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S

Many applications use simple parametric models for the correlation structure of binary responses
which are observed in clusters. The usual approach, to use correlation models appropriate for
normally distributed responses, suffers from two drawbacks when the marginal probabilities within
the clusters differ. First, as it does not explicitly take into account constraints on the second
moments which must be satisfied for binary responses, it may fail to model realistically the range
of correlations present in the data. Secondly, computer simulation of observations from these
models is very difficult. We present an alternative class of correlation models which reflect the
binary nature of the responses and allow for simple simulation.
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1. I

Many applications involve binary responses Y
i
which are dependent, as they are observed in

clusters. Often, instead of considering the full dependence structure, one uses a simple parametric
model for the correlations between responses; these correlations are typically positive because of
cluster effects or time dependence.

The usual approach uses models, such as intraclass, autoregressive or moving average models,
which are commonly used with normally distributed responses; for convenience, we shall refer to
these as ‘normal models’. When the probabilities p

i
=E(Y

i
) within a cluster differ, however, this

gives rise to two problems. First, normal models do not explicitly take into account constraints
involving the first and second moments which must be satisfied for binary responses (Bahadur,
1961; Prentice, 1988), and consequently they may not realistically model the range of correlations
present in the data. The importance of accurately modelling correlations when using generalised
estimating equations (Liang & Zeger, 1986; Zeger & Liang, 1986) is well known (Crowder, 1995;
Sutradhar & Das, 1999). Secondly, it is extremely difficult to simulate observations from these
models; see Lunn & Davies (1998) for a partial solution. Both problems arise because there is no
natural, simple mechanism for generating binary variables with normal covariance structures when
the p

i
are unequal.

In this paper we propose a simple, constructive technique for defining binary variables with
given marginals p

i
and a variety of simple parametric correlation structures. As these structures

correspond to rigorously defined joint distributions, they perforce take into account the binary
nature of the responses. The correlation matrices are analogous to normal-model matrices, and
reduce to them when the p

i
within a cluster are equal. Also, the constructive definition of the

variables makes their computer generation extremely simple. Finally, if the p
i
are being modelled

in terms of explanatory variables, the correlation matrices may be defined to correspond to the
link function in a natural way, and their parameters may be easily estimated.

In the next section we define our models. We discuss data simulation in § 3 and parameter
estimation in § 4.



288 S D. O  D M. Z

2. A   

Let Y= (Y1 , . . . , Yn ) denote the vector of binary responses for a cluster, and assume that 0<p
i
<1

for each i. We wish to define a matrix R=R(c), of simple parametric form, which is a valid
correlation matrix in the sense that it corresponds to a rigorously defined joint distribution for Y
which has the p

i
as marginal probabilities.

To this end, denote pr (Y
i
×Y

j
=1) by p

ij
. Since p

ij
∏min( p

i
, p
j
), each correlation r

ij
=r

ij
(c) must

satisfy

r
ij
∏

[min ( p
i
, p
j
)/{1−min ( p

i
, p
j
)}]D

[max( p
i
, p
j
)/{1−max ( p

i
, p
j
)}]D
=r:ij , (2·1)

say. Observe that, if R is taken to be of intraclass form, the common correlation can be at most
the minimum of the r:ij , and thus very small, if the p

i
in the cluster are very different from one

another. Similar observations have been made by Heagerty & Zeger (1996), in the context of
modelling correlations for clustered ordinal variables. Bahadur (1961) gives sufficient conditions
for a candidate correlation matrix to be valid, but they are quite complicated and typically can be
verified only if all the r

ij
are sufficiently small.

Our models are of the form

r
ij
(c)=r:ijcij(c), (2·2)

where, if we define c
ii
(c)¬1, C(c)= (c

ij
(c)) is a parametric normal-model correlation matrix. If the

p
i
in the cluster are all equal, then r:ij¬1 and (2·2) gives a normal-model matrix. If the p

i
differ,

then (2·2) extends these matrices in a natural way, essentially allowing each correlation to come
as close as possible to the normal-model correlation as the pairwise constraints permit.

To define our models, first note that, if

p
ij
= (1−v)p

i
p
j
+v min ( p

i
, p
j
) (2·3)

for 0∏v∏1, then r
ij
=vr:ij . Observe that (2·3) defines a bivariate joint distribution which is a

convex combination of that obtaining under independence and the distribution having maximum
pairwise correlations, for the given marginals.

Now let F denote the cumulative distribution function of a continuous distribution, and define
h
i
=F−1( p

i
). In what follows e

i
will denote independent variables distributed according to F, and

U
i
will denote independent Bernoulli variables with parameter c (0∏c∏1), which are independent

of the e
i
.

To extend the intraclass model, we let

Y
i
=1

(Z
i
∏h

i
)
, (2·4)

where

Z
i
=U

i
e0+ (1−U

i
)e
i
. (2·5)

This defines a joint distribution for all the Y
i
in the cluster, and, since each Z

i
~F, the definition

of h
i
guarantees that the Y

i
have the required marginal probabilities. Moreover, if iN j then a

simple calculation shows that (2·3) holds with v=c2, so that (2·2) obtains with c
ij
(c)¬c2. In

particular, taking c=1 shows that the matrix (r:ij ) of maximum pairwise correlations is a valid
correlation matrix for the entire vector Y.

For the analogue of a  (1) model, we keep (2·4) but replace (2·5) by

Z
i
=U

i
e
i−1
+ (1−U

i
)e
i
. (2·6)

We now obtain

c
ij
(c)=qc(1−c), for | i− j |=1,

0, for | i− j |>1.
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Finally, for an  (1) analogue we take Z1~F independently of the U
i
and e

i
, and set

Z
i
=U

i
Z
i−1
+ (1−U

i
)e
i

(i�2). (2·7)

We have the following result.

L. For any i, a and b, and l�1,

pr (Z
i
∏a, Z

i+l
∏b)=cl min{F(a), F(b)}+ (1−cl )F(a)F(b). (2·8)

Proof. We proceed by induction. For l=1, the left-hand side of (2·8) equals

pr{Z
i
∏a, U

i+1
Z
i
+ (1−U

i+1
)e
i+1
∏b}=pr (U

i+1
=0, Z

i
∏a, e

i+1
∏b)

+pr (U
i+1
=1, Z

i
∏a, Z

i
∏b)

= (1−c)F(a)F(b)+c min{F(a), F(b)},

as required. If we assume (2·8) for l=k−1, a similar calculation gives

pr (Z
i
∏a, Z

i+k
∏b)=pr(U

i+k
=0, Z

i
∏a, e

i+k
∏b)+pr (U

i+k
=1, Z

i
∏a, Z

i+k−1
∏b)

= (1−c)F(a)F(b)+c[ck−1 min{F(a), F(b)}+ (1−ck−1 )F(a)F(b)],

proving the lemma. %

If we let a=h
i
and b=h

i+l
in (2·8) we obtain (2·3) with j= i+ l and v=cl, so that (2·2) holds

with c
ij
(c)=c|i−j|.

We may obtain more complicated structures by using additional mixing Bernoulli variables with
varying parameters, but we shall not pursue this here.

3. S

Our Y
i
are threshold variables for latent Z

i
which are defined by a mixing procedure giving the

desired covariance structure. This is very similar to the method of Lunn & Davies (1998) for
efficiently generating variables with normal-family correlation structures when the probabilities
p
i
¬p within a cluster. For example, to obtain an intraclass structure they define Y

i
directly by

Y
i
=U

i
e0+ (1−U

i
)e
i
, (3·1)

where the U
i
are independent Ber (c) variables and the e

j
are independent Ber ( p) variables; compare

with (2·5).
Unfortunately, this technique does not easily generalise when the p

i
within a cluster differ. In

this case, Lunn & Davies (1998) take e
j
~Ber( p), where p=max ( p

i
), generate Y

i
~Ber ( p) with the

desired covariance structure, and then multiply the Y
i
by independent Ber ( p

i
/p) variables. The

resulting variables W
i
have the desired marginal probabilities, but their correlation matrix is no

longer of the desired normal form. For example, if the Y
i
have an intraclass structure with correlation

r, and p
i
∏p

j
, Lunn & Davies’ formula gives

corr (W
i
, W

j
)=

p
j
/(1−p

j
)

p/(1−p)
rr:ij . (3·2)

The resulting correlation matrix is thus not of normal form, it does not allow for the maximum
correlation possible when p

j
<p, and it does not have an intuitive interpretation. In contrast, the

method proposed here is equally straightforward when the p
i

vary, and allows for maximal
correlation.

4. U    

Our covariance structure may be incorporated into generalised linear modelling in a natural
way. To obtain g( p

i
)=xT

i
b for a link function g and column vector x

i
of covariates, we simply

take F=g−1 and define h
i
=xT

i
b.
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The covariance parameters may be estimated as part of an iterative procedure, as in Liang
& Zeger (1986) or Carey et al. (1993). Specifically, define the binary variables W

ij
= (Y

j
−Y

i
)2, and

note that, if Y
i
and Y

j
are in the same cluster and p

i
∏p

j
, then (2·3) gives, when v=c

ij
(c),

E(W
ij
)=p

i
(1−p

j
)+p

j
(1−p

i
)+2p

i
( p
j
−1)c

ij
(c)= f

ij
+h

ij
c
ij
(c). (4·1)

For a current estimate of b, we compute corresponding estimates of f
ij

and h
ij
, and then perform

a weighted regression of the W
ij

on these estimates, pooling over clusters and using those combi-
nations of i and j implied by the form of c

ij
. For computational simplicity we may use a diagonal

weight matrix, approximating the variances of the W
ij

by taking E(W
ij
)j f

ij
in (4·1).

The foregoing procedure also could be carried out using W
ij
=Y

i
Y
j
, but numerical evidence

suggests that this choice leads to more variable covariance parameter estimates.
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