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MODELLING AND FORECASTING MULTIVARIATE REALIZED
VOLATILITY

ROXANA CHIRIACa# AND VALERI VOEVb*
a Department of Economics, University of Konstanz, Germany

b CREATES, Aarhus University, Denmark

SUMMARY

This paper proposes a methodology for dynamic modelling and forecasting of realized covariance matrices
based on fractionally integrated processes. The approach allows for flexible dependence patterns and
automatically guarantees positive definiteness of the forecast. We provide an empirical application of the
model, which shows that it outperforms other approaches in the extant literature, both in terms of statistical
precision as well as in terms of providing a superior mean-variance trade-off in a classical investment decision
setting. Copyright  2010 John Wiley & Sons, Ltd.

1. INTRODUCTION

Multivariate volatility modelling is of particular importance in the areas of risk management,

portfolio management and asset pricing. Typical econometric approaches include multivariate

GARCH models (for a comprehensive review see Bauwens et al., 2006), stochastic volatility

models (reviewed in Asai et al., 2006) and, more recently, realized covariance measures (see, for

example, Barndorff-Nielsen and Shephard, 2004; Andersen et al., 2001). While in the GARCH

and stochastic volatility framework the volatility process is latent, the realized covariance methods

employ high-frequency data to enable precise estimation of the daily covariance of the underlying

assets, thus making it effectively observable.

A prominent feature of volatility is its strong persistence, which motivated the development of

the integrated GARCH (Engle and Bollerslev, 1986), the fractionally integrated GARCH (Baillie

et al., 1996) and the linear ARCH (Robinson, 1991; Giraitis et al., 2000) models. Realized

volatility series tend to exhibit a slow decay in the autocorrelation function (see, for example,

Andersen and Bollerslev, 1997; Andersen et al., 2001), and are modelled by means of fractionally

integrated ARMA (ARFIMA) processes by Andersen et al. (2003), Oomen (2001) and Koopman

et al. (2005), among others.

Recently, the literature on multivariate GARCH models has been advancing towards flexible

model specifications, applicable to a large number of assets. Yet there is little research on time series

models for realized covariance matrices. The existing literature has typically focused on univariate

analysis of realized volatilities or single realized covariance (correlation) series. Andersen et al.

(2003) model log-realized volatilities and realized correlations with univariate ARFIMA models,
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while Corsi (2009) and Corsi and Audrino (2007) develop heterogeneous autoregressive (HAR)

models to capture the strong persistence through a hierarchical autoregressive structure. A problem

which arises in this context is that the matrix constructed from the variance and correlation

forecasts obtained from disjoint models is not guaranteed to be positive definite. In order to

obtain a forecast of the entire covariance matrix, Voev (2007) proposes a methodology in which

the univariate variance and covariance forecasts can be combined to produce a positive definite

matrix forecast. A drawback of this approach is that the dynamic linkages among the variance

and covariance series (e.g., volatility spillovers) is neglected. The Wishart autoregressive (WAR)

model of Gourieroux et al. (2009), and the model of Bauer and Vorkink (2007), who employ the

matrix log transformation to guarantee positive definiteness of the forecast, are among the few

proposed approaches for the dynamics of the whole realized covariance matrix. The standard WAR

model, however, is incapable of producing long memory type dependence patterns and is built on

latent processes, whose interpretation is difficult and which makes the introduction of exogenous

forecasting variables problematic. The study of Bauer and Vorkink (2007) differs from ours in that

its primary focus is to investigate the forecasting power of various predictive variables, such as

past returns, risk-free interest rate and dividend yield, while our main contribution is to improve

upon the ability to characterize the dynamic aspects of volatility and to comprehensively analyse

the resulting forecasting implications.

The approach developed in this paper involves the following three steps: first, decomposing the

series of covariance matrices into Cholesky factors; second, forecasting the Cholesky series with

a suitable time series model; and third, reconstructing the matrix forecast. The positivity of the

forecast is thus ensured by ‘squaring’ of the Cholesky factors, which can be modelled without

imposing parameter restrictions. A further advantage of the methodology is that the inclusion of

exogenous predictive variables is, at least conceptually, straightforward. The idea of modelling

the Cholesky factorization of a volatility matrix is not new. Tsay (2002) discusses its use as a re-

parameterization of the latent covariance matrix in a traditional multivariate GARCH framework,

while in Gallant and Tauchen (2001) a Cholesky-GARCH type of model is used in the context of

efficient method of moments estimation. Interestingly, Pourahmadi (1999) suggests modelling the

Cholesky factors of the inverse of the covariance matrix, which can be very appealing in cases

where the inverse is the object of direct interest as, for example, in the solution to a minimum-

variance portfolio problem. More recently, the idea of modelling the Cholesky factorization of the

realized covariance matrix that we advocate here has been put forward, although not implemented

empirically, by Andersen et al. (2003).

The degree of parameterization (flexibility) of the time series model should be guided by the

dimension of the matrix, as well as by the application we have in mind; do we aim at a good

in-sample fit, or are we more interested in out-of-sample forecasting? In this paper, our interest is

in the latter and hence we tend to favour very parsimonious specifications. The model is based on

fractionally integrated processes and can be seen as an application of the multivariate ARFIMA

model of Sowell (1989). Estimation is carried out using the conditional maximum likelihood

(ML) method developed in Beran (1995). The conditional approach is preferred over the exact

ML methods proposed in the univariate case by Sowell (1992) and An and Bloomfield (1993),

since the exact ML approach requires the inversion of a Tn ð Tn matrix, where T is the sample

size and n is the dimension of the process. For a review of inference of and forecasting with

ARFIMA models, we direct the reader to Doornik and Ooms (2004).

To assess the merits of our model in practice, we undertake a comprehensive out-of-sample

forecasting study using recent data, partially covering the ongoing financial crisis. In the analysis,
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we consider one-step (daily), five-step (weekly) and 10-step (biweekly) horizons, using direct and

iterative forecasts from a range of models using both high-frequency and daily data. An issue we

need to address in the context of volatility forecast evaluation is that ex post measures of volatility

are subject to estimation error. We use results from Hansen and Lunde (2006) and Patton (2009),

who derive the necessary and sufficient conditions a loss function should satisfy, in order for the

ranking of the models to be robust to noise in the ex post volatility proxy.

A further problem which arises is how to determine the best-performing model(s) in a model-

rich environment. Pairwise comparisons of loss functions can be misleading, unless we consider

some sort of Bonferroni bound correction, and would involve a geometrically increasing number

of tests as the number of models increases. Fortunately, Hansen et al. (2009) have developed

a methodology—the model confidence set (MCS) approach—which allows selecting a set of

models containing the best one with a certain level of confidence, naturally adapting to the

number of models and thus requiring only one test. Using the root mean squared error (RMSE)

criterion, we show that the forecasts based on the fractionally integrated model proposed in

this paper have the smallest error for all forecasting horizons. Applying the MCS approach

reveals that our model is often the only one selected by the procedure. To get a feeling of

what this improved statistical performance implies from a practitioner’s point of view, we analyse

the performance of mean–variance efficient portfolios and document that our approach leads

to a superior mean–variance trade-off. Similar studies have been carried out by Fleming et al.

(2003) and Liu (2009), but for a more restricted set of models and with a different evaluation

methodology.

The paper is structured as follows: Sections 2 and 3 describe the conditional covariance models

and the forecasting procedures, Section 4 reports estimation and forecasting results and Section

5 concludes.

2. DYNAMIC CONDITIONAL COVARIANCE MODELS

Let rt be a vector of daily log returns of dimension n ð 1, where n represents the number of assets

considered. The process rt can be written as

rt D E[rtjFt�1] C εt ⊲1⊳

where Ft�1 is the information set consisting of all relevant information up to and including t � 1.

We assume that the innovation term can be expressed as εt D H
1/2
t zt, where Ht is a symmetric

positive definite matrix of dimension n ð n, H
1/2
t is its Cholesky decomposition and zt is an

n ð 1 vector assumed to be i.i.d. with E[zt] D 0 and V[zt] D In. In the GARCH framework, the

latent conditional covariance matrix Ht is specified parametrically, while more recently Barndorff-

Nielsen and Shephard (2004) and Andersen et al. (2001) proposed the realized covariance matrix

Yt as a non-parametric estimator of Ht.
1 Using infill asymptotics, Barndorff-Nielsen and Shephard

(2004) show that Yt converges in probability to Ht under very general assumptions on the

underlying price process and is thus a consistent, asymptotically error-free estimator of Ht. In

the following section, we introduce our modelling framework for the matrix-valued process Yt,

while in the subsequent sections we briefly review alternative methods proposed in the literature.

1 The realized covariance matrix is the sum of the products of high-frequency (e.g., 5-minute) returns within a given day
t. We elaborate on the computation of Yt in the empirical section.
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2.1. VARFIMA(p, d , q) Model

Consider the Cholesky decomposition of Yt, given by the upper triangular matrix Pt, such that

P0
tPt D Yt. Since Yt is symmetric and positive definite, whenever the number of intraday returns

is greater than n, the elements of Pt are all real (see, for example, Golub and van Loan, 1996). Let

Xt D vech⊲Pt⊳ be the m ð 1 vector obtained by stacking the upper triangular components of Pt,

where m D n⊲n C 1⊳/2. We propose to model Xt as a vector autoregressive fractionally integrated

moving average (VARFIMA(p,d,q)) process, defined below:

Definition 1. The VARFIMA(p,d,q) process is defined as

8⊲L⊳D⊲L⊳[Xt � BZt] D 2⊲L⊳εt, εt ¾ N⊲0, 6⊳ ⊲2⊳

where Zt is a vector of exogenous variables of dimension k ð 1, B is a matrix of coefficients

of dimension m ð k, 8⊲L⊳ D Im � 81L � 82L2 � . . . � 8pLp, 2⊲L⊳ D Im � 21L � 22L2 � . . . �

2qLq are matrix lag polynomials with 8i, i D 1, . . . , p and 2j, j D 1, . . . , q—the AR- and MA-

coefficient matrices, and D⊲L⊳ D diagf⊲1 � L⊳d1, . . . , ⊲1 � L⊳dmg, where d1, . . . , dm are the degrees

of fractional integration of each of the m elements of the vector Xt. We assume that the roots of

8⊲L⊳ and 2⊲L⊳ lie outside the unit circle.

The model presented here has been studied by Sowell (1989), who shows that Xt is station-

ary if di < 0.5 for i D 1, . . . , m. In equation (2), one could include in Zt variables that are

documented to have an effect on stock market volatility, such as functions of trading volume

(Lamoureaux and Lastrapes, 1990), corporate bond returns (Schwert, 1989) or short-term interest

rates (Glosten et al., 1993). Since a single exogenous regressor implies m additional parameters

in the model, in order to keep the model tractable, restrictions might need to be imposed by

structuring the matrix B appropriately. Whether the response of the volatility/covariance series to

exogenous variables can be modelled satisfactorily for large n remains ultimately an empirical

question.

The motivation for modelling the Cholesky factors, rather than the elements of Yt directly, is

that by doing so, we do not need to impose parameter restrictions on the model. While in sample,

all elements of Xt corresponding to the main diagonal of Pt are positive, certain parameterizations

of the model could lead to negative values out-of-sample. This, however, is unproblematic as

any (invertible) upper triangular matrix constructed from the elements of Xt provides a positive

definite matrix through the ‘reverse’ of the Cholesky transformation:

Yij,t D
∑ i⊲iC1⊳

2

lD1C
i⊲i�1⊳

2

Xl,tX
lC

j⊲j�1⊳

2
�

i⊲i�1⊳

2
,t
, i, j D 1, . . . , n, j ½ i ⊲3⊳

where Xl,t is the lth element of Xt. This property has also motivated Tsay (2002) to use the

Cholesky decomposition as a GARCH model re-parameterization. We note here that an unbiased

prediction of Xt will, in general, not lead to an unbiased forecast of Yt, an issue which we return to

further below. In terms of estimation, we face the problem that the parameters of the unrestricted

VARFIMA models are not identified, due to the non-uniqueness of VARMA models, discussed in

Lütkepohl (2005). In our paper, we consider the so-called final equations form, which provides a

unique parameterization and is defined below.
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Definition 2. The n-dimensional VARMA(p,q) representation 8⊲L⊳Yt D 2⊲L⊳εt is said to be

in final equations form if 20 D In and 8⊲L⊳ D 1 � �1L � . . . � �pLp is a scalar operator with

�p 6D 0.

Following this definition, we estimate the model in final equation form, restricting the AR

polynomial to be a scalar polynomial. The assumption of normally distributed error terms gives

rise to a Gaussian likelihood function, which, maximized under certain regularity conditions (see

Gourieroux and Monfort, 1995), and the assumption that the conditional mean function is well

specified, provides consistent estimates of the model parameters. Doornik and Ooms (2004) discuss

various ways of estimating ARFIMA models, including maximum likelihood (ML) as well as

nonlinear least squares (NLS) methods. In this paper, we opt for the approximate ML approach

in the spirit of Beran (1995), which is also applicable for non-stationary processes with d > 0.5.

The estimation effectively minimizes the sum of squared residuals, circumventing the estimation

of 6, which is irrelevant for the purposes of constructing a point forecast.

Table I summarizes the total number of parameters for a general VARFIMA (p,d,q) model in

final equation form, as well as for two restricted model specifications considered in this paper.

The workhorse in our empirical study will be a (1, d, 1) specification with a scalar 2:

⊲1 � �L⊳D⊲L⊳[Xt � c] D ⊲1 � �L⊳εt, εt ¾ N⊲0, 6⊳ ⊲4⊳

where c is an m ð 1 vector of constants and D⊲L⊳ D diagf⊲1 � L⊳d1, . . . , ⊲1 � L⊳dm g (Model 1) or

D⊲L⊳ D ⊲1 � L⊳dIm (Model 2). We will exclusively rely on Model 2 for forecasting, and we only

estimate Model 1 in order to test the null hypothesis d1 D . . . D dm, which cannot be rejected for

our dataset at the 5% level. The main reason to consider these very restricted specifications is the

often observed empirical result that overparameterized models lead to poor out-of-sample forecasts.

Hansen (2009) provides a theoretical treatment of the problem and shows that models which are

selected on the basis of their in-sample fit are most likely to be the worst models out-of-sample.

A further advantage of parsimony, is that it eases estimation and allows more freedom in terms

of increasing the dimension n.2 Regarding the mean vector c, it can be estimated in a first step as

the sample mean of Xt which leaves only three parameters for estimation in the second step.3 To

Table I. Number of parameters for the general VARFIMA(p, d, q) model and its restricted specifications
considered in this paper. Model 1 is a VARFIMA(1, d, 1) with scalar 8 and 2; Model 2 further restricts

d1 D d2 D . . . D dm. In all specifications k D 1, as we only estimate a constant

Dimension Number of parameters Model 1 Model 2

8⊲L⊳ 1 ð 1 p 1 1
D⊲L⊳ m ð m m m 1
B m ð k km m m

2⊲L⊳ m ð m qm2 1 1

Total number of parameters qm2 C ⊲k C 1⊳m C p 2m C 2 m C 3

2 Interestingly, in the new RiskMetrics methodology, Zumbach (2007) finds strong empirical support for long memory
type of autocorrelation decay of financial volatility, and concludes that ‘one decay factor can be used to model all time
series’.
3 This is related to correlation targeting in DCC models in which the unconditional correlation matrix is set equal to the
sample correlation matrix
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account for the ‘generated regressor’ problem in the second step of the estimation, we calculate

bootstrapped standard errors. The number of second-step parameters in Model 2 is independent

of n and therefore the model can, at least in principle, be applied to very large dimensions, say

n > 100. The Cholesky decomposition is not the only way of transforming the covariance matrix

to guarantee positivity. Bauer and Vorkink (2007) use the matrix log transformation and model

the dynamics of the so-called log volatilities, defined as at D vech⊲At⊳, where At is given by

At D Bt log⊲Gt⊳B
0
t and Bt and Gt result from the spectral decomposition Yt D BtGtB

0
t. In order to

assess whether the matrix decomposition method makes a difference empirically, we also apply

the VARFIMA model to the log-volatility series at.

2.2. Heterogeneous Autoregressive (HAR) Model

An interesting alternative to fractionally integrated models for persistent processes is proposed by

Corsi (2009), who introduces a mixed-frequency hierarchical AR model, where the daily volatility

is a function of lagged daily, weekly and monthly volatility. For the sake of parsimony, we consider

the following HAR specification for Xt (and at):

XtC1,d D c⊲d⊳ C ˇ⊲d⊳X⊲d⊳
t C ˇ⊲w⊳X⊲w⊳

t C ˇ⊲bw⊳X⊲bw⊳
t C ˇ⊲m⊳X⊲m⊳

t C ωtC1,d ⊲5⊳

where d stands for the daily, w for the weekly (5 days), bw for the biweekly (10 days) and m

for the monthly (20 days) frequency, c⊲d⊳ is an m ð 1 parameter vector and the ˇ’s are scalar

parameters, which can easily be estimated by OLS. The regressors X
⊲Ð⊳
t are averages of past values

of Xt scaled to match the frequency of the left-hand-side (LHS) variable; e.g., in the equation

above X
⊲bw⊳
t D 1

10

∑9
iD0 Xt�i. While in Corsi (2009) the biweekly frequency is not considered, we

include it since we are interested in 5- and 10-day-ahead forecasts.

2.3. Wishart Autoregressive (WAR) Model

Gourieroux et al. (2009) introduce the Wishart autoregressive model based on the distribution of the

sample variance–covariance matrix, known as the Wishart distribution. Let xk,t with k D 1, . . . , K,

be independent Gaussian VAR(1) processes of dimension n:

xk,t D Mxk,t�1 C εk,t, εk,t i.i.d. N⊲0, �⊳ ⊲6⊳

Gourieroux et al. (2009) define the process given by

Yt D
∑K

kD1
xk,tx

0
k,t ⊲7⊳

to be a WAR process of order 1 and dimension n, with K degrees of freedom denoted by

Wn⊲K, M, �⊳. Substituting equation (6) into equation (7), Yt can be written as

Yt D MYt�1M0 C K� C �t ⊲8⊳

where �t is a heteroscedastic error term with conditional mean zero. The process Yt has a non-

degenerate Wishart distribution as long as K ½ n. In practice, K needs to be estimated and Chiriac
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(2007) and Bonato (2009) show that empirically one often obtains K < n which can be attributed

to the strong time variation and the presence of extreme values in the covariance matrix series. We

estimate a diagonal WAR(1) specification in order to keep it tractable. Bonato et al. (2009) suggest

combining the WAR model with HAR dynamics on the latent processes xk,t and use blocking of

the parameter matrices to reduce parameter proliferation. Following their idea, we implement the

following diagonal WAR-HAR specification:

YtC1,d D M⊲d⊳Y⊲d⊳
t M⊲d⊳0

C M⊲w⊳Y⊲w⊳
t M⊲w⊳0

C M⊲bw⊳Y⊲bw⊳
t M⊲bw⊳0

C M⊲m⊳Y⊲m⊳
t M⊲m⊳0

C K� C �t

where the Y
⊲Ð⊳
t ’s are realized covariance matrices aggregated at the corresponding frequency and

scaled to match the frequency of the LHS variable, and the M’s are diagonal n ð n parameter

matrices.

The list of models is completed by the following two GARCH-class models, based on daily

data.

2.4. (Fractionally Integrated) Dynamic Conditional Correlation Model

We assume that the conditional mean of daily returns is constant, E[rtjFt�1] D � (see equation (1)),

and estimate the models on the demeaned series of daily returns. Engle (2002) proposed a

multivariate GARCH model with univariate GARCH(1,1) conditional variances, hii,t, and dynamic

conditional correlations (DCC):

Ht D DtRtDt ⊲9⊳

where Dt D diag⊲h
1/2
11,t . . . h

1/2
nn,t⊳ and hii,t D wi C ˛iε

2
i,t�1 C ˇihii,t�1 with wi, ˛i, ˇi ½ 0 and ˛i C

ˇi < 1, 8i D 1, . . . , n. The correlation matrix is expressed as

Rt D ⊲diag⊲Qt⊳⊳
�

1
2 Qt⊲diag⊲Qt⊳⊳

�
1
2 ⊲10⊳

Qt D ⊲1 � �1 � �2⊳Q C �1ut�1u0
t�1 C �2Qt�1

where ut is the vector of de-volatilized residuals with elements

ui,t D
εi,t

√

hii,t

, i D 1, . . . , n

and Q is the unconditional covariance of ut. In the fractionally integrated version of the DCC

(FIDCC), we model the volatilities as FIGARCH(1, d, 0) processes (see Baillie et al., 1996):

⊲1 � L⊳diε2
i,t D ωi C �i,t � ˇi�i,t�1 ⊲11⊳

where 0 < di < 1, �i,t D ε2
i,t � hii,t, di and ˇi are positive, and ˇi � di, 8i D 1, . . . , n.

The FIGARCH(1, d, 0) model can be expressed as an ARCH(1):

hii,t D
ωi

1 � ˇi

C υi⊲L⊳ε2
i,t D

ωi

1 � ˇi

C
∑1

jD1
υi,jε2

i,t�j ⊲12⊳



929

where υi⊲L⊳ D 1 � ⊲1 � ˇiL⊳�1⊲1 � L⊳di D
∑1

jD1 υi,jLj. Rt remains as above. Again, to take

account of the multistep estimation, we compute bootstrapped standard errors.

3. FORECASTING

We focus on 1-day, 5-day and 10-day horizons; that is, we consider fairly short-term forecasts.

As a notational convention, we use hats to denote estimated parameters and quantities, as well

as forecasts. For example, the forecast of the conditional variance of the s-day-ahead return rtCs

will be denoted by OHtCs � Et[HtCs], where the conditional expectation is given by the particular

model at hand. The information set at time t will typically include high-frequency information in

the form of history of the process Yt. An exception is the (FI)DCC model, which uses only the

history of daily returns rt. In most cases what we need, however, is not the variance of rtCs, but

rather the variance of the s-day return rt:tCs D rtC1 C . . . C rtCs. An important assumption we make

is that the returns are conditionally uncorrelated so that Vt[rt:tCs] D
∑s

iD1 HtCi. This assumption

is theoretically appealing, empirically reasonable at the daily frequency, and not uncommon in

the literature; see, for example, Ghysels et al. (2009), who address the issue of longer-horizon

volatility forecasting based on daily data.

We take the perspective of an agent who is only interested in revising his forecast every

s days. This necessitates working with non-overlapping s-day returns and prevents having to

deal with overlap-induced autocorrelation in the returns. In order to carry out an out-of-sample

forecast evaluation, we split the whole sample of length T into an in-sample t D 1, . . . , T0 and

an out-of-sample t D T0 C 1, . . . , T. The aim is to forecast Ht:tCs �
∑s

iD1 HtCi, for t D T0, T0 C

s, . . . , T0 C s
(

bT � T0

s c � 1
)

. One possible strategy is to consider the iterative (cumulative)

forecast OHiter
t:tCs �

∑s
iD1

OHtCi. Alternatively, we can use the aggregate series Y�s
D

∑s�1
iD0 Yt�i

and r�s
D

∑s�1
iD0 rt�i, t D s C ⊲T0 ł s⊳, 2s C ⊲T0 ł s⊳, . . . , T0 � s, T0, where ł denotes the modulo

operator, and make a direct one-step-ahead forecast OHdir
t:tCs � E�s

[H�sC1], �s D T0, . . . , bT � T0

s c.4

Ghysels et al. (2009) find that direct approaches (e.g., a GARCH model on monthly return

observations used to produce a 1-month-ahead forecast) are in general inferior to iterated and

mixed-data approaches. Thus, the data loss associated with sparser sampling is more harmful

compared to the effect of potential accumulation of forecast errors associated with the iterated and

mixed-data approaches.

We need to emphasize here that the distinction between direct and iterative forecasts in our

application does not involve quite the same trade-off as in Ghysels et al. (2009). In particular,

in our direct approach for the models based on high-frequency data, we use cumulated realized

covariance matrices; i.e., a direct model for the 10-day covariance is based on the time series of

10-day cumulated realized covariance matrices. Thus, while there is data resolution loss associated

with aggregating the matrices, our direct approach still indirectly uses high-frequency data.

4 Some clarification is due here: in the direct approach we start at s C ⊲T0 ł s⊳ since we want the in-sample to end on
exactly the same day as in the iterative approach. In our dataset we have a total of 2156 daily observations and our
in-sample period contains the first 1508, leaving 648 days out-of-sample. This means that if we want to aggregate data
at a 5-day frequency, we need the last 5-day period to end at day 1508. This is achieved by having the first 5-day period
to start at t D 1508 ł 5 C 1 D 4 and end at t D 1508 ł 5 C 5 D 8; i.e., we drop the first 1508 ł 5 D 3 observations. The

out-of-sample period contains b 648
5

c D 129 non-overlapping 5-day periods; i.e., we drop the last 648 � b 648
5

c ð 5 D 3

observations.
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3.1. Forecasting with the VARFIMA Model

In this section, we discuss forecasting with the VARFIMA model for the Cholesky factors

Xt. The procedure can be implemented in exactly the same way if we wish to use the log

volatilities at instead. For ease of exposition, and since the exogenous regressors are by assumption

predetermined, we neglect the term BZt in equation (2).5 For each j D 1, . . . , m, the fractionally

differenced series ⊲1 � L⊳djXj,t is given by

⊲1 � L⊳djXj,t D
∑1

hD0
�j,hXj,t�h D Xj,t C

∑1

hD1
�j,hXj,t�h ⊲13⊳

where �j,0 D 1 and �j,h D
∏

0<r�h

r � 1 � dj

r , h D 1, 2, . . .. We can then rewrite equation (2) as

8⊲L⊳3⊲L⊳Xt D 2⊲L⊳εt ⊲14⊳

where 3⊲L⊳ D Im C
∑1

hD1 �hLh and �h D diagf�1,h, . . . , �m,hg. From equation (14), the VMA(1)

and VAR(1) representations are given by

Xt D 8⊲L⊳�13⊲L⊳�12⊲L⊳εt D
∑1

iD0
9iεt�i

εt D 8⊲L⊳3⊲L⊳2⊲L⊳�1Xt D
∑1

iD0
4iXt�i

where 90 D 40 D Im, and the optimal predictor of Xt is

OXtCs � Et[XtCs] D
∑1

iDs
4iXtCs�i D

∑1

iD0
4sCiXt�i

To obtain multi-step-ahead forecasts from the VARFIMA model, we truncate the VAR(1)

representation at t lags, and use standard results for AR models (see Hamilton, 1994, pp. 80–81).

The forecast is unbiased (i.e., the forecast errors have zero mean) and since εt is assumed to be

normally distributed, the forecast errors are also normally distributed as

ut,tCs � XtCs � OXtCs ¾ N⊲0, 6s⊳, where

6s D E[⊲XtCs � OXtCs⊳⊲XtCs � OXtCs⊳
0] D E[ut,tCsu

0
t,tCs] D

∑s�1

iD0
9i690

i

Having obtained OXtCs, we construct the forecast OYtCs by applying the transformation in

equation (3).6

5 One can think of the procedure describing how to forecast QXt D Xt � BZt, from which the forecast of XtCs is formed

as
OQXtCs C OBsZt, where OBs is a function of the estimated parameter matrix OB and the horizon s. In our case, we simply

need to add s times the estimated mean Oc to the forecast.
6 We have argued that Yt is almost an error-free measure of the latent Ht, which motivates the whole literature on high-

frequency volatility estimation, allowing us to equate OYtCs to OHtCs. Of course, YtCs 6D HtCs even ex post, implying that
the quality of the forecast does not fully depend on the dynamic specification for Yt, but also on the quality of the realized
covariance estimator. It is beyond the scope of this paper to address the latter issue; the development of multivariate
volatility measures using high-frequency data is currently a very active area of research. In this paper, we use an estimator
which has been shown to be reliable and much more precise than any estimator based on daily data (see, for example,
Barndorff-Nielsen and Shephard, 2004).
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Let us now look at the forecast errors for the individual elements of YtCs, eij,tCs D OYij,tCs �

Yij,tCs. Since OYij,tCs is a quadratic transformation of OXtCs, the mean of eij,tCs is generally no

longer zero, and depends on the variance 6s of the forecast error ut,tCs. Thus, each component

of the covariance matrix forecast, OYij,tCs, is biased by Et[eij,tCs] � �Ł
s,ij 6D 0, where �Ł

s,ij can be

obtained from the elements of the matrix 6s using the following formula (cf. equation (3)):

�Ł
s,ij D

∑ i⊲iC1⊳
2

lD1C
i⊲i�1⊳

2

�
s⊲l,lC

j⊲j�1⊳

2
�

i⊲i�1⊳

2
⊳

⊲15⊳

where j ½ i, i D 1, . . . , n and �s⊲u,v⊳ is the (u, v)-element of 6s. While this expression is only

valid if εt is homoscedastic, the formula for the heteroscedastic case is readily available since the

expression for 6s is known in that case to be 6t,s D
∑s�1

iD0 9i6t�i9
0
i.

7 The forecasts based on the

matrix log decomposition will also be biased, and a bias correction strategy is proposed in Bauer

and Vorkink (2007). Appendix A.3 contains a discussion of bias correction in the light of our

empirical study below.

3.2. Forecasting with the HAR Model

Direct forecasting with the HAR model at the desired frequency is easily carried out owing to

the hierarchical structure of the model. A 1-day-ahead forecast can be obtained from equation (5),

while longer-horizon forecasts are constructed from the corresponding level of the hierarchy; e.g.,

a 10-day-ahead forecast can be generated by the model8

XtC1,bw D c⊲bw⊳ C ˇ⊲bw⊳X⊲bw⊳
t C ˇ⊲m⊳X⊲m⊳

t C ωtC1,bw ⊲16⊳

We obtain iterative s-step-ahead forecasts for the HAR model by iterating equation (5), using at

each step h D 2, . . . , s the previously obtained forecasts until h � 1 in the computation of X
⊲w⊳
tCh�1,

X
⊲bw⊳
tCh�1, and X

⊲m⊳
tCh�1.

3.3. Forecasting with the WAR Model

Direct h-day-ahead forecasts with the WAR model are obtained by applying equation (8) at the

desired aggregation level. Iterative forecasts are available by cumulating the h-step-ahead forecasts

of Yt for h D 1, . . . , s, given by

OYtCh D OM OYtCh�1
OM0 D . . . D OM Ð . . . Ð OM

︸ ︷︷ ︸

h

Yt
OM0 Ð . . . Ð OM0

︸ ︷︷ ︸

h

⊲17⊳

Forecasts from the WAR-HAR model are computed in the same way as HAR forecasts.

7 In the last expression, we need to index the 6t,s by t, since with time varying volatility of εt the bias correction will be
time varying as well.
8 It should be noted that while theoretically the HAR model has a hierarchical structure, empirically volatility at higher
frequencies can influence the volatility at longer horizons. In this study, we keep the hierarchy of the model and relate
future volatility to past values of volatility at the same and lower frequencies.
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3.4. Forecasting with the (FI)DCC Model

Forecasting with the DCC and FIDCC models involves first projecting the conditional variances

based on the univariate GARCH models. The s-step-ahead iterated forecast of hii,t is based on the

following equations for h D 1, . . . , s:

Ohii,tCh D Owi C ⊲ Ǫ i C Ǒ
i⊳Ohii,tCh�1, and ⊲18⊳

Ohii,tCh D
Oωi

1 � Ǒ
i

C
∑1

jD1
Oυi,j

Ohii,tCh�j ⊲19⊳

for GARCH(1,1) and FIGARCH(1, d, 0), truncated at t C h � 1 lags, respectively. The direct s-

step forecasts are given by the one-step-ahead forecasts available in equations (18) and (19), with

data aggregated at the desired frequency. The iterated forecast of Qt is obtained from cumulating

the h-step-ahead forecasts OQtCh, for h D 1, . . . , s:

OQtC1 D ⊲1 � O�1 � �2⊳ OQ C O�1 Out Ou
0
t C O�2Qt, h D 1 ⊲20⊳

OQtCh D ⊲1 � O�1 � O�2⊳ OQ C ⊲O�1 C O�2⊳ OQtCh�1, h D 2, . . . , s

The direct forecast is given by the one-step-ahead forecast available in equation (20) with data

aggregated at the desired frequency. Given the forecast of the volatility matrix ODtCs and the matrix
OQtCs, we compute OHtCs using equations (10) and (9).

4. EMPIRICAL APPLICATION

In this section, we present estimation and forecasting results for the eight approaches presented

in Section 2: VARFIMA dynamics of the Cholesky factors Xt (VARFIMA-Cholesky) and log-

volatilities at (VARFIMA-Log), HAR dynamics of Xt (HAR-Cholesky) and at (HAR-Log), a

diagonal WAR specification, a diagonal WAR-HAR specification, DCC and FIDCC. The models

vary with respect to the frequency of the data they use ((FI)DCC vs. all other models), the

way the covariance matrix is handled (Cholesky decomposition, log transformation, WAR),

and the type of dynamic structure (long memory or not). Having variability in these essential

aspects of the modelling approaches allows us to clearly identify the potential sources of forecast

accuracy.9

To measure the statistical precision of the forecasts we employ the RMSE criterion, which

satisfies the conditions in Patton (2009). In order to have some idea of the economic benefits

associated with the accuracy of the volatility forecasts, we also evaluate the mean–variance profile

of portfolio optimization strategies. To test the models’ performance against each other, we rely

on the Model Confidence Set (MCS) methodology, which selects the set of models containing the

best one with a given level of confidence. In terms of implementation, we use the Ox package

MulCom v1.00 provided by the authors.

9 Given that Bauer and Vorkink (2007) have shown that macroeconomic variables have predictive power for the volatility
of market portfolios, we acknowledge that it would be interesting to include such variables in our study, but refrain from
doing so, as it is not the main focus of the paper and would constitute a new dimension of the study.
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4.1. Data

The data consist of tick-by-tick bid and ask quotes from the NYSE Trade and Quotations (TAQ)

database sampled from 9 : 30 until 16 : 00 for the period 01.01.2000–30.07.2008 (T D 2156 trading

days).10 For the current analysis, we select the following six highly liquid stocks: American Express

Inc. (AXP), Citigroup (C), General Electric (GE), Home Depot Inc. (HD), International Business

Machines (IBM) and JPMorgan Chase & Co. (JPM). We employ the previous-tick interpolation

method, described in Dacorogna et al. (2001) and obtain 78 intraday returns by sampling every 5

minutes. Table A.1 in Appendix A.2 reports summary statistics for the 5-minute and daily return

series.

For each t D 1, . . . , 2156, a series of daily realized covariance matrices can be constructed as

Yt D
∑M

jD1
rj,tr

0
j,t ⊲21⊳

where M D 78. The 5-minute returns, rj,t, are computed as

rj,t D pj1,t � p⊲j�1⊳1,t, j D 1, . . . , M

where 1 D 1/M and pj1,t is the log midquote price at time j1 in day t. The realized covariance

matrices are symmetric by construction and, for n < M, positive definite almost surely. Since by

sampling sparsely we disregard a lot of data, we refine the estimator by subsampling. With 1 D 300

seconds, we construct 30 1-spaced subgrids starting at seconds 1, 11, 21, . . ., 291, compute the

realized covariance matrix on each subgrid and take the average. The resulting subsampled realized

covariance is much more robust to the so-called market microstructure noise than the simple 5-

minute based one. Given the high liquidity of all the stocks and the very recent sample, we are

confident that the effect of non-synchronicity is rather mild at the chosen frequency. In order to

avoid the noise induced by measuring the overnight volatility as the squared overnight return,

we assume that our investor opens a position at the beginning of the trading day and closes at

the end of the trading day, which implies that all multivariate volatility models are applied to

open-to-close data and measure the volatility over the trading session. Table A.2 in Appendix A.2

reports summary statistics of realized variances and covariances of the six stocks considered in the

study. As already documented in Andersen et al. (2001), both realized variance and covariance

distributions are extremely right skewed and leptokurtic.

Analyzing the series of Cholesky factors, we find that they inherit the long-memory property

of realized (co)variances, discussed in Andersen and Bollerslev (1997) and Andersen et al.

(2001). The sample autocorrelations of the elements of Xt decay at a slow rate, similar to

the autocorrelations of the realized (co)variance series. To get an initial idea of the degree of

fractional integration, we run OLS regressions of log-autocorrelations on log-lags (see Beran,

1998, pp. 89–92) and obtain an estimate of 0.40 on average across the m series.

4.2. Estimation Results

Before turning to the forecasting evaluation, we briefly discuss the estimation results of the

VARFIMA-Cholesky model on the full sample of data, reported in Table A.3 in Appendix A.2,

10 We are grateful to Asger Lunde for providing us with the data.
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which also contains the results for the remaining models.11 The estimation is carried out on

centred data by subtracting the sample mean of the series under consideration. As a consequence,

in order to assure a correct inference of the second-step model parameters, their standard errors

should account for the pre-estimation of the mean, and therefore we report bootstrapped standard

errors based on the method developed in Politis and Romano (1994) and Politis et al. (1999)

for dependent and cross-correlated time series. For the specification with unrestricted integration

parameters (Model 1), all d parameters are significant at the 5% level and of similiar magnitude,

indicating that the series are possibly integrated of the same order. To verify this, we test the

null hypothesis H0 : d1 D . . . D dm by means of a likelihood ratio test, obtaining a p-value of

0.054, based on the asymptotic �2 distribution with 20 degrees of freedom. In the restricted model

(Model 2) the degree of fractional integration is estimated at 0.44, a value commonly obtained with

such series. The autocorrelogram of the model residuals, as well as the multivariate Ljung–Box

portmanteau test, suggest that in-sample the model can be fine-tuned by allowing for a richer

structure. Given the strong theoretical arguments in Hansen (2009), as well as the empirically

documented poor out-of-sample performance of overparameterized models, we opt against this.

To complete the in-sample investigation of our model, we report the marginal effects among the

variance and covariance series in Table A.7.12 Most values in the table are as expected positive,

which can be related to volatility spillover effects across stocks. It is interesting to note that

increasing volatility leads to increased correlation and vice versa, which has adverse consequences

for portfolio selection, limiting the benefits of diversification in volatile markets. Evidence of

positive linkage between volatility and correlation across stocks has been documented by Andersen

et al. (2001), while Ang and Bekaert (2002) and Ang and Chen (2002) find the same phenomenon

at the market level.

4.3. Forecasting Results and Evaluation

We split the whole sample of data into an in-sample from 01.01.2000 to 31.12.2005 (T0 D
1508 days) and an out-of-sample from 01.01.2006 to 30.07.2008 (648 days, or 129 (64) complete

5 (10)-day periods). The forecasts are carried out in a recursive manner; i.e., at each step the

models are re-estimated with all of the available data. As described in Section 2, we consider

1-day, 5-day and 10-day horizons, using direct and iterated methods. We do not bias correct our

forecasts, due to theoretical caveats and since we do not find empirical justification to do so

(detailed argumentation can be found in Appendix A.3).

Statistical Evaluation

In this section, we use YtCs as a proxy for the unobservable HtCs and compare the models’

out-of-sample forecast RMSE, based on the Frobenius norm13 of the forecast error

et,tCs � Yt:tCs � OHt:tCs ⊲22⊳

where OHt:tCs is either a direct or an iterated forecast, Yt:tCs D
∑s

iD1 YtCi, and s D 1, 5, 10. Referring

to Table II, the VARFIMA-Cholesky specification has the smallest RMSE among all models,

11 Tables A.4, A.5 and A.6 provide the estimation results of the HAR-Cholesky, HAR-Log, diagonal WAR, diagonal
WAR-HAR, DCC and FIDCC models, respectively.
12 For a derivation of the marginal effects in the VARFIMA-Cholesky model, see Appendix A.1.
13 The Frobenius norm of a real m ð n matrix A is defined as jjAjj D

∑m
iD1

∑n
jD1 a2

ij.
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Table II. RMSE based on the Frobenius norm of the forecasting error (equation (22)). For 5- and
10-step-ahead forecasts, the statistic is standardized by dividing by the number of steps to make the results

comparable

Model 1 day Iterated Direct

5 days 10 days 5 days 10 days

VARFIMA-Cholesky 3.897a 3.388a 3.515a 3.540a 3.716a

VARFIMA-Log 3.937a 3.498 3.610a 3.525a 3.700a

HAR-Cholesky 3.940 3.459a 3.628 3.652a 3.919
HAR-Log 3.943 3.492 3.627 3.585a 3.871

Diagonal WAR 4.990 6.198 7.055 4.673 4.608
Diagonal WAR-HAR 4.598 4.995 5.752 4.489 4.659
DCC 5.195 4.727 4.851 5.252 4.945
FIDCC 5.613 4.613 4.767 5.435 5.224

a Model belongs to the 5% MCS of Hansen et al. (2009).

and is therefore necessarily included in the MCS, regardless of the horizon. The VARFIMA-

Log follows closely and is in the 5% MCS four out of five times, indicating that the choice

of transformation of the realized covariance matrices plays hardly any role. This is a positive

result, suggesting that what is important for forecasting is the specification of the dynamics, rather

than the particular implementation.14 Given this evidence, we drop the VARFIMA-Log and HAR-

Log specifications in our further analysis. Interestingly, the error, standardized by the forecasting

horizon, is smaller for the 5- and 10-day horizon compared to the 1-day horizon for the majority

of the models. This implies that multi-period volatility forecasting is in some sense more precise

than short-term prediction, supporting the results in Ghysels et al. (2009) for models using daily

data. Comparatively, the HAR specification shows a very good forecasting ability, but at the

longer, 10-day horizon, is significantly outperformed by the VARFIMA model. In general, the

iterated forecasts are better than the direct ones, except for the WAR models. This lends support

to the fact that using the data at a higher resolution is beneficial and does not lead to over-

accumulation of forecasting error, indirectly suggesting that in most cases we have well-specified

dynamics.

Economic Evaluation

In order to assess the economic value of the volatility forecasts, we construct portfolios which

maximize the utility of a risk-averse investor. If the utility function is second-degree polynomial

or logarithmic and/or the return distribution is completely characterized by its first two moments

(as, for example, the normal distribution), the portfolio optimization reduces to finding the asset

weights which minimize the portfolio volatility, fixing a given expected return, or maximize the

portfolio return, targeting a certain volatility (Markowitz, 1952).

We assume that the investor minimizes portfolio volatility subject to an annualized expected

return �p. In this context, the optimal portfolio is given by the solution to the following quadratic

14 As a further robustness check of this result, we estimate the model on the Cholesky factors of the covariance matrix
with inverted ordering of the stocks. The results do not change qualitatively and actually remain even quantitatively almost
the same as in the original implementation: the RMSEs are 3.898, 3.390, 3.510, 3.537 and 3.718, corresponding to the
columns of the table.
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problem:

minwtCsjt
w0

tCsjt
OHt:tCswtCsjt s.t. w0

tCsjtEt[rt:tCs] D
s�p

250
and w0

tCsjt� D 1

where wtCsjt is the n ð 1 vector of portfolio weights chosen at t and held until t C s, � is an

n ð 1 vector of ones, and
s�p

250
is the target return scaled to the investment horizon. To assess

the ability of the models to correctly predict the conditional covariance matrix, we compare the

ex post realizations of the conditional portfolio mean and standard deviation; that is, given a

set of weights at time t, wtCsjt, we compute r
p
t:tCs D w0

tCsjtrt:tCs and �
p
t:tCs D

√

w0
tCsjtYt:tCswtCsjt,

for t D T0, T0 C s, . . . , T0 C s
(

bT � T0

s c � 1
)

. The optimization problem described above can be

solved for various levels of the target portfolio return �p, thus obtaining an efficiency frontier,

characterizing the best mean–variance trade-off achievable by using a particular forecasting model.

To have some sort of ideal case scenario, we also construct the efficiency frontier using the ‘oracle’

forecast OHt:tCs D Yt:tCs.

The results are illustrated in Figure 1 for s D 1.15 Obviously, the ‘oracle’ forecast leads to

a by far superior mean–variance trade-off, which is a testimony to the precision of Yt as an

Figure 1. Mean–variance plots for the ex post realized conditional mean (on the y-axis in %, annualized)
against realized conditional standard deviation (on the x-axis in %, annualized). The global minimum variance
portfolio is symbolized as follows: circle (oracle), square (VARFIMA), triangle (HAR), a ‘ð’ (diagonal WAR-
HAR), inverted triangle (diagonal WAR), cross (DCC), and diamond (FIDCC). All plots are averages across
the 648 out-of-sample periods (days)

15 Graphs for the iterated and direct 5- and 10-day-ahead forecasts are available upon request from the authors.
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estimator of Ht. From the six models at our disposal, the VARFIMA and HAR-based plots

almost overlap and offer seemingly significant improvements over the remaining four models.

By fixing the level of expected return �p, the difference of these curves can be statistically

tested on a point-by-point basis, i.e., by comparing the series �
p
t:tCs for a particular value

of �p. A natural point to be considered is the level of return corresponding to the global

minimum variance portfolio (GMVP), accentuated in Figure 1 by a particular symbol for each

model.

While this return level is unknown a priori, ex post there necessarily exists a value of �p

that has led to the smallest �
p
t:tCs. In Table III, we report the average of the realized conditional

standard deviation of the GMVP and use again the MCS methodology to select the set of models

which contains the one with the smallest standard deviation at the 5% confidence level. Pertaining

to the model ranking, the results are in line with the comparison based on the forecast RMSE.

Contrary to the purely statistically motivated loss function, however, the direct models seem to

perform a bit better according to the economic evaluation criteria at least for the high-frequency

models. Furthermore, the standardized loss, defined as the annualized portfolio volatility, increases

with the forecast horizon. These differences suggest that the two loss functions are indeed

different in nature, and nevertheless tend to suggest the same models as the best performing

ones. We interpret this as a strong evidence in favour of the methodology developed in this

paper.

Recently, Liu (2009) analyzed the benefits from high-frequency data in the context of minimizing

the variance of the error of a portfolio of the 30 DJIA stocks, tracking the S&P 500 index.

His findings suggest that if the portfolio is rebalanced daily, models using high-frequency data

outperform models with daily data, while if the rebalancing is done on a monthly basis, models

using daily data can potentially perform equally well.

He does not consider long-memory models, however, which might explain the similar per-

formance of daily and high-frequency models at the longer horizons. Our results support his

findings in the sense that high-frequency data are definitely beneficial also at horizons of

a week or two, with the difference that the performance gap remains fairly constant across

forecasting horizons. All in all, we are optimistic that the parsimony of the proposed model

will make it viable also in problems of larger cross-sectional dimension, while its ability to

characterize processes with strong persistence will also make it suitable for longer-horizon

forecasting.

Table III. Annualized realized conditional standard deviations of the ex post global minimum variance
portfolio (%). All numbers are averages across the out-of-sample periods

Model 1 day Iterated Direct

5 days 10 days 5 days 10 days

VARFIMA-Cholesky 12.669a 12.931a 13.016a 12.924a 13.001a

HAR-Cholesky 12.676 12.934a 13.023a 12.934 13.018
Diagonal WAR 12.925 13.462 13.786 13.219 13.143
Diagonal WAR-HAR 12.814 13.186 13.398 13.178 13.150
DCC 13.248 13.501 13.588 13.805 15.202
FIDCC 13.323 13.552 13.530 14.134 15.279

a Model belongs to the 5% MCS of Hansen et al. (2009).
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5. CONCLUSION

In this paper, we develop an approach for the dynamics of realized covariance matrices. The

model explicitly accounts for the empirically observed long memory of financial volatility and can

accommodate exogenous predictive variables. The matrices are decomposed into Cholesky series,

modelled as a a multivariate vector fractionally integrated ARMA (VARFIMA) process without

imposing restrictions on the admissible parameter space. By subsequent ‘squaring’ of the forecast,

we automatically obtain positive definite covariance forecasts.

In a forecasting application, we show that the model performs significantly better than other

currently available approaches at various prediction horizons, not only in terms of minimizing the

RMSE of the forecast, but also in terms of improving the performance of mean–variance efficient

portfolios.

We hope that our study opens up a number of further interesting research directions in the

context of volatility forecasting. An issue we have not explored in this study is the potential

benefits of combining high- and low-frequency data in the spirit of the mixed data-sampling

(MIDAS) approach, which Ghysels et al. (2009) show to be very promising for longer-horizon

forecasting. In their study, however, the data are only available at the daily and lower frequency,

and so one would conjecture that higher-frequency data should bring further improvements.

An obvious further extension of our work is to examine whether the methods discussed here

remain feasible in higher dimensions. Most approaches we advocate have a fixed number of

parameters, independent of the number of assets. It is an open empirical question, however,

whether such tightly parameterized models will still yield good forecasts in an environment with

many more, possibly heterogeneous assets. Last, but not least, we have fully neglected the impact

of macroeconomic variables on future volatility, which has been addressed in detail by Bauer

and Vorkink (2007), and would arguably be an interesting issue to analyse in our modelling

framework.
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APPENDIX

A.1. Derivation of the Marginal Effects

We denote the estimated parameter vector by Oϑ and the history of the process Xt up to time t by

Xt. The (i, j)-element of the predicted covariance matrix can be written as (see Equation 3):

OYij,tCs D
∑ i⊲iC1⊳

2

lD1C
i⊲i�1⊳

2

Et

[

Xl,tCsX
lC

j⊲j�1⊳

2
�

i⊲i�1⊳

2
,tCs

]

� Gi,j,s⊲Xt, Oϑ⊳, i, j D 1, . . . , n ⊲A.1⊳

where Gij,s⊲Ð⊳ is a scalar function of Xt and Oϑ, corresponding to the (i, j)-element of the matrix
OYtCs. For example, the impact of a shock in the covariance Yij,t on the predicted variance OYii,tCs

can be computed as follows:

∂ OYii,tCs

∂Yij,t

D
∂Gii,s

∂Gij,0

D
∑m

rD1

∂Gii,s

∂Xr,t

∂Xr,t

∂Gij,0

D F
s,t
ii,ij⊲Xt, Oϑ⊳ ⊲A.2⊳

where Gij,0 � Yij,t D
∑

i⊲iC1⊳
2

lD1C
i⊲i�1⊳

2

Xl,tX
lC

j⊲j�1⊳

2
�

i⊲i�1⊳
2

,t
, j ½ i and F

s,t
ii,ij⊲Ð⊳ is a scalar function. In

a similar way, one can derive the the impact of the variance Yii,t on the predicted covariance
OYij,tCs:

∂ OYij,tCs

∂Yii,t

D
∂Gij,s

∂Gii,0

D
∑m

rD1

∂Gij,s

∂Xr,t

∂Xr,t

∂Gii,0

D F
s,t
ij,ii⊲Xt, Oϑ⊳ ⊲A.3⊳

where Gii,0 � Yii,t D
∑

i⊲iC1⊳
2

lD1C
i⊲i�1⊳

2

X2
l,t. We derive the expressions for Gi,j,s, Gi,i,s, F

s,t
ii,ij and F

s,t
ij,ij,

for the VARFIMA model with unrestricted 2 and D matrices. An element l, l D 1, . . . , m of Xt

is given by

⊲1 � �L⊳⊲1 � L⊳dl [Xl,t � cl] D εl,t � �llεl,t�1 �
∑m

sD1,s 6Dl
�lsεs,t�1, εl,t ¾ N⊲0, �ll⊳ ⊲A.4⊳

where �ll is the (l, l)-element of 6 and �ls is the (l, s)-element of 2. Given the representation in

Equation (13), we can write Equation (A.4) as follows:

⊲1 � �L⊳
[

Xl,t � cl C
∑1

hD1
�l,h⊲Xl,t�h � cl⊳

]

D εl,t � �llεl,t�1 �
∑m

sD1,s 6Dl
�lsεs,t�1,

where �l,h D
∏

0<r�h
r � 1 � dl

r , h D 1, 2, . . .. Thus:

Xl,t D cl C ⊲� � �l,1⊳⊲Xl,t�1 � cl⊳ C
∑1

hD2
⊲��l,h�1 � �l,h⊳⊲Xl,t�h � cl⊳ C εl,t � �llεl,t�1

�
∑m

sD1,s 6Dl
�lsεs,t�1

From the expression above, we can derive the conditional expectation of Yij,tCs from

equation (A.1) for any s ½ 1 and i, j D 1, . . . , n with j ½ i. We focus here on s D 1 (generalization
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to s > 1 is straightforward):

OYij,tC1 D
∑ i⊲iC1⊳

2

lD1C
i⊲i�1⊳

2

Et

[

Xl,tC1X
lC

j⊲j�1⊳

2
�

i⊲i�1⊳
2

,tC1

]

�
∑ i⊲iC1⊳

2

lD1C
i⊲i�1⊳

2

Et[Xl,tC1Xp,tC1]

D
∑ i⊲iC1⊳

2

lD1C
i⊲i�1⊳

2

Et

[(

cl C ⊲� � �l,1⊳⊲Xl,t � cl⊳ C
∑1

hD2
⊲��l,h�1 � �l,h⊳⊲Xl,t�hC1 � cl⊳

Cεl,tC1 � �llεl,t �
∑m

sD1,s 6Dl
�lsεs,t

) (

cp C ⊲� � �p,1⊳⊲Xp,t � cp⊳ C
∑1

hD2
⊲��p,h�1

��p,h⊳⊲Xp,t�hC1 � cp⊳ C εp,tC1 � �ppεp,t �
∑m

sD1,s 6Dp
�psεs,t

)]

� Gi,j,1⊲Xt, ϑ⊳ ⊲A.5⊳

where the index p is defined (implicitly as a function of i, j) as p D l C
j⊲j � 1⊳

2
�

i⊲i � 1⊳
2

and

ϑ D ⊲c0, �, vech⊲2⊳0, d1, . . . , dm, . . . , vech⊲6⊳⊳0. From equation (A.5) we derive the expression for

Gi,j,1⊲Xt, ϑ⊳ to be

Gi,j,1⊲Xt, ϑ⊳ D
∑ i⊲iC1⊳

2

lD1C
i⊲i�1⊳

2

{[

cl C ⊲� � �l,1⊳⊲Xl,t � cl⊳ C
∑1

hD2
⊲��l,h�1 � �l,h⊳⊲Xl,t�hC1 � cl⊳

C�llεl,t C
∑m

sD1,s 6Dl
�lsεs,t

] [

cp C ⊲� � �p,1⊳⊲Xp,t � cp⊳ C
∑1

hD2

⊲��p,h�1 � �p,h⊳⊲Xp,t�hC1 � cp⊳ C �ppεp,t C
∑m

sD1,s 6Dp
�psεs,t

]

C 6l,p

}

⊲A.6⊳

In a similar manner, we derive Gi,i,1⊲Xt, ϑ⊳ to be

Gi,i,1⊲Xt, ϑ⊳ D
∑ i⊲iC1⊳

2

lD1C
i⊲i�1⊳

2

{[

cl C ⊲� � �l,1⊳⊲Xl,t � cl⊳ C
∑1

hD2
⊲��l,h�1 � �l,h⊳⊲Xl,t�hC1 � cl⊳

��llεl,t �
∑m

sD1,s 6Dl
�lsεs,t

]2

C 6l,l

}

⊲A.7⊳

Given that Gi,j,0⊲Xt, ϑ⊳ D
∑

i⊲iC1⊳
2

lD1C
i⊲i�1⊳

2

Xl,tXp,t, we can derive F
1,t
ii,ij and F

1,t
ij,ii from

equations (A.2) and (A.3) for any (i, j) combination. For example, the marginal effect of the

volatility Y11,t at time t on the conditional expectation of the covariance Y12,tC1 at time t C 1 is

given by

F
1,t
12,11⊲Xt, ϑ⊳ D

∂Et[Y12,tC1]

∂Y11,t

D
∂G1,2,1⊲Xt, ϑ⊳

∂G1,1,0⊲Xt, ϑ⊳
D

∂G1,2,1⊲Xt, ϑ⊳

∂X2
1,t

where G1,2,1⊲Xt, Oϑ⊳ is obtained from Equation (A.6). Thus:

F
1,t
12,11⊲Xt, ϑ⊳ D

⊲� � �1,1 � �11⊳A2 � �21A1

2X1,t

⊲A.8⊳
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where

A1 D c1 C ⊲� � �1,1⊳⊲X1,t � c1⊳ � �11ε1,t C
∑1

hD2
⊲��1,h�1 � �1,h⊳⊲X1,t�hC1 � c1⊳ �

∑m

sD2
�1s

A2 D c2 C ⊲� � �2,1⊳⊲X2,t � c2⊳ � �22ε2,t C
∑1

hD2
⊲��2,h�1 � �2,h⊳⊲X2,t�hC1 � c2⊳ �

∑m

sD1,s 6D2
�2s

Similarly we can derive the marginal effect of the covariance Y12,t on the conditional expectation

of the volatility Y11,tC1 denoted by F
1,t
11,12:

F
1,t
11,12⊲Xt, ϑ⊳ D

∂Et[Y11,tC1]

∂Y12,t

D
∂G1,1,1⊲Xt, ϑ⊳

∂G1,2,0⊲Xt, ϑ⊳
D

∂G1,1,1⊲Xt, ϑ⊳

∂X1,tX2,t

D
∂G1,1,1⊲Xt, ϑ⊳

∂X1,t

∂X1,t

∂X1,tX2,t

C
∂G1,1,1⊲Xt, ϑ⊳

∂X2,t

∂X2,t

∂X1,tX2,t

where G1,1,1⊲Xt, ϑ⊳ is obtained from equation (A.7). Thus

F
1,t
11,12⊲Xt, ϑ⊳ D

2⊲� � �1,1 � �11⊳A1

X2,t

�
2�12A1

X1,t

where A1 is defined above.

A.2. Supplementary Tables

Table A.1. Descriptive statistics of the 5-minute and daily returns over the period 01.01.2000–30.07.2008.
The means are scaled by 104

Stock Mean Max Min SD Skewness Kurtosis

5-minute returns
AXP 0.000 0.054 �0.034 0.0021 0.353 22.679
C �0.100 0.060 �0.048 0.0022 0.235 24.834
GE �0.050 0.039 �0.029 0.0018 0.257 15.937
HD �0.061 0.033 �0.029 0.0021 0.078 12.680
IBM 0.080 0.074 �0.022 0.0017 0.849 36.369
JPM 0.039 0.056 �0.051 0.0023 0.198 22.785

Daily returns
AXP 0.004 0.094 �0.093 0.186 �0.049 5.917
C �7.829 0.159 �0.130 0.179 0.312 10.732
GE �3.911 0.099 �0.083 0.154 0.213 6.687
HD �4.770 0.120 �0.086 0.184 0.466 6.369
IBM 6.225 0.123 �0.095 0.153 0.093 7.671
JPM 3.056 0.254 �0.164 0.203 1.258 20.051

Table A.2. Descriptive statistics of realized covariances and variances of the six stocks. The realized variances
and covariances are calculated from 5-minute intraday returns (measured in %), as described in the main text

Stock Mean Max Min SD Skewness Kurtosis

Realized variance
AXP 3.443 57.583 0.073 4.684 4.229 32.783
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Table A.2. (Continued )

Stock Mean Max Min SD Skewness Kurtosis

C 3.610 119.857 0.107 5.910 7.646 108.488
GE 2.429 51.402 0.103 3.174 4.904 46.966
HD 3.456 51.376 0.165 3.968 3.919 28.013
IBM 2.275 56.909 0.119 3.049 5.684 67.597
JPM 1.009 28.766 �1.108 1.644 6.415 74.871

Realized covariance
AXP-C 1.587 37.664 �0.548 2.775 5.320 46.132
AXP-GE 1.106 26.317 �1.467 1.845 5.899 58.081
AXP-HD 1.161 27.657 �2.452 1.967 5.327 47.599
AXP-IBM 0.917 23.434 �0.789 1.464 5.647 55.889
AXP-JPM 1.582 40.305 �0.975 2.812 6.098 62.128
C-GE 1.241 41.686 �0.583 2.117 7.019 91.587
C-HD 1.269 27.336 �0.928 2.175 5.019 39.512
C-IBM 1.028 36.726 �3.269 1.737 7.558 109.960
C-JPM 2.003 107.553 �0.472 3.995 11.349 245.086
GE-HD 1.040 26.852 �1.139 1.702 5.903 59.205
GE-IBM 0.901 24.054 �0.329 1.445 5.757 57.766
GE-JPM 1.197 49.23 �0.624 2.136 8.667 144.595
HD-IBM 0.875 18.318 �1.203 1.339 5.213 44.183
HD-JPM 1.233 26.399 �2.567 2.077 5.003 39.756
IBM-JPM 4.017 188.049 0.117 6.924 11.919 262.259

Table A.3. Parameter estimates and bootstrapped standard errors (in parentheses) for the VARFIMA(1, d, 1)
model in equation (4) based on Cholesky factors Xt and log-volatilities at. The first two columns correspond
to the two specifications (Model 1 and 2, respectively) of the VARFIMA-Chol, while the third column

corresponds to the VARFIMA-Log

Parameter Variable

Xt (Model 1) Xt (Model 2) at (Model 2)

AR � 0.4842 (0.3867) � 0.5625 (0.3105) 0.5273 (0.3366)
MA � 0.5138 (0.3432) � 0.5054 (0.3173) 0.4693 (0.3457)

Fractional integration d1 0.4888 (0.0286) d 0.449 (0.0340) 0.475 (0.0340)
d2 0.4712 (0.0432)
d3 0.5275 (0.0439)
d4 0.3811 (0.0288)
d5 0.3600 (0.0261)
d6 0.4721 (0.0317)
d7 0.3947 (0.0261)
d8 0.3027 (0.0227)
d9 0.3249 (0.0264)
d10 0.4736 (0.0281)
d11 0.3297 (0.0254)
d12 0.2970 (0.0273)
d13 0.2814 (0.0225)
d14 0.1568 (0.0210)
d15 0.4934 (0.0278)
d16 0.4500 (0.0466)
d17 0.3753 (0.0318)
d18 0.2277 (0.0233)
d19 0.1565 (0.0215)
d20 0.1603 (0.0211)
d21 0.5326 (0.0550)
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Table A.4. Parameter estimates and bootstrapped standard errors (in parentheses) for the HAR-Cholesky (1st
column) and HAR-Log (2nd column) models

Parameter Variable

Xt at

ˇ⊲d⊳ 0.322 0.322
(0.055) (0.015)

ˇ⊲w⊳ 0.262 0.323
(0.043) (0.033)

ˇ⊲bw⊳ 0.179 0.128
(0.055) (0.028)

ˇ⊲m⊳ 0.181 0.194
(0.072) (0.047)

Table A.5. Parameter estimates and bootstrapped standard errors (in parentheses) for the diagonal WAR and
the diagonal WAR-HAR models

Parameter Diagonal WAR

M 0.817 0.837 0.801 0.841 0.783 0.826
(0.019) (0.015) (0.027) (0.022) (0.029) (0.013)

Parameter Diagonal WAR-HAR

M⊲d⊳ 0.752 0.778 0.736 0.795 0.706 0.785
(0.052) (0.035) (0.036) (0.071) (0.065) (0.029)

M⊲w⊳ 0.079 0.090 0.067 0.060 0.046 0.164
(0.105) (0.103) (0.097) (0.072) (0.075) (0.123)

M⊲bw⊳ 0.419 0.415 0.424 0.359 0.449 0.352
(0.137) (0.129) (0.134) (0.113) (0.129) (0.117)

M⊲m⊳ �0.029 �0.021 0.003 �0.012 0.051 �0.006
(0.011) (0.006) (0.001) (0.004) (0.0139) (0.001)

Table A.6. Parameter estimates and bootstrapped standard errors (in parentheses) for the DCC and FIDCC
models

Parameter Variable

AXP C GE HD IBM JPM

DCC
wi 0.009 0.011 0.003 0.016 0.008 0.012

(0.005) (0.008) (0.003) (0.008) (0.005) (0.008)
˛i 0.071 0.085 0.039 0.049 0.057 0.092

(0.017) (0.030) (0.013) (0.011) (0.019) (0.028)
ˇi 0.929 0.916 0.960 0.946 0.939 0.912

(0.016) (0.029) (0.013) (0.011) (0.020) (0.025)
�1 0.013 �2 0.970

(0.002) (0.005)

FIDCC
wi 0.059 0.084 0.065 0.186 0.061 0.077

(0.024) (0.031) (0.028) (0.055) (0.021) (0.037)
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Table A.6. (Continued )

Parameter Variable

AXP C GE HD IBM JPM

ˇi 0.462 0.318 0.298 0.351 0.448 0.386
(0.008) (0.008) (0.006) (0.013) (0.006) (0.003)

di 0.499 0.467 0.411 0.413 0.499 0.499
(0.009) (0.055) (0.006) (0.018) (0.109) (0.014)

�1 0.013 �2 0.966
(0.002) (0.009)

Table A.7. Estimated marginal effects (equations (A.2) and (A.3)) and bootstrapped standard errors (in
parentheses) from the VARFIMA-Chol model. The table is read by substituting the dot (Ð) in the formula in
the first column with the corresponding variable from columns 2–7. The realized covariances are computed

with returns in %

Partial effect Variable

AXP C GE HD IBM JPM

∂V AXPtC1
∂COV AXP, Ðt

0.3572 0.6692 2.3606 1.2048 4.7499 0.7870

(0.0416) (0.0780) (0.2752) (0.1404) (0.5538) (0.0917)
∂COV AXP, ÐtC1

∂V AXPt
0.3572 0.1861 0.0482 0.0967 0.0253 0.1578

(0.0416) (0.0222) (0.0078) (0.0135) (0.0046) (0.0191)

∂V CtC1
∂COV C, Ðt

0.7444 0.7130 5.9233 3.9596 30.1783 2.7510

(0.0888) (0.0829) (0.6874) (0.4581) (3.4788) (0.3181)
∂COV C, ÐtC1

∂V Ct
0.1673 0.7130 0.0736 0.1329 0.0293 0.2192

(0.0195) (0.0829) (0.0142) (0.0194) (0.0057) (0.0257)

∂V GEtC1

∂COV GE, Ðt
0.1928 0.2946 0.9512 2.5289 8.6499 4.7101

(0.0314) (0.0570) (0.1534) ( 0.3441) (1.5233) (0.5795)
∂COV GE, ÐtC1

∂V GEt
0.5901 1.4808 0.9512 0.5919 0.1458 0.8791

(0.0688) (0.1718) (0.1534) (0.0853) (0.0265) (0.1043)

∂V HDtC1
∂COV HD, Ðt

0.3870 0.5316 2.3678 1.3482 23.1274 5.2299

(0.0543) (0.0777) ( 0.3415) (0.1787) (2.9623) (0.6526)
∂COV HD, ÐtC1

∂V HDt
0.3012 1.0139 0.6322 1.3482 0.1648 0.6085

(0.0351) (0.1210) (0.0860) (0.1787) (0.0264) (0.0819)

∂V IBMtC1
∂COV IBM, Ðt

0.1013 0.1174 0.5835 0.6592 1.9578 �2.7829

(0.0184) (0.0228) (0.1062) (0.1058) (0.2936) (0.3591)
∂COV IBM, ÐtC1

∂V IBMt
1.1874 7.7684 2.1624 9.1196 1.9578 4.2042

(0.1384) (0.9271) (0.3808) (1.1279) (0.2936) (0.5465)
∂V JPMtC1

∂COV JPM, Ðt
0.6315 0.8771 3.5164 2.4340 16.8169 1.7010

(0.0765) (0.1029) (0.4174) (0.3276) (2.1862) (0.3623)
∂COV JPM, ÐtC1

∂V JPMt
0.1967 0.7049 1.1775 1.9826 �0.6957 1.7010

(0.0229) (0.0841) (0.1448) (0.2412) (0.0897) (0.3623)
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A.3. Bias Correction

Forecasting a nonlinear transformation of Yt, such as Xt or at, and then inverting the transformation

to obtain a prediction of Yt, leads to biases. For our model, the theoretical bias correction was

derived in equation (15), while Bauer and Vorkink (2007) derive the bias arising from using

the matrix log transformation. They note that the theoretical result is only valid under restrictive

assumptions, and therefore suggest using a data-driven procedure in empirical work. Our theoretical

formula depends crucially on the second moment of the forecasting error, which is model-

dependent and has to be estimated in practice. Consequently, we also argue that in practice a

data-driven bias correction would arguably be more appropriate. In their study, Bauer and Vorkink

(2007) suggest scaling OYt to match the level of Yt, which, however, is unavailable if we want to

correct a forecast.

One could still consider the following procedure: construct the series �i,u D

√

Yii,u
√

OYii,u

,

u D 1, . . . , t, i D 1, . . . , n and scale the series

√

OYii,tCs by the mean 1
J

∑J�1
jD0 �i,t�j (or the median

of �i,u, for u D t � J C 1, . . . , t) so that all predicted volatilities match the level of the average

(median) observed volatility, with J controlling for the trade-off between the bias (favouring small

J) and the precision (favouring large J) of the correction. Given the ambiguity related to the choice

of J, we would only consider this correction if the biases are large. To investigate whether this is

the case, we construct the mean and the median of �i,t for t D T0, . . . , T and J D t. Both statistics

are slightly below unity, both for the forecasts based on Xt and at, implying that the model fit is

somewhat upward based, as the theory suggests. For the Xt-based forecast, the largest deviation

from unity over all periods and series is 0.93 (0.95) for the mean (median) of �i,t, while for the at

series the statistics are even closer to one at 0.98 (0.99). Summarizing the evidence, we hardly find

any empirical justification for bias correction. Given that the Cholesky-based forecasts seem more

prone to bias compared to the log-volatility-based predictions, refraining from bias correction can

only distort the evaluation to the disadvantage of the Cholesky factor-based model.




