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Abstract

This paper describes the automatic acquisition of three dimensional ar-
chitectural models from short image sequences. The approach is Bayesian
and model based. Bayesian methods necessitate the formulation of a prior
distribution; however designing a generative model for buildings is a dif-
ficult task. In order to overcome this a building is described as a set of
walls together with a ‘Lego’ kit of parameterised primitives, such as doors
or windows. A prior on wall layout, and a prior on the parameters of each
primitive can then be defined. Part of this prior is learnt from training
data and part comes from expert architects. The validity of the prior is
tested by generating example buildings using MCMC and verifying that
plausible buildings are generated under varying conditions. The same
MCMC machinery can also be used for optimising the structure recovery,
this time generating a range of possible solutions from the posterior. The
fact that a range of solutions can be presented allows the user to select
the best when the structure recovery is ambiguous.
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1 Introduction

This paper describes a system for processing several (2–6) images of an archi-

tectural scene to produce a 3D model of the scene in which various architectural

components have been identified. An example set of input images is shown in

Figure 1, along with the labelled 3D model which is our goal.

Roof

WindowColumn

Window

Window

Door

Figure 1: The problem addressed in this paper. A labelled 3D model is generated
from several images of an architectural scene, in this case the Downing College
Library, Cambridge.

This problem straddles two classic problems of computer vision: structure

from motion and object recognition. Although they have different goals, these

two problems are clearly related: the structure of an object is a strong clue to

its identity, and conversely the identity of an object can inform an estimate of

its structure. As neither problem has been completely solved, there is a case for

techniques which use the relationship between them to improve upon methods

which address only structure from motion or object recognition.

A probabilistic Bayesian framework is used for combining information about

structure and identity. A prior distribution is defined for the parameters of the
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model, and its validity is tested by simulating draws from it and verifying that it

does indeed generate plausible buildings under varying conditions. A practical

algorithm is then developed to find the maximum a posteriori (MAP) model

parameters based on data likelihood and prior distributions. The algorithm is

tested on a variety of architectural image sequences.

In Section 2 we review some relevant previous work before proceeding to lay

out our own framework in Section 3. Following this an algorithm based on our

framework is described in Section 4 along with results and analysis in Section 5.

1.1 Notation

The model developed in this paper requires a substantial amount of notation,

summarised below:

Probabilistic symbols

D Data
M Model to be estimated
θ Vector of parameters belonging to M

I Prior information
Pr(θ) Probability of parameter value(s) θ

Pr(θ|I) Conditional probability of θ given I

G(µ, σ) Gaussian distribution with mean µ and standard deviation σ.
U(a, b) Uniform distribution bounded by a and b.

Architectural model parameters

θG Global style parameters
nW Number of walls
θP Wall plane parameters = {wP , hP , n, p}
wP Wall plane width
hP Wall plane height
n Wall plane normal
p Wall plane position
θW Wall parameters = {nP , θL, θS , θT }
nP Number of primitives
θL Label parameters
θS Shape parameters
θT Texture parameters
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2 Related work

There is a wealth of literature on both structure and motion estimation (review

appears in [28] for example) and object recognition (for example [31]).

2.1 Structure and motion systems

Structure and motion systems often represent structure using simple primitives

such as points and lines. One such algorithm is the factorisation method of

Tomasi and Kanade [38]. The advantage of this method is that it is linear and

thus is guaranteed to find the optimal estimate of structure and motion without

initialisation.

In the case of non-linear camera models, a non-linear optimisation routine is

used to minimise the reprojection error of the reconstructed points. Originally

formulated by photogrammetrists, bundle adjustment [35, 42] is an optimisation

framework in which the total distance between the detected image features and

the projections of the reconstructed points is minimised. This optimisation can

be performed simultaneously over the unknown 3D point positions and camera

calibration parameters.

The advantage of representing structure using 3D points and/or lines is their

generality, and the fact that they can be detected automatically, reliably and

quickly in a wide variety of images [7, 20]. However in real world scenes, and

particularly urban scenes, structure often appears in the form of smooth surfaces

and solid objects, rather than as a disparate collection of points and lines. One

way to encode this is to explicitly model structure as a set of bounded surfaces,

or layers [43, 3, 40].

However layers are not an ideal representation for architecture. Although

they are based on a parameterised 3D surface, their shape, and depth and tex-

ture maps if they exist, are not generally parameterised but rather represented
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explicitly as a set of boundary/depth/texture values defined over the entire

surface. This ignores a vast amount of information about the simplicity and

regularity of shape in architectural scenes.

2.1.1 Architectural modelling systems

Recently, there has been a great deal of interest in structure and motion systems

which are designed specifically for architectural scenes. Because these systems

are designed for architectural modelling, they can use a more specialised repre-

sentation of structure which is particularly suited to architecture. For example,

a system developed as part of the IMPACT project for reconstruction of urban

scenes from aerial images [1, 33] uses a polygonal structure representation. This

is more constrained than the layer representation because it imposes a polygonal

model of plane shape—all planes are bounded by straight lines.

On a larger scale, the City Scanning project at MIT1 aims to automatically

model extensive urban environments (such as the MIT campus) using several

thousand calibrated images. The algorithm used by this system uses many

architectural heuristics, such as the prominence of parallelism, and horizontal

and vertical lines, but because of the vagueness of these heuristics requires an

enormous amount of image data (570 mosaics, each consisting of 47 1012×1524

images) to model about 10 fairly simple buildings over an area of the MIT

campus, according to their website. The general approach taken by this system

to overcome image ambiguity is to use a combination of structural heuristics,

a large amount of redundant data, and information about camera pose and

calibration, whereas we advocate the use of more specific prior knowledge about

architecture.

Façade [37] is an interactive system which generates highly realistic models of

architectural scenes from a small number of images. Model structure is defined

1http://city.lcs.mit.edu
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in terms of volumetric primitives such as rectangular and triangular prisms,

which can be described with only a few parameters, such as their height, width

and depth. Using volumetric primitives means that a building can be modelled

using a relatively small number of parameters, which enables a complete model

to be obtained from a small number of images. However such primitives are

difficult to detect automatically, and hence Façade requires that a human op-

erator specifies each of the blocks in the model and their spatial relationships,

and manually registers them in each image. The models produced are extremely

convincing, indicating that such specialised or “high-level” primitives can model

architectural scenes very well.

2.2 Model-based object recognition

Despite using high-level primitives to represent architecture, the models pro-

duced by structure and motion systems have no semantic content. A model

obtained using Façade, for instance, may contain a rectangular block of certain

dimensions. What this block actually represents, whether it is a door, a window

or an entire building, is not specified in the model. This sort of information,

i.e. an interpretation of the scene, is valuable as it allows reasoning or inference

about the scene based on the type of objects which are recognised in it. This

enables parts of the scene which are unseen in any image, or whose interpreta-

tion from image data is ambiguous, to be inferred from those parts of the model

which can be interpreted with more certainty.

2.2.1 Modelling and recognising shape

The representation of shape, which was considered in Section 2.1 in the context

of structure and motion estimation, also affects object recognition. To be

effective for object recognition, a shape representation should have the following

properties [25, 31]: it should be flexible enough to represent all required shapes;
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it should uniquely identify each shape which needs to be distinguished; it should

be stable, so that a small change to the shape gives rise to only a small change in

its description; and it should permit efficient comparison with other shapes and

with input data. These properties suggest that the ideal shape representation

depends largely on the application domain: what sort of shapes need to be

modelled, and what type of shapes need to be distinguished from one another.

This suggests that a high level representation of shape, a representation which

is specifically tuned for modelling architecture, will be more effective than a

more general representation for the purpose of object recognition.

Shape can be represented in a 3D coordinate system [5, 15, 16, 24], as a set

of characteristic 2D projected shapes (a.k.a. aspects) [23], or as a combination

of the two [30]. The aspect representation, although it avoids the need for a

3D model of the shape, is not suited to modelling a complex object which has

a large number of distinct aspects, thus increasing drastically the number of

models to be considered for recognition [14].

Geons [5, 12] are an attempt at a general 3D shape representation. A geon

is a volume defined by the qualitative properties of its axis (e.g. straight or

curved) and a generalised cylinder about this axis (e.g. tapered or straight).

These properties are designed so that each geon can be identified from a wide

range of viewpoints. However recognising a general shape as a collection of geons

remains a challenging problem; experiments in this field have been reported

only for line drawings, 3D range data [6] and uncluttered images [30]. Other 3D

shape representations, such as CSG, CAD wireframe models, and triangulated

meshes, have also been investigated as a basis for recognition [15, 24]. Regardless

of the representation of shape, there remains a fundamental tradeoff between

the generality of objects that can be recognised and the ability to discriminate

between objects. The best compromise is generally domain dependent.
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2.2.2 Modelling and recognising texture

Texture is used to model parts of a scene which are too detailed to be modelled

geometrically, and is therefore inevitably more complex and not so easily param-

eterised as shape. Rather than using a parametric model of texture appearance,

a more popular approach is to learn a model from patches of similar texture in

other images [29, 34, 36]. This is generally done by accumulating texture char-

acteristics in one or more histograms which then approximate a prior model

for unseen texture. A Laplacian pyramid [36] or wavelet transform [34] of the

texture can be used to provide tolerance to changes in scale and global illumi-

nation. Having obtained a model for texture, unseen texture can be classified

by assigning it the texture type whose model (histogram) it most resembles.

3 The architectural model

3.1 Definition of the model

An architectural scene is modelled as a collection of walls. Each wall is modelled

as a rectangle, and contains a set of volumetric primitives corresponding to

common architectural features such as doors and windows. In addition there is

a set of global parameters θG which contains features of the model pertaining

to all walls, such as the style of the building. Thus an architectural model M

contains parameters θ = {nW ,θW ,θP ,θG} where nW is the number of walls in

the model, θP = ∪nW

i=1θ
i
P defines the orientation, position and boundary of each

wall plane, θW = ∪nW

i=1θ
i
W are parameters specific to each wall in the model,

and θG are global parameters which apply to the entire model.

Each wall plane has width wP , height hP , normal n and position p, thus

θ
i
P = {wi

P , hi
P ,ni,pi}. Each parameter vector θ

i
W is further subdivided into

type, shape and texture parameters: θ
i
W = {nP ,θi

L,θi
S ,θi

T }, where nP is the

number of volumetric primitives contained in the wall. θL = ∪nP

j=1θ
j
L is an
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identifier for the type of each primitive in the wall. These range from M1 to

M9 and are listed in Table 1. θS = ∪nP

j=1θ
j
S defines the shape of each primitive.

The shape parameters used for each primitive are also listed in Table 1, and an

example window primitive is shown in Figure 2.

z

x

y

Frontal View

y

Offset Plane

Overhead view

z
x

Plane

d

b

Wall
a

h
(x,y)

w

Figure 2: Frontal and overhead views of a window or door primitive. The
parameters are: position relative to the wall plane (x, y), height h, width w,
depth relative to the wall d, arch height a, bevel (slope of edges) b.

The texture parameters θT = ∪nP

j=0θ
j
T are intensity variables i(g) (between

0 and 255) defined at each point g on a regular 2D grid covering the model

surface. θ0
T is the set of texture parameters belonging to the wall plane rather

than a shape primitive attached to it.

The global parameter vector θG contains a single style parameter which is set

to be either Classical or Gothic. Examples of Classical and Gothic architecture

are shown in Figure 3. In practice it is useful to classify Classical and Gothic

styles according to the types of material used in their construction, and the

styles of some of their components. This information is also included in the

global parameter vector, as shown in Table 2.

The model is designed to be used with photographs of architecture taken

from ground level. Therefore it models a level of detail consistent with these
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Table 1: Some primitives available for modelling architecture. Parameters in
brackets are optional; a mechanism for deciding automatically whether they are
used is given in Section 4.3.2. The parameters are defined as follows: x: x
position; y: y position; w: width; h: height; d: depth; a: arch height; b: bevel
(sloped edge); dw: taper of pillars, buttresses. The NULL model is simply a
collection of sparse triangulated 3D points.

θi
L Description θi

S

M1 Window x, y, w, h, d, (b), (a)
M2 Door x, y, w, h, d, (b), (a)
M3 Pediment x, y, w, h, d
M4 Pedestal x, y, w, h, d
M5 Entablature x, y, w, h, d
M6 Column x, y, w, h, d, dw
M7 Buttress x, y, w, h, d, dw
M8 Drainpipe x,w, h
M9 NULL x1...xn, y1...yn, z1...zn

Column

Entablature

Pediment

Buttress

Classical scene

Door

Gothic scene

Drain

Pedestal

Window

Window

Figure 3: Example of some primitives used to construct Gothic and Classical
architecture.

Table 2: Values for the global parameter vector θG. These values are specified
manually.

Style Material Window style Column style

Classical Stone Paned Fluted
Gothic Brick Plain Plain
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viewpoints; for instance doors and windows are modelled in addition to the walls

of each building. However finer levels of detail, such as the location of individual

bricks, door handles and fine ornamentation are not modelled. Similarly little

attention is paid to modelling roofs (in fact they are only modelled as a simple

ridged structure), as most images taken from ground level include very little if

any information about the roof structure.

3.2 Formulation of the problem

Having defined the parameters θ comprising an architectural model M, the

problem of structure and motion, and interpretation of architectural scenes can

now be defined. To solve these problems both the model M which best models

the scene and its optimal parameters θ are required. Thus we want to maximise

the posterior probability Pr(Mθ|DI), which can be decomposed via repeated

applications of the product rule [22]:

Pr(Mθ|DI) ∝ Pr(D|MθI) Pr(MθI)

= Pr(D|MθI) Pr(θ|MI) Pr(MI)

= Pr(D|MθI) Pr(θGθP θW |MI) Pr(MI)

= Pr(D|MθI) Pr(θW |θP θGMI) Pr(θP θG|MI) Pr(MI)

= Pr(D|MθI) Pr(θW |θP θGMI) Pr(θP |θGMI) Pr(θG|MI) Pr(MI)

(1)

It is assumed that the parameters of the primitives belonging to each wall are

independent, and independent of the parameters of other wall planes. Thus

Pr(θW |θP θGMI) =
∏nW

i=1 Pr(θi
W |θi

P θGMI). Decomposing the parameters θ
i
W

of each wall into their constituent shape, texture and layer parameters:

Pr(θi
W |θi

P θGMI) = Pr(θi
Lθ

i
Sθ

i
T |θi

P θGMI)

= Pr(θi
T |θi

Lθ
i
P θGMI) Pr(θi

S |θi
Lθ

i
P θGMI) Pr(θi

L|θi
P θGMI) (2)
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Note that the probabilities of θ
i
T and θ

i
S are independent as the probability

distribution for the texture of a primitive is unaffected by its shape, and vice

versa. Thus the fully expanded expression for the posterior is:

Pr(Mθ|DI) ∝ [Pr(D|MθI) Pr(θP |θGMI) Pr(θG|MI) Pr(MI)]

×
[

nW
∏

i=1

Pr(θi
T |θi

Lθ
i
P θGMI) Pr(θi

S |θi
Lθ

i
P θGMI) Pr(θi

L|θi
P θGMI)

]

(3)

Each term in (3) has an intuitive interpretation:

• Pr(D|MθI) is the likelihood of the images given a complete specification

of the model. This is determined by the deviation of image intensities

from the projection of the texture parameters, as described in Section 3.3.

• Pr(θP |θGMI) is the prior probability of the shape, position and orienta-

tion of each wall given global parameters such as the style of the building.

A classical style building may for example specify a high prior probability

for walls which are perpendicular to their neighbours and whose height to

width ratio is near the “golden ratio”. See Section 3.4 for more details.

• Pr(θG|MI) is the probability of the global parameters (Table 2), given a

particular model. In general global parameters are set manually and this

distribution is set to 1 for the preset value, and 0 elsewhere.

• Pr(MI) can express a prior preference for one model over another. This

is not used and is uniform for all possible architectural models M.

• Pr(θT |θLθP θGMI) is a prior on the texture parameters. This is evaluated

using learnt models of appearance, such as the fact that windows are often

dark with intersecting mullions (vertical bars) and transoms (horizontal

bars), or that columns contain vertical fluting. This is described in more

detail in Section 3.6.
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• Pr(θS |θLθP θGMI) is a prior on shape. This encodes prior knowledge

of architectural style, for instance that windows in Gothic architecture

are narrow and arched; it can also encode practical constraints, such as

that doors generally appear at ground level. These priors are discussed in

Section 3.5.

• Pr(θL|θP θGMI) is the prior probability of each type of primitive. It may

be used to specify the relative frequency with which primitive types occur,

e.g. that windows are more common than doors, and is manually set to

reflect the style of building being modelled (e.g. a Gothic building will have

a high probability of buttresses where for a classical building columns are

more likely).

Having briefly examined the function of each of these probability distributions,

our next task is to consider how the likelihood, plane prior, shape prior and

texture prior may be evaluated.

3.3 Evaluation of the likelihood

The likelihood Pr(D|MθI) depends directly on the texture parameters θT . Re-

call that θT is defined as a set of intensities i(g) at regularly sampled points on

the model surface; the estimation of the intensities is detailed in Section 4.3.4.

The likelihood is evaluated by assuming that the projection of each texture

parameter i(g) into each image is corrupted by normally distributed noise

ǫ ∈ G(0, σǫ), thus i(gj) = i(g) + ǫ, where i(gj) is the projection of i(g) into

image j. Assuming that the error ǫ at each pixel is independent, the likelihood

over all points g is written:

Pr(D|MθI) =
∏

g

∏

j

1√
2πσǫ

exp−1

2

(

i(gj) − i(g)

σǫ

)2

(4)

This formulation of the likelihood is simple to use, but it has a number of short-

comings. It assumes that all surfaces in the scene are Lambertian; that is, that
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they emit the same colour and intensity of light regardless of the viewing an-

gle. This is plausible for materials such as stone and plaster, but clearly not

true for shiny materials such as glass. In practice it was found that although

the Lambertian model is incorrect for windows, it is often acceptable because

windows are often set into walls and therefore in shadow, appearing dark and

non-reflective from any viewing angle. However there will inevitably be points

which are outliers to this model, and to account for these the likelihood is rep-

resented as a mixture of the Gaussian distribution with a uniform distribution

U(0, 255):

Pr(D|MθI) = λ Pr ∗(D|MθI) + (1 − λ)
1

256
(5)

The mixture constant λ is typically set to around 0.9, as most points are inliers

to the Gaussian model.

3.4 Evaluation of the wall plane prior

The prior on wall plane shape and position, Pr(θP |θGMI), is based on architec-

tural heuristics such as the fact that walls are likely to intersect at right angles,

and on practical constraints concerning the height to width ratio of walls. The

plane parameters θP can be divided into component parts whose prior distri-

butions are independent:

Pr(θP |θGMI) = Pr(n|θGMI) Pr(p|θGMI) Pr({hP , wP }|θGMI) (6)

Each of these terms is represented by a simple distribution. A prior for n is based

on the assumption that all planes should be perpendicular to their neighbours,

and perpendicular to a common ground plane. First, a ground plane is estimated

as the plane which best fits all wall plane normals. Then a prior is applied to

the projection of each normal onto the ground plane:

Pr(n|θGMI)α
n−1
∑

i=1

(

φi − π/2

σφ

)2

(7)
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where φi is the interior angle between the projections of the normals to planes

i and i + 1 onto the ground plane. 2

A uniform prior is applied to the plane position parameters p, expressing no

prior knowledge of the spatial location of the planes other than that they occur

in the field of view of the cameras.

The prior on height and width for each plane is given by

Pr({hP , wP }|θGMI) = 1, if 0.25 ≤ hP /wP ≤ 4

= 0, otherwise (8)

Note that because a reconstruction is generally defined only up to scale, a prior is

applied to the ratio of the height and width values rather than to their absolute

values. The purpose of this prior is simply to eliminate unrealistically elongated

wall planes from consideration.

3.5 Evaluation of the shape prior

Having formulated a prior for the wall planes, we now move on to priors for

the shape primitives which they contain. In this section an architectural shape

prior for primitives, Pr(θS |θLθP θGMI), is defined and assessed using a Markov

Chain simulation [17, 18]. This prior encodes information about:

• The scale of each primitive. For instance a door should be tall enough for

a person to comfortably walk through. Scale priors can only be used when

the absolute scale of the model is known.

• The shape of each primitive. For instance columns are likely to be long

and thin, while pedestals are more broad and flat.

• The alignment of primitives. For instance windows are likely to occur in

rows corresponding to the floors of a building.
2The walls are projected onto the ground plane before their interior angle is calculated as

this is more robust to errors in the estimate of the vertical orientation of each wall plane than
computing the interior angle directly in 3D.
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• Other spatial relations such as symmetry about a vertical axis.

A prior which expresses all of these types of information will inevitably be diffi-

cult to formulate and to sample. When it is not feasible to directly draw samples

from a distribution Pr(θ), a common technique is to simulate the drawing of

samples using a Markov Chain Monte Carlo technique defined on the parameters

θ [18, 27].

Because it is required to sample from parameter spaces of varying dimension,

the Reversible Jump MCMC algorithm [19] is used. The behaviour of this

algorithm is largely dependent on the choice of scoring function used to accept

or reject jumps, and the jumping distribution from which candidate jumps are

drawn. These are the subjects of the following sections.

3.5.1 The scoring function

The scoring function contains terms relating to the scale, shape and alignment

of primitives:

fprior(θ) = fscale(θ) + fshape(θ) + falign(θ) + fsym(θ) (9)

The shape and scale terms apply only to individual primitives, and are defined

by simple distributions, which are fully listed in [10]. The purpose of these terms

is mainly to disqualify implausible primitives such as doors which are too thin

or short to be practical, windows which extend between floors of the building,

or buttresses which do not reach the ground.

The component of the scoring function for the alignment of shapes into

rows and columns computes the deviation of the shapes from an aligned grid

containing R rows and C columns. Initially, primitives that overlap horizontally

are grouped into rows, and those which overlap vertically are grouped into

columns. The alignment score is then defined as

falign(θ) =
R

∑

r=1

[Var(tr) + Var(br) + Var(rr − lr)] (10)
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+
C

∑

c=1

[Var(lc) + Var(rc) + Var(tc − bc)] (11)

where tr,br, lr, rr are the top, bottom, left and right coordinates of the shape

primitives belonging to row r and tc,bc, lc, rc are similarly defined for primitives

belonging to column c. The function Var(x) gives the variance of the elements

of x. When a wall contains 0 or 1 primitives, it is assigned a fixed score of

high variance (the height or width of the wall on which it occurs) which encodes

a preference for more than one window per wall if the wall is large enough to

accommodate it.

The symmetry component of the scoring function is minimised when a row

is exactly centred on a wall, and increases quadratically:

fsym(θ) =
R

∑

r=1

[(lr − l) − (rr − r)]
2

(12)

where lr is the leftmost point of row r, rr is the rightmost point of row r, and

l and r are the left and right coordinates of the wall on which the row appears.

The symmetry function is applied only to rows as it was found that columns of

shapes are not generally vertically centred on a wall.

3.5.2 The jumping distribution

As well as a scoring function, an MCMC algorithm requires the specification

of a jumping distribution Jt(θt|θt−1). The jumping distribution we use is a

mixture of several types of jump, which are listed in Table 3.

There are a number of issues bearing on the choice of jump types to use:

• A building should always be a closed structure with walls which intersect at

near right angles. Therefore the add/remove/modify wall jumps actually

add, remove or modify a closed set of perpendicular walls to the model,

effectively adding or removing a room from the model while maintaining

closure.
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• For efficiency, it should be easy to sample from the jumping distributions.

The process will converge more rapidly if each jump traverses a significant

distance in parameter space, and has a high acceptance rate. Therefore

simple jump types which are likely to generate a more probable model

should be used.

• All jumps used in the algorithm must be reversible. This poses difficulties

when considering jumps such as aligning a group of shapes into a regular

column. To maintain reversibility, a related jump must be included which

can take a column of shapes and perturb each shape so that if the column-

aligning jump is applied again, the same column configuration would result

(this is jump J12 in Table 3).

Table 3: Jump types available to MCMC algorithm. The parameter n identifies
a single primitive to which the jump is applied. Jump J10 ”regularises” a row or
column of shapes by aligning all shapes, making them the same size, and evenly
spaced. Jump J11 is similar but also positions the row so that it is centred in
the wall.

Jump type Description Parameters
J1 Add shape Mi, x, y, w, h
J2 Remove shape n
J3 Modify shape n, x, y, w, h
J4 Add wall n, w, h
J5 Remove wall n
J6 Modify wall w, h
J7 Add window row/col n
J8 Remove window row/col n
J9 Modify window row/col n
J10 Regularise window row/col n
J11 Symmetrise window row n
J12 Perturb window row/col n, x, y, w, h

A full list of the distributions associated with each jump type appears in [10].
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3.5.3 Verifying the shape prior

Having specified a scoring function and jumping distribution, the Reversible

Jump MCMC algorithm can be used to simulate drawing independent samples

from the shape prior that they define. It is important to sample from the

shape prior to verify that it generates plausible buildings, and that is not too

restrictive, in which case it would produce very similar buildings.

In the following experiment, a total of 9 Markov processes are seeded from

one of 3 starting points, shown in Figure 4: a square ”hut”, a tower, or a

bungalow shape. Each of the seed models has one wall containing a door at

ground level, and each wall contains 0 or 1 windows. Each Markov chain

Figure 4: “Hut”, “tower” and “bungalow” seed points for the MCMC algorithm.

is iterated for 2000 jumps. After this period, samples are drawn at random

from each chain and displayed in Figure 5. Samples are drawn at random

intervals rather than from consecutive iterations; consecutive iterations tend to

be correlated as most jumps entail only a minor change to the model. The

samples are displayed as a city of buildings to illustrate both the inter-building

variation of the results and the plausibility of each individual structure.
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Figure 5: Collection of Classical style buildings generated from the shape prior.

3.6 Evaluation of the texture prior

3.6.1 Learnt texture prior

The texture prior Pr(θT |θLθP θGMI) is learnt from a training set of over 50

frontal images of architecture collected from both local sites and websites. The

training set includes images from the example image sets and results used

throughout this paper. In each training image, textures belonging to primi-

tives and to the wall are manually marked and labelled. Textures from the

same primitive type vary in appearance due to a number of factors, such as

lighting and scale. To reduce the variation induced by these factors, a wavelet

decomposition is applied to the interior of each texture. The 5/3 biorthogonal

filter bank3 (also used in [34]) is chosen to effect the decomposition, as it has

several desirable properties: (a) compact support (which allows accurate locali-

sation of features); (b) linear phase (so that the orientation of filters at different

scales remains constant); (c) its low pass filter has a zero-order vanishing mo-

ment, which cancels effects of global illumination changes. An example of two

texture patches and their wavelet decompositions is given in Figure 6.

The wavelet transform is applied horizontally and vertically to the texture.

This decomposes it into 4 subbands at each scale level: the HL (horizontal

high-pass, vertical low-pass) subband, the LH ((horizontal low-pass, vertical

3Lowpass filter coefficients: {0.1768, 0.3535, 1.0607, 0.3535, 0.1768}. Highpass filter coef-
ficients: {0.3535, -0.7071, 0.3535}.
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Figure 6: Window and column texture. Beside each texture is its correspond-
ing (quantised) wavelet transform. Output is shown for 3 levels of the wavelet
transform. At each level, the HL (horizontal high-pass, vertical low-pass) com-
ponent is shown at the bottom left, the HH component at the bottom right, the
LH component at the top right and the LL component at the top left. The HL
component responds strongly to vertical edges, while the LH component detects
horizontal edges. The LL component is a smoothed, subsampled version of the
original texture.

high-pass) subband, the HH (horizontal high-pass, vertical high-pass) subband

and the LL (horizontal low-pass, vertical low-pass) subband. The transform

is applied recursively to the LL subband to obtain the same 4 subbands at a

coarser level of scale.

As in [32, 34, 36], a texture model is represented by a set of histograms. The

histograms are formed by counting the number of occurrences of every 3 × 3

pattern in the HL, LH and HH subband of each level of the texture’s wavelet

decomposition. The decomposition output is quantised to 3 levels to limit the

size of each histogram to 39 = 19683 bins. The prior probability of a patch

of wavelet coefficients is then given by its frequency in the corresponding nor-

malised histogram. These histograms are usually sparse, so the frequency of

each bin is preset to 1 so that no 3 × 3 patch of texture has zero probability.

Because texture is sampled regularly from the model surface and not the im-

age, distortion due to the camera not being front on to the model surface is

automatically nullified.
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4 A model acquisition algorithm

4.1 Overview of the algorithm

The MAP parameter estimation algorithm, summarised in Algorithm 1, com-

prises 3 main stages. In the first stage the plane parameters θP are estimated

from a sparse reconstruction of the scene. In the second stage, likely shape

primitives are located for each plane using a combination of single and multiple

image likelihood measures. Finally these hypothesised primitives and planes

are used as seed points for an MCMC sampling algorithm which simulates the

posterior distribution Pr(Mθ|DI).

Algorithm 1 Obtaining a MAP model estimate.

Stage 1: Plane initialisation (Section 4.2)
Detect and sequentially match corner and line features, and self-calibrate

cameras [26] to obtain a sparse reconstruction
Recursively segment planes from the reconstruction using RANSAC, and

heuristics applicable to architecture [11].

for each segmented plane do

Stage 2.1: In a single image: (Section 4.3.1)
for each primitive type do

Set parameters d, a, b, dw to 0.
Regularly sample remaining parameters x, y, w, h
Rank model according to likelihood ratio LS (14).

end for

Stage 2.2: In multiple images: (Section 4.3.2)
for NR highest ranked primitives do

Draw parameter d from Pr(d|θL{xywh}MI)
Search for maximum likelihood shape parameters {x, y, w, h, d}.
Use model selection measure to determine value of remaining primitives
{a, b, dw} (Section 4.3.3)
Re-rank the primitive based on likelihood ratio LM (15).

end for

end for

Stage 3: MCMC simulation of the posterior (Section 4.4)
Use combinations of likely primitives as seed points for MCMC algorithm.
Use MCMC algorithm to simulate sampling of the posterior and retain the
most probable (MAP) visited model.
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4.2 Estimation of the plane parameters

An initial estimate of the plane parameters θP is obtained from a feature-

based 3D reconstruction. The reconstruction is generated automatically using a

sequential structure and motion algorithm similar to that described in [4]. This

method is described in fuller detail in [11].

A plane plus parallax decomposition [9, 8, 41] was found to be particularly

useful for architectural scenes with repeated structure. By initially estimating

a planar homography H relating correspondences which lie on a plane in the

scene, matches are constrained to appear at a point rather than on a line.

Subsequent matches are still found by searching along epipolar lines, but in

general repeated structure which occurs on planes has already been correctly

matched and is therefore unambiguous. Camera calibration assumes that all

internal parameters of the camera except focal length are known and uses the

technique of Mendonca et al. [26].

4.2.1 Extracting planes from the reconstruction

Dominant planes are robustly extracted from the 3D points using a RANSAC

technique (see [11]). The two most commonly occurring orientations of lines

belonging to each plane are assumed to be the horizontal and vertical axes of

the plane, as in architectural scenes most lines occur at horizontal and vertical

orientations in the world. The sides of the wall are then aligned with these

two dominant line directions, and the height and width of the wall are chosen

to minimally span all horizontal and vertical lines and points belonging to the

plane (see Figure 7). To extract subsequent planes, this process is recursively

applied to the set of points which are outliers to all previously extracted planes.

Further details are given in [11].

Thus a simple initial planar model is obtained in which all planes have

rectangular shape and are perpendicular to a ground plane. This model is next
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(a) (b)

Figure 7: (a) Initial plane estimates based on including all inlying points and
lines from the point based reconstruction. (b) Superposition on original image.

used to seed a search for an improved model estimate.

4.2.2 Optimising the wall planes

The two main sources of error in the initialisation of the plane parameters

θP are the estimation of the ground plane normal, and the approximation of

each plane boundary by a rectangle. Hence the model is optimised by gradient

descent search on the components of the ground plane normal, and the height

and width of each wall. The cost function used for the minimisation is the

negative log likelihood of the model, some values of which are shown as the

plane parameters are varied about their initial estimates in Figure 8. In

Figure 8(c) the cost surface as the model is rotated about its x and y axes is

quite irregular. This is typical of most scenes to which this algorithm has been

applied. In practice it has been found that the search must be seeded with a

model whose orientation is within about 0.1 radians rotation about each axis

to converge to the correct solution. Another difficult situation for the search

is illustrated in Figure 8(b). The flat region of the cost surface corresponds

to a change to the top boundary which includes or excludes sky from the wall
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Figure 8: Cost surface as plane parameters are varied about their initial posi-
tion. The parameters being varied belong to the leftmost plane in Figure 7(b),
representing the side wall of a chapel. (a) Varying left and right boundary po-
sition. The left boundary minimum is sharply defined, the right less so as it is
partly obscured by the other plane in the scene. Each axis unit is a 200 unit
translation (the chapel plane is approximately 1600 units wide). (b) Top and
bottom boundary height. At heights above the top of the wall, the error is fairly
uniform as the sky is quite featureless. Similarly for heights below ground level,
as the ground is quite featureless. (c) Rotation about x and y axes. Each axis
unit corresponds to a rotation angle of 0.1 radians.

plane. Because the sky is relatively featureless, its inclusion in the wall plane

contributes very little to the likelihood. A similar situation occurs when the

bottom boundary includes or excludes regions of the grassy area in front of

the building. For this scene the minimum of the cost function does still occur

at the correct position of the top and bottom boundary, but to deal with this

instability the boundaries are not extended unless there is a significant change

in the model likelihood.

4.3 Initial estimation of primitives

Having initialised and optimised estimates of plane position and orientation, the

wall plane parameters are now fixed, and the remaining steps of the algorithm

focus entirely on the detection and estimation of volumetric shape primitives

offset from each plane. This simplification can be a problem when the estimates

of plane parameters are inaccurate, as discussed in Section 5.4. However, in
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general if the estimate of the underlying wall planes is inaccurate, then the

subsequent estimation of the primitives belonging to those planes is unlikely to

be correct, and thus cannot be used to recover from the initial plane estimation

error.

The problem of estimating the number of primitives nP which best model

the scene, along with their type θL, shape θS and texture θT is very difficult due

to the number of parameters which are required. Thus we proceed by factoring

the problem into smaller parts, obtaining a set of approximate solutions first

and refining them using increasingly accurate approximations to the posterior

cost function Pr(Mθ|DI).

As each primitive may contain thousands of texture parameters i(g), the pa-

rameter space θT is not searched. Instead the texture parameters are assigned

a value based on the model state and image data as described in Section 4.3.4.

The shape and label parameters, θS and θL, are optimised in two steps, to fur-

ther reduce the number of parameters involved in each search. An initial search

based on an approximate likelihood function (Section 4.3.1) locates likely values

for a subset of the shape parameters, which are then used to seed searches in

the full parameter space using the complete likelihood function (Section 4.3.2).

4.3.1 Single image shape proposal

The search for MAP model parameters is initialised by sampling the shape

parameters θS1 = {x, y, w, h} at regular intervals, for each primitive type θL.

The values of each parameter are sampled only from intervals in which their

prior probability is above some threshold, typically set to be 1/1000 of the

peak value of the prior. The remaining shape parameters d, a, b, dw are fixed

at 0. Because estimating the texture parameters (Section 4.3.4) requires all of

the shape parameters to be known, θT is approximated as θT 1 which is the

projection of each wall plane onto a single near frontal image D1. This single
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image likelihood Pr(D1|θT 1θS1θLMI), is evaluated using the texture likelihood

histograms defined in Section 3.6.

More precisely, it is computed as

nW
∏

i=0

∏

x∈θi

T

∏

k

f
θi

L

k (Wk(x)) (13)

where Wk(x) denotes a 3× 3 patch of subband k of the wavelet decomposition

centred at x and f
θi

L

k denotes frequency in the normalised histogram for primitive

type θi
L of the subband k wavelet decomposition. Usually 3 levels of the wavelet

transform are computed, and thus there are 9 subbands: the HL (horizontal

high-pass, vertical low pass), LH (horizontal low-pass, vertical high-pass) and

HH (horizontal high-pass, vertical high-pass) subbands for each level. The final

LL (horizontal low-pass, vertical low-pass) subband is not used. In practice the

histograms recording the HL, LH and HH subbands at each level of scale are

merged to ensure the texture likelihood measure is tolerant to global changes in

scale. Another technique which has proved useful in practice is to partition the

texture parameters into those neighbouring the boundary of a shape primitive,

and those which do not. Texture on the boundary of each primitive generally

has a steep intensity gradient and can be used to locate primitives whose texture

is not easily distinguished.

The single image likelihood is a good indicator of the full likelihood function

Pr(D|θT θSθLMI) because it is insensitive to errors in the fixed shape param-

eters d, a, b, dw: the projection of a primitive to a frontal view is affected only

slightly by changes in its depth, and the a, b, dw parameters are generally small

compared to x, y, w and h.

The single image likelihood function is used to highlight regions of the model

which are likely to be occupied by a shape primitive. This is approached as a

problem of hypothesis testing [22], in which the hypothesis to be tested is that

there is a primitive of type θi
L and shape θi

S . Likely values of θi
L and θi

S1
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for primitive i are recorded by sampling and ranking primitives of each type

according to their single image likelihood ratio:

Li
S =

Pr(D1|θi
T 1θi

S1θi
LMI)

Pr(D1|θi
T 1θi

S1θi
LMI)

(14)

where θi
L denotes every primitive type except θL.

(a) (b)

Figure 9: Collection of shapes whose likelihood ratio of being a window to not
being a window is high. The zig-zag shapes correspond to columns.

This likelihood approximation is useful because it can be computed using a

subset of the shape parameters, and because it can distinguish primitives of a

similar shape based on their texture. However texture also has drawbacks as a

means of distinguishing primitives. A wall may exhibit several different types

of texture, be it stone, brick, wood or some other material. Similarly windows

may have many different patterns of glass and framework. It is therefore un-

realistic to have a single texture histogram for each type of primitive. Instead

separate texture histograms are learnt for stone and brick walls, for windows

with vertical as opposed to horizontal and vertical pane dividers, for columns

with and without fluting, and so on. A separate histogram is learnt for each of

the global parameter settings in Table 2.
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The prior Pr(θL|θP θGMI) is used to limit the number of primitive types

which must be rated using the single image likelihood ratio, in the same way

that shape priors limit the range of shape parameters for each primitive. A full

definition of this prior is given in [10]. In practice the Downing library model

(Figure 1) is the scene with the greatest number of competing primitive types

(it has 6) for which this algorithm has succeeded.

A list is maintained of the NR primitives with the highest ratio (14). NR

is chosen to exceed the maximum number of primitives which are expected to

appear on each wall plane—in the Downing Library scene, NR is set to 50. Some

hypotheses are shown in Figure 9.

4.3.2 Multiple image shape verification

In multiple views, maximum likelihood shape parameters θ
ML
S are found for

each primitive proposed from a single image. First, the depth parameter d

for each hypothesised primitive is found by sampling over a range of depths

for which the shape prior Pr(d|θL{x, y, w, h}MI) is significant (again usually

1/1000 of its peak value). An example of the variation of the likelihood over a

range of depth values is given in Figure 10. Note that where an offset window

exists, there is a sharp peak in likelihood at the correct depth value, whereas

in regions which lie on the wall plane the likelihood value is more uniform as

depth is varied.

4.3.3 Estimation of remaining shape parameters

Having maximised the likelihood of each primitive over the shape parameters

{x, y, w, h, d}, a model selection criterion is used to decide whether additional

shape parameters a, b, dw are required.

Model selection is based on the evidence [22] which can be approximated

as the product of the maximum likelihood for a model and an Occam Factor
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Figure 10: (a) Three candidate windows whose depth is to be varied. (b) The
log likelihood of each window over a range of depths. The log likelihood of the
window which is positioned over the actual window (the solid line) is strongly
peaked, while the candidate which belongs to the wall (dashed line) is relatively
uniform. A region which spans both window and wall (dot-dashed line) peaks
at the depth of the window, but not as strongly as the true window candidate.
Although changing the depth of the window affects a minority of its texture
parameters, the change in likelihood is still significant (note that (b) plots log
likelihood).
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which penalises model complexity. The maximum likelihood parameters for each

model are found using a gradient descent search, initialised at the shape estimate

based on only the {x, y, w, h, d} parameters. Further details and results for the

Occam Factor and other model selection criteria are given in [39]. It turns out

that the likelihood is the dominant term in the selection process, and the main

requirement of the model selection step is to prevent over-fitting; that is using

an unnecessarily complex model to the data.

4.3.4 Texture parameter estimation

Having estimated both θL and θS , only the texture parameters θT = {i(g)}

remain to be found. It is assumed that each texture parameter is observed with

noise i(g) + ǫ, where ǫ has a Gaussian distribution mean zero and standard

deviation σǫ. Each parameter i(g) can then be found such that over m views it

minimizes the sum of squares
∑j=m

j=1

(

i(gj) − i(g)
)2

where i(gj) is the intensity

at gj , and gj is the projection of g into the jth image.

4.3.5 Maximum likelihood model estimation

At this stage, a complete set of shape, label and texture parameters has been

estimated for a collection of hypothesised shape primitives. Once again, the

problem of choosing which primitives to include in the model is treated as a

series of hypothesis tests. For each primitive, the hypothesis to be tested is

whether it should be a part of the model, but this time the results are ranked

based on the full likelihood ratio:

Li
M =

Pr(D|θiMI)

Pr(D|θ0M0I)
(15)

where M0 is the model containing no primitives and M is the model containing

only primitive i, with parameters θi estimated as described in previous sections.

This produces a list of potential shapes, ranked according to their likelihood.

A maximum likelihood model would include all non-overlapping shapes whose
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likelihood ratio is greater than 1. However there are many situations in which

the likelihood function can be misleading, such as parts of the model which

are occluded or subject to unmodelled lighting effects, or which have uniform

texture.

The fallibility of both the single and multiple image likelihood functions

suggests that better use should be made of the prior to resolve cases where they

fail due to ambiguous or misleading image data. The maximum likelihood list

of shapes is therefore treated as a set of possible starting points for an MCMC

algorithm which incorporates the shape prior with the likelihood function to

simulate sampling from the posterior density function, rather than simply the

likelihood. This is the subject of the next section.

4.4 Finding the MAP model

In this section, the Reversible Jump MCMC algorithm is applied to the posterior

probability function Pr(Mθ|DI) using the same jump types that were applied

to the shape prior in Section 3.5.3. The scoring function is altered to include

image information by adding a log likelihood term, so that the complete score

is now given by

f(θ) = λfprior(θ) +
∑

i(g)

m
∑

j=1

(

i(gj) − i(g)

σ

)2

(16)

where i(gj) is the projection of the texture parameter i(g) onto the jth image,

σ is an image variance parameter and λ is a relative scale factor.

Starting points for the MCMC algorithm are generated from the earlier steps

of the MAP estimation algorithm, described in previous sections. These “seed”

models are generated by setting an acceptance threshold on the likelihood of

primitives. It is first tested on the image sequence of the Downing College

Library shown in Figure 1, with acceptance thresholds chosen to include between

6 and 15 shapes. The original image resolution is 1600 × 1200. In each case,
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after running the MCMC algorithm for 2000 iterations, it was run for a further

3000 iterations with λ = 104 and σ = 10, and the model and parameter values

with the maximum posterior probability were retained.

The MAP model is shown in Figure 11. This reconstruction is obtained using

MCMC jumping distributions which do not include the addition, modification

or deletion of wall planes, so that only the parts of the model which are seen in

the images are reconstructed. This model has some nice properties:

• The wireframe is constructed from a collection of simple primitives which

have been assigned an interpretation, rather than as an unstructured cloud

of 3D points. This makes it very simple to render and manipulate the

model.

• The columns at the entranceway are correctly reconstructed despite only

their front face being visible in the images. This is only possible due to

the use of strong prior models for shape.

• In addition to the two base planes, there are 25 extra primitives, occurring

in 5 rows, containing a total of 70 parameters, i.e. fewer parameters than

the 72 required for a set of 24 3D points in general position.

• Although not shown in the reconstruction, each part of the model is la-

belled. This semantic information can be used to reason about the model

and improve its appearance and accuracy. For instance, each window in

the model is automatically rendered as a shiny and partially transparent

object.

When jump types involving wall plane parameters are included in the MCMC

algorithm, closure of the building is enforced and the reconstruction converges

to a symmetric model such as that shown in Figure 12. The texture for this

model is cut and pasted from areas of the image identified as a wall, window,
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columns and so on, and the same texture sample is used for every instance of a

type of primitive.

The operation of this algorithm is shown in Figures 13 for the Trinity Chapel

sequence. Note that the entire model is obtained from only 3 images. The use

of prior information and a representation of shape tuned to architecture results

in a model which is more accurate, more complete, and more realistic than one

based solely on image data [10]. Although the model is not completely accurate

in areas which are not visible in the images, it is a plausible structure, and

is obtained automatically except for the prior specification of the structure as

being Gothic, and the restriction of the variety and shape of primitives this

entails. 4

5 Evaluation

5.1 Comparison with ground truth

For verification purposes, some ground truth measurements were taken from the

Downing College library, reconstructed in Figure 12.

The height, width and depth of a set of windows belonging to this build-

ing were measured with a tape measure. The resulting lengths are shown in

Figure 14. Because the absolute scale of the model is unknown, only ratios

of lengths are compared to ground truth values. It is assumed that there is a

±1cm error in each measurement. In Table 4, a comparison of the correspond-

ing model values and ground truth measurements is given. The uncertainty in

the model values is based on the resolution of the grid of texture parameters on

each plane. It can be seen that the ratios of window height to width, and width

4The width of each part of the building is obtained from the average size of the window
or door primitives on visible walls—each segment of the building is made wide enough to
accommodate one window of height and width equal to the average height and width of the
visible windows, with spacing to either side equal to half the window width. In the absence
of image information, this seems a reasonable assumption to make and produces generally
plausible architectural models.
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(a) (b)

(c) (d)

(e) (f) (g) (h)

Figure 11: (a) MAP model of side wall of Downing library, after 2000 MCMC
iterations using the Classical prior. (b) Front wall. Both front and back faces of
primitives are drawn, hence the pair of triangles and rectangles for the pediment
and entablature. (c)-(d) 3D rendering of MAP Downing model, obtained with-
out using add/remove/delete wall jumps. The textures shown on the model are
automatically extracted from the images which are most front-on to each plane.
(e)-(h) Window detail.
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(a) (b)

(c) (d)

Figure 12: Four views of the completed model of Downing library, with extra
walls added. Even though only two walls are visible, a complete building has
been modelled using symmetry. Wall, window, roof and column textures are
sampled from the images and applied to the appropriate primitives.
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(a) (b) (c)

(d) (e)

(f) (g)

Figure 13: (a)-(c) 3 original images of Trinity college courtyard. (d) MAP
model primitives, superimposed on image. (e) Wireframe MAP model. (f)-(g)
3D model with texture taken from images.
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Height: 1.80m

Width: 1.20m

Depth: 0.20m

Column circumference: 3.20m

Wall−column distance: 2.62m

Figure 14: Some measurements made of the Downing Library scene. The other
windows in the scene are the same size as the one shown (to an accuracy of
±1cm).

Ratio Ground truth Model
Lower Upper Lower Upper

h/w 1.48 1.52 1.50 1.64
w/d 5.67 6.37 5.00 7.40
d2/w 2.22 2.24 2.18 2.28
c/w 2.56 2.77 2.74 3.00

Table 4: Comparison of ratios of window height (h) to width (w), width to depth
(d) wall–column separation (d2) to window width and the circumference of a
column (c) to window width. The upper and lower bounds are based on ±1cm
accuracy for ground truth measurements, except for the circumference of the
base of the column, which is measured to ±10cm. The accuracy of the model
measurements is limited to the resolution of the texture parameters.
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to depth, are recovered to within the accuracy bounds of the ground truth mea-

surements. The error margins are generally greater for model measurements,

which are constrained by the resolution of the images. Although high resolu-

tion images (1600 × 1200 pixels) were used for this model, it seems that even

more resolution is required to precisely recover fine details such as the depth of

each window. A super-resolution method [21, 2], in which pixels from multiple

images are combined to produce one very high resolution image, could possibly

be used to obtain the required detail. The distance from the column to the

wall is also identified accurately, but the circumference of the column is slightly

underestimated (although the error margins just overlap). The circumference

of the column is quite difficult to measure precisely, due to the stonework on

its outer rim. Therefore there is an uncertainty of ±10cm associated with its

measurement—this is derived from the fact that there are 20 partitions in the

fluting around the base of the column, each of which can be measured to a

precision of approximately ±0.5cm.

5.2 Reconstruction ambiguities

One feature of using an MCMC algorithm to sample the posterior is that as well

as having a MAP model estimate, other probable samples can also be examined.

This is useful for identifying ambiguities in the reconstruction. Four of the more

marked ambiguities present in this model are shown in Figure 15.

5.3 The shape prior

In Section 3.5.3, a city of models was generated to demonstrate that the struc-

ture of models sampled from the Classical shape prior varies substantially, but

not beyond the bounds of plausibility. To test the effect of the choice of shape

prior on the resultant model, the Classical and Gothic priors were swapped.

Thus the Classical prior was used to reconstruct the Gothic Trinity chapel
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(a) (b)

(c) (d)

Figure 15: Some ambiguities in the Downing model, chosen from the 20 most
probable models visited by the MCMC process. (a) Window sills are included in
the window primitives. (b) Windows are represented using two primitives each.
(c) The door is omitted. (d) Extra columns are added in between the existing
ones.
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model, and the Gothic prior was used for the Classical Downing Library model.

It was found that using a Gothic prior had little effect on the reconstruction of

the Downing Library. Although the shape of the posterior was slightly altered,

the location of its maximum was unchanged (see Figure 16). Similarly the use of

the Classical shape prior had little effect on the estimated shape of the Trinity

chapel model, as once again the maximum a posteriori estimate is unchanged

(Figure 17). However the choice of prior does affect the model in another way:

in Gothic architecture, buttresses are quite common and are therefore assigned

a high prior probability, whereas columns are extremely unlikely to occur. The

opposite is true for Classical scenes, in which columns have a high prior prob-

ability and buttresses do not. Hence when a Classical prior is applied to the

Trinity Chapel, the estimated model contains columns in place the buttresses

reconstructed in Figure 13. A more detailed analysis of the effect of the shape

prior, and a complete specification of the Gothic and Classical priors, is given

in [10].
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Figure 16: Posterior as height and width of window are varied, for a window in
the Downing library scene. (a) Classical prior. (b) Gothic prior. The position
of the peak value is unchanged.
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Figure 17: Posterior as height and width of window are varied, for a window in
the Trinity Chapel scene. (a) Classical prior. (b) Gothic prior. The position of
the peak value is unchanged.

5.4 The likelihood measures

The estimation of architectural primitives, both their number and parameters, is

based on the single and multiple image likelihood ratios, described in Section 4.3.

In this section the behaviour of both these measures is examined when the

underlying estimate of the wall planes is slightly inaccurate. This is important

because the wall planes are estimated prior to the primitives, and are fixed

while the primitives they contain are located. It is therefore useful to know

the approximate error bounds on the estimation of the planes for which the

estimation of the primitives is still likely to succeed.

Windows from the Trinity Chapel and the Downing Library scene, shown in

Figure 18 (a) and (b), are chosen demonstrate the behaviour of these measures.

A primitive is hypothesised in a range of x-y positions around its true location,

and the single and multiple image likelihood ratios are recorded. The x-y po-

sitions are spaced evenly over a grid ranging from plus to minus three quarters

of the width of the primitive in each direction. This is repeated for models in
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which the wall plane has been deliberately offset by a small rotation about the

x, y or z axis.

(a) Original shape (b) Original shape

−0.1 −0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08 0.1
−0.1

0

0.1

0.2

0.3

0.4

0.5

Rotation error (radians)

x
−

y
 l
o

c
a

ti
o

n
 e

rr
o

r

(c)

−0.1 −0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08 0.1
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

x
−

y
 l
o

c
a

ti
o

n
 e

rr
o

r

Rotation error (radians)

(d)

Figure 18: (a)-(b) Primitives used to test the single image likelihood ratio. (c)
Errors in x-y location of the primitive in (a) using single image likelihood ratio,
as model is rotated about the x axis (solid line), y axis (dash-dotted line, equal
to 0) and z axis (dashed line). (d) Same graph, for the primitive shown in (b).
x-y location error is scaled such that the width of the primitive is 1.0.

Figure 18 (c) and (d) show the error in the location of the maximum single

image likelihood ratio primitive as the ground plane normal is rotated about

the x, y and z axes. The position of the maximum likelihood primitive is quite

sensitive to errors in the orientation of the wall plane. This is because as the
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orientation of the plane changes, the boundary of each candidate primitive is no

longer aligned with the boundary in the image. Thus there will inevitably be

some overlap with the texture surrounding the window in the image. Because

the edges of the hypothesised primitives are no longer aligned with edges in

the image, the likelihood of the texture at the edges is also no longer sharply

peaked. These factors make the result quite unstable. Similar issues arise for

the multiple image likelihood ratio—a more detailed analysis of this instability

is presented in [10].

These results show that if the wall planes are not accurately estimated,

subsequent estimation of the primitives becomes unreliable. Often the effects

of an inaccurate wall estimate, such as fragmentation of the primitives, can be

fixed with some post-processing “hack”, but this is hardly an ideal solution. One

alternative is an iterative scheme which adjusts wall and primitive estimates in

turn to obtain an optimal solution for both, but it is unclear how this could be

carried out reliably.

5.5 Further reconstructions

Figure 19 shows a Classical style model, generated from 4 images of a pair of

walls belonging to the Fitzwilliam Museum in Cambridge. The completed model

is plausible, and accurate where it is visible in the images. Note that each of the

3 windows near the junction of the wall is recovered accurately, as are the pillars

separating them. This kind of detail is possible from so few images due to the

very specialised representation of shape and specification of prior knowledge. As

the completed model uses generic Classical textures it lacks much of the detail

visible in the model which uses texture parameters estimated from images of

the scene. To prevent all completed models from looking too similar, a more

elaborate technique may be needed for generating synthetic texture [13] which

can combine image and prior information to retain the detail in the images but
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compensate for lighting, occlusion and so on.

A second Gothic scene is reconstructed in Figure 20. The model is enhanced

by automatically identifying texture parameters belonging to the most visible

window, and copying them onto windows with less visibility. In the completed

model, the rows of visible windows and buttresses are automatically extended

to the end of each wall, and extra walls are added to form a closed model. Again

however the texture in the completed model lacks distinctiveness.

Reconstructions of a wider range of scenes are reported in [10].

6 Conclusion

This paper has described a framework and an algorithm for automatically de-

termining the structure and identifying a piece of architecture from a small

number of images. The algorithm has been implemented and shown to work on

a selection of architecture, and some evaluation of its current limitations has

also been presented.

There is a fair amount of future work to be done on improving the reliabil-

ity of the algorithm in the face of varying lighting conditions and architectural

styles. A key step in this will be the integration of plane and primitive esti-

mation. Ideally the estimate of both planes and primitives should be updated

iteratively, as each is dependent on the other. The dependence of the algorithm

on a feature based reconstruction limits its applicability to closely spaced image

sequences with favourable lighting conditions. In the future we would like to

remove this dependency.
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