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This paper presents a brief review of the present state of knowledge in stock–recruitment forecasting, including process and current methodo-
logical challenges to predicting stock–recruitment. The discussion covers the apparent inability of models to accurately forecast recruitment
even when environmental covariates are included as explanatory variables. The review shows that despite the incremental success in the past
hundred years, substantial challenges remain if the process of modelling and forecasting stock–recruitment is to become relevant to fisheries
science and management in the next 100 years.
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Introduction
Recruitment is the result of many factors that affect survival from the
egg-stage (including parental effects) through to when individuals
recruit to the fishery or stock, i.e. a stepwise process through
parent, egg, larva, juvenile, and back to adults, where abundance
at one stage is a function of abundance at a previous stage (Paulik,
1973; Rothschild, 1986; Ulltang, 1996). The state of a population
in any given year is a function of the stock (e.g. reproduction and
growth) and recruitment, which is itself a function of past events
(e.g. state of the stock, environmental conditions). Recruitment is
therefore explicitly linked not only to the amount of spawning-stock
biomass (SSB), which is often used as a proxy for reproductive
potential or egg production, but also parental size, growth history,
and environment of the individual.

When providing strategic, rather than operational advice, it is
clear that greater knowledge is required about the variability and
trends in fish recruitment. This is because operational advice, in
the strictest sense, is concerned with the ground-level approaches
of putting management plans into action. Therefore, it tends to be
short-term focused, and requires information over a short period,
e.g. whether stock levels have decreased, increased, or remained
level since last assessment. Strategic advice, on the other hand,

tends to be for the long haul (e.g. stock rebuilding plans, mainten-
ance of stock levels) and covers the “what” and “why” of fisheries
management decisions. Such decisions will require knowledge of
the variability and trends in recruitment, to evaluate the possible
effects of management decisions on stock trend variability and to
assess the efficacy of decisions in meeting long-term goals.

The issue of recruitment forecasting (for strategic and operation-
al advice) has been a focus for fisheries research over the last hundred
years. Unfortunately, it is often now dismissed as an unreachable
goal because of the various mechanisms interacting to influence dy-
namics throughout the life of an individual. Many of these mechan-
istic links are either poorly known or the link with recruitment holds
for only a short period (Myers, 1998), during which the strength can
be intermittently strong/weak. Attempts to understand and forecast
outcomes, e.g. survival and recruitment, are now in progress through
the use of complex and sophisticated individual-based modelling
techniques (Peck and Hufnagl, 2012). However, these models still
rely on a basic recognition and understanding of the key drivers and
mechanisms which influence survival through allprerecruit life stages.

Here we present a brief review of the present state of knowledge
in stock to recruitment modelling and forecasting, including meth-
odological challenges to predicting recruitment and potentially its
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linkages with the parent stock. We discuss several reasons for the
current apparent inability to forecast recruitment accurately, espe-
cially when environmental covariates are included as explanatory
variables. The main questions we ask are (i) what are the influences
on recruitment? (ii) do we need to understand the factors influen-
cing each life stage to predict recruitment?, and (iii) do we have
the necessary tools to model recruitment? Finally, we examine
preconditions necessary for stock–recruitment modelling and
forecasting to be recognized as relevant to fisheries science and man-
agement in the next 100 years.

Biological mechanism and recruitment drivers
The construct of stock to recruitment is a method of predicting re-
cruitment levels from a known stock size. For various reasons, the
SSB is taken as a proxy for the total egg production or stock repro-
ductive potential (see Trippel, 1999). By using stock size and recruit-
ment in a single model, it was implicit that the parent stock size had
an influence on the numbers of young surviving to join the parent
stock or fishery (Ricker, 1954; Beverton and Holt, 1957). At low
stock sizes, recruitment is primarily driven by density-independent
factors and thus recruitment increases monotonically with stock
size.However, at large stock sizes,other factors, e.g.density-dependent
effects (to varying degrees) are more influential on the survivorship of
young. This method of estimating recruitment levels into the future is
primarily for the purpose of modelling and is not really designed for
understanding early life-history dynamics. The necessity to derive
such relationships is driven essentially by stock assessment and
management needs, such as accurately quantifying the exploitable
segment of the population and sustainable stewardship of fisheries
resources. It also provides a method of closing the loop in fish popu-
lation modelling whereby generational input of young fish (new year
classes) can be estimated.

A shift in the linkage between SSB and egg production can occur
through interannual variations in individual fecundity (McBride
et al., 2013), non-participation in spawning by part of the mature
population, i.e. skipped spawning (Rideout and Tomkiewicz,
2011; Skjæraasen et al., 2012), or through viability of offspring
due to the structure of the mature population (Marshall et al.,
2010) Any of these can lead to the errors-in-variables problem
when using SSB as the metric to predict productivity (Rothschild
and Fogarty, 1989; Morgan et al., 2011). A stock–recruitment rela-
tionship (SRR) that fails to consider other factors or their interac-
tions does not incorporate a large amount of biological realism,
which leads to an inability to accurately quantify the true effect of
factors influencing recruitment.

Stock–recruit models often fail to adequately show the link
between spawners and recruits or the link weakens when new or
longer datasets are added (Myers, 1998). Factors not directly a con-
sequence of the spawning stock can impact cohorts within the same
stock differently and this lack of consistency is often viewed as a
breakdown of the relationship. Hutchinson (2008) surmised that
the reason for SRR failure is due to either incorrect assumptions
regarding the spawning stock or failure to account for the spatio-
temporal scales of factors describing the relationship. Furthermore,
changes in population demography (Wright and Trippel, 2009;
Fitzhugh et al., 2012) may result in a dissociation between SRR and
mechanistic relationships, e.g. Atlantic cod SRR with temperature,
the North Atlantic Oscillation (NAO), or dynamics of the North
Atlantic Subpolar Gyre (see Ottersen et al., 2010). Many SRRs have
the assumption of stationarity and so do not effectively deal with
shifts in productivity of the ecosystem or the stock itself (Nash et al.,

2009). Moreover, system complexity and non-linear interactions
between factors, which act to prevent the observed variable from
behaving in an expected way, or mask, mitigate, or intensify specific
information types, affect the perceived performance of SRRs.

A number of authors have shown that incorporating community
dynamics (e.g. prey to-predator loops, Bakun and Weeks, 2006; can-
nibalism, Hjermann et al., 2007) was more important than solely
using environmental factors for accurate predictions of recruitment.
The effect of the NAO in the Barents Sea typically reinforces oceanic
responses, causing overall higher water temperatures, but it may be
that it is not solely temperature that is responsible for strong year
classes; the NAO influences the influx of Atlantic Water, which
imports not only warmer water but also food (zooplankton) for ju-
venile cod (Ottersen et al., 2010). Furthermore, one type of interact-
ing term may not be strongly related to recruitment dynamics until
another term is added to the model. This was the case for the
Northern Gulf of St. Lawrence Atlantic cod (Gadus morhua) popu-
lation, where herring (Clupea harengus L.) predation was not strong-
ly correlated with cod survival until the effect of temperature was
included (Duplisea and Robert, 2008). Fish live in multispecies
communities and the effect of interactions between species, or
between fish of different sizes within the same species, should not
be overlooked. A reversal in the predator–prey dynamic between
Atlantic cod and pelagic fish (e.g. herring, mackerel (Scomber scom-
brus)) appeared to drive cod recruitment in the 1970s and 1980s in
the Southern Gulf of St. Lawrence, where, when pelagic fish reached
high abundance, they preyed heavily upon the eggs and larvae of cod
(Swain and Sinclair, 2000). Another type of trophic dynamic exists
in the Barents Sea; good year classes of herring result in high mortal-
ity of their prey, capelin (Malotus villosus) larvae, which acts to
deplete the capelin stock (at a lag), leaving little food for adult
cod, which then may, depending on cod stock size, turn cannibalis-
tic, resulting in poor cod recruitment (Hamre, 2003). Cannibalism
has also recently been suggested for the North Sea autumn spawning
herring population as a consequence of a demographic shift in the
abundance of substock abundances and a potential overlap of
adults with a part of the larval drift pattern (Corten, 2013).

Early life-history dynamics
Traditional stock–recruitment models use the endpoint (i.e. the
number of individuals recruiting to the fishery) of a complex rela-
tionship that integrates several processes operating over multiple
spatio-temporal scales (Rothschild, 2000), but whether this encom-
passes enough detail is questionable. Stock–recruitment is not only
a function of the stock, but is intrinsically linked to past events that
influence growth and mortality, not only of the individual recruiting
but also of the parents. Recruitment must decline if there is insuffi-
cient spawning biomass, but recruitment will also decline with
reduced body size, as fecundity, egg size, and spawning extent is in-
extricably linked to the fish’s growth history and condition (Kjesbu
et al., 1996). Any factor changing the demography of the population
will impact reproductive potential, and hence recruitment of the
stock. This multi-scale complexity then argues for a life-stage
approach to stock–recruitment modelling (Rothschild, 2000).

An integrated life cycle approach is one that investigates the im-
portance of different mechanisms acting on various life stages and
identifies the critical stages and mechanisms for recruitment (e.g.
Nash, 1998, and references therein). By partitioning recruitment
relationships into different life stages, scale can be explicitly investi-
gated by examining the numerical variability in the relationship, as
well as the interaction between life stages and the environment, and
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the non-linear dynamics regulating each stage (Rothschild, 2000).
This approach has been successfully used to investigate recruitment
for several stocks, e.g. North Sea herring (Nash and Dickey-Collas,
2005); Northeast Arctic cod (Mukhina et al., 2003); and Barents
Sea stocks (Dingsør et al., 2007). Paulik (1973) highlights this in
his seminal work on predictive SRR whereby the various life stages
are taken into account when progressing from stock to eventual
recruitment.

Paulik diagrams, in their present form (as initially presented by
Nash, 1998), provide a graphical format for indicating where bottle-
necks or shifts in survival are occurring in the life cycle. An example
of this is shown in North Sea autumn spawning herring (Payne et al.,
2009), where a major shift in survivorship occurred in the first
winter of life. From around 2001 to the present, overwintering sur-
vival is considerably less than in previous years. In Paulik’s original
paper (Paulik, 1973), he assumed there would be recognizable rela-
tionships between life-history stanzas that could be modelled. The
presentations by Nash (1998), Nash and Dickey-Collas (2005),
Payne et al. (2009), and Nash and Geffen (2012) indicate that the
situation is more complex and relationships between life-history
stanzas can vary quite considerably.

The impact on environmental factors may be crucial for the early
life stages. The link between environment and early life stage survival
has been thoroughly investigated through match–mismatch hy-
pothesis (Cushing, 1982, 1990), critical period hypothesis (Hjort,
1914), ocean stability hypothesis (Lasker, 1981), optimal environ-
mental window (Cury and Roy, 1989), and ocean triad (Bakun,
1998). However, larval abundance alone may not be an adequate
predictor of recruitment (Stige et al., 2013). Furthermore, the envir-
onmental link may be indirect; the gadoid outburst in the North Sea
occurred when stock levels were not extremely high, but when envir-
onmental conditions were good for the prey of early life-history
stages of gadoids, namely the prey abundance, seasonal timing,
and mean size (Cushing, 1984; Beaugrand et al., 2003). Shifts in
productivity or survival through the early life history during differ-
ent thermal regimes was also indicated by Nash (1998) and Nash and
Geffen (2012) in Irish Sea plaice (Pleuronectes platessa).

In early life history dynamics, there is a recognition that both
density-dependent and independent factors occur, but the relative
importance of the two shift through ontogeny (Beverton and Iles,
1992a, b). Both density-dependent and -independent processes
are assumed to be occurring within a certain recruitment interval,
i.e. the period between spawning and recruitment, and all mortality
outside of this interval (i.e. post-recruitment) is considered density
independent. This assumption is an oversimplification because the
length of the recruitment interval is often not based on an under-
standing of mechanisms or underlying processes, which is an im-
portant consideration when attempting to determine the impact
of specific mortality influences (e.g. fisheries) on multiple stages
(Brooks and Powers, 2007).

By using multiple stages, both the level and type of mortality on
each stage can be allowed to vary before recruitment. The question of
whether this matters for the timing of compensatory processes, i.e.
whether the timing (early or late) in the stage, has a strong effect on
the numbers of recruits. As Brooks and Powers (2007) pointed out,
additional mortality from exogenous sources will have a larger
impact if occurring later in the stage, after compensatory responses
have occurred, regardless of whether the Beverton–Holt or Ricker
model is used to investigate recruitment. Various authors have illu-
strated the differences in mortality rates through the early life-
history stages (e.g. Nash and Geffen, 2012) and highlighted the

fact that the absolute level of mortality is a function of both the
instantaneous rate and the stage-duration.

Modelling stock – recruitment
In the fisheries literature, recruitment models can be classified as
being parametric, semi-parametric, or non-parametric. Parametric
recruitment models are analytical or semi-analytical functional
expressions for recruitment. Three subclasses of parametric
approaches to modelling stock–recruitment are identifiable from
the fisheries literature, which we classify as classical, Box–Jenkins
type, and state-space models. The first subclass includes the two para-
meters Beverton and Holt (1957) and Ricker (1975); the general
recruitment function by Deriso (1980), Cushing (1973), Iles (1994),
and Shepherd (1982); and the Sigmoidal Beverton–Holt (Myers
and Barrowman, 1995) models. A good summary of the most
widely used parametric recruitment models can be found in Needle
(2001). Included in this subclass is cases where one of the classical
functional relationships (Beverton–Holt or Ricker) is augmented
with secondary data (climatic and ecological) such as temperature
and prey interactions (see, e.g. Gjøsæter and Bogstad, 1998; Planque
and Frédou, 1999; Olsen et al., 2011). The second subclass of paramet-
ric recruitment functions is those in which the dependent variable
(here recruitment) is regressed on one or several (often time-lagged)
independentdataseries, includingtime-lagged values of the independ-
ent variable. This subclass of time-series models (also referred to as
Box-Jenkins models, Box et al., 1994) consider recruitment as a com-
bination of autoregressive and moving average effects, leading to an
autoregressive moving average model (see, e.g. Gröger et al., 2010;
Gröger and Fogarty, 2011). The third subclass involves the use of state-
space model formulations to link recruitment to population para-
meters. In general, discrete-time state-space models are defined by
two equations, namely, the observation (or measurement) equation
and the system (or transition) equation. This model class, based on
linear difference relationships between the input and output variables,
provides and offers the additional flexibility of including parameters
that are exogenous to the model. An example is the Bayesian state-
space stock–recruitment model for Fraser River pink salmon
(Oncorhynchus nerka) (Meyer and Millar, 1999). The state-space ap-
proach addresses two major problems encountered in traditional
stock–recruitment analyses that of errors-in-variables bias and time-
series bias. In Meyer and Millar (1999), both process and observation
errors were explicitly captured in the state-space model and quantified
through posterior distributions of the parameters via the Bayesian
paradigm.

Semi-parametric and non-parametric methods derive the re-
cruitment relationship based on less stringent assumptions than
those implied by the use of parametric approaches. This class of
models spans a wide range including modelling the distribution of
recruitment as a function of biomass by non-parametric density
estimators (Evans and Rice, 1988), locally weighted smoothing
functions with non-parametric regression, LOESS smoothers and
spline methods (Cook, 1998; Bravington et al., 2000; Cadigan,
2013; Munch et al., 2005) and neural networks (Chen and Ware,
1999). Extensions of this class of models to include environmental
variables has also been reported in the literature (see, e.g.
Jacobson and MacCall, 1995).

This manuscript focuses on establishing an SRR outside the stock
assessment model, and involves fitting functional relationships to
stock–recruit data. The fitting process results in deterministic
(expected recruitment) and stochastic (characterized by residuals
resulting from the fit) components of recruitment. It must be
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mentioned, however, that a common practice is to estimate the re-
cruitment relationship within the model used to assess the stock
(see, e.g. Maunder and Deriso, 2003; Lee et al., 2012). When recruit-
ment relationships are integrated into assessment models, the
annual recruitment is usually decomposed into two components:
an average annual recruitment (synonymous to the relationship
obtained by an analytical fit to stock–recruit data) and a stochastic
component (e.g. residuals from a functional fit). The stochastic
component is usually defined by an assumed probability distribu-
tion function, and the parameters for the recruitment relationship
(the annual average recruitment and parameters of the probability
distribution) are usually integrated into the total objective function
for the assessment model. The optimized probability distributions
are then used to characterize the uncertainties in the annual recruit-
ment, as well as in recruitment projections. The integration of SRRs
can be extended to the case where environmental correlation with
recruitment or a stock–recruitment model is being considered
(Maunder and Starr, 2001; Maunder and Watters, 2003). See
Maunder and Deriso (2003) for instance, for several estimation
methods involving catch-at-age assessment models with integrated
recruitment estimation components.

Functional SRRs
The classical approach to stock recruitment assumes the existence
of a functional relationship, F(.), between spawners, St, and recruits,
Rt, over some indexed time (usually years) of t ¼ 1,. . .,n. This rela-
tionship can be expressed in a compact form as

Rt ; F(St,Q), (1)

where Q is a vector of parameters, usually of direct relevance to the
fishery management policy (Hilborn and Walters, 1992; Quinn and
Deriso, 1999; Chen, 2004).

Deriso (1980) introduced the general three-parameter SRR in
(2), which was further developed by Schnute (1985). The resulting
Deriso–Schnute model,

Rt = aSt(1 − gbSt)1/g, (2)

is such that

Rt =
Ste

a−bSt, lim g � 0
aSt

1 + bSt
, g = −1.

⎧⎨
⎩ (3)

The models resulting from setting lim g � 0 and g ¼ 21 define,
respectively, the Ricker (1975) and the Beverton and Holt (1957)
models, which are the most commonly used stock–recruitment
models infisheries science. The parametera is thedensity-independent
parameter, andbmeasures the level of density-dependence. The shape
parameterg is, however, not limited tog ≤ 0. For instance,g¼ 1 leads
to the Schaefer model (Schnute, 1985; Schaefer, 1991) for recruitment.
Also, note that we can derive the following equation (dropping the time
subscript) from (2):

d(R/S)
dS

= − b

1 − bgS

R

S

( )
.

Hence the compensatory property, d(R/S)/dS , 0 is only guaranteed
for b(1 − bgS) . 0 for all S. For a comprehensive discussion, see
Quinn and Deriso (1999).

The Beverton–Holt and Ricker models both describe a decrease
of the per capita recruitment with increasing stock size. Mortality is
assumed to be density independent at low stock sizes and there is
scope for some underlying level of density-dependent mortality at
any stock size. The choice of the stock–recruitment model is
based upon the severity of the density-dependent mortality (the
existence of “overcompensation”) believed to influence popula-
tion dynamics most during the period before recruitment. The
Beverton–Holt model is based on the assumptions that juvenile
competition results in a mortality rate that is linearly dependent
upon the number of fish alive in the cohort at any time. It also
assumes the ever presence of predators. The Beverton–Holt
model is appropriate “if there is a maximum abundance imposed
by food availability or space, or if the predator can adjust its preda-
tory activity immediately to changes in prey abundance” (Wootton,
1990). The Ricker model is based on the assumption that the mor-
tality rate of the eggs and juveniles is proportional to the initial
cohort size. The ecological conditions that result in a Ricker-type re-
cruitment include (i) cannibalism of the juveniles by the adults, (ii)
disease transmission, (iii) damage by adults of one another’s spawn-
ing sites, (iv) density-dependent reductions in growth coupled with
size-dependent predation, and (v) a time-lag in the response of a
predator or parasite to the abundance of the fish (Ricker, 1975;
Wootton, 1990).

At low stock sizes, depensatory effects may occur. The decrease of
per capita recruitment is commonly referred to as the Allee effect
(Allee et al., 1949). In terms of modelling, the Allee effect is a
zero-recruitment term, which represents an offset of the recruit-
ment function from the origin (see Frank and Brickman, 2000).
Models incorporating depensatory effects may be three-parameter
generalizations of the Ricker (see, e.g. Chen et al., 2002), the
Beverton–Holt model (see, e.g. Liermann and Hilborn, 1997), or
the Saila–Loda model (Saila et al., 1988).

In the literature, the classical equations (Beverton–Holt and
Ricker) have also been reformulated to provide direct information
about the productivity and resilience of a fish stock, and hence to
management. The reformulation incorporates a parameter, referred
to in the literature as steepness, and defined as the proportion of
virgin recruits produced by 20% of the virgin spawning stock,
(see, e.g. Mace et al., 1988; Brooks and Powers, 2007). First, let h,
R0, E0, c0 represent the steepness, virgin recruitment, virgin egg
production, and virgin level of egg production per recruit
(c0 = (E0/R0)), respectively. We denote by Ri(t) the number of
fish surviving to time t of stage i (0 ≤ t ≤ qDti), where Dti (i ¼
1,2,. . .,n) is a unit duration of the recruitment process, assumed
to occur over n discrete stages. Then the number of fish at time 0
of stage 1 is the number of eggs produced, i.e. E ; R1(0).

The reparametrized Beverton–Holt and Ricker functions are
then defined by

R =

4hR0E

c0R0(1 − h) + (5h − 1)E , Beverton-Holt

E

c0

(bc0)(1−E)/E0 , Ricker.

⎧⎪⎪⎨
⎪⎪⎩ (4)

A high steepness value is indicative of a resilient population, which
is robust to harvesting, including a high probability of rebuilding
when fishing pressure is relaxed. It must be mentioned, however,
that despite its attractiveness, the steepness parameter is difficult
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to estimate because there is often little information in the data on
this parameter (Lee et al., 2012).

Incorporation of environmental effects
Demographic uncertainty is the result of inherent temporal variabil-
ity in population processes due to environmental stochasticity. The
goal of including environmental covariates in stock–recruitment
modelling is to reduce the degree of unexplained stock–recruitment
variation caused (at entry to the fishery) by demographic variation.
When building recruitment models, a challenge is the question of
whether or how environmental influences should be included in
the model definition. The most common models for incorporation
of environmental variables Z1, . . ., Zn in SRRs are modified Ricker
or Beverton–Holt functions (Hilborn and Walters, 1992; Chen
and Irvine, 2001) of the form

Rt = Ste
a−bSt+c1Z1+c2Z2+···+cnZn , (5)

Rt =
aSt

1 + bSt
ec1Z1+···+cnZn . (6)

Of these two models, the modified Ricker model is the type of rela-
tionship more commonly investigated. This is perhaps because
similar to a lognormal error; this allows for a linear and additive for-
mulation of the model, thus affording computational ease. This type
of model has, for instance, been used by Planque and Frédou (1999)
and Drinkwater (2005) to describe recruitment of Irish Sea cod.
The effects of predators and competitors of Northwest Atlantic
cod have been studied using a linear regression of log(R/S)
against SSB of cod, herring, and mackerel (Swain and Sinclair,
2000). A hybrid Beverton–Holt–Ricker model was used to incorp-
orate zooplankton abundance and a log-linear effect of temperature
(Olsen et al., 2011).

Myers (1998) pointed out that environment–recruitment rela-
tionships are seldom used in stock assessment. For instance,
Shepherd et al. (1984) listed 42 stocks in the North Atlantic and
Northeast Pacific, for which the environmental impact on recruit-
ment had been studied, but only one correlation had become part
of stock assessment. Furthermore, Myers (1998) found that correla-
tions, in general, performed poorly on retesting with longer time
series, with exception of relationships at population’s geographical
limits. The problem of data-dependence on choice of tests for cor-
relations and their results has also been highlighted by Iles and
Beverton (1998).

More generally, a major drawback with models of the forms (5)
and (6) is that they are usually linear approximations of non-linear
environmental effects. This approximation may be inadequate
or unreliable. For example, Drinkwater (2005) and Planque
and Frédou (1999) found evidence for a non-linear relationship
between temperature and recruitment. For cold-water species,
warmer sea temperature would strengthen recruitment and for
warm-water species, the opposite. However, the actual response
was dependent on where in the latitudinal range of the species the
observations were made. A quadratic relationship between sea
surface temperature (SST) and the logarithm of the reproductive
success was reported by Stocker et al. (1985). Such a dome-shaped
functional relationship cannot be described by a log-linear model
such as (5) or (6). The logarithm of a linear function can be a strictly
monotonic decreasing or increasing function, but does not allow
for both a positive and a negative slope of the environment–
recruitment curve. This fact is of special significance, since the

rejection of a linear relationship does not necessarily imply the
total absence of one, but that the functional form may be non-linear.
On the other hand, suppose the influence of an environmental par-
ameter (e.g. temperature), T, on recruitment is defined as the expo-
nential of an n-dimensional polynomial with coefficients a0, a1, . . .,
an, and given by (7)

Rt = f (St) exp a0 +
∑n

j=1

ajT
j

( )
, (7)

where f(St) is a function of St. Then the effect of T on Rt will be not
unique, but depend on the values of the coefficients of the polyno-
mial. For the simplest case of n ¼ 2 (quadratic polynomial) recruit-
ment can be lower both at low and high temperatures (for fixed
values of St and T), depending on the values of a1 and a2.

It is worth mentioning that functional forms other than
log-linear have been suggested by Iles and Beverton (1998). Semi-
parametric and non-parametric models incorporating environ-
mental parameters have also been reported in the literature. For
instance, Chen and Irvine (2001) used semi-parametric models of
the form (8), where g(E) denotes a linear or quadratic function
of one or several environmental factors E and f(St) is a linear func-
tion of St.

Rt = Ste
a+f (St )+g(E). (8)

Fitting stock – recruitment functions
Error assumptions
Although some authors (see, e.g. Jiao et al., 2004) have modelled the
SRR assuming normal, lognormal, gamma, and Poisson model
errors, the predominant assumption is that the errors in the
spawner–recruitment relationship are usually lognormally distrib-
uted (Hilborn and Walters, 1992). A stochastic version of the
classical Beverton–Holt and Ricker functions, given lognormal
errors, can be formulated as

Rt ; F(St,Q)eet, (9)

where e � N(0,s2I). The assumption of lognormal errors in the SR
analysis can be attributed to principal contributions by Allen (1973),
Walters and Hilborn (1976), Peterman (1978), Hennemuth et al.
(1980), and Peterman (1981). The basis for the lognormal assump-
tion, however, derives from empirical studies (see, e.g. Allen, 1973;
Peterman, 1981) or driven by the need for computational conveni-
ence and ease (see, e.g. Hilborn, 1985), or a combination of both
factors (Walters and Hilborn, 1976). However, a common practice
in fitting the SRR is to first introduce a linearization of the model
equation (e.g. by taking the logarithm of Rt, as in Chen, 2004),
followed by parameter estimation using a least-squares approach,
where the lognormal error assumption provides computational ease.

The literature, however, shows that non-parametric and Box–
Jenkins models allow for consideration of other types of error struc-
tures other than lognormal (Meyer and Millar, 1999). Generalized
linear models (GLMs), which are a flexible generalization of ordin-
ary linear regression, are applicable to several error distributions
other than the normal. Jiao et al. (2004), for instance, used a GLM
to investigate the effect of normal, lognormal, gamma, and
Poisson model error assumptions on the derived SRR. Other non-
parametric methods in the literature include density estimation
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(Evans and Rice, 1988), generalized additive models (Jacobson and
MacCall, 1995), locally weighted spline smoothing with non-
parametric regression (Cook, 1998), and neural networks (Chen
and Ware, 1999). It must be noted that since most non-parametric
methods are heavily dependent on asymptotic assumptions, their
reliability, when applied to small sample sizes typically available
for recruitment series, may be unknown.

Bias and bias correction
In general, the difference between an estimator’s average and the
true parameter value is called the bias. In stock assessment
models, recruitment variability is usually assumed to be lognormal-
ly distributed (Maunder and Deriso, 2003). Methot and Taylor
(2011) showed that the lognormal assumption calls for a bias correc-
tion in the modelled mean annual recruitment. We define the true
(but unobserved) and modelled mean annual recruitment values,
respectively, by R and R*, and assume that R* is lognormally distrib-
uted, i.e. log(R*) is normally distributed with mean R and standard
deviation sR. Then the true mean recruitment is considered as a
random variable, which is related to the modelled recruitment
through

R∗ = R exp us− 1

2
s2

[ ]( )
, (10)

where u is a normally distributed random variable with zero mean
and unit variance. The term 1/2s2 is subtracted to make R* un-
biased, i.e. we have

E(R∗) = R, Var(log(R∗)) = s2. (11)

As stated in Methot and Taylor (2011), the adjusted value R* , R,
and represents the median recruitment value.

Formally, an estimator u* of a real-valued parameter u is
median-unbiased if

Probability [u ∗(X) , u|u] = Probability [u ∗(X) . u|u],

for each u (Birnbaum, 1964), i.e. under- and overestimates are
equally likely. On the other hand, u* is mean-unbiased if for each
u, the expectation of u* is defined such that

Expectation [u ∗(X)|u] = u.

Both mean-unbiased and median-unbiased estimates of stock–
recruitment have been reported in the fisheries literature.
Unfortunately, the literature offers no guidelines for which to prefer
and why, although the estimators have different attributes and prob-
abilistic expectations. When the estimator of recruitment is to be
used as input to different (not all linear) formulae (or models);
however, then the median-unbiased estimator is to be preferred (see,
e.g. Birnbaum, 1964). On the other hand, if one assumes that the re-
cruitment data errors are normally distributed, then the best unbiased
estimator will also be normally distributed. Under such assumption,
the median-unbiased and mean-unbiased estimators are mathe-
matically equivalent in any linear regression or multivariate analysis.
Median-unbiased estimators are however preferable in situations
where the normally distributed error assumption cannot be justified
(i.e. asymmetric distributions). This is because the median is then
insensitive to skewness and kurtosis (see, e.g. Andrews, 1993; Nelson
and Plosser, 1982). Because recruitment data are usually heavy-tailed

(represent asymmetric distribution), a median-unbiased recruitment
estimate may offer a precautionary and preferable alternative for short-
term predictions or if estimates are to be used for computing reference
points. Median-unbiased recruitment estimates are also to be consid-
ered when these values are input parameters to other submodels or
equations.

For the general problem of fitting the SR function, the literature
shows that a density-dependent SR relationship is generally
assumed to exist (Sakuramoto, 2005). It has also been recognized
that because estimates of numbers of spawners and recruits are un-
certain, the recruit–spawner output is incomplete unless accom-
panied by estimates of uncertainty (Ludwig and Walters, 1981a).
Some emphasis has therefore been placed on how to correct for
bias in estimated parameters Q, due to data uncertainty (see, e.g.
Ludwig and Walters, 1981a; Walters and Ludwig, 1981; Walters,
1985; Chen, 2004). Two potential effects of uncertainty on recruit-
ment have been reported, namely (i) the estimated parameters may
be inconsistent due to violation of the independent error assump-
tion, which underlies the regression equation and (ii) the over-
estimation of the information content of the observation data
(Ludwig and Walters, 1981b).

For the classical Beverton–Holt and Ricker models, if the errors
are lognormally distributed, then the optimal parameter values
obtained by multiple linear regression, Q̂, and the associated vari-
ance, ŝ2

Q, can be easily estimated. The multiple regression approach
is, in principle, finding a model that quantifies the expected
(average) recruitment for a given stock size. However, this average
has been shown to be (in most cases) larger than the modal recruit-
ment (Ricker, 1975; Hilborn, 1985). Consequently, bias is intro-
duced in estimates of Q, with subsequent bias and uncertainty in
management decisions, which are dependent on the parameter
estimates. Ludwig and Walters (1981a) developed an elaborate esti-
mation procedure, which is robust both to the limited number
of observations that are usually available and to measurement
errors. The computational framework relies on an independent as-
sessment of the relative strengths of environmental and measure-
ment variances in providing maximum likelihood estimates of Q,
a measure of uncertainty in Q and a time series of errors. More re-
cently, Chen (2004) argued that the assumption of lognormal
errors in the Ricker and Beverton–Holt models introduces a posi-
tive bias into recruitment predictions, which is qualitatively de-
pendent on the structure of the model residual variance, the
historical SR data, and the specific spawner biomass used. The
bias correction introduced by Chen (2004) is reported to be asymp-
totically unbiased with a finite-sample bias that is practically zero.

Forecasting stock – recruitment
Recruitment forecasting often involves the use of environmental
indices because, often, prerecruit data are either unavailable or
highly uncertain. Examples include recruitment forecasting of
short-lived species such as anchovy in the Bay of Biscay (Engraulis
encrasicolus L.), where upwelling conditions caused by north-
easterly winds of medium and low intensity in spring–summer in
the Bay were linked to good levels of recruitment (De Oliveira
et al., 2005), linking SST and recruitment to predict the impact of
increasing sea temperatures on future recruitment (Roel et al.,
2004), and the use of SST to predict California sardine (Sardinops
sagax) recruitment (Jacobson and MacCall, 1995). The attempt to
predict short-term changes in recruitment of North Sea cod using
SST has also been reported by Planque et al. (2003). Multiple regres-
sion recruitment forecast models have also been developed for
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Northeast Arctic cod, Norwegian spawning herring, and Barents Sea
capelin. These models combine the water temperature of 3–7 sta-
tions of the Kola section transect (layers 0–200 m) (see Bochkov,
1982), the bottom-trawl abundance indices of Northeast Arctic
cod (ages 0 and 1), and the biomass of mature capelin (see details
in Stiansen et al., 2005). According to Stiansen et al., (2005), the pre-
sented models accounted for 65–85% of the variance in the pre-
dicted recruitment. For South African anchovy, “fluctuations in
copepod biomass and production on the spawning grounds, the in-
cidence of oocyte atresia in adult females, the incidence of southerly
winds at Cape Point and the distance offshore of the 168C isotherm
at Cape Columbine were associated with fluctuations in anchovy re-
cruitment” (Cochrane and Hutchings, 1995).

The dominant motivation for recruitment forecasting appears
for management planning to ensure optimal harvesting strategies
(see, e.g. Sun et al., 2009). This is particularly true for cases where
management advice is provided before the level of recruitment
can be assessed and/or when management advice involves multi-
annual decisions such as total allowable catch (TAC). An example
is provided by the management of South African anchovy
(Engraulis encrasicolus), where an initial TAC is set at the start of
the fishing season in January, before the level of the year’s recruits
of 0-year-old fish can be quantified, and the TAC is readjusted
in May or June after the actual recruitment has been estimated
(Cochrane and Starfield, 1992). Simulation results show that for
this particular stock, the average annual catch could be increased
theoretically by up to 48% given very precise (CV ¼ 0.1) short-term
predictions of recruitment at the start of the fishing season.

Since management decisions are defined in terms of time hori-
zons, forecasting SR has been classified as being short, medium, or
long term. The classification, however, is non-unique, and has to
be considered in relationship with the life cycle of the specific
stock of interest. Northeast Arctic cod and Northeast Arctic
haddock (Melanogrammus aeglefinus) stocks, for which recruitment
to the fishery occurs at age-3, a short-term forecast is 1–3 years
ahead, while for species like Greenland halibut (Reinhardtius hippo-
glossoides) and redfish (Sebastes mentella), short-term forecast may
be as much as 6 years ahead (see ICES, 2011a). Both short- and
medium-term projections are usually based on fitted stock–recruit-
ment functions and recent trends in recruitment. The literature also
reports recruitment forecasts based on historical estimates of re-
cruitment, such as the projected short/medium-term recruitment
being a geometric mean of past estimates of recruitment, or the geo-
metric mean of past recruitment values that fall below the arithmetic
mean of the historic stock–recruitment data (see, e.g. ICES, 2003).
For South African anchovies, a short-term forecast is defined in
terms of months (see Cochrane and Starfield, 1992). In general,
however, short-term forecasts have been considered most reliable,
which explains their popular use in stock assessment and in the
context of management advice (see, e.g. Bogstad et al., 2000). In con-
trast, the more uncertain medium- and long-term forecasts are
more often used in the context of management strategy evaluations
(MSEs; see, e.g. Kimoto et al., 2007).

The literature reports mixed results when evaluating the practical
implementation, effectiveness, and impact of forecasted fish recruit-
ment on management decision. For California sardine, SST has been
successfully used in predicting stock–recruitment (in the stock as-
sessment) and therefore in the harvest control rules for this par-
ticular stock (Jacobson and MacCall, 1995; Deriso et al., 1996).
Conversely, using North Sea cod as an example, Planque et al.
(2003) concluded that currently, there is limited managerial

benefit of forecasting recruitment based on environmental informa-
tion. This conclusion, however, does not discount the possible use of
environmental information to forecast recruitment in the future. It
merely emphasizes the fact that for this particular stock, there is
limited understanding of the coupling between the environment
and recruitment, which prevents reliable recruitment forecasts
from environment-based recruitment models. The literature also
reports of failure when harvest rules have been derived using
environment-based recruitment forecasts. For instance in 1999,
the TAC for the Bay of Biscay anchovy was drastically reduced
when the projected SSB was found to be well below the precaution-
ary SSB level. The projected SSB was based on predicted recruitment
from a model that had previously shown a significant relationship
between the upwelling index and recruitment of age-1 fish (see
Borja et al., 1998). On re-examination, the forecasted recruitment
turned out to have been grossly underestimated. As a consequence,
this particular environmental index is no longer considered a reli-
able indicator of the absolute levels of recruitment (De Oliveira
and Butterworth, 2005). Based on simulation results, Cochrane
and Hutchings (1995) report the possibility of obtaining a valuable
increase in mean annual yield of South African anchovy fishery
if below-average recruitment could be forecasted 6 months in
advance of obtaining reliable measurements of recruitment, at the
start of the fisheries.

Basson (1999) undertook a simulation study to investigate the
value of including environmental data for management procedures,
and arrived at the conclusion that there is no advantage in incorp-
orating environmental drivers of recruitment in the short term for
conservation or yields. Furthermore, there were situations where
the incorporation of environmental factors made the management
decisions worse. While these conclusions may appear to apply to
some of the examples previously discussed (e.g. for the Bay of
Biscay anchovy), the fact remains that each species (its life history
and dynamics) and fishery needs to be carefully considered before
being a candidate for the inclusion of environmental factors in re-
cruitment forecasting.

Outstanding methodological challenges and caveats
Defining recruitment
One of the largest problems in contemporary discussions concern-
ing SRRs is that the recruitment is neither to the fishery nor at
the point of sexual maturity. While the point in the life history is
not critical, the range of ages used mean that there is no consistency
in the meaning of recruitment. In some instances, e.g. North Sea
Autumn Spawning herring at age-0-winter rings, the year-class
strength is apparent (ICES, 2013b), whereas in Northeast Arctic
cod, processes such as cannibalism mean that the year-class strength
may not be apparent until age-3 (ICES, 2013a).

Recruitment, in the strict fisheries definition (becoming vulner-
able to the fishery or captured), is generally length or size dependent,
rather than strictly age dependent. Likewise, recruitment to the
adult, i.e. sexually mature, portion of the population is also primar-
ily driven by length; however, age will also have an influence.
Recruitment is assumed to be knife edged (in the case of sexual ma-
turity, can be either deemed knife edged or, more commonly, may
vary annually and is determined from surveys) and a convenient
age class is chosen, often for simplicity, whereas it is well known
that there is a selectivity curve for both capture and maturation.

To make matters more complicated, sometimes a year class that is
not fully defined in regard to the life history, such as age 0, has been
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chosen in the past for age at recruitment to the fishery, e.g. Irish Sea
cod (ICES, 2011b). To add to the confusion, spawning for some
species occurs on either side of 1 January, i.e. 1 year class effectively
spans two different years, e.g. north–east Atlantic herring (ICES,
2013b). In the case of North Sea autumn spawning herring, the
0-winterring (or 0-group) is clearly defined as 1 January, but the
larvae are enumerated during a survey in February when they are
nominally 3–4 months old (ICES, 2013b). This definition of year
class is clearly not appropriate for many winter and spring spawning
herring populations.

Modelling stock – recruitment
The existence of a spawners–recruits relationship (and its particular
form) is often accepted without question in the fisheries literature.
However, empirical evidence that such a relationship may occasion-
ally fail to exist in general has been reported by Sakuramoto (2005)
and, for Pacific Salmonids, by Peterman (1978). Myers and
Barrowman (1995) undertook a meta-analysis of 364 spawner–
recruitment time series and noted that, on average, the highest
recruitment occurred at high spawner abundance and the lowest
spawner abundance produced the lowest recruitment. These con-
clusions arising from the meta-analysis contradict, for instance,
the (overcompensation) assumptions underlying the Ricker-type
recruitment relationship.

Incorporation of environmental effects
A general potential challenge to methodologies for incorporating
environmental factors into SRRs is the fact that such dependencies
are usually non-linear and asymmetrical. Further, because the time
series of data is usually short and noisy, estimation of the underlying
coupling between recruitment and environmental parameters is dif-
ficult (see, e.g. Lungarella et al., 2007). Attempts to accommodate
co-incidental trends in time (Iles and Beverton, 1998) may also
lead to development of models with little predictive ability (see
Hilborn and Walters, 1992; Chen and Irvine, 2001).

The search for environmental influences on recruitment has
resulted in many studies which incorporate physical factors into
theSRR, e.g. NAO in North Sea autumn spawning herring (Gröger
et al., 2010), temperature with cod (O’Brien et al., 2000), which
was taken up in a wider study by Drinkwater (2005). Changes in re-
cruitment have often been found to be indirect responses to changes
in third factors (Drinkwater, 2005). For instance, temperature may
cause shifts in the composition of the zooplankton community, and
thus indirectly strengthen or weaken recruitment (Beaugrand et al.,
2003). Furthermore, factors such as upwelling, salinity, and sea level
might correlate with temperature and have thus been hypothesized
to be the actual causes of changes in recruitment (Prager and
MacCall, 1993). Because the impact of temperature may often be
an indirect response to changes in many other parameters, tempera-
ture has been be used as a proxy measurement of other environmen-
tal factors (see Jacobson and MacCall, 1995; Myers, 1998, and
references therein). Temperature has also been shown to influence
the spawning stock, the effects of which will eventually be seen in re-
cruitment. For instance, Ottersen et al. (2006) investigated change in
the relationship between sea temperature and recruitment of
Atlantic cod over time and found that a decrease of length and age
of average spawners occurred at the same time as a strengthening
of the impact of temperature on recruitment. Direct temperature
influence on spawning times and sites has also been reported by
Morgan et al. (2013). Thus temperature may have indirect effects

on recruitment, either through its links with the spawning stock
or as a proxy for other (unmeasured) environmental variables.

In lieu of models of form (5)–(6) and (8), a model that incorpo-
rates the effect of temperature could, in general, have the form
described by Equations (12)–(13):

R = f (S(E)), (12)

Et = g(A(1)
t−t1

,A(2)
t−t2

, . . . ,A(n)
t−tn

), (13)

where there is a causal link between St and a finite n number of en-
vironmental factors, A( j) ≤ ft( j ¼ 1, . . ., n), through Et. The causal
link is indicated by the time-lag, t 2 hj, between Et and each envir-
onmental factor. Thus formulated, the function Et could be a linear
or non-linear function of environmental factors or even proxies
(e.g. temperature).

Fitting stock – recruitment functions
It is worth noting that most of the literature on classical models
and assumptions of recruitment are dominated by empirical data
and analyses of Salmonid stocks (see, e.g. Allen, 1973; Peterman,
1978, 1981). For such stocks (in particular, the sockeye salmon
Oncorhynchus nerka population in the Skeena River), Walters and
Hilborn (1976) cite Allen (1973) in arguing that empirical evidence
in support of the lognormal distribution exists, while Hilborn
(1985) cites Peterman (1981) for the same reason. It is also worth
pointing out that the distribution of recruitment can vary for
many reasons, including the influence of stock size or structure
(Hsieh et al., 2006; Anderson et al., 2008) or due to productivity
regimes (Vert-pre et al., 2013). It is conceivable, however, that this
assumption may fail to hold, for instance, for stocks with stable
stock sizes, which are less prone to extreme fluctuations. In the stat-
istical description of recruitment for 18 stocks, Hennemuth et al.
(1980) report that Georges Bank cod and Peruvian anchovy
(Engraulis ringens) exhibit normal rather than lognormal distribu-
tions, while multimodal distributions appeared to be more descrip-
tive of both Georges Bank haddock and Northeast Arctic haddock.
According to Hennemuth et al. (1980), “most well-known standard,
single or even joint probability distribution functions do not
account for the frequency of occurrence in the long right-hand
tails observed in some cases”. If it cannot be established, the assump-
tion of a lognormal distribution may lead to biased parameter esti-
mates, although it affords computational ease (see, e.g. Walters and
Hilborn, 1976).

The issue has additional complexity associated with how the
error structure in the dependent (recruitment) variable relates to
that in the independent variable (spawning stock). Although not ex-
plicitly stated in most cases, the assumption in the literature is that
the error term on the right-hand side of the recruitment function
captures the uncertainty in the dependent variable, which also
includes the stochasticity observed in the independent variable. It
is not unusual, however, that both the recruitment and SSB are char-
acterized by different variances and error distributions. It is not un-
common that the SR data are characterized by a general lack of
contrast in the independent variable (usually SSB) coupled with
highly variable recruitment. Then given the assumption that the
two variables are independent and normally distributed, the solu-
tion obtained will very much depend on the ratio of their variances.

In the fisheries literature, the issue of separate error structures in
the recruitment and spawner data failed to receive further attention

2314 S. Subbey et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/article/71/8/2307/2804451 by guest on 16 August 2022



after it was first discussed in Ludwig and Walters (1981b). If (R̂t, Ŝt)
represent observations of the true recruitment and SSB values (Rt,
St), then separable error structures imply that

R̂t = Rt + 1t, (14)

Ŝt = St + ht, (15)

where 1t and ht can, for instance, be assumed to be independent
and normally distributed. It must be recognized that this is a poten-
tial source of bias when deriving SR functions and that standard
linear regression methods in such cases will yield suboptimal solu-
tions (Cornbleet and Gochman, 1979); see also discussion in
Ludwig and Walters (1981b). The problem is best solved using an
errors-in-variables model or methodology, which seeks to account
for errors in observations on both the independent (Ŝt) and the de-
pendent (R̂t) variables. An example methodology is the Deming re-
gression approach (Martin, 2000). The methodology is equivalent
to a maximum likelihood estimation procedure in which the
errors for the two variables are assumed to be independent and nor-
mally distributed, while the ratio of their variances, dt = (1t/ht), is
known (e.g. estimated from data) (Linnet, 1993).

Of all the possible sources of uncertainty, structural uncertainty
remains one of the most challenging issues in fisheries science
(Hammond and O’Brien, 2001) and, in particular, to the task of
fitting stock–recruitment functions to observation data. The
choice of recruitment function (e.g. Ricker, Beverton–Holt) may
be wrong (Patterson et al., 2001), or there may be aspects of the dy-
namics that the rigid analytical functions are incapable of capturing
(Mace and Sissenwine, 2002). This is understandable given the
absence of data and rigorous statistical techniques to explore the
basic assumptions of the nature of density dependence and other
biological processes that underpin the SRRs. Thus, the choice of re-
cruitment model remains a major source of uncertainty in the fitting
process.

For almost identical goodness-of-fit values, Myers et al. (1994)
obtained different functional results for the Ricker and Beverton–
Holt models (Barrowman and Myers, 2000; Williams and
Shertzer, 2003). With respect to analytical stock–recruitment func-
tions, a more central and basic issue is the fact that models with a
small number of parameters are fit to data. Regardless of whether
the Deriso, Beverton–Holt, or Ricker models are used, the fact
remains that these analytical functions do not possess enough flexi-
bility in their definitions to allow any deviations from the presumed
recruitment–spawning stock relationship, even if the data dictate
otherwise. Though the diagnostics of the fitted stock–recruit
model should indicate that the fitted model is incorrect, this conclu-
sion may not be exclusively valid (see, e.g. de Valpine and Hastings,
2002), given the nature of the data.

In the literature, the Akaike information criterion (AIC) and
Bayesian information criterion (BIC) (see Burnham and Anderson,
2002) have been employed in the selection of SRRs (see, e.g. Wang
and Liu, 2006; Shimoyama et al., 2007). Indications from the literature
are that the use of AIC or BIC as selection criteria can be potentially
misleading. While Wang and Liu (2006) compared and found
both the AIC and BIC as valid selection criteria, simulation studies
by de Valpine and Hastings (2002) indicate that the Ricker model
gave a better fit to the data than the Beverton–Holt model, when
the AIC was used to select the best-fit model. Furthermore, though
the Beverton–Holt model generated the data, the AIC selected the

Ricker model as best fit. For typical fishery data, Zhou (2007)
reports the probability of selecting the correct model based on infor-
mation criteria to be 0.70 and 0.61, respectively, for the Ricker and
Beverton–Holt models. In general, the task of choosing the best
model among a variety of candidates is a statistically challenging
and non-trivial problem. For a review, see de Gooijer et al. (1985).
When short time-series are used as input, it is hard to distinguish
between closely related models (based, e.g. on AIC, BIC) since selec-
tion indices tend to be very close to each other. A change in, for in-
stance, the length of the input data may result in a different model
choice, and consequently in the forecast. See a detailed discussion in
Zou and Yang (2004).

A completely different approach to the use of rigid analytical
functions will be to posit (either the Beverton–Holt or Ricker
type) dynamics behind the SRR relationship, based on some a
priori knowledge (e.g. ecological/biological), then allows the data
to “speak for itself”. To illustrate, suppose we introduce a parameter
transformation u ¼ R/S(for S . 0) into the Beverton–Holt and
Ricker functions (this also holds for the Deriso function for which
the Ricker and Beverton–Holt models are special cases), we obtain

u(S) =
ea−bS, Ricker,
a

1 + bS
, Beverton-Holt.

{
(16)

We can then prove (maintaining the original constraints on a and
b) that u is both monotone and convex. An immediate consequence
of this transformation is that one can write

u(S) =
∑N

i=1

cjBj(S),

where Bj(S) represents a set of basis functions with some local
support (e.g. low degree splines) and cj are a set of parameters to
be determined. It is then possible to solve for u by imposing con-
straints on cj such that the derived solution has the required proper-
ties. Once u is obtained, R can be recovered. Bravington et al. (2000)
and later, Cadigan (2013) who fitted a non-parametric stock–
recruitment model using the R-SCAM package (Pya, 2010, 2013),
are based on such an approach. This approach (reparametrization
using B-spline basis functions) has the attraction that the spline
knots (design points) can be chosen independent of the observation.
There are two potential challenges. The choice of an arbitrary
high number N of basis functions may result in oscillatory (non-
monotonic), and biologically implausible solutions. In the R-SCAM
package, regularization of the problem is addressed by adding a
term in the objective function with a smoothing parameter, which
penalizes divergence from smoothness. The actual choice of the
smoothing parameter, which can be determined by, for example, gen-
eralized cross-validation (GCV), is usually data dependent (see, e.g.
Wahba, 1985). More generally, the choice of penalizing term and
how it is determined will dictate the type of solution obtained. For in-
stance, methods such as GCV and unbiased risk have been developed
under the assumption that the data are from independent observa-
tions (Wang, 1998). When the independent observation assumption
is violated, the results obtained are underestimates of the optimal
smoothing parameter. If this approach (reparametrization using
basis functions) is to be truly generic, the followingmust be considered
(i) since the fitting problem involves more than data interpolation and
smoothing, it must admit other basis functions which possess the
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same flexibility and continuity properties as B-spline, e.g. Hermite or
Bernstein polynomial (see, e.g. El Attar, 2006); (ii) rather than being
explicitly imposed on the solution, the degree of smoothness of the
SR function must be an emergent property of the derived function;
and (iii) given the nature of the SR data, the parameter estimation
must be robust to outliers and computationally feasible, even for a
very small number of observation. Following the discussion from
the previous paragraph, non-parametric recruitment models of the
type described in this paragraph (despite their attractiveness) must
still be regarded as candidates in an ensemble of several possible
explanatory models (both parametric and non-parametric).

Forecasting stock – recruitment
The problem of forecasting stock–recruitment shares several
common characteristics with that of finding a functional fit to, for
example, recruit-spawner data. The shared characteristics include
(but are not limited to) decision on model choice (type and
degree of complexity), issues with bias-variance trade-off, and
effect of underlying statistical assumptions on estimated model
parameters. However, recruitment forecasting presents an addition-
al challenge since it seeks to address the problem of making state-
ments about the most likely outcome of future values of a process
(or time-series variable) whose actual outcomes are unknown.
The outstanding problems with recruitment forecasting are there-
fore many, and deal with issues concerning the process, accuracy,
and relevance of forecasts.

Why has the SST-based forecast of California sardine recruit-
ment (Jacobson and Mac-Call, 1995) been successful, while the
potential of a similar SST-based recruitment forecasting of, for
example, North Sea cod (Planque et al., 2003), been considered ill-
advised? This is because the assumed SST–recruitment relationship
for the California sardine turned out to be a (non-linearly) causal
relationship (Sugihara et al., 2012). Since recruitment is forced by
several drivers (including temperature), it is conceivable that not
all factors will have direct (linear/non-linear) causal link to recruit-
ment, and that one or several links may be transitive. The correlation
between SST and recruitment may be high (even in the absence of a
direct causal link) when temperature represents the most viable
proxy for the group of recruitment driving forces or the common
denominator for a series of transitive relationships. On the other
hand, correlations between covariates could be weak although a
causal relationship exists. For instance, the observed correlations
in the relationship between the 3-year running averages of the
Scripps Pier SST–sardine recruitment and spawning stock size by
Jacobson and MacCall (1995) appeared to vanish, when the analysis
was extended to include assessment results from 1992 to 2009 (see
McClatchie et al., 2010; Sugihara et al., 2012). Another good illustra-
tion is provided by an example model by Stiansen et al. (2005),
which provides a two year-ahead forecasts for 3-year-old recruits
of Northeast Arctic cod,

Rt � (Water Temp.)t−3 + (Age − 1 cod)t−2

+ log (Biomass of Matured Capelin)t−2. (17)

Retrospective analysis (from 1984 to 2004) showed that the model
could explain �85% of the recruitment variation. A recent
(2012–2014) re-examinations show that the model forecasts for
the past 5 years account for ,50% of the annual recruitment vari-
ability (see ICES, 2012). The model’s poor performance can be
linked to the inability of the environmental indices (age-1 cod,

biomass of matured capelin, and perhaps water temperature) to
capture components of the state-dependent dynamics of the eco-
system that appears to force the stock–recruitment.

In practice, one is often faced with an array of environmental
indices (or indicators) as candidates covariates for the forecast
model. Two outstanding challenges in developing recruitment fore-
cast models then emerge. First, relevant causal indices must be iden-
tified among candidate environmental covariates using robust
methodologies other than correlations. For fisheries data, this chal-
lenge has an additional component because detecting causalities
may call for longer time series than is usually available. Second,
models must be formulated such that the environmental variables
are state-dependent rather than fixed indices (see Sugihara et al.,
2012). This second consideration alludes to the development of
models that incorporate environmental indices in a state-space
framework. The state-space framework is particularly attractive
for recruitment forecasting because it separates parameter (and ob-
servation) uncertainty from demographic variability. The variance
of unexplained demographic variation is necessary to accurately re-
present the total stock–recruitment uncertainty. In general, para-
metric uncertainty can be reduced by improving the information
content (or accuracy) of the data used in estimating model para-
meters. Unfortunately, uncertainty in projections due to demo-
graphic uncertainty generally cannot be reduced, particularly in
medium and long-term projections.

The existence of multiple environmental indicators of recruit-
ment, however, implies the possible development of several candi-
date forecast models on subsets of the pool of data. For example,
about eight different regression models currently exist for forecast-
ing age-3 recruits of Northeast Arctic cod. The models take as input
different combinations of data from a time-series pool consisting of
oxygen saturation at bottom layers of the Kola section transect (sta-
tions 3–7), the air temperature at the Murmansk (Russia) station,
water temperature (stations 3–7) of the Kola section (layers
0–200 m), ice coverage in the Barents Sea, abundance indices
from acoustic and bottom-trawl surveys, and biomass of fish. In
the absence of an absolute truth for future estimates of recruitment,
each of the model forecasts constitutes a plausible truth. Further,
when candidate models use different datasets or different combina-
tions of such in the modelling process, choosing a best candidate
model becomes an even more challenging task especially when
the variable to be forecasted is inherently highly uncertain.
Combining individual model forecasts as introduced by Bates and
Granger (1969) is often considered as a successful alternative to
using just an individual best model. Furthermore, there is theoretically
proven advantage of a proper combining over any selection method
(see Yang, 2004). Specifically for time-series forecasting, predictive
performance increases (Makridakis and Winkler, 1983; Armstrong,
1989; Clemen, 1989). A viable alternative to model selection has
been to admit a plurality of candidate models (Ricker, Beverton–
Holt, etc.). In Jiao et al. (2009), a representative value for recruitment
was found by Bayesian Model Averaging (Hoeting et al., 1999) applied
to an ensemble of model solutions. It must be kept in mind that the
variance across a number of models is related to the risk of selecting
among these models (see Vapnik, 2000; Bousquet and Elisseeff,
2002). Hence, for any measure of variance, the goal of combining in-
dividual forecasts will be to reduce the variance of the performance
across the combinations relative to the variance across the individual
methods (Breiman, 1996; Evgeniou et al., 2004).

Even if the computational challenges and complexities involved
in developing good recruitment forecast models are addressed, the
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fact remains that the models forecasts are inherently uncertain. This
begs the ultimate question: “what is an acceptable degree of uncer-
tainty in a recruitment forecast?” Perhaps the answer lies in the goal
of the recruitment forecast. From a managerial point of view, this
question translates into how accurate environmental-dependent
forecast models have to be to be considered as management decision
tools (De Oliveira and Butterworth, 2005). In this context, an ac-
ceptable degree of uncertainty translates into a tolerable manage-
ment decision risk in setting TACs and other harvest rules. In a
controlled numerical experiment, De Oliveira and Butterworth
(2005) concluded that an environmental index need to explain at
least 50% of the total variation in recruitment before the manage-
ment procedure starts showing benefits, measured in terms of the
summary statistics for risk and average catch. There is, however,
room for further research in this area, when model forecasts are
based on short-time-series data. In particular, there is a requirement
for methodologies for predicting, quantifying uncertainty and risk
associated with rare events (recruitment spikes).

Concluding remarks
As stated by Hilborn and Walters (1992), “Analysis of stock–
recruitment data provides an enormous number of traps for the
unwary—good luck”. This statement becomes even more poignant
when attempting to include the effects of environmental variables in
recruitment modelling and prediction. While theoretical reasons
(Bradford, 1992; Mertz and Myers, 1995) establish doubt over
whether recruitment will ever be predicted with the degree of accur-
acy needed for management purposes, incremental progress has
been made in the past 100 years; techniques are now available (e.g.
linked biophysical IBMs, conceptual modelling, more robust ana-
lysis of empirical information) that provide a firm groundwork
for further investigations. For instance, within the domain of
coupled biophysical IBMs, three broad categories of hypotheses
have been identified to explain and predict recruitment variability
in fish populations (Miller, 2007). Studies show that recruitment
variability may be related to food and growth, transport, or preda-
tion, and most of the hypotheses (see, e.g. Cowan and Shaw, 2002;
Govoni, 2005) clearly point to coupling between physical and bio-
logical processes as key to understanding recruitment variability.
Ecological concepts continue to be translated with success into
methodologies and models, which when pooled together, are
capable of explaining and interpreting different aspects of recruit-
ment variability (see, e.g. Minto, 2011). Several statistical tools
have evolved (e.g. randomization tests) that provide robust analysis
of empirical information. Such tests can be used to check the statis-
tical characteristics of data, such as independence of observations,
or to screen goodness-of-fit tests (Stephens, 1974). Power (1996),
for instance, applied randomization and goodness-of-fit tests to re-
cruitment dataseries for several hundreds of North Atlantic fish
stocks to establish the suitability of the exponential, lognormal,
and Weibull distributions as representing appropriate descriptions
of the data.

The central question remains: “will stock–recruitment model-
ling and forecasting be recognized as being relevant to fisheries
science and management in the next one hundred years?” While
believing this is possible, there are prerequisites for success. The
purpose of recruitment models needs to be identified and clarified
before development, i.e. the models must be developed and tuned
to specific goals and objectives. This calls for two distinct lines of re-
cruitment modelling, dictated by whether the goal is to address
policy-relevant issues or to understand cause–effect mechanisms.

Management decision models for instance, must be required to
satisfy some decision calculus, i.e. a set of numerical procedures
for data processing and judgement, to qualify as decision tools.
These model requirements include (see, e.g. Little, 2004) (i) com-
pleteness and parsimony—incorporating only the most important
drivers influencing decision parameters; (ii) robustness—providing
plausible, non-absurd results; (iii) controllability—knowledge of
type of input data required to produce a desired output; (iv) adap-
tiveness—seamless incorporation and accommodation of new
information with the goal to improve model performance; and
(v) possession of a simple interface for evaluation of risk and deci-
sion effects, e.g. of how a change in model parameters may impact
management decision. While parsimony remains a guiding model-
ling principle, models built purposely to understand recruitment
mechanisms may need to be adequately complex, i.e. incorporate
community dynamics and environmental factors, to fully integrate
recruitment drivers. Such process models must also be able to
produce a larger spectrum of results other than observations,
which only constitute a snapshot of natural variability. Thus all
model scenarios that do not violate first biological/physical princi-
ples may be considered as plausible (contrast with (ii)–(iii) for
management decision models). Finally, for process models, risk
and decision effects are secondary to the primary quest to under-
stand the different configurations of driver alignments and how
these may result in different observation states. In the recognition
and pursuance of this dichotomy lies the path to relevance and
success for stock–recruitment modelling and forecasting.

Do we need the whole life cycle for assessment purposes?
The answer may be “probably not” for applied purposes. Keeping
the analyses as simple as possible while understanding the limi-
tations may be good enough to assessment and management.
Recruitment models for such purposes (e.g. determining reference
points or MSE) could be formulated, for instance, in terms of man-
agement parameters (e.g. maximum sustainable catch and harvest
rate) rather than productivity parameters, making them more rele-
vant to policy (see, e.g. Schnute and Kronlund, 1996). On a caution-
ary note, the user should be extremely aware of how the recruitment
data were generated (see Dickey-Collas et al., 2014). Often recruit-
ment time series are outputs from standard stock assessments and
are therefore the consequence of the assumptions in the assessment
model. Further, since the outputs from different models give differ-
ent perceptions, quantifying uncertainty in model predictions must
be an integral component of the modelling exercise. Shorter time
series are available from survey indices, which, while they are free
from the assumptions in the assessment model, are influenced by
assumptions in survey design and strategy.

Apart from providing support to policy decisions, recruitment
modelling could be the result of a quest to understand cause–
effect mechanisms underpinning stock variability, and this may
require considering life histories and the drivers of early life-history
dynamics, including parental effects, as well as endogenous and ex-
ogenous influences on survivorship through to sexual maturity. For
this purpose, a life-stage model may be essential; here, success is
required in further development of predictive modelling tools to
fully link recruitment variability to perturbations in biotic and
abiotic conditions. This idea is in itself not new (see, e.g. Myers
and Drinkwater, 1989; Myers, 1998), however, in this particular
context, the term “predictive modelling” is used in a broader
sense to describe two major tasks, namely (i) the ability to develop
models based on established causal links in the mechanisms
(biotic and abiotic, across populations, and on different time and
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data resolutions) during different life stanzas of fish growth and (ii)
to demonstrate that these mechanisms determine the dynamics of
recruitment, based on more robust methodologies other than corre-
lations (Myers, 1998). Many have even gone as far as questioning the
utility of funding research in recruitment, which incorporates envir-
onmental indices (see Myers, 1998; Walters and Collie, 1988). The
crux of the problem, however, lies in the statement by Myers
(1998): “The emphasis on the search for environmental correlations
of recruitment may have led to the neglect of other important pro-
cesses” (emphasis on correlations by us). Further, although recruit-
ment forcing may be better understood when studied across
populations (Myers and Barrowman, 1995; Myers, 1998), the basic
challenge remains: the information available for most exploited
stocks is inadequate for precise modelling, even for those species
which have long-time series (e.g. North Sea or Barents Sea gadoid
stocks). It will therefore be essential to harness efforts being made in
various fronts, including linked biophysical IBMs, conceptual model-
ling, and field experiments to understand mechanisms regulating
interannual survival at the egg and larval stages.

There is no doubt that, in an ever changing climate, recruitment
modelling and forecasting will remain central to fisheries science in
the next 100 years. Recruitment models will be required to develop
and evaluate harvest control rules in management plans, set precau-
tionary and MSY reference points, and predict likely changes to
stock productivity caused by changes to habitat, regime, or local
climate. While the task involved is far from simple, developments
in recent years (in field experiments and conceptual modelling)
give grounds for optimism.
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