegativity and finiteness of the system

solutions for the proposed model have been analysed. All

equilibria of the model system are found, and their local

and also global stability analyses are examined. Conditions

for fractional backward and fractional Hopf bifurcation are

also analysed. We study how the disease control parameter,

level of fear and fractional order play a role in the stability

of equilibria and Hopf bifurcation. Further, we have

established our analytical results through several numerical

simulations.

Keywords Fractional derivative � Fractional SIS epidemic

model � Fractional stability conditions � Fractional Hopf
bifurcation � Fear effect � Fractional backward bifurcation

1 Introduction

Infectious diseases have become one of the most threat-

ening issues in todays lifestyle. The infectious diseases

including chickenpox, measles, cholera, tuberculosis,

influenza, SARS, COVID-19, etc., have massive impact

than the other types of noninfectious diseases as these types

of diseases can be transmitted from one individual to

another, some are spread out by bites from insects or ani-

mals, and some diseases are acquired by consuming flagi-

tious water or food or being exposed to organisms in the

environment. Hence, an infectious disease may spread in a

huge region throughout the globe within a very short time

period. Due to the improvement of lifestyle of common

people and massive enhancement in transportation and

globalization, an infectious diseases become pandemic in a

less amount of time compared to earlier days (for example

Spanish flu in twentieth century had taken a long period of

time to become a pandemic compared to the pandemic due

to COVID-19 in ongoing time period). Thus, not only to

study the dynamics of an infectious disease, but also to

control or determining the procedure to control an infec-

tious disease, researchers from various fields have engaged

themselves.

Several mathematical tools induce a great affect in

regulating many infectious diseases. Mathematical mod-

elling is one of the popular and commonly used mathe-

matical tools that can be utilized efficaciously to monitor

several infectious diseases. The first effective research

work on studying an infectious diseases using mathemati-

cal model was probably first done by Kermack and Mck-

endric (1927). There are several research works where the

authors have been studied mathematical models on con-

trolling infectious diseases (see Zhou et al. 2014; Jana

et al. 2016, 2017a). In his book, Murray (2002) has anal-

ysed theoretical works on some simple SI, SIS, SIR epi-

demic models. Present days mathematicians formulate

more complex epidemic model systems which are almost

identical to the real-world problems. In mathematical

studies of an epidemic model, proper control strategies are
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significant tools in monitoring and controlling the infec-

tious diseases. In this regard, two most effective and

commonly used control tools used in controlling diseases

are vaccination and treatment (Kar and Jana 2013a, b).

However, isolation (see Jana et al. 2017b), insecticide (to

control vector-borne disease)(see Kar and Jana 2013b),

etc., are also used in recent days.

In the present work, we consider fear factor due to the

infectious disease which is an another important parameter

for epidemic model. People generally got scared and make

a significant distance to prevent the infectious disease.

Hence, fear induced by the infectious disease compelled

susceptible population to isolate which actually decreases

the birth rate of population and also survival of adults is

affected consequently. Due to the SARS outbreak in

HongKong (SARS started on November 2002; peaked on

March 2003; eliminated on June, 2003), the birth rate

dramatically had fallen from 8.742 (2002) to 8.436 (2003)

and again it increased to 8.558 in 2004 (see Worldbank

(2018)). In our work, we formulate a new fractional-order

SIS epidemic model with fear effect (Clinchy et al. 2013;

Wang et al. 2016) and treatment control to eradicate the

disease.

Mathematical models based on ordinary differential

equations depict the interactions between the population

classes (e.g. susceptible-infected), and it is a classical

approach in theoretical epidemiology. In recent days,

researchers are concerned in developing mathematical

model by the fractional-order differential equations

because it is an important apparatus for the study of the

memory and also some hereditary properties of several

biological components and also it has a very close relation

to the fractal theory. These are the main advantages of the

fractional-order derivatives which are not included in the

models based on the ordinary-order derivatives. Therefore,

fractional-order derivatives are more naturalistic than the

ordinary derivatives. The models constructed by the frac-

tional-order derivatives have been widely applied in dif-

ferent field of research after the some famous books and

research works on fractional-order differential equations

(Diethelm and Braunschweig 2003; Hilfer 2000; Kilbas

et al. 2006; Miller and Ross 1993; Petras 2011; Podlubny

1999; Sabatier et al. 2007; Sengupta et al. 2020; Yadav

et al. 2020; Karthikeyan and Arul 2020). However, a

fractional-order derivative may be defined in several ways.

The most popular and commonly useful definitions of

fractional-order derivatives are in the sense of Riemann–

Liouville, Grünwald–Letnikov and Caputo definitions

(Petras 2011; Podlubny 1999). Since, in the definition due

to Caputo, the initial conditions can be expressed in a

similar fashion as the integer-order differentiation, it is the

most frequently used fractional-order derivative in mathe-

matical modelling. There are very few theories to analyse

the dynamical behaviour of the mathematical models with

fractional-order derivatives (Delavari et al. 2012; Desh-

pande et al. 2017; Guo 2014; Li et al. 2016; Liang and Wu

2015; Li et al. 2010). In recent days, the linearization,

Lyapunov method and Lyapunov direct method (due to

Lyapunov function Garrappa 2010) have established to

study the local and global stability of equilibrium

point(s) of a fractional-order system.

Our research article studies the modelling and control of

an epidemic problem using some advanced mathematical

tools. In particular, this article focuses on approaches that

integrate ecology and environment considerations and

promote multidisciplinary solutions for tackling environ-

mental problems and complex socio-economic problems.

Present global scenarios show that human epidemiology

has a significant impact on both the ecology and the

environment. As this research article studies the modelling

and control of an epidemic problem, the theoretical anal-

ysis of epidemiology is relevant to both ecology and

environment (see Venturino et al. 2016; Maji et al. 2019;

Khatua et al. 2020, etc.). Moreover, the modelling

approach using fractional-order differential equations gives

an additional novelty and dimension of the article.

The rest of the article is prepared as follows: in Sect. 2,

we formulate an SIS-type fractional-order epidemic system

and then discuss some preliminaries on fractional-order

derivatives in Sect. 3. In Sect. 4, we describe the dynamics

of the proposed model, including equilibria, their existence,

bifurcation and both the local and the global behaviours. In

Sect. 5, we present some computer simulation works to

validate our theoretical observations. In Sect. 6, we provide

some of the central findings of the paper and the last sec-

tion is devoted to draw the conclusions of the paper.

2 Model formulation

In this section, we construct a new fractional-order SIS

(susceptible-infected-susceptible)-type epidemic model

with treatment control and fear effect due to the infectious

disease. We separate the total populations into two time-

dependable mutually exclusive classes, viz. susceptible

S(t) (vulnerable for the infectious disease) and infected

I(t) (already have pathogen of the disease and infectious for

the population). Assume that birth rate of the susceptible

population be r, natural death rate of both susceptible and

infected population be a and d be the death rate due to the

disease. Also, consider b as the death rate of susceptible

population due to intraspecific competition (Ghirlanda

et al. 2009). Note that b is smaller as compared to a, but it

is not negligible for a large population. Further, let us take

fear function as f ðb; IÞ which reduces the growth rate of

susceptible population. Again, we consider that the disease
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transmission function is g(I) and the disease control func-

tion is h(u). Consider m as the natural recovery rate of the

infected population from the disease. Finally, assume that

the recovery from infectious disease is not permanent and

hence all the recovered individuals will be reinfected, i.e.

they are susceptible to the infectious disease. We formulate

our proposed model in the following form by the above

conditions:

t0D
a
t SðtÞ ¼ rf ðb; IÞS� aS� bS2 � gðIÞSþ ½mþ hðuÞ�I

t0D
a
t IðtÞ ¼ gðIÞS� ½mþ hðuÞ�I � ðaþ dÞI

ð2:1Þ

Here t0D
a
t ; a 2 ð0; 1� is the fractional-order derivative (a-

order) in the sense of Caputo (Petras 2011; Podlubny

1999). In our present model, we consider fear function as

f ðb; IÞ ¼ 1
1þbI

with the level of fear as b and the disease

transmission function as gðIÞ ¼ cI
1þdI

, where c is disease

transmission rate and d is half-saturation incidence rate.

Further, we assume that the disease control function is

hðuÞ ¼ u. Here u is the treatment control. So our model

becomes

t0D
a
t SðtÞ ¼

rS

1þ bI
� aS� bS2 � cSI

1þ dI
þ ðmþ uÞI

t0D
a
t IðtÞ ¼

cSI

1þ dI
� ðmþ uÞI � ðaþ dÞI

ð2:2Þ

System (2.2) for different fractional differentiations

a1; a2 2 ð0; 1� is known as incommensurate fractional-

order system. It is presented by following way

t0D
a1
t SðtÞ ¼

rS

1þ bI
� aS� bS2 � cSI

1þ dI
þ ðmþ uÞI

t0D
a2
t IðtÞ ¼

cSI

1þ dI
� ðmþ uÞI � ðaþ dÞI

ð2:3Þ

System (2.2) is known as commensurate fractional-order

system. Note that all the parameters considered in the

formulations of the model are nonnegative.

3 Some preliminaries

In this section, we recall some essential definitions, effec-

tive lemmas for both types of commensurate and incom-

mensurate fractional-order systems.

Definition 3.1 (Petras 2011) The Caputo-type fractional-

order derivative of a[ 0 order for the function f :

Cn½t0;1Þ ! R may be defined and denoted by:

t0D
a
t f ðtÞ ¼

1

Cðn� aÞ

Z t

t0

f ðnÞðfÞ
ðt � fÞa�nþ1

df

where Cn½t0;1Þ is a space of n times continuously dif-

ferentiable functions on ½t0;1Þ, t[ t0 and Cð�Þ be the

Gamma function with n 2 Z
þ (the set of all positive inte-

gers) such that n� 1\a\n. Particularly, if 0\a\1, the

definition becomes:

t0D
a
t f ðtÞ ¼

1

Cð1� aÞ

Z t

t0

f 0ðfÞ
ðt � fÞa df

Lemma 3.2 (Odibat and Shawagfeh 2007) Let us assume

that a 2 ð0; 1� and both the functions f(t) and its fractional

derivative t0D
a
t f ðtÞ be elements of the metric space C[a, b] .

If t0D
a
t f ðtÞ� 0 then the function f(t) is a monotone

increasing, and the function is monotone decreasing if

t0D
a
t f ðtÞ� 0 for all t 2 ½a; b�.

Lemma 3.3 (Li et al. 2016) Let us consider that x :

½t0;1Þ ! R be continuous function and satisfies the

following:

t0D
a
t xðtÞ þ lxðtÞ� m; xðt0Þ ¼ x0; t0 � 0; l; m 2 R;

l 6¼ 0; anda 2 ð0; 1Þ

Then we have the inequality:

xðtÞ� x0 �
m

l

� �

Ea½�lðt � t0Þa� þ
m

l

for all t� t0. Here Ea is the Mittag–Leffler function of one

parameter.

Lemma 3.4 (Petras 2011) Assume the following frac-

tional-order system of the order a 2 ð0; 1�

t0D
a
t xðtÞ ¼ Mx; xðt0Þ ¼ x0[ 0:

where x 2 R
n and M 2 R

n�n (set of all n 9 n real matri-

ces). The system is said to be stable asymptotically iff

j argðkÞj[ ap
2
satisfy for each of the eigenvalues k of the

matrix M and the system is said to be stable only iff

j argðkÞj � ap
2
for each of the eigenvalues of matrix M with

the eigenvalues satisfying the critical condition j argðkÞj ¼
ap
2
must have geometric multiplicity one.

Lemma 3.5 (Petras 2011) Let us assume the fractional-

order system of the order a 2 ð0; 1�

t0D
a
t xðtÞ ¼ f ðxÞ; xðt0Þ ¼ x0[ 0

where x 2 R
n. A stationary point of the system is called to

be locally asymptotically stable iff j argðkkÞj[ ap
2
for all

eigenvalues kkðk ¼ 1; 2. . .nÞ of Jacobian matrix J ¼ of

ox

calculated at the corresponding stationary point.
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4 The fractional-order system

Here, first we assume commensurate fractional-order sys-

tem (2.2) by considering a1 ¼ a2 ¼ a 2 ð0; 1� in the

incommensurate system (2.3).

4.1 Equilibria

Now we analyse the existence criteria of nonnegative

equilibria of constructed system (2.2). The system pos-

sesses the equilibrium points which are trivial equilibrium

(TE) E0ð0; 0Þ, disease-free equilibrium (DFE) E1ððr �
aÞ=b; 0Þ and three endemic equilibria (EE) E�ðS�; I�Þ,
E�
1ðS�1; I�1Þ and E�

2ðS�2; I�2Þ depending upon the positive roots

I�, I�1 and I�2 of the following cubic equation.

a0I
3 þ a1I

2 þ a2I þ a3 ¼ 0 ð4:1Þ

where a0 ¼ bbd2ðaþ d þ mþ uÞ2,

a1 ¼ bdð2bþ dÞðaþ d þ mþ uÞ2 þ bc½ðaþ cÞðaþ dÞ
þadðmþ uÞ�,
a2 ¼ c2ðaþ dÞ þ ðaþ d þ mþ uÞfbðbþ 2dÞðaþ dþ
mþ uÞ þ c½abþ dða� rÞ�g and

a3 ¼ bðaþ d þ mþ uÞfbðaþ d þ mþ uÞþ
cagð1� R0Þ,

where R0 ¼ cr
bðaþdþmþuÞþca

is known as the basic reproduc-

tion number which can be defined as the number of new

infections made by an infected individual to the susceptible

population during its infection period. Also,

S� ¼ ð1þdI�ÞðaþdþuÞ
c

, S�1 ¼
ð1þdI�

1
ÞðaþdþuÞ
c

and

S�2 ¼
ð1þdI�

2
ÞðaþdþuÞ
c

.

We rewrite the cubic equation (4.1) in following stan-

dard form of strum’s function

x3 þ 3Axþ B ¼ 0 ð4:2Þ

where x ¼ a0I þ a1
3
, A ¼ 3a0a2�a2

1

9
and B ¼ 27a2

0
a3�9a0a1a2þ2a3

1

27
:

The strum’s functions of equation (4.2) may be repre-

sented as

f ðxÞ ¼ x3 þ 3Axþ B; f1ðxÞ ¼ x2 þ A;

f2ðxÞ ¼ � 2Ax� B; and f3ðxÞ ¼ �ðB2 þ 4A3Þ:

We use the famous Strum’s theorem to verify the existence

of number of distinct positive roots of equation (4.2)

and hence of equation (4.1). It can be easily verified that

B2 þ 4A3
\0 implies equation (4.2) possesses three distinct

real roots. The condition B2 þ 4A3
\0 implies that

A\0. See that if a2\0, then A\0. Now

f ð1Þ[ 0; fjð1Þ[ 0; j ¼ 1; 2; 3. Here the number of

changes of signs of the successive strum’s functions

is zero. Again f ð0Þ ¼ B; f1ð0Þ ¼ A\0; f2ð0Þ ¼
�B; f3ð0Þ ¼ �ðB2 þ 4A3Þ[ 0. Here the number of

changes of signs of the strum’s functions depends on the

sign of B. If B\0, then the number of changes sign of the

successive strum’s functions is one, and hence equation

(4.2) possesses exactly one positive root. If B[ 0, then the

number of changes sign of the successive strum’s functions

is two, and hence equation (4.2) possesses exactly two

positive roots. Since a0; a1[ 0 for any choice of parame-

ters, a3\0; a2[ 0 and 2a21\9a0a2 together imply that

B\0. Now a3\0 implies that R0[ 1 and a2[ 0 implies

that a[ r. Again a3[ 0; a2\0 together imply that B[ 0.

Now a3[ 0 implies that R0\1. With this above discus-

sion, we state the next theorem:

Theorem 4.1

(i) Proposed model system (2.2) possesses at least

one EE if R0[ 1.

(ii) Proposed model system (2.2) possesses exactly

two EE points if R0\1 and a2\0. Otherwise,

system (2.2) possesses unique EE if B2 þ 4A3
\0,

R0\1, a[ r and 2a21\9a0a2.

(iii) System (2.2) possesses no EE point if R0\1 and

a[ r.

From above Theorem 4.1, we can detect that system

(2.2) possesses two endemic equilibrium points if R0\1,

the basic reproduction number is less than unity, and this

confirms that the system passes through a backward

bifurcation at R0 ¼ 1. Hence R0\1 is not a sufficient

condition to eradicate the disease from our system (Fig. 1).

The backward bifurcation diagram shows that when

R0\1, there exist two endemic equilibrium points and one

of which is asymptotically stable and other is unstable.

Theorem 4.2 (El-Saka 2015) Fractional-order system

(2.2) undergoes backward bifurcation at R0 ¼ 1 iff a2\0

and a3ðbÞ ¼ 0.
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Fig. 1 Curve for backward bifurcation of model (2.2)
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Here we choose b as backward bifurcation parameter. If

the condition (ii) of Theorem 4.1 is true (the conditions for

the existence of two EE points), then system (2.2) pos-

sesses backward bifurcation at R0 ¼ 1. This implies that

system (2.2) goes through two EE points in the interval

½R�
0;R0 ¼ 1� and notice that one EE is asymptotically

stable and other is unstable. Here R�
0 ¼ R�

0ðb�Þ and b� can

be calculated from B2 þ 4A3 ¼ 0.

Now the condition R0 ¼ 1, i.e. a3 ¼ 0 implies that

bðaþ d þ mþ uÞfbðaþ d þ mþ uÞ þ ca� crg ¼ 0

ð4:3Þ

And the condition a2\0 implies that

bðbþ 2dÞðaþ d þ mþ uÞ þ caðbþ dÞ þ c2ðaþ dÞ
aþ d þ mþ u

\cdr

ð4:4Þ

A backward bifurcation of system (2.2) occurs at R0 ¼ 1 if

and only if (4.3) and (4.4) are satisfied. If (4.4) holds,

article by El-Saka (2015) implies that system (2.2) pos-

sesses a backward bifurcation at R0 ¼ 1 and also the sys-

tem has two EE for the parameter b in an interval. With the

help of R0 ¼ 1 the critical value b� can be calculated from

B2ðb�Þ þ 4A3ðb�Þ ¼ 0 and which implies 4a0ðb�Þa32ðb�Þþ
4a31ðb�Þa3ðb�Þ þ 27a20ðb�Þa23ðb�Þ ¼ a1ðb�Þa2ðb�Þ½a1ðb�Þ
a2ðb�Þ þ18a0ðb�Þa3ðb�Þ�:

Note: A similar condition of Theorem 4.2 can be found

if we consider a3 as the function of disease control

parameter, i.e. a3ðuÞ.

4.2 Existence and uniqueness of solutions

In this stage, we state and prove the following lemma with

the help of Li et al. (2010).

Lemma 4.3 Let us assume the following fractional-order

differential equation of the order of differentiation

a 2 ð0; 1�:

t0D
a
t xðtÞ ¼ f ðt; xÞ; t0[ 0; andxðt0Þ ¼ x0 ð4:5Þ

where f : ½t0;1Þ �R! R
n;R 	 R

n be a function, if the

Lipschitz condition is satisfied by f(t, x) with respect to x,

then system (4.5) possesses unique solution on the interval

½t0;1Þ �R.

Proof We consider the region ½t0;U� �R to prove the

existence and uniqueness criterion of the solutions of sys-

tem (2.2), where R ¼ fðx; yÞ 2 R
2 : maxfjSj; jIjg�Vg,

and U and V are two finite positive real numbers. Let X ¼
ðS; IÞ and Y ¼ ðS1; I1Þ be two points in R and set the

mapping E : R! R
2 by EðXÞ ¼ ðE1ðXÞ;E2ðXÞÞ where

E1ðXÞ ¼
rS

1þ bI
� aS� bS2 � cSI

1þ dI
þ ðmþ uÞI

E2ðXÞ ¼
cSI

1þ dI
� ðmþ uÞI � ðaþ dÞI

Any X; Y 2 R,
jjEðXÞ � EðYÞjj

¼ jE1ðXÞ � E1ðYÞj þ jE2ðXÞ � E2ðYÞj

¼ j rS

1þ bI
� aS� bS2 � cSI

1þ dI

þ ðmþ uÞI � rS1

1þ bI1
þ aS1 þ bS21

þ cS1I1

1þ dI1
� ðmþ uÞI1j

þ j cSI

1þ dI
� ðmþ uÞI � ðaþ dÞI

� cS1I1

1þ dI1
þ ðmþ uÞI1 þ ðaþ dÞI1j

� ajS� S1j þ r
S� S1

ð1þ bIÞð1þ bI1Þ

�

�

�

�

�

�

�

�

þ bjS2 � S21j þ 2c
SI � S1I1

ð1þ dIÞð1þ dI1Þ

�

�

�

�

�

�

�

�

�ðaþ rÞjS� S1j þ 2bV jS� S1j
þ 4cV ½jS� S1j þ jI � I1j�

� ðaþ r þ 2bV þ 4cVÞjS� S1j þ 4cV jI � I1j
�RjjX � Y jj;

where R ¼ max aþ r þ 2bV þ 4cV; 4cVf g

Therefore, the Lipschitz’s condition is satisfied by the

function E(X) with respect to the variable X ¼ ðS; IÞ 2 R.
Lemma 4.3, implies that system (2.2) exhibits a unique

solution X 2 R in respect of the initial conditions

Xt0 ¼ ðSt0 ; It0Þ 2 R. h

Accordingly we can state the next theorem:

Theorem 4.4 For any initial point Xt0 ¼ ðSt0 ; It0Þ 2 R
system (2.2) has a unique solution Xt ¼ ðSðtÞ; IðtÞÞ 2 R for

any time t[ t0.

4.3 Nonnegativity and boundedness of Solutions

The nonnegative and boundedness solutions are the only

useful solutions in mathematical epidemiology. Let us

consider Rþ ¼ fðS; IÞ 2 R : S; I 2 R
þg, where R

þ is the

set of all positive real numbers.
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Theorem 4.5 Each solution of system (2.2) starting in

R
þ2

is nonnegative and uniformly bounded.

Proof Nonnegativity: First consider that Xt0 ¼ ðSt0 ; It0Þ 2
R

þ be an initial solution of system (2.2). Then we establish

that any solution XðtÞ 2 R
þ is nonnegative. Assume T be a

real number such that t0 � t\T and

SðtÞ ¼
0 for t0 � t\T

0 for t ¼ T

\0 for t ¼ Tþ

8

>

<

>

:

The first equation of (2.2) implies that t0D
a
t SðtÞjSðTÞ ¼ 0.

Lemma 3.2 implies that SðTþÞ ¼ 0;, and this contradicts to

the assumption SðTþÞ\0. Hence for any t 2 ½t0;1Þ, we
have SðtÞ� 0. Similarly, we can also prove that IðtÞ� 0 for

all t 2 ½t0;1Þ.
Uniform boundedness: To prove the uniform bounded-

ness of the solutions, assume the succeeding function

HðtÞ ¼ SðtÞ þ IðtÞ. Then,

t0D
a
tHðtÞ þ aHðtÞ
¼ t0D

a
t SðtÞ þ t0D

a
t IðtÞ þ aSðtÞ þ aIðtÞ

¼ rSðtÞ
1þ bIðtÞ � aSðtÞ � bSðtÞ2

� cSðtÞIðtÞ
1þ dIðtÞ þ ðmþ uÞIðtÞ

þ cSðtÞIðtÞ
1þ dIðtÞ � ðmþ uÞIðtÞ

� ðaþ dÞIðtÞ þ aSðtÞ þ aIðtÞ

� rSðtÞ � bSðtÞ2 � dIðtÞ ¼ r2

4b

� b SðtÞ2 � r

b
SðtÞ þ r2

4b2

� �

� dIðtÞ

¼ r2

4b
� b SðtÞ � r

2b

h i2

�dIðtÞ� r2

4b
as IðtÞ[ 0

Lemma 3.3 implies that HðtÞ� Hðt0Þ � r2

4ab

� �

Ea½�dðt�
t0Þa� þ r2

4ab
! r2

4ab
as t ! 1. Hence each solution of system

(2.2) starting in the region Rþ is lying in the region

W ¼ ðS; IÞ 2 Rþ
: Sþ I� r2

4ab

n o

. h

4.4 Dynamical Behaviour

We now check the stability of the TE, E0ð0; 0Þ, the DFE

point E1ððr � aÞ=b; 0Þ and the unique EE point E�ðS�; I�Þ.
The local stability analysis of model (2.2) may be studied

by the linearization technique around the each equilibrium

points. The Jacobian matrix J of model (2.2) at the point

(S, I) is given by:

JðS; IÞ ¼
m11 m12

m21 m22

� �

; where

m11 ¼ r
1þbI

� a� 2bS� cI
1þdI

,

m12 ¼ mþ u� brS

ð1þbIÞ2 �
cS

ð1þdIÞ2

m21 ¼ cI
1þdI

, m22 ¼ cS

ð1þdIÞ2 � ðaþ d þ mþ uÞ

At the TE, E0ð0; 0Þ and DFE point E1ððr � aÞ=b; 0Þ the

Jacobian matrix are

JðE0Þ ¼
�ða� rÞ mþ u

0 � ðaþ d þ mþ uÞ

� �

JðE1Þ ¼
�ðr � aÞ bðmþ uÞ � ðcþ brÞðr � aÞ

b

0
cr � fcaþ bðaþ d þ mþ uÞg

b

0

B

B

@

1

C

C

A

Hence, the eigenvalues of system (2.2) at TE, E0ð0; 0Þ are
k1 ¼ �ða� rÞ and k2 ¼ �ðaþ d þ mþ uÞ. See that

j argðk1Þj ¼ p[ ap
2
if a[ r, otherwise j argðk1Þj ¼ 0\ ap

2
,

a 2 ð0; 1� and j argðk2Þj ¼ p[ ap
2
, where a 2 ð0; 1�. Hence

by Lemma 3.4, system (2.2) is locally stable around the

trivial equilibrium asymptotically iff a[ r, i.e. if natural

death rate is higher than the growth rate.

Again the eigenvalues of system (2.2) at DFE, E1ððr �
aÞ=b; 0Þ are k1 ¼ �ðr � aÞ and k2 ¼ cr�fcaþbðaþdþmþuÞg

b
.

See that j argðk1Þj ¼ p[ ap
2

as r[ a(existence criterion

for DFE), otherwise j argðk1Þj ¼ 0\ ap
2
, a 2 ð0; 1� and

j argðk2Þj ¼ p[ ap
2

if
cr�fcaþbðaþdþmþuÞg

b
\0, i.e. R0\1 ,

where a 2 ð0; 1�. Hence by Lemma 3.4, the system is

locally stable around the DFE asymptotically iff R0\1.

Therefore we can state the following theorem relating the

local stability of the TE and DFE points.

Theorem 4.6

(i) The TE, E0ð0; 0Þ of proposed model system (2.2) is

locally asymptotically stable iff a[ r.

(ii) The DFE, E1ððr � aÞ=b; 0Þ of model system (2.2) is

locally asymptotically stable iff R0\1.

Next our objective is to analyse the local stability

behaviour of the unique EE point E�ðS�; I�Þ. Characteristic
polynomial of Jacobian matrix J at the EE, E�ðS�; I�Þ point
is given by

k2 � 2a1ðbÞkþ a2ðbÞ ¼ 0 ð4:6Þ

where a1ðbÞ ¼ 1
2

r
1þbI� þ

cS�

ð1þdI�Þ2 � 2ðaþ bS�Þ þ d þ mþð
h

uþ cI�

1þdI�Þ� and

a2ðbÞ ¼
a� r þ abI� þ 2bS�ð1þ bI�Þ½ � ð1þ bI�Þ½ð1þ dI�Þ2ðaþ d þ mþ uÞ � cS�� þ c

h i

þ I�ð1þ dI�Þ ðaþ dÞð1þ bI�Þ2 þ brS�
h i

ð1þ bI�Þ2ð1þ dI�Þ2
:
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Let k1 and k2 be the eigenvalues. Now, a1 will be negative

if

b[
1

I�
rð1þ dI�Þ2

2ðaþ bS�Þ þ d þ mþ uþ cI�

1þdI�

� �

ð1þ dI�Þ2 � cS�
� 1

2

4

3

5

¼ b0; say

ð4:7Þ

Again, we consider Equation (4.6) as function of disease

control parameter, u. Then we have

k2 � 2a1ðuÞkþ a2ðuÞ ¼ 0 ð4:8Þ

where a1ðuÞ ¼ 1
2

r
1þbI� þ

cS�

ð1þdI�Þ2 � 2ðaþ bS�Þ þ d þ mþð
h

uþ cI�

1þdI�Þ� and
a2ðuÞ ¼

a� r þ abI� þ 2bS�ð1þ bI�Þ½ � ð1þ bI�Þ½ð1þ dI�Þ2ðaþ d þ mþ uÞ � cS�� þ c
h i

þ I�ð1þ dI�Þ ðaþ dÞð1þ bI�Þ2 þ brS�
h i

ð1þ bI�Þ2ð1þ dI�Þ2
:

Let k1 and k2 be the eigenvalues. Now, a1 will be negative if

u[
r

1þ bI�
þ cS�

ð1þ dI�Þ2

"

� 2ðaþ bS�Þ þ d þ mþ cI�

1þ dI�

� ��

¼ u0; say

ð4:9Þ

The eigenvalues are

k1;2 ¼ a1 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a21 � a2

q

The different values of k1 and k2 are depending on the

coefficients a1 and a2.

(i) If a21 � a2 and a1\0, then both the eigenvalues k1,

k2 are negative. Therefore j argðk1;2Þj ¼ p[ ap
2
,

a 2 ð0; 1Þ and hence by Lemmas 3.4 and 3.5, the

EE is asymptotically stable.

(ii) If a21 � a2 and a1 � 0, then one of the eigenvalues

k1 or k2 will be nonnegative. Therefore

j argðkiÞj ¼ 0\ ap
2

for i ¼ 1 or 2, where a 2
ð0; 1Þ and hence by Lemmas 3.4 and 3.5, the EE

is unstable.

(iii) If a21\a2 and a1[ 0, then both the eigenvalues k1
and k2 will be complex conjugate.

k1;2 ¼ a1 
 i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � a21

q

;

where i ¼
ffiffiffiffiffiffiffi

�1
p

is the imaginary unit:

Therefore, j argðk1;2Þj ¼ tan�1 j
ffiffiffiffiffiffiffiffiffi

a2�a2
1

p
a1

j. Then the

EE point E� will be stable asymptotically if

tan�1 j
ffiffiffiffiffiffiffiffiffi

a2�a2
1

p
a1

j[ ap
2
. In this case we find an

interval of differentiation for a as

0\a\ 2
p
tan�1 j

ffiffiffiffiffiffiffiffiffi

a2�a2
1

p
a1

j where the EE is asymp-

totically stable.

(iv) If a21\a2 and a1\0, then j argðk1;2Þj ¼ p�

tan�1 j
ffiffiffiffiffiffiffiffiffi

a2�a2
1

p
a1

j. Then the EE, E� point will be

stable asymptotically if p� tan�1 j
ffiffiffiffiffiffiffiffiffi

a2�a2
1

p
a1

j[ ap
2
.

The interval of differentiation for a is

0\a\2� 2
p
tan�1 j

ffiffiffiffiffiffiffiffiffi

a2�a2
1

p
a1

j, where the EE, E�

point is stable asymptotically.

(v) If a21\a2 and a1 ¼ 0, then j argðk1;2Þj ¼ p
2
[

ap
2
.

Therefore the EE is asymptotically stable.

Thus we can state the next theorem regarding asymptotic

local stability of the EE point.

Theorem 4.7 The asymptotic local stability conditions

for EE point E�ðS�; I�Þ of system (2.2) are followed by

(i) If a21 � a2 and a1\0, then the EE is asymptotically

stable.

(ii) If a21 � a2 and a1 � 0, then the EE is unstable.

(iii) If a21\a2 and a1[ 0, then the EE is asymptoti-

cally stable.

(iv) If a21\a2 and a1\0, then the EE is asymptotically

stable.

(v) If a21\a2 and a1 ¼ 0, then the EE is asymptoti-

cally stable.

Existence criteria of Hopf Bifurcation We can rewrite

our proposed model system (2.2) as:

t0D
a
t ~xðtÞ ¼ f ðb; ~xÞ; t0[ 0; ~x ¼ ðS; IÞ 2 R

2 and ~xðt0Þ
¼ ðS0; I0Þ with S0[ 0; I0[ 0 ð4:10Þ

where a 2 ð0; 1� and f ðb; ~xÞ ¼ f ðS; IÞ ¼ rS
1þbI

� aS� bS2
�

� cSI
1þdI

þ ðmþ uÞI; cSI
1þdI

� ðmþ uþ aþ dÞIÞ, is a function

from ½t0;1Þ �R to R
2 with R 	 R

2 with parameter

b 2 R. For EE, E� point of system (4.10), suppose k1ðbÞ
and k2ðbÞ are complex conjugate eigenvalues of the Jaco-

bian matrix J of model system (4.10) at E� (which exists if

a21\a2 and a1[ 0). System (4.10) goes through a Hopf

bifurcation at critical value b ¼ b0 [by equation (4.7)] such

that following singularity condition[(i)] and transversality

condition [(ii)] are satisfied (Deshpande et al. 2017).

(i) j argðkiðb0ÞÞj ¼
ap

2
for i ¼ 1; 2:

(ii)
d

db
j argðkiðbÞÞj 6¼ 0 atb ¼ b0 for i ¼ 1; 2:
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Note: a similar condition of Hopf bifurcation can also be

found if we consider system (2.2) as function of the disease

control parameter, u.

4.5 Global stability of the equilibria

In this portion, first we only state some lemmas in order to

study the global asymptotic stability criterion of DFE and

the EE points.

Lemma 4.8 (Li et al. 2010) Let us consider a function

w : R ! R
þ which is continuously differentiable. For any

r 2 R
þ and all time t[ t0, the following result holds:

t0D
a
t wðtÞ�r�r log

wðtÞ
r

� �

� 1� r

wðtÞ

� �

t0D
a
t ; a2ð0;1Þ:

Lemma 4.9 (Jingjing et al. 2015) Let R be a closed and

bounded subset in R and t : R! R be a continuous

function which satisfies the condition: t0D
a
t t� 0. Then

for any solution of the model system (4.5) starting from a

point x 2 R 	 R
n always remains in R. Also assume that

P is the largest invariant subset of the set

S ¼ fx 2 R : t0D
a
t t ¼ 0g. Then any solution x(t) of the

model (4.5) starting in R converges to P as t ! 1. In

peculiar case if P ¼ f0g, then xðtÞ ! 0 as t ! 1.

Now we introduce and establish the theorems corre-

sponding to the global asymptotic stability criterion for

DFF and EE points.

Theorem 4.10 If the basic reproduction number of sys-

tem (2.2) is strictly less than unity, i.e. R0\1, then DFE

point E1ððr � aÞ=b; 0Þ is asymptotically stable globally.

Proof Using Lemma 4.9, we prove this theorem. We

formulate the following positive definite Lyapunov function:

V ¼ I

Then with the help of a; the order, the constructed positive

definite function V and the solution of system (2.2), we have

t0D
a
t V ¼ t0D

a
t IðtÞ

¼ cS

1þ dI
� ðaþ d þ uþ mÞ

� �

IðtÞ

� cðr � aÞ
b

� ðd þ aþ mþ uÞ
� �

IðtÞ

¼ cr � fcaþ bðaþ d þ mþ uÞg½ � IðtÞ
b

¼ caþ bðaþ d þ mþ uÞ
b

ðR0 � 1ÞIðtÞ

� 0 if R0\1

So by Lemma 4.9, any solution starting in R converges to

the largest invariant set S ¼ fðS; IÞ 2 R : t0D
a
t V ¼ 0g.

Hence limt!1 IðtÞ ¼ 0. Moreover, if IðtÞ ¼ 0, then system

(2.2) reduces to single eqation

t0D
a
t SðtÞ ¼ ðr � a� bSÞS ð4:11Þ

The solution of (4.11) is

SðtÞ ¼ r � a

b
þ 1� r � a

bSð0Þ

� �

SðtÞEa �ðr � aÞta½ �

As t ! 1, we have SðtÞ ¼ r�a
b
. Therefore the equilibrium

point of limit set (4.11) is asymptotically stable globally,

and hence DFE point of system (2.2), E1 is asymptotically

stable globally. Hence the proof. h

Theorem 4.11 The EE point, E�ðS�; I�Þ of system (2.2) is

asymptotically stable globally if it is asymptotically

stable locally.

Proof We construct the following Lyapunov function in

order to prove this theorem:

LðS; IÞ ¼U I � I� 1þ ln
I

I�

� �� �

� ðS� þ I�Þ 1þ ln
Sþ I

S� þ I�

� �

þ ðSþ IÞ

where U ¼ 4ab
r2
½2aþ d � r� þ 2b. It can be verified easily

that the Lyapunov function L(S, I) is positive definite for

all S[ 0; I[ 0. Since EE, E�ðS�; I�Þ is a fixed point of

constructed system (2.2), we can calculate the following:

aþ d þ mþ u ¼ cS�

1þ dI�
;

rS�

1þ bÞI�

� aS� � bS�2 ¼ ðaþ dÞI�
ð4:12Þ

Thus by Lemma 4.8, it follows that
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t0D
a
t LðS; IÞ� 1� S� þ I�

Sþ I

� �

t0D
a
t ½SðtÞ þ IðtÞ�

þ U 1� I�

I

� �

t0D
a
t IðtÞ

¼ ðS� S�Þ þ ðI � I�Þ
Sþ I

rS

1þ bÞI � aS� bS2 � ðaþ dÞI
� �

þ UðI � I�Þ cS

1þ dI
� ðaþ d þ mþ uÞ

� �

� ðS� S�Þ þ ðI � I�Þ
Sþ I

rðS� S�Þ � aðS� S�Þ½

� bðS2 � S�2Þ � ðaþ dÞðI � I�Þ



þ UðI � I�Þ
cS

1þ dI
� cS�

1þ dÞI�
� �

; by the Eq. ð412Þ

� fðS� S�Þ þ ðI � I�Þg

� 4abða� rÞ
r2

þ 2b

� �

ðS� S�Þ
�

� 4abðaþ dÞ
r2

ðI � I�Þ
�

þ UcðS� S�ÞðI � I�Þ; by the Theorem4:5

� 1

Sþ I
� � 4ab

r2

� � 4aða� rÞ
r2

þ 2

� �

bðS� S�Þ2

� 4abðaþ dÞ
r2

ðI � I�Þ2

Thus t0D
a
t LðS; IÞ� 0 if

4aða�rÞ
r2

þ 2[ 0. Now see that
4aða�rÞ

r2
þ 2 ¼ 2

r2
½2aða� rÞ þ r2� ¼ 2

r2
½a2 þ a2 � 2arþ r2� ¼

2
r2
½a2 þ ða� rÞ2�[ 0 for any choice of parameters. Hence

the proof. h

4.6 Incommensurate fractional-order model

Here, we assume incommensurate fractional-order system

(2.3), ai 2 ð0; 1� for i ¼ 1; 2 and n ¼ 1
A

where

A ¼ lcmðq1; q2Þ, ai ¼ pi
qi
with pi and qi are relatively primes

for i ¼ 1; 2. Then the article by El-Saka et al. (2019), the

fixed point E(S, I) of model (2.3) is locally asymptotically

stable iff j argðkÞj[ np
2
for all the eigenvalues k0s of the

following matrix

M � J ð4:13Þ

where M ¼ diagðkAa1 ; kAa2Þ and J is the Jacobian matrix

calculated at that fixed point E(S, I).

5 Numerical simulations

To perform the numerical simulations of our model, we use

modified predictor–corrector method (Diethelm and

Braunschweig 2003), and we mainly emphasize the effects

of the parameters: level of fear b, treatment control u, the

fractional-order a of system (2.2) and the fractional orders

a1 and a2 of model system (2.3). First, we choose the

parameters of our proposed model system (2.2) as r ¼
0:85; a ¼ 0:1; b ¼ 0:1; b ¼ 0:12; c ¼ 0:1;m ¼ 0:01; d ¼
0:045; d ¼ 0:6; u ¼ 0:06 and we see that backward bifur-

cation occurs at R0 ¼ 1. Figure 1 depicts that if

R0 2 ðR�
0 ¼ 0:542;R0 ¼ 1Þ, then there exist two EE points

and one of them is stable and another is unstable which

means that only the condition R0\1 is not sufficient to

eliminate the disease from system. Again with the help of

the parameters set r ¼ 0:66; a ¼ 0:67; b ¼ 0:6; b ¼ 0:1;

c ¼ 0:51;m ¼ 0:1; d ¼ 0:1; d ¼ 0:23; u ¼ 0:01, we sol-

ve the system (2.2). Here as a[ r, Theorem 4.6 confirms

that the TE, E0ð0; 0Þ is asymptotically stable. Figure 2

verifies this behaviour.

Now, if we choose the parameters set as r ¼ 0:66; b ¼
0:6; b ¼ 0:1; a ¼ 0:67; c ¼ 0:51;m ¼ 0:1; d ¼ 0:1; d ¼
0:23; u ¼ 0:01, then as r[ a and R0 ¼ 0:83\1, again the

Theorem 4.6 supports that the DFE, E1ð0:3; 0Þ is asymp-

totically stable. Figure 3 depicts this behaviour.

Again, we consider the parameter set: r ¼ 0:75; a ¼ 0:5;

b ¼ 0:5; b ¼ 0:01; d ¼ 0:13; c ¼ 0:9;m ¼ 0:01; d ¼ 0:1;
u ¼ 0:01 as R0 ¼ 1:48[ 1. Figure 4 shows that the

EE(0.707, 0.205) is asymptotically stable. Also for the
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different parameter set: r ¼ 0:6; a ¼ 0:55; b ¼ 0:3; b ¼
0:001; c ¼ 1;m ¼ 0:154; d ¼ 0:1; d ¼ 0:13; u ¼ 0:01; with
fractional order a ¼ 0:95, Fig. 5 shows that the

EE(0.508, 0.034) is asymptotically stable (green curves).

But if the a increases to the value a0 ¼ 0:95, then we will

see limit cycles are formed around EE for this particular

order of differentiation and hence it proves the existence of

Hopf bifurcation. If the a further increases, then limit

cycles will be bigger. Figure 5 depicts these beha-

viours (red and blue curves).

Choose the next parameter set: r ¼ 0:6; a ¼ 0:55; b ¼
0:8; b ¼ 0:001; c ¼ 1;m ¼ 0:154; d ¼ 0:1; d ¼ 0:13; u ¼
0:01; with fractional-order a ¼ 0:99. Figure 6 shows that

the EE(0.819, 0.039) is asymptotically stable (blue

curves). But if the b decreases to the value b0 ¼ 0:3, then

we will see limit cycles are formed around EE for this

particular b ¼ b0 and hence it proves the existence of Hopf

bifurcation. Figure 6 shows this behaviour (red curves).

Again, assume the parameter set: r ¼ 0:6; a ¼ 0:55; b ¼
0:4; b ¼ 0:001; c ¼ 1;m ¼ 0:154; d ¼ 0:1; d ¼ 0:13; u ¼
0:2; with fractional-order a ¼ 0:99, Fig. 7 shows that the

EE(0.703, 0.043) is asymptotically stable (blue curves).

But if the u decreases to the value u0 ¼ 0:01, then we will

see limit cycles are formed around EE for this particular

u ¼ u0 and hence it confirms that the system undergoes a

Hopf bifurcation. Figure 7 shows these

phenomena (red curves).

Next, we choose the parameter set: r ¼ 0:5; a ¼
0:5; b ¼ 0:5; b ¼ 0:01; c ¼ 0:9; m ¼ 0:01; d ¼ 0:1; d ¼
0:13; u ¼ 0:01; with a1 ¼ 0:99; a2 ¼ 0:98, and using this,

we solve system (2.3). Since for these parameters R0 ¼
0:986\1 the DFE(0.17,0) is asymptotically stable. Fig-

ure 8 (left) confirms this behaviour. Finally, using the

parameter set: r ¼ 0:65; a ¼ 0:5; b ¼ 0:5; b ¼ 0:01; c ¼
0:9;m ¼ 0:01; d ¼ 0:1; d ¼ 0:13; u ¼ 0:01; and a1 ¼ 0:99;
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a2 ¼ 0:98, we solve system (2.3). Since for these param-

eters R0 ¼ 1:2823[ 1 the EE(0.7,0.13) is asymptotically

stable. Figure 8 (right) verifies this.

6 Discussions

In this present paper, we have proposed and analysed a new

fractional-order SIS-type epidemic model with fear effect

of the infectious disease and also the effect of treatment

control. The fractional-order system is more naturalistic,

and it brings on more affects as compared to the ordinary

system or commonly known as integer-order system. The

features of most of the real-world problems (or systems)

assure that their model possibly more exactly formed with

the fractional-order system. A higher-order system can also

be modelled to a lower-order system by using fractional

calculus. In case of control theory, the systems which are

modelled by fractional calculus produce much better affect

than the ordinary or integer-order system of differential

equations.

In our proposed model systems, i.e. commensurate

system (2.2) and incommensurate system (2.3), we

deduced the criterion for the existence and uniqueness of

various equilibrium points of the systems in several frac-

tional-order cases. Then we examined the conditions for

nonnegativity of solutions and also uniform boundedness

of that solutions. Furthermore, we established sufficient

conditions to check that DFE, E0 and the EE, E� of system
(2.2) are asymptotically stable globally by developing

suitable Lyapunov functions. Further, the theoretical

results are asserting by some numerical simulations. We

restrict our numerical works at the EE point of proposed

systems (2.2) and (2.3).

We have studied that R0, the basic reproduction number

of our model acts a significant purpose in local and also

global stability of DFE point (Fig. 3). Also, treatment

control u and the parameter of the level control b have key

role to local and also the global asymptotic stability of EE

point (Fig. 4). We have demonstrated the criterion for the

existence of Hopf bifurcation for commensurate system

(2.2), against the parameter of the level of fear b and also

noticed that similar types of conditions can be found for the

existence of Hopf bifurcation against the disease control

parameter u. We have also presented the Hopf bifurcation

against the parameters a; b and u in Figs. 5, 6 and 7,

respectively. In case of incommensurate system (2.3),

Fig. 8 depicts the dynamical behaviour for the different

fractional orders a1 and a2.

In this numerical simulation, we have applied the pre-

dictor–corrector PðECÞmE (Predict, multi-term (Evaluate,

Correct), Evaluate) method Diethelm et al. (2002), Die-

thelm and Braunschweig (2003) and Garrappa (2010) with

the help of MATLAB software. We use the implicit frac-

tional linear multistep methods (FLMMs) as solver func-

tion for our proposed systems (2.2) and (2.3) with the

fractional differential equations, and applying this method,

we have described the phase portrait. Notice that PðECÞmE
is modified iteration formula of the method, PECE (Pre-

dict, Evaluate, Correct, Evaluate) and Adams–Moulton

algorithm.

7 Conclusions

We conclude that our proposed model yields efficient

results and the model may serve as a tool for a wide range

of utilizations in the mathematical epidemiology. In our

future works, we develop and study several fractional-order

epidemic models with the help of various numerical

methods like Taylor series approximations method,

homotopy perturbation method, Diethelma’s method,

Adomian decomposition method, etc. Also in future, we
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stretch SIS-type epidemic model to SIR, SEIR, SEIRS

model with treatment and vaccination controls in the

presence of fear of the disease and apply fractional optimal

control analysis of the disease control parameters which

helps us to optimize the cost used in the controlling of the

disease. Moreover, this mathematical model may be

applied to examine the nature and also dynamics of almost

every infectious disease.
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