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Abstract: For photovoltaic panels, maximum power point tracking (MPPT) is a crucial process to ensure energy capture is
maximised. Various tracking algorithms are available for this purpose. Of these, one of the more common presently
implemented is the incremental conductance method. However, no linearised small signal model incorporating an incremental
conductance-based MPPT process exists. As will be demonstrated, this is attributed to the formation of a degenerate model
when conventional linearisation techniques are applied. In this study, a modelling approach is developed that overcomes this
deficiency and permits linearisation of the incremental conductance MPPT algorithm. As a case study adopting this developed
approach, a complete small signal dynamic model of the incremental conductance method utilising a boost converter is
derived. The model is validated against simulations in PSCAD/EMTDC. This study also presents some applications of the
model, such as controller design and stability testing. The results demonstrate that the system is highly robust to variations in
the lighting condition.
1 Introduction

Sustainable energy development is a key focus in the present-
day energy systems research, with the major renewable
energy resources being wind, solar and hydro. Of these,
solar stands out as having the least environmental footprint.
Photovoltaic (PV) panels are currently the prominent means
of extracting solar energy. To interface these PV panels
with the electrical network, many different connection
topologies are available for system designers to utilise [1].
Despite these options, the majority of installations typically
integrate a dc–dc converter between the PV panels and
grid-connected dc–ac converter. The dc–dc converter
ensures that the PV panels are outputting their maximum
power and either boosts or bucks the panel voltage to an
appropriate level for the dc link, while the dc–ac
converter’s primary role is to transfer this power to the
point of common coupling.

A PV panel converts solar radiation to dc power and
possesses a non-linear current–voltage (I–V ) output
terminal characteristic. This I–V characteristic varies with
changes in irradiation level and panel temperature, with the
point of maximum output power varying accordingly [2]. In
order for the system to work at its optimal power output a
control algorithm is required to automatically track the PV
panel’s maximum power point (MPP). As such, significant
research effort has been contributed to devising these MPP
tracking (MPPT) algorithms [3–10].

The most common algorithms presently implemented
are the hill-climbing (perturb and observe) [7, 9, 11],
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incremental conductance [6, 12–15] and constant voltage
methods [13, 16, 17]. The only advantages of the constant
voltage method over the others are its speed and ease of
implementation, but these come at a price of reduced
energy yield. Both the hill-climbing and the incremental
conductance methods may have difficulty finding the MPP
when used in large arrays where multiple local maxima
occur. However, the hill-climbing method suffers from a
slow response time and may also experience difficulty in
tracking the MPP if weather conditions change rapidly [18].
Moreover, when compared to incremental conductance, the
hill-climbing method may present additional challenges in
model synthesis without providing much additional benefit.
For instance, the incremental conductance method allows
the use of state space control and modelling, which enables
the use of established control design tools, stability analysis
and rigorous assessment of system robustness to different
parameters. For these reasons, the focus of this work
pertains to the incremental conductance method, as applied
to small and medium power applications (,50 kW).

Recent effort has been put forth towards constructing small
signal models of PV systems incorporating different MPPT
algorithms [19–23]. A complete representation of the
MPPT dynamics, however, is not provided in these
publications because of the lack of availability of
established dynamic models for the MPPT blocks. The
incremental conductance method is one such tracking
algorithm without a readily available linearised small signal
model. Consequently, existing methods used to characterise
dynamics of an incremental conductance-based MPPT
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process either give an incomplete picture or have limited use
[24–27]. Specifically, in [24, 25] dynamics of the incremental
conductance method are evaluated based on logic flowchart
representations of the algorithm implemented in MATLAB.
These models are relatively complex and do not lend
themselves to stability or robustness analyses. In [26] an
analytical model of the incremental conductance method
was developed to aid in stability analyses. However, the
linearisation process assumed a fixed slope to represent the
PV panel’s non-linear I–V characteristic for operating
points near the MPP, and thus the dynamics are not fully
captured (as will be shown in section 5). In [27] the
incremental conductance method is implemented using a PI
compensator that was initially tuned using the Ziegler–
Nichols method. Trial and error (heuristic)-based
approaches, as opposed to classical control design tools
such as frequency-response, are typically employed for
controller tuning as the incremental conductance method
lacks an established small signal model.

As no linearised small signal models directly addressing
the incremental conductance method are readily available
in the literature, no systematic procedures exist to (i) calibrate
the MPPT controller, (ii) evaluate stability limits or (iii)
quantify system robustness.

In order to address these needs a complete linearised small
signal dynamic model applicable for the incremental
conductance method is derived in this paper. To implement
the MPPT algorithm the assumed system topology adopts
duty cycle control of a boost converter using a simple PI
compensator. A full non-linear model of a PV panel is used
as the incremental conductance method inherently relies
on the PV panel’s slope characteristic. A state-space
representation of the system is established to facilitate
control design, stability and robustness analyses. The small
signal model is validated against a PV system implemented
in the PSCAD/EMTDC simulation environment.

2 Incremental conductance method

The operating point for a PV panel which coincides with its
maximum power output can be mathematically stated as

Ipv

Vpv

= −
dIpv

dVpv

(1)

where Ipv and Vpv are the PV panel’s terminal current and
voltage, respectively. In other words, the MPP for a PV
panel corresponds to an operating condition where the large
signal conductance is equal to the negative of the
incremental conductance. To attain maximum power output
from a PV panel the incremental conductance method
exploits this requirement by utilising a controller to achieve
the relationship in (1).

3 Study system

3.1 System topology

A typical PV system interfaces the PV panel and dc–ac
converter through a dc–dc converter. For PV panels of
small to medium capacity the output voltages are usually
lower than the voltage across the dc-link capacitor, thus a
boost converter is generally used for the dc–dc stage. As a
result, the PV system topology under consideration in this
work is presented in Fig. 1.
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The PV panel is represented by a dependent voltage source.
The panel voltage, V (I ), is assumed to be a function of the
panel current, I. The dc-link voltage E is considered to be
regulated by a device external to the system (as indicated
by the dotted line). This is a fairly reasonable assumption
as in most cases the dc-link voltage is either regulated by
the dc–ac converter or possibly fixed by a battery energy
storage system.

3.2 Controller tracking algorithm

The large signal conductance, Y (I ) and incremental
conductance, Ỹ (I ), are defined with respect to the panel
voltage and current

Y (I) W
I

V (I )
(2)

Ỹ (I) W
dI

dV (I )
(3)

Similarly, the large signal impedance, Z(I ) and incremental
impedance, Z̃(I), are defined

Z(I ) W
V (I)

I
(4)

Z̃(I) W
dV (I )

dI
(5)

This implies the following relationships

Y (I) = Z(I )−1 (6)

Ỹ (I) = Z̃(I )−1 (7)

Relating (2) and (3) by (1) gives the MPPT requirement

Y (I) = −Ỹ (I ) (8)

As it is desired to have a PI compensator force the
requirement stated in (8), the error signal input to the
compensator, e, is defined

e W −Ỹ (I) − Y (I) (9)

4 Modelling challenges

This section outlines the challenges associated with the
derivation of a small signal model from a block diagram
representation of the physical system using standard
linearisation techniques. The discussion also provides the
motivation behind choosing the mathematical modelling
strategy adopted in Section 5.

Fig. 1 PV system configuration for modelling of the incremental
conductance method
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The incremental conductance term defined by (3) is
typically implemented digitally within a micro-controller
according to [15]

dIk

dVk

=
Ik − I(k−1)

Vk − V(k−1)

(10)

where the voltage and current waveforms are sampled at k
(integer) multiples of the sampling period, Ts. However, it
must be recognised that (10) is merely a ratio of two
differentiators as seen below

di(t)

dt
⇒

Ik − I(k−1)

Ts

(11)

dv(t)

dt
⇒

Vk − V(k−1)

Ts

(12)

where i(t) and v(t) are continuous time current and voltage
waveforms, respectively. Based on this observation,
continuous time differentiators are used to model the
incremental conductance term.

Consider the continuous time control block diagram
representation of the incremental conductance method
shown in Fig. 2. Here, d is the converter’s duty cycle,
parameters K and a represent the PI compensator used to
drive (9) to zero, and t is the time constant for a low-pass
filter used to remove switching harmonics from the control
signals. The fV block represents the non-linear function
which maps I to V (I ). The physical implementation of the
incremental conductance method dictates the presence of
five system states denoted by x1 through x5, as indicated in
Fig. 2.

With the control system formulated the next step would be
to constrain the model to regions near the steady-state
operating point (MPP). However, the structure in Fig. 2
leads to a degenerative system that cannot be solved. As
will be shown later, this is because of the presence of
redundant state variables associated with the MPPT. The
redundant state variables, x1 and x2 of Fig. 2, stem from the
implicit linkage that exists between Y (I ) and Ỹ (I ),
combined with the non-linear function fV, imposed by the
I2V characteristic of the PV panel.

From the preceding discussion it is apparent that another
mathematical modelling approach is needed to linearise
the system in Fig. 2. To accomplish this, Taylor Series
expansions are exploited.

5 System modelling

This section develops detailed modelling of the PV panel and
boost converter, based on the initial work in [28]. For clarity,
any dependent sources or variables will be explicitly shown as
functions of their corresponding independent variable.

Fig. 2 Control block diagram for the incremental conductance
method
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5.1 PV panel

The PV panel incorporates the double diode model of the
polycrystalline cell in Fig. 3 [29]. The cell is modelled by a
photocurrent Iph in parallel with a resistance Rp and two
photodiodes, which are represented by the saturation
currents Is1 and Is2. A resistance Rs is also placed in series
with the cell terminal. The cell current, Ic and cell voltage,
Vc, are described by the transcendental function [29]

Ic = Iph − Is1[e((Vc+IcRs)/vt) − 1]− Is2e((Vc+IcRs)/Avt) − Vc + IcRs

Rp

(13)

where

vt =
kT

e
(14)

Iph = K0S(1+K1T ) (15)

Is1 = K2T3e(K3/T ) (16)

Is2 = K4T (1/2)e(K5/T ) (17)

A = K6 +K7T (18)

Rs = K8 +
K9

S
+K10T (19)

Rp = K11e(K12T ) (20)

Here, T is the PV cell temperature, S is the solar irradiance, k
is Boltzmann’s constant, e is the electronic charge, vt is the
diode thermal voltage, A is the diode parameter (ideality
factor) associated with recombination in the space–charge
layer and K0 through K12 are model coefficients.

A combination of Ns series connected cells and Np parallel
cell branches were used to model the PV panel, or in this case
an entire PV array. This model neglects any losses associated
with cell shading or string mismatching. The parameters used
to generate a 35 kW PV array are provided in Appendix 1.
The model inputs S and T were assumed as 1000 W/m2 and
298 K, respectively. The coefficients K0 to K12 used in the
empirical relationships (15) through (20) were obtained
in [29] from earlier works that reported experimental
polycrystalline cell characterisation. Diode parameter A
is set to 2 to approximate the Shockley–Read–Hall
recombination. Fig. 4 shows the resulting non-linear I 2 V
terminal characteristics for the array. By defining I0 as the
steady-state array current corresponding to the array’s
maximum power output, P (I0), the MPP can be
characterised with I0, V (I0) and P (I0) of 137.9 A, 253.9 V
and 35 kW, respectively.

The 35 kW PV array was implemented in PSCAD/
EMTDC as a current controlled voltage source (V ¼ V (I ))

Fig. 3 Double diode model for the polycrystalline cell
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based on the cell model in Fig. 3 and the parameters in
Appendix 1.

Fig. 5 provides the Z̃(I) curve corresponding to the slope of
the I 2 V characteristic in Fig. 4.

5.2 Boost converter

The averaged model for the boost converter is shown in
Fig. 6a [30]. Forward voltage drops and conductions losses
for the diode and switch are neglected. The output load of
the converter is represented by the resistor R. The ,.
brackets denote quantities that are averaged over the
switching period. The variable d represents the converter
duty cycle.

To obtain a linearised small signal model of Fig. 6a, all
averaged quantities are replaced by a steady-state dc
component (associated with the MPP) and a corresponding
small signal variation (e.g. , I . ¼ I0 + DI ). After
enforcing the previously stated assumption of negligible
DE, the resulting small signal model for the boost converter
is depicted in Fig. 6b.

Summing all the voltage drops to zero

sLDI = DV (I ) − E0Dd (21)

To relate DV (I ) and DI, a Taylor Series expansion of V (I ) is
first performed

V (I) = V (I0) + ∂V (I)

∂I

∣∣∣∣
I=I0

DI + HV (I)
︷�︸︸�︷higher-order terms

(22)

Fig. 4 PV array non-linear I–V characteristic

Fig. 5 PV array incremental impedance
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After discarding the steady-state operating point and
neglecting all higher-order terms

DV (I) ≃ ∂V (I)

∂I

∣∣∣∣
I=I0

DI (23)

Noting that the term multiplying DI is simply Z̃(I0), (23) is
substituted into (21) to ascertain the boost converter transfer
function

DI

Dd
= E0

sL − Z̃(I0)
(24)

where Z̃(I0) is the incremental impedance at the MPP. Since
Z̃(I ) is inherently negative, as illustrated by Fig. 5, the pole
of this transfer function will always be in the left half plane.

5.3 Large signal conductance

To determine the relation between DY (I ) and DI, a Taylor
Series expansion of Y (I ) is used

Y (I ) = Y (I0) + ∂Y (I)

∂I

∣∣∣∣
I=I0

DI + HY (I)
︷�︸︸�︷higher-order terms

(25)

Substituting (2) into the RHS of (25)

Y (I ) = Y (I0) + ∂(I/(V (I)))

∂I

∣∣∣∣
I=I0

DI + HY (I )
︷�︸︸�︷higher-order terms

(26)

After applying the quotient rule to (26) and neglecting all
higher-order terms

DY (I) ≃ V (I0) − Z̃(I0)I0

V (I0)2

[ ]
DI (27)

By recognising that Z̃(I0) = −V (I0)/I0 at the MPP, (27)
is restructured to give the transfer function relating DY (I )

Fig. 6 Boost converter models

a Averaged model
b Small signal model
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and DI

DY (I )

DI
= 2

V (I0)
(28)

5.4 Incremental conductance

Similar to the approach taken in (25), Ỹ (I) is represented by
its Taylor Series expansion

Ỹ (I ) = Ỹ (I0) + ∂Ỹ (I)

∂I

∣∣∣∣
I=I0

DI + HỸ (I)
︷�︸︸�︷higher-order terms

(29)

Substituting (7) into the RHS of (29) we obtain

Ỹ (I) = Ỹ (I0) + ∂(Z̃(I)−1)

∂I

∣∣∣∣∣
I=I0

DI + HỸ (I)
︷�︸︸�︷higher-order terms

(30)

After applying the chain rule to (30) and neglecting all higher-
order terms, the transfer function relating DI to DỸ (I) is
determined as

DỸ (I )

DI
= − 1

Z̃(I0)2

dZ̃(I)

dI

∣∣∣∣
I=I0

(31)

Note dZ̃(I)/dI is the derivative of the incremental impedance,
and is therefore a second-order term. This is contrary to the
usual practice employed for small signal modelling where
only first-order terms are of interest, and all second-order
terms are neglected.

6 System block diagram

Utilising the transfer functions (24), (28) and (31) a complete
linearised small signal model of the system is formulated in
Fig. 7a, where

Y W
2

V (I0)
(32)

F W
1

Z̃(I0)2

dZ̃(I )

dI

∣∣∣∣
I=I0

(33)

Fig. 7 Small signal model control block diagrams

a Complete
b Simplified
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A low-pass filter block with time constant t has been added
to filter switching harmonics. A proportional-integral (PI)
compensator quantified by K and a is used to control the
duty cycle input for the boost converter. The system states
are represented by x̃1, x̃2 and x̃3.

To reflect a classical feedback control structure the system
block diagram in Fig. 7a can be simplified as demonstrated by
Fig. 7b. It should be stressed here that the feedback term
(Y 2 F)DI in Fig. 7b is neither a direct representation of
the conductance DY (I ) nor of the incremental conductance
DỸ (I) (as provided in Fig. 7a), but rather a unique
combination of the two.

As discussed earlier, the formulation of a system matrix
would enable control design, stability and robustness
analyses for the incremental conductance method. Thus, a
state-space representation of the system is derived

˙̃x =

0 0 K(F− Y)
a

t

−1

t

K

t
(F− Y)

0
E0

L

Z̃(I0)

L

⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦x̃ (34)

where

x̃ = x̃1 x̃2 x̃3

[ ]T
(35)

It is important to highlight that the presence of a second-order
term within the small signal model is not conventional.
Recalling the modelling challenges outlined in Section 4, it
becomes clear that the existence of the term dZ̃(I)/dI
within the small signal model of Fig. 7a enables the
elimination of two additional redundant states required for
the physical implementation shown in Fig. 2.

7 Model validation

To validate the linearised model of Fig. 7a, its output
response is compared against simulation results for the
complete PV system of Fig. 1 implemented in PSCAD/
EMTDC. The PV array is modelled by the non-linear I2V
curve in Fig. 4. Bode plot design was used to tune the PI
compensator, with a ≃− ((Z̃(I0))/L) and K chosen for a
phase margin .608. Thus, K and a were selected as 0.26 V
and 230 s21, respectively. To ensure controller robustness
to parameter variation a sensitivity analysis (see Section 8)
should be performed.

To implement (9) in PSCAD/EMTDC, the incremental
conductance was determined by sampling the inductor
current and voltage waveforms at every switching instance
and calculating (dI )/d(V (I) ).

7.1 Simulation results

To investigate the system dynamics, a duty cycle disturbance
of 10% was injected for 2 ms. This disturbance temporarily
moves the system away from its steady-state operating point
and allows the system recovery dynamics to be observed.
Fig. 8 provides simulation results showing the response of
V (I ), I, d, Y (I ) and Ỹ (I) to the duty cycle disturbance
occurring at t ¼ 0.1 s. Once the disturbance is removed, the
array voltage and current fully recover to their steady-state
(MPP) values after �20 ms. The small signal model shows
excellent agreement with the full PV system implementation
in PSCAD/EMTDC, thus validating the model of Fig. 7a.
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Two additional simulations were performed to observe the
PSCAD/EMTDC system dynamics in response to changes in
solar irradiance. Figs. 9 and 10 show the response of I, V (I )
and d to a step change and ramp change in solar irradiance,
respectively. In Fig. 9 a step change in S from 1000 to
875 W/m2 takes place at t ¼ 0.15 s. There is an abrupt drop
in array voltage as the step change has essentially
introduced a new steady-state MPP, yet the array current
cannot change instantaneously because of the boost
inductance. The system adapts and properly tracks the new
MPP after �15 ms. In Fig. 10 a ramp change in S from
1000 to 500 W/m2 is initiated at t ¼ 0.15 s, lasting for
500 ms. Even though there is a relatively large and fast
change in S, the waveforms transition between the MPPs in
a rather controlled manner. These simulation results
demonstrate the incremental conductance method is fairly
robust to rapidly changing climate conditions.

Fig. 8 Disturbance rejection at t ¼ 0.1 s, +10% duty cycle for
2 ms: output response for I, V(I), d, Y(I) and Ỹ(I)

Fig. 9 Step change in solar irradiance from S ¼ 1000 to
875 W/m2 at t ¼ 0.15 s: output response for I, V(I) and d
264
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To illustrate the operating point (MPP) variations of the PV
array associated with Figs. 9 and 10, the PV array I–V
characteristics for S equal to 1000, 875 and 500 W/m2 are
overlaid in Fig. 11. The MPPs are characterised by points A
(137.9 A, 253.9 V), B (119.9 A, 250.4 V) and C (66 A,
235.2 V) for S equal to 1000, 875 and 500 W/m2,
respectively. The dynamics of I and V (I ) associated with
the step and ramp changes in S are superimposed.

8 Eigenvalue analysis

The system matrix in (34) provides the means to investigate
system stability by observing the locus of closed loop poles
because of parameter variations or changing steady-state
operating points.

For demonstration, an analysis is performed for a system
under rated conditions as tabulated in Appendix 2. For a
fixed compensator (K ¼ 0.26 V, a ¼ 230 s21) the solar
irradiance S was varied from 100 to 1000 W/m2. Fig. 12
shows how the closed loop poles are influenced by the
associated MPP variation. As Fig. 12 indicates, small signal

Fig. 10 Ramp change in solar irradiance from S ¼ 1000 to
500 W/m2, starting at t ¼ 0.15 s and ending at t ¼ 0.65 s (500 ms
ramp duration): output response for I, V(I) and d

Fig. 11 PV array I–V curves (T ¼ 298 K) with dynamics of I and
V(I) superimposed for: (i) step change in solar irradiance from
S ¼ 1000 to 875 W/m2 (refer Fig. 9) and (ii) 500 ms duration
ramp change in solar irradiance from S ¼ 1000 to 500 W/m2

(refer Fig. 10)
IET Renew. Power Gener., 2012, Vol. 6, Iss. 4, pp. 259–266
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stability is easily determined by observing the locus of
eigenvalue locations for the denoted variations in S.

9 Conclusion

The incremental conductance method is one of the more
common MPPT algorithms presently implemented for small
and medium power applications. In this paper a complete
linearised small signal model for the incremental
conductance MPPT method utilising a boost converter
topology has been presented. Owing to the existence of
redundant state variables within the control system block
diagram, conventional linearisation techniques initially led
to an unsolvable system. To overcome this challenge an
alternative modelling approach employing Taylor Series
expansions was adopted. The model’s output response
shows very good agreement with simulation results of a PV
system implemented in PSCAD/EMTDC. The derivation of
a state-space representation for the system permits control
design, stability and robustness analyses. It has been
demonstrated that the incremental conductance MPPT
algorithm is highly robust to variations in the solar
irradiance. Based on the presented modelling technique, PV
solar arrays with incremental conductance-based MPPT can
now be entirely integrated into eigenvalue analysis software
tools alongside conventional generators. The modelling
approach developed here can be readily adapted to PV
system configurations incorporating different converter
topologies.
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11 Appendix 1: data for double diode model
of the polycrystalline cell

The double diode polycrystalline cell model data used to
generate the I–V characteristic curve for the 35 kW PV
array is summarised in Table 1. This numerical data was
taken directly from [29], which utilised the data to facilitate
various MPP tracking case studies on a similar PV system.
To account for parasitics a lumped panel capacitance of
30 nF/kW was assumed for the PV array.

Table 1 Polycrystalline cell double diode model data

Parameter Value

no. of parallel cells, Np 8760

no. of series cells, Ns 720

solar irradiance, S (W/m2) 1000

PV cell temperature, T (K) 298

Boltzmann’s constant, k (J/K) 1.3806 × 10223

electronic charge, e (C) 1.6022 × 10219

coefficient, K0 25.729 × 1027

coefficient, K1 20.1098

coefficient, K2 44.5355

coefficient, K3 21.264 × 104

coefficient, K4 11.8003

coefficient, K5 27.3174 × 103

coefficient, K6 2

coefficient, K7 0

coefficient, K8 1.47

coefficient, K9 1.6126 × 1023

coefficient, K10 24.47 × 1023

coefficient, K11 2.3034 × 106

coefficient, K12 22.8122 × 1022
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12 Appendix 2: system data

The system data used for the small signal model validation are
summarised in Table 2.

Table 2 System data (S ¼ 1000 W/m2, T ¼ 298 K)

Parameter Value

P (I0) (kW) 35

I0 (A) 137.9

V (I0) (V) 253.9

Y (I0) (A/V) 0.543

Ỹ (I0) (A/V) 20.543

Z̃ (I0) (V) 21.84

dZ̃ (I)

dI

∣∣∣∣∣
I=I0

(V/A) 20.123

E0 (V) 430

L (mH) 8

K (V) 0.26

a (s21) 230

t (ms) 0.4

fsw (kHz) 6
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