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Abstract: This paper examined the modeling and forecasting malaria mortality rate using SARIMA Models. Among the 
most effective approaches for analysing time series data is the method propounded by Box and Jenkins, the Autoregressive 
Integrated Moving Average (ARIMA). In this paper, we employed Box-Jenkins methodology to build ARIMA model for 
malaria mortality rate for the period January 1996 to December 2013 with a total of 216 data points. The model obtained in 
this paper was used to forecast monthly malaria mortality rate for the upcoming year 2014. The forecasted results will help 
Government and medical professionals to see how to maintain steady decrease of malaria mortality in other to combat the 
predicted rise in mortality rate envisaged in some months. 
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1. Introduction 
Malaria is a mosquito borne disease caused by a parasite 

called plasmodium (Henderson, 1999). This plasmodium 
has four species which include plasmodium falciparum, 
plasmodium vivax, and plasmodium ovale and plasmodium 
malariae. Malaria parasite is transmitted from one person to 
another through the bite of a female Anopheles Mosquito 
which require blood to nurture her eggs. When Malaria 
parasites enter the blood stream of a person, they infect and 
destroy the red blood cells. The destruction of these 
essential cells leads to fever and flu-like symptoms such as 
chills, headache, muscle aches, tiredness, nausea, vomiting 
and diarrhea. Malaria, when not treated, can lead to coma 
and hence death. 

Globally, Malaria is increasingly becoming a disease of 
serious concern to everybody. This is because day by day, 
the impact of Malaria in human existence, the world over, 
becomes more ravaging and damaging as a result of high 
morbidity and mortality experienced in different parts of 
the globe especially the developing countries of which 
Nigeria is one. 

Malaria parasite has been with man since the dawn of 
time. Hippocrates, a physician born in ancient Greece, 
today regarded as the “father of medicine” was the first to 
describe the manifestation of the disease. 

The association with stagnant water (breeding grounds 
for the Anopheles Mosquito) led the Romans to begin 
drainage program, the first intervention against Malaria. 
The first recorded treatment of Malaria dates back to 1600, 
when the bitter bark of cinchona tree in peru was used by 
the native Indians. Not until 1889 was the protozoa (single 
celled parasite) cause of Malaria discovered by Alphonse 
Laveran and only in 1987 was the Anopheles Mosquito 
demonstrated to be the vector for the disease by Ronald 
Ross. The discovery of Ronald Ross was followed by a 
series of important works which not only enlarged the 
understanding of Malaria but also supplied useful 
knowledge in the combat against Malaria and prevention of 
Malaria. Despite initial success, there was a complete 
failure to eradicate Malaria in many countries (Mills et al; 
2008). 

According to World Health Organization (WHO), Center 
for Disease Control and Prevention (CDCP), Roll Back 
Malaria Partnership (RBM) (2010), 3.3 billion people-half 
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the world’s population- are at risk of Malaria; one million 
people die each year from Malaria; every 30 seconds a 
child dies from Malaria. Also, in Africa, 91% of all Malaria 
death cases occur in Sub- Sahara Africa; 1 in 5 childhood 
deaths are caused by Malaria; 10, 000 pregnant women and 
200, 000 infants die from Malaria every year. 

Further more, one in ten infant’s deaths and 25% of 
deaths in children below the age of four years is attributable 
to Malaria in Africa (Ofovwe and Erejie, 2001 and 
Ezedinachi et al, 1998). The country records about 1858 
deaths per 100, 000 population from Malaria and Malaria is 
responsible for 60% of patients visits to health facilities and 
also about 30% and 11% of childhood and adult deaths, 
respectively (National Malaria Control Programme; N M C 
P, 2011). 

Malaria accounts for an estimated 2 to 3 million deaths 
annually and is also responsible for untold morbidity in 
approximately 300 to 500 million people annually. 
Susceptible groups are children and adults who have host 
or never acquired immunity (Smith et al, 2002). Malaria is 
said to kill about one African (whether child or adult) every 
15 secs and roughly 300, 000 Nigerian children annually 
(Salako, 2002). 

Malaria is responsible for over 10% of the overall 
African disease burden. Children under five years of age 
(22% of the population) and pregnant women (20% of the 
population) are the most vulnerable to Malaria disease 
(Guillet et al, 2001). Nigeria is known for a high prevalence 
of malaria (Federal Ministry of Health, 2001 and 
Onwujekwe et al, 2000) and it is a leading cause of 
morbidity and mortality in the country (Federal Ministry of 
Health, 2001). Available records show that at least 50% of 
the population of Nigeria suffers from at least one episode 
of Malaria each year and Malaria accounts for over 45% of 
all out-patient visits (Federal Ministry of Health, 2001 and 
Ejezie et al, 1991). 

It was reported that malaria prevalence (notified cases) in 
2000 was about 2.4 million and responsible for an 
estimated average annual reduction of 1.3% in economic 
growth for the countries with the highest burden, Nigeria 
inclusive (Federal Ministry of Health, 2001 and 
Onwujekwe et al, 2000). Therefore, it imposes a great 
burden on the country in terms of pains and trauma suffered 
by its victims as well as loss in output and cost of 
treatments (onwujekwe et al, 2004). 

2. Literature Review 

Many researches have been done in the past regarding 
incidence and mortality in Malaria. The need to review 
some of these previous works and other related topics is 
necessary as it will add flavour to this study. 

Durueke (2005) carried out a research on the incidence, 
management and bionomic of malaria in children under 
5years of age in parts of Isiala Mbano L.G.A, Imo State, 
from November 2004 to August 2005. Using a chi-square 
test for proportion, the result revealed that the incidence of 

malaria in the studied area was inversely proportional to the 
socio-economic levels of the areas under study. Also, the 
incidence of malaria increased with decrease in socio-
economic level and decreased with improvement in 
standard of living.  

Gerritsen et al (2008) carried out an analysis on malaria 
incidence in Limpopo Province South Africa from 1998 to 
2007, using chi-square test of independence and time series 
analysis, the result showed that out of 58768 cases of 
malaria reported including 628 deaths, the mean incidence 
of malaria was 124.5 per 100, 000 person and the mean 
mortality rate was 1.1% per season. Also, there was a 
decreasing trend in the incidence over time, and the mean 
incidence in males was higher than in females. Finally, the 
result revealed that incidence in malaria peaked at the age 
of 35 to 39 years, decreased with age from 40 years and is 
lowest in 0 – 4years old. The Cohort Fertility Rate (CFR) 
increased with increasing age. 

Ayeni (2011) conducted a research titled “Malaria 
Morbidity in Akure South West, Nigeria: A temporal 
observation in climate change scenario, from 2000 to 2008”. 
Applying the method of time series analysis, the result 
revealed that malaria morbidity was generally low before 
2004 and that the reported cases of malaria increased from 
43, 533 in 2004 to about 62, 121 case in 2008. From the 
result also, malaria morbidity index revealed an increase of 
0.005 annually between 2000 and 2008. 

Yeshiwodim, et al (2009) carried out a research on 
spartial analysis of malaria incidence at the village level in 
areas with unstable transmission in Ethiopia from 
September, 2002 to August, 2006. Applying the method of 
poisson regressios analysis, the result showed the presence 
of significant spartio-temporal variation and also showed a 
decrease in the incidence of malaria with increasing age. 
The conclusion was that incidence of malaria varies 
according to gender and age, with males age 5 and above 
showing a statistically higher incidence. 

Korenromp et al (2007) carried out a study titled 
“Forecasting Malaria Incidence based on monthly case 
reports and Environmental Factors in karuzi Burudi, from 
1997 to 2003”. Using time series analysis, the result 
revealed that the exploration of the incidence of malaria, 
precipitation, temperature and vegetation for 1997 to 2003 
showed no clear trend, and suggests a seasonal dependency 
in the series with a 6-month period for the incidence and a 
12-month period for rainfall, temperature and vegetation. 

Nwankwo and Okafor (2009) carried out a research on 
the effectiveness of insecticide treated bed nets (ITNs) in 
malaria prevention among children aged 6months to 5 years 
in Umungwa Obowo L.G.A, Imo State of Nigeria between 
June and September 2006. From the 100 children selected 
and randomly assigned either treated bed nets or traditional 
bed nets, and using a chi-square test of independence, the 
result revealed that there was a significant difference in the 
malaria morbidity situation among the two groups. That is 
to say, morbidity due to malaria was higher in children that 
used traditional bed nets than the other group. 
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Opara (2001) carried out a study titled “The effects of 
malaria during pregnancy on infant mortality in Abia State 
Nigeria between 1993 and 1999”. Using chi-square test for 
independence, the result showed that malaria during 
pregnancy increased neonatal mortality by lowering birth 
weight. 

Adebola and Okereke (2007) conducted a study titled 
“Increasing Burden of Childhood Severe Malaria in a 
Nigerian Tertiary Hospital: Implication for control, between 
January 2000 and December 2005”. Using logistic 
Regression, the result showed that severe Malaria 
constituted an important cause of hospital admission among 
Nigerian children especially those aged below 5years. The 
result also revealed that there was significant increase in 
the proportion of cases of severe malaria from 2000 to 2005. 

Greenwood et al (2009) carried out a research on the 
evolution of malaria mortality and morbidity after the 
emergence of chloroquine resistance in rural area of the 
Gambia, West Africa between 1992 and 2004. Applying the 
method of univariate logistic regression and time series 
analysis, the result revealed that mortality attributable to 
malaria did not continue to increase dramatically, in spite of 
the growing resistance to chloroquine as first-line treatment, 
until 2003. The result also showed that malaria morbidity 
and mortality followed parallel trends and rather fluctuated 
accordingly to rainfall. 

Baird, et al (2002) conducted a research on the seasonal 
malaria attack rates in infants and young children in 
northern Ghana from 1996 to 1997. Using fisher’s exact 
test and chi-square test of independence, the result showed 
that the mean parasitemia count at the time of reinfection in 
the dry season roughly equaled that in the wet season.  

Having reviewed some of these related literatures, we 
shall now in this paper examine the modeling and forecasting 
malaria mortality rate using SARIMA models. 

3. Materials and Methods 

In this paper, the methodology and the theorems 
propounded by Box and Jenkins called the Autoregressive 
Integrated Moving Average (ARIMA) was extensively 
explored. This is an advance forecasting technique that 
takes into account historical data and decomposes it into an 
Autoregressive (AR) process, where there is a memory of 
past values, an Integrated (I) process, which accounts for 
stabilizing or making the data stationary plus a Moving-
Average (MA) process, which accounts for previous error 
terms making it easier to forecast. 

3.1. Autoregressive Moving Average Process (ARMA) or 
Mixed Process 

According to (6), autocorrelation patterns may require 
more complex models. A more General model is a mixture 
of the AR(p) and MA(q) models and is called 
autoregressive moving-average model, ARMA(p, q) model . 
He explained further that this model forecasts Y as both a 

linear combination of actual past values and a linear 
combination of past errors. The general ARMA (p, q) 
model is given by  
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Like the AR (p) model, the ARMA (p, q), has 
autocorrelation that diminish as the distance between 
residuals increases.  

3.2. The Autoregressive Integrated Moving Average Model 
(ARIMA) 

The order of the autoregressive component is p, the order 
of differencing needed to achieve stationarity is d, and the 
order of the moving average component is q. In general the 
ARIMA process (8) is of the form 
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3.3. The Backshift and Difference Operators for ARIMA 
Representation 

To express and understand differenced ARIMA models 
the concept of the backshift (lag) operator, B, and 
difference operator, ∇, is used, These has no mathematical 
meaning other than to facilitate the writing of different type 
of models that would otherwise be extremely difficult to 
express. The backshift is defined as 
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3 The general ARMA (p, q) model, 

1 1 2

1 1 2 2

t t t p p t p

t t t q t q

Y Y Y Y

e e e e

µ α α α
θ θ θ

− − −

− − −

= + + + +

+ − − − −

K

K , 

is expressed as  

1 1 2

1 1 2 2

t t t p p t p

t t t q t q

Y Y Y Y

e e e e

α α α

θ θ θ µ

− − −

− − −

= − − −

= − − − − +

K

K
 

2
1 2

2
1 2 1

(1 )

(1 )

p
p t

q
q

B B B Y

B B B e

α α α

θ θ θ µ

− − − −

= − − − − +

K

K

 

µθα += tt eBYB )()(                              (6) 

4 Stationary series tZ  obtained after d differencing 

of tY T is given by 
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Table 1 gives the summary of the general non seasonal 
time series models and their statistical properties. The table 
summarizes discussions on general AR, MA, and mixed 
ARMA (8) models. 

Table 1. General Time Series Models. 

Model Stationarity Condition Invertibility Condition Acf Coefficients Pacf Coefficients 

AR(p) Yes No Die down Cuts off after lag p 

MA(q) No Yes Cuts off after lag q Die down 

ARM(p, q) Yes Yes Die down Die down 
 

3.4. Seasonal Autoregressive Models 

A purely seasonal time series is the one that has only 
seasonal AR or MA parameters. Seasonal autoregressive 
models are built with parameter called seasonal 
autoregressive (SAR) parameters. The SAR parameters 
represent the autoregressive relationships that exist between 
time series data separated by multiples of the number of 
periods per season. A general AR model with P SAR 

parameters is given by 
istis

p

i
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1

 where stY−  is of 

order s, 
stY 2−  is of order 2s and pstY− , is of order ps. A 

model with one SAR parameter is written as  

tstst eYY += −α                              (9) 

Seasonal moving Average (SMA) models are built with 
seasonal moving average (SMA) parameters, and the 

general SMA model with Q parameters is given by:  
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The general mixed SAR and SMA model is given by 
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The order the seasonal ARMA process is given in terms 
of both Ps and Qs 

Table 2 gives the summary of the stationarity and 
invertibility conditions of some specific seasonal time 
series models and the behaviour of their theoretical ACF 
and PACF. 

Table 2. Specific Pure Seasonal Time Series Models. 

Arma Model Stationarity Condition Invertibility Condition Acf Coefficients Pacf Coefficients 
(1,D,0)s -1 < αs < 1 None Die down Cuts off after one seasonal lag 
(1,D,0)s α, + α2s < 1 None Die down Cuts off after one seasonal lag 
(0,D,1)s None -1 < θs < 1 Cuts off after one seasonal lag Die down 

(0,D,2)s None 
θs + θ2s < 1 
θ2s - θs < 1 

θ2s < 1 
Cuts off after two seasonal lag Die down 

(1,D,1)s` -1 < αs < 1 -1 < θs < 1 Die down Die down 

4. Data on Malaria Mortality 
Looking at Table in the Appendix, it shows the data of 

malaria mortality from January 1996 to December 2013, 
totaling two hundred and sixteen (216) monthly observations. 

The data were obtained from the Records Department, Aboh 
Mbaise General Hospital, Imo State Nigeria. Figures 1 and 2 
show the plot of monthly malaria mortality and the trend 
analysis plot respectively. Figures 3 and 4 also describe the 
features of the data that is the autocorrelation plot and the 
partial autocorrelation plot respectively. 
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Figure 1. Time Series Plot of Malaria Mortality. 

Looking at the time series plot of the original data that is 
in Fig. 1, it suggests that the series is non-stationary. 
Moreover, the trend analysis as shown in Fig. 2 reveals a 
decreasing trend. Hence, the ACF plot as shown in Fig. 3 
slightly dies down in a sinewave fashion and the PACF plot 
as shown in Fig. 4 tails of at lag 2. Therefore an AR(2) 
model is suspected. The result of estimates of parameters, 
the ACF and the PACF of the residuals obtained by 
MINITAB version 15.0 Statistical software package are 
shown in Tables 3(a) and 3(b), Figs. 5 and 6 respectively. 

 

Figure 2. Trend analysis plot of malaria mortality. 

 

Figure 3. Autocorrelation plot of malaria mortality. 

 

Figure 4. Partial autocorrelation plot of malaria mortality. 

Table 3(a). Estimates of parameters for ar (2) model. 

Final Estimates of Parameters 

Type Coef SE Coef T P 

AR 1 
AR 2 

Constant 
Mean 

0.6355 
0.3187 
0.4571 
9.984 

0.0658 
0.0658 
0.1150 
2.512 

9.66 
4.85 
3.98 

 

0.000 
0.000 
0.000 

 

Number of observations:  216 
Residuals: SS =  608.278 (back forecasts excluded) 
MS = 2.856  DF = 213 

Table 3(b). Modified Box-pierce (Ljung – Box) Chi-Square Statistic. 

Modified Box-pierce (Ljung – Box) Chi-Square Statistic 
Lag 12 24 36 48 
Chi - square 
DF  
P – Value  

19.6 
9 

0.021 

31.1 
21 

0.071 

33.6 
33 

0.438 

39.2 
45 

0.715 

 

Figure 5. ACF Plot of residuals of malaria mortality. 

 

Figure 6. PACF of residuals of malaria mortality. 
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Figure 7. Time Series plot for Forcast using ar (2). 

Looking at Figs. 5 and 6, it shows some insignificant 
number of spikes within the limit – 2 suggesting that the 
residuals are random. Fig. 4, it shows that the P-values for 
the Ljung-Box statistics are not significant. The forecast as 
shown in Fig. 7 does not seem to be consistent with the 
forecast of malaria mortality figures. We then try 
differencing the data to bring about stationarity in mean. 

 

Figure 8. Time series plot of 1st diff. of the original data. 

Figure 8 shows the time series plot of the first difference 
of malaria mortality original data. There is stationarity in 
mean and the existence of seasonality is evident. 

 

Figure 9. Trend analysis for 1st diff. of the original data. 

 

Figure 10. ACF of 1st diff. of the original data. 

 

Figure 11. PACF of 1st diff. of the original data. 

Figs. 10 and 11 show the autocorrelation function and the 
partial autocorrelation function of the first difference of 
malaria mortality original data respectively. The ACF dies 
in a sine wave form and the PACF also shows significant 
number of spikes dieing down in a sine wave fashion. 

 

Figure 12. Time series plot of the seasonal diff. of the 1st diff. data. 

Figure 12 shows the time series plot of the seasonal 
difference of the first differenced of malaria mortality data 
which shows stability in mean at both the seasonal and the 
non-seasonal levels. 
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Figure 13. Trend analysis of the seasonal diff. of the 1st diff. data. 

Figure 13 shows the trend analysis of the seasonal 
difference of the first differenced of malaria mortality’s 
original data. The trend revealed neither increasing nor 
decreasing which is an indicative of stationarity in mean. 

 

Figure 14. ACF of the seasonal diff. of the 1st differenced data. 

Figure 14 shows the autocorrelation function of the 
seasonal difference of the first differenced of malaria 
mortality’s original data moving in a sin wave fashion. 

 

Figure 15. PACF of the seasonal diff. of the 1st differenced data. 

The time series plot of the 1st differenced data and the 
trend analysis as shown in Figs. 8 and 9 show stationarity 
in mean and variance. There were significant spikes in the 

time series plot at lags 2, etc. This indicated that seasonality 
is evident in the monthly malaria mortality rates with a 
period of 12. This calls for seasonal differencing of the 1st 
non-seasonal differenced data, as shown in Fig. 12. Figs. 10 
and 11 are the plots of the autocorrelation function (ACF) 
and the partial autocorrelation function (PACF) of the 1st 
differenced data. The ACF dies down after lag 1 and the 
PACF tails off after lag 1, suggesting that p=1 and q=1 
would be needed to describe these data as coming from a 
non-seasonal autoregressive and a moving average process 
respectively. So, the time series model that gives rise to 
these observations was an ARIMA (1, 1, 1) model, since 
the data was differenced once (i.e. d=1) to attain stationarity. 

Figs. 12 and 13 show the time series plot of the seasonal 
difference of the 1st differenced series and the trend 
analysis plot respectively. The trend analysis shows 
stationarity at the seasonal level. Figs. 14 and 15 show the 
ACF and the PACF of the seasonal difference of the 1st 
differenced series respectively. However, a critical look at 
the seasonal lags show that both ACF and the PACF spikes 
at seasonal lag 12 dies down to zero for other seasonal lags. 
Suggesting that p = 1 and q = 1 would be needed to 
describe these data as coming from a seasonal 
autoregressive and moving average process. Hence, the 
time series model that gives rise to these observations is an 
ARIMA (1, 0, 1). Thus ARIMA (1, 1, 1)(1, 0, 1)12 could be 
the suggested model for the series at both the non-seasonal 
and the seasonal levels. With these suggestions encountered 
in this research work, the appropriate model is thus selected 
in the next section. 

4.1. Identification of the ARIMA Model 

Two goodness-of-fit statistics that are most commonly 
used for the model selection are; Akaike Information 
Criterion (AIC) and Schwarz Bayesian Information 
Criterion (BIC). The AIC and BIC are determined based on 
a likelihood function. The AIC and BIC are calculated 
using the formulas below: 

n

k
SSEInAIC

2
)( +=  and 

)()( nIn
n

k
SSEInBIC +=  where n is the total number of 

observations, SSE is the sum of the squared errors, and 
)( sdQPqpk +++++= . In this paper, n = 216 data 

points. Four tentative ARIMA models are tested for the data 
series and the corresponding AIC and BIC values for the 
models are presented in Table 4. 

Table 4. AIC and BIC values for four Tentative SARIMA Models. 

ARIMA MODEL (p, d, q)  AIC BIC 
(1 1 1) (1 0 1)12 6.45644 6.53457 
(1 1 1) (0 0 1)12 6.44718 6.52885 
(1 1 1) (1 0 0)12 6.44724 6.53974 
(0 1 1) (1 0 1)12 6.48955 6.55206 

ARIMA (1 1 1) (0 0 1)12 is the most suitable model since 
it has the lowest AIC and BIC. We then proceed to the next 
stage of the Box-Jenkins approach which is the estimation 
of parameters of the tentative model. 



38  Ekezie Dan Dan et al.:  Modelling and Forecasting Malaria Mortality Rate using SARIMA Models (A Case Study of  
Aboh Mbaise General Hospital, Imo State Nigeria) 

4.2. Parameter Estimation of SARIMA (1, 1, 1) (0, 0, 1)12  

model 

Immediately a suitable SARIMA (P, d, q)(P, D,Q)12 

structure is identified, the next step is the parameter 
estimation or fitting stage. The parameters are estimated by 
the maximum likelihood method. The results of parameter 
estimations are reported in Table 5. 

Table 5(a). Estimates of parameters of the tentative SARIMA (1, 1, 1) (0, 0, 
1)12  model. 

Final Estimates of Parameters 

Type Coef SE Coef T P 

AR 1 -0.5497 0.1588 -3.46 0.001 

MA 1 -0.2287 0.1855 -1.23 0.219 

SMA 12 0.7446 0.0704 1.32 0.189 

Differencing: 1 regular difference 
Number of observations:  Original series 216, after differencing 215 
Residuals: SS =  607.979 (back forecasts excluded) 
MS =  2.868  DF = 212 

Table 5(b). Modified Box-Pierce (Ljung-Box) Chi-Square Statistic. 
 

Modified Box-Pierce (Ljung-Box) Chi – Square Statistic 
Lag 12 24 36 48 

Chi-Square 11.9 22.8 26.6 32.4 
DF 9 21 33 45 

P-Value 0.221 0.357 0.779 0.920 

We proceed in our analysis to check if the parameters 
contained in the models are significant. This ensures that 
there are no extra parameters present in the model and the 
parameters used in the model have significant contribution, 
which can provide the best forecast. The estimates of 
autoregressive, moving average and the seasonal moving 
average parameters are labeled “AR..1”, “MA..1” and 
“SMA..12”, which are -0.5497, -0.2287, and 0.0927, 
respectively. Based on 95% confidence level, we conclude 
that all the coefficients of the ARIMA (1, 1, 1) (0, 0, 1)12  
model are significantly different from zero as shown in 
Table 3(a). Furthermore, the p-vales for the Ljung-Box 
statistic clearly all exceed 5% for all lag orders, implying 
that there is no significant departure from white noise for 
the residuals. We then proceed to the next step after 
parameter estimation which is the Diagnostic Checking or 
model validation.  

4.3. Diagnostic Checking and Model Validation 

The model verification is concerned with checking the 
residuals of the model to determine if the model contains 
any systematic pattern which can be removed to improve 
on the selected ARIMA model. It is obvious that the 
selected model may appear to be the best among a number 
of models considered; it becomes necessary to do 
diagnostic checking to verify that the model is adequate. 
Verification of an ARIMA model is tested (i) by verifying 
the ACF of the residuals, (ii) by verifying the normal 
probability plot of the residuals. 

 

Figure 16. ACF of Residuals for SARIMA (1, 1, 1) (0, 0, 1)12 Model. 

Looking at Figure 16, the autocorrelation checks of the 
residuals indicate that the model is good because they are 
white noise process. That is the residuals have zero mean, 
constant variance and also uncorrelated. Also, the p-values 
for the Ljung-Box statistic from Table 3 as shown clearly 
exceed 5% for all lag orders, indicating that there is no 
significant departure from white noise for the residuals. 
Since the model diagnostic tests show that all the parameter 
estimates are significant and the residual series are random, 
it can then be concluded that (1, 1, 1) (0, 0, 1)12  model is 
adequate for the inflation series. Therefore, (1, 1, 1) (0, 0, 
1)12 is used to forecast the inflation series of Nigeria. 

4.4. Point forecast with SARIMA (1, 1, 1) (0, 0, 1)12  
Model 

The ARIMA (1, 1, 1)(0, 0, 1) is selected to forecast the 
malaria mortality variable, where autoregressive term p = 
1(non-seasonal), P = 0(seasonal) [that is, (1 - αB)(1 – 0)]; 
differencing term d = 1(non-seasonal difference), Q = 
0(seasonal difference) [that is (1 -  B)(1 – 0)] and moving 
average term q = 1(non-seasonal), Q = 1(seasonal) [that is 
(1 - θ1B)(1 - θ12B

12). For the dataset in this paper, the fitted 
model is given by 

tt eBByBB )1)(1()1)(1( 12
121 θθα −−=−−          (12) 

2 12 12
12 1 1 12

12 13 2
12 1 1 12

t t t t t t t t

t t t t t t t t

y By By B y e B e Be B e

y e B e Be B e By By B y

α α θ θ θ θ

θ θ θ θ α α

− − + = − − +

= − − + + + −
  (13) 

Transforming the back operator, equation (13) becomes; 

12 12 1 1 1 12 13

1 2(1 )

t t t t t

t t

y e e e e

y y

θ θ θ θ

α α
− − −

− −

= − − +

+ + −
          (14) 

4.5. Forecast Results by SARIMA (1, 1, 1)(0, 0,1) 12 
model 

In order to forecast one period ahead that is, yt+1, the 
subscript of the equation (14) is increased by one unit 
throughout as given by 

1 1 1

12 11 1 1 12 12

(1 )t t t t

t t t

y y y e

e e e

α α

θ θ θ θ
+ − +

− −

= + − +

− − +
                   (15) 
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The term et+1 is not known because the expected value of 
future random errors has been taken as zero. There are 216 
data points from January 1996 to December 2013 used to 
build the ARIMA model. From the table 3, using α = -
0.5497, θ1 = -0.2287, θ12 = 0.0927, we have θ1θ12 = -
0.02120. Thus, equation (15) is given as 

1 1 11

12 1

0.4503 0.5497 0.0927

0.0212 0.2287

t t t t

t t t

y y y e

e e e

+ − −

− +

= + −

− + +
 

In order to forecast inflation for the period 217 (that is, 
January 2014), equation (15) is given by 

217 216 215 205

204 216 217

ˆ ˆ0.4503 0.5497 0.0927

ˆ ˆ ˆ0.0212 0.2287

y y y e

e e e

= + −

− + +
 

0ˆ217 =e , 5341.14659.68ˆˆ 204204204 =−=−= yye  

216 216 216ˆ ˆ 6 6.0280 0.028e y y= − = − = −

205 205 205ˆ ˆ 8 6.4294 1.5706e y y= − = − =  

The forecast quantity for period 217 can now be 
calculated as follows: 

217ˆ 0.4503(6) 0.5497(10) 0.0927(1.5706)

0.0212(1.5341) 0.2287( 0.028) 0

y = + −

− + − +
= 8.01% 

Once our model has been obtained and its parameters 
have been estimated, we can use it to make our prediction. 
Table 7 summarizes 12 months ahead malaria mortality 
forecast from January 2014 to December 2014 with 95% 
confidence interval. 

5. Conclusion 
In this paper, modeling and forecasting malaria mortality 

rate using SARIMA models was examined. Box-Jenkins 
Seasonal Autoregressive Integrated Moving Average 
(SARIMA) was employed to analyze monthly malaria 
mortality rate in Imo State from January 1996 to 
December 2013. The study intended mainly to forecast 
the monthly malaria mortality rate for the coming period of 
January, 2014 to December 2014. 

Series of tentative models were developed to forecast 
monthly malaria mortality rate, but based on minimum 
AIC and BIC values and after the estimation of parameters 
and series of diagnostic test were performed, 
ARIMA(1,1,1)(0,0,1)12  model was proved to be the best 
model for forecasting after satisfying the model 
assumptions. 

The forecasted results revealed a decreasing pattern 
of malaria mortality rate in the last quarter of 2014, except 
the month of December where it increased. 

Table 7. 12- Month Forecasted Malaria Mortality for January 2014 to 
December 2014. 

Month Period 
Forecast 

(%) 
Lower Upper 

January 217 7.2873 3.9675 10.6072 
February 218 6.6853 2.6725 10.6980 
March 219 6.9800 2.0640 11.8960 
April 220 6.7590 1.2357 12.2822 
May 221 6.6895 0.5439 12.8351 
June 222 6.7275 0.0554 13.3995 
July 223 6.8382 -0.3412 14.0177 

August 224 6.7424 -0.9007 14.3855 
September 225 6.9307 -1.1548 15.0162 
October 226 6.7317 -1.7705 15.2338 

November 227 6.6491 -2.2516 15.5499 
December 228 7.0097 -2.2717 16.2912 

Table 8. Basic Statistic of Monthly Malaria Mortality Data in Percentages. 

No. of 
observation 

Mean St. Dev. Variance Min. Max. 

120 6.8359 0.1859 0.0346 6.6491 7.2873 

 

Appendix 
Month Malaria  Month Malaria  Month Malaria  Month Malaria  Month Malaria  Month Malaria 

1 13 41 14 82 8 123 9 164 6 205 8 
2 14 42 15 83 7 124 8 165 6 206 7 
3 14 43 17 84 7 125 7 166 8 207 8 
4 13 44 20 85 7 126 7 167 8 208 8 
5 14 45 22 86 6 127 6 168 8 209 10 
6 15 46 25 87 6 128 5 169 8 210 9 
7 16 47 26 88 6 129 5 170 8 211 8 
8 16 48 27 89 6 130 5 171 8 212 9 
9 17 49 28 90 6 131 5 172 6 213 7 
10 16 50 16 91 5 132 5 173 7 214 9 
11 15 51 28 92 4 133 6 174 6 215 10 
12 14 52 21 93 4 134 5 175 7 216 6 
13 12 53 21 94 4 135 6 176 8   
14 11 54 18 95 5 136 7 177 9   
15 10 55 25 96 4 137 7 178 7   
16 9 56 24 97 5 138 11 179 8   
17 8 57 21 98 5 139 12 180 7   
18 7 58 19 99 5 140 13 181 8   
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Month Malaria  Month Malaria  Month Malaria  Month Malaria  Month Malaria  Month Malaria 
19 6 59 17 100 5 141 12 182 8   
20 6 60 16 101 6 142 12 183 7   
21 9 61 14 102 6 143 11 184 7   
22 10 62 13 103 6 144 11 185 8   
23 10 63 13 104 7 145 11 186 7   
24 10 64 13 105 7 146 10 187 7   
25 11 65 12 106 8 147 9 188 8   
26 11 66 12 107 9 148 8 189 7   
27 11 67 11 108 11 149 8 190 6   
28 10 68 12 109 13 150 5 191 8   
29 9 69 11 110 15 151 6 192 8   
30 9 70 11 111 16 152 5 193 7   
31 8 71 11 112 16 153 6 194 6   
32 8 72 11 113 16 154 8 195 6   
33 7 73 11 114 14 155 6 196 7   
34 8 74 10 115 17 156 5 197 7   
35 9 75 9 116 15 157 7 198 6   
36 9 76 8 117 15 158 5 199 8   
37 10 77 7 118 14 159 6 200 6   
38 12 78 7 119 13 160 7 201 7   
39 13 79 8.12 120 12 161 6 202 8   
40 14 80 9.24 121 11 162 5 203 7   
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