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Abstract 
The topic of this thesis is about soft-errors in digital systems. Different aspects 

of soft-errors have been addressed here, including an accurate model to 

simulate soft-errors in a gate-level net list, a simulation framework to study the 

impact of soft-errors in a VHDL design and an efficient architecture to minimize 

the effect of soft-errors in a DSP. 

The first two chapters of this thesis introduce the background knowledge with 

regard to soft-errors. Chapter three introduces a simulation framework to study 

the impact of soft-errors in complex digital systems modelled in the VHDL 

language. This framework has been introduced to resolve the enormous CPU 

time typically required in simulation-based soft-error experiments.  

Chapter four introduces two realistic models that can simulate the impact of 

soft-errors in a 45-nm CMOS technology node at gate level. One of the 

approaches has been extracted from radiation testing along with using a 

transistor-level soft-error analysis tool. Another approach has been developed 

by analysing the behaviour of soft-errors in a 45-nm CMOS technology node.  

 In chapter 5, some unique features of DSPs have been exploited to introduce 

low-overhead soft-error mitigation architectures to minimize the impact of soft-

errors in a DSP processor. This mitigation technique concerns irregular parts of 

a processor (such as the control unit and data path). The unique features of DSP 

processors are the existence of several functional units, a limited number of 

different opcodes in each functional unit and also a highly-repetitive instruction 

flow in a DSP workload. Moreover, the mitigation method which has been 

developed for a single core has been applied to a multi-core environment in 

chapter 6 to propose a soft-error mitigation technique for multi-core 

architectures.  

As a conclusion, based on simulated data and experiments, this thesis proposes 

a methodology to investigate the impact of soft-errors during the design phase 

of a digital system.   
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Nederlandse samenvatting 
 

Het onderwerp van dit proefschrift betreft sporadische fouten in digitale 

systemen. Deze sporadische fouten worden veelal aangeduid als soft errors. 

Verschillende aspecten van soft errors worden belicht in dit proefschrijft, 

waaronder een accuraat simulatiemodel om soft errors op poort-niveau te 

emuleren, een simulatieraamwerk om de gevolgen van soft errors in een VHDL-

ontwerp te bestuderen en een efficiënte architectuur om de effecten van soft 

errors in DSP’s te minimaliseren.  
De eerste twee hoofdstukken van dit proefschrift behandelen de 

achtergrondkennis met betrekking tot soft errors. Hoofdstuk drie introduceert 

een simulatieraamwerk om de gevolgen van soft errors in complexe, in VHDL 

beschreven digitale systemen te onderzoeken. Het raamwerk wordt 

geïntroduceerd om extreem lange rekentijden, die normaliter gepaard gaan 

met  simulatiegebaseerde soft error-experimenten, te voorkomen.  

Hoofdstuk vier introduceert twee realistische modellen die de effecten van soft 

errors op poort-niveau emuleren in 45-nm CMOS-technologie. De eerste 

methode is gebaseerd op stralingsmetingen tezamen met een soft error 

analyse-applicatie op transistorniveau. De tweede methode is ontwikkeld op 

basis van de analyse van de fysieke gevolgen van soft errors in 45-nm CMOS-

technologie.  

In hoofdstuk 5 wordt een architectuur met lage complexiteit geïntroduceerd 

waarmee de effecten van soft errors in DSP’s teniet worden gedaan door 
gebruik te maken van enkele speciale eigenschappen van DSP’s. Deze methode 
werkt op de onregelmatige onderdelen van de processor (zoals de regeleenheid 

en het datapad). De speciale eigenschappen van DSP’s betreffen 1) het bestaan 
van verschillende functie-eenheden, 2) een beperkt aantal opcodes  in elke 

functie-eenheid en 3) programma’s met veel herhaaldelijk uitgevoerde 
instructies. Daarnaast kan de methode, hoewel deze ontwikkeld is om soft 

errors in single-core systemen te verhelpen, ook toegepast worden in een 

multicore context, zoals beschreven in hoofdstuk 6. 

Tot slot, is er een methode ontwikkeld op basis van simulatieresultaten en 

experimenten om al tijdens de ontwerpfase rekening te houden met soft errors 

en de gevolgen daarvan te minimaliseren.  
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Introduction 
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1.1 Introduction 
The unprecedented progress of CMOS technology has enabled 

digital systems to be emerged ubiquitously in every aspect of our life. 

Nowadays it is difficult to imagine a task in which digital computing is not 

involved. This includes portable electronic systems like laptop computers, 

cellular phones, and music players up to different embedded computing 

systems in the medical, automotive and avionics industry. The sharp rate of 

growth in CMOS technology has been sustained by shrinking the minimum 

technology sizes of transistors to smaller and smaller dimensions along with 

the continuous reduction in the operating and threshold voltages [Hir02]. 

While this technology scaling has provided modern VLSI systems with a 

higher performance and lower power consumption, their sensitivity to 

certain types of faults has dramatically increased. As a result, the reliability 

of a system which are implemented in a modern CMOS process node is a 

key concern [Cao09].  

 

The required level of reliability of a device depends on different  

parameters. For example, a very brief momentary malfunction in an audio 

device embedded in a car might cause no harm other than inconvenience 

and a slight reduction of Quality of Service (QoS). However, even a slight 

temporary malfunction in the lane-detection system of a modern car might 

lead to the loss of human life.  

 

As a real example, the sudden dive of a Qantas flight, back in 2008 

[Wik08] will be briefly discussed. The airplane had to carry out an 

emergency landing due to an inflight accident featuring a pair of sudden un-

commanded pitch-down manoeuvres that resulted in serious injuries to 

many of the passengers. The final report issued in 2011 concluded that the 

accident occurred due to a failure mode affecting one of the aircraft’s three 
air-data inertial reference units (ADIRUs). The failure mode was further 

tracked down to design limitations, in which in a very rare and specific 

situation, multiple spikes were formed in one of the ADIRUs which in turn 

could command the aircraft to pitch down. 

 

A primary source of momentary malfunction of advanced CMOS 

computing is known as soft-errors [Nic11]. A soft-error, also referred to as 

http://en.wikipedia.org/wiki/Aviation_accident
http://en.wikipedia.org/wiki/Pitch_%28aviation%29
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Single Event Effect (SEE), can occur when an energetic particle from extra-

terrestrial space or from impurities in packaging material hits the surface of 

a CMOS transistor. As a consequence of this collision, a current glitch might 

be generated in the transistor channel, which subsequently results into a 

voltage glitch at a circuit node. This voltage glitch has the potential to 

propagate into the subsequent logic gates of the system and can even cause a 

functional failure of the system. Soft-errors can occur in any internal node of 

a circuit, at random times. Depending on the timing of the clock, glitches can 

propagate to higher hierarchical levels and load a wrong value into a latch 

or flip-flop. For example, in Figure 1.1, a glitch has been generated in logic 

gate1 at time T1. This glitch has reached the positive edge-triggered flip-

flop-1 at time T2. Because the positive clock-edge for flip-flop-1 is occurring 

at time T2, an erroneous value which is now 1 instead of 0, will be stored in 

the flip-flop. However, this erroneous value will not reside permanently in 

the flip-flop; so when a new value reaches the positive edge-triggered flip-

flop in the next clock-cycle, the flip-flop stores the new value. Hence, the 

output of the flip-flop will be high for one clock-cycle. 
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Gate1

Flip-Flop-1

Time=T1

Time=T2
D

Q

Time=T2

 Q normal

 Q faulty

Clock signal

Clock

D

 

Figure 1.1. Loading an erroneous value in a flip-flop due to a glitch 

in a circuit. 

 

Historically speaking, the first concern of soft-errors emerged during 

the nineties when several studies repeatedly showed that the majority of 

system failures in modern digital circuits can be categorized as soft-errors, 

rather than traditional manufacturing errors or permanent faults [Gre94]. 

Recent VLSI technology trends such as shrinking the transistor features has 

helped the design of transistors for higher integration density, higher 

performance and lower power consumption. Higher integration densities, 

increase in operating frequencies along with reduction of operating supply 

voltage all have considerably increased the soft-error vulnerability of current 

digital systems [Cao09]. Moreover, the increased use of wireless technology, 

such as Wi-Fi and mobile phone transceivers has increased the hostility of 

our environment as a threat from soft-errors.  
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The amount of erroneous glitches in a transistor depends on many 

parameters, being the speed of the circuit, the environment where the 

system is being used, altitude, etc. While the soft-error rate of individual 

transistors are projected to increase with every new generation of VLSI, 

incorporating more and more transistors into a device even exacerbates the 

soft-error problem. Taking into account all the above-mentioned 

consequences of technology scaling, it has been consistently proven that soft-

errors are a major threat of circuit/system reliability for the sub-100nm 

technology [Kar04]. Figure 1.2 shows the rate of soft-errors for a matured 

technology as well as the projected soft-error rate for the 16nm process node. 

As can be seen in this Figure, for a technology node larger than 100nm, the 

soft-error rate was not a concern at all. However, if the technology shrinks to 

45nm, a typical Intel processor chip can experience 20 failures in its life time. 

This number will increase exponentially with shrinking dimensions in 

technology. 

   

 
Figure 1.2. Soft-error rate in recent process technology nodes 

[Kar01]. 

 

 Historically, soft-errors have been mainly of concern to those 

systems designed to be used in safety-critical systems, or systems that were 

Technology nodes (nm) 
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E

R
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h
ip
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going to be used in hostile environments, such as satellites, spaceships and 

aircrafts. Those particular applications could benefit from expensive 

fabrication technology and complex fault-tolerant solutions to reduce the 

impact of soft-errors. However, those expensive advances in developing 

fault-tolerant designs will not be cost-effective for mass-produced consumer 

products. Furthermore, emerging issues like process variations have 

introduced additional sources of soft-errors [Xfu09] which exacerbate the 

sensitivity of present computer systems to soft-errors.  

 

As a conclusion, the concerns of soft-errors for current embedded 

systems are not limited to space applications anymore, since device scaling 

accompanied by supply power reduction has caused reliability issues for 

embedded system manufactured in sub 100nm process nodes. 
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1.2 Motivation and problem statement 
In the TOETS (Towards One European Test Solution) project, 

developing new methods to deal with failures occur in sub 100nm 

technology nodes are investigated. Our special concern in this thesis is to 

develop a soft-error hardened system to be used in automotive industry. At 

the time of writing of this thesis (2014), full-hybrid and X-by-wire cars are 

already driving in the streets (such as Tesla [Tes14] and Nissan [Nis14]). 

Moreover, the first auto-drive car has been authorized to be emerged on the 

streets of the USA (Google project) [Goo14].  

 

So, it is no longer possible to consider the automotive industry as a 

low-critical domain regarding soft-errors. For example, Toyota had one of 

the biggest recalls of the automotive industry across the globe in 2010 to fix 

the electronic systems of its cars. The problem was claimed to be related to 

the very sensitive parts of the car with regard to soft-errors [Men12, Fin13a, 

Fin13b]. It was shown that a glitch in the electronic system of the car could 

influence the functionality of its acceleration system.  

 

The other important concern regarding the automotive industry is 

the total cost, which limits the usage of expensive soft-error mitigation 

solutions. As a result, the digital architect has to develop an electronic device 

that has an acceptable vulnerability level concerning soft-errors, while its 

final cost/performance is acceptable to be used in a car.  

 

Since safety-critical applications in a car are more towards DSP 

applications, such as lane detection or distance prediction, our main goal in 

this work is to develop a soft-error hardened architecture for DSP processors 

which satisfies the performance criteria. 

 

This thesis addresses the soft-error problems occurring in DSP 

processors fabricated in a 45nm technology node. Several aspects of soft-

errors, from an architectural soft-error model to proposing light-weight 

architectural solutions for detection and correction of soft-errors in single 

and multicore DSP systems will be studied throughout this thesis. 

Specifically, the problem statement can be stated as follows: 
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 A soft-error analysis framework to assess the effect of soft-

errors in complex processors needs to be investigated. 

Traditional simulation-based fault-injection frameworks are 

slow and not practical to conduct soft-error analysis on 

complex DSP processors. So, accelerated frameworks are 

essential for soft-error analysis on complex digital processors. 

 An efficient model to emulate the impact of soft-errors in sub 

100nm technology nodes needs to be developed. As the 

CMOS technology of implementation shrinks beyond 45nm 

technology nodes, already developed fault models are not  

practical anymore. A realistic and accurate simulation model 

of soft-errors in a 45nm and beyond technology nodes is 

essential in order to study the impact of soft-errors in 

complex digital processors. 

 While there are many general soft-error mitigation 

mechanisms in digital processors, we are especially interested 

to use the unique characteristics of DSP processors, such as 

existence of identical resources, to develop an efficient fault-

tolerant mechanism. Moreover, we want to investigate 

unstructured parts of a processor, such as the data-path or 

control-logic, since these two units cannot be protected by 

conventional fault-tolerance methods. 

 Since the increasing usage of multicore architectures in 

modern digital systems, we also want to develop a fault-

tolerant architecture customized for multicore architectures 

consisting of DSP cores. Moreover, the existence of several 

identical cores in multicore architecture might be very useful 

for soft-error mitigation mechanisms.  

  

1.3 Outline of the thesis 
The remainder of this thesis has been organized as follows:  

Chapter 2 describes the basic terminology of soft-errors, including 

the origin of soft-errors and a survey of the state-of-the-art methods dealing 

with detection and correction of soft-errors in processors.  
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The details of our simulation-based fault-injection  framework will be 

discussed in chapter 3. This framework is able to inject conventional logic 

gate-level fault models, like a fixed-duration glitch, into a Hardware-

Description-Language (HDL)-based design. In chapter 4, a realistic 

simulation model for soft-errors in 45nm process nodes will be proposed. 

Two unique techniques to detect and correct soft-errors in DSP processors 

are described in chapter 5. The framework provided in chapter 3 along with 

the realistic fault model described in chapter 4 form the basis of two 

advanced methods being developed to harden a DSP processor with respect 

to soft-errors. In chapter 6, the architecture of a multi-core design will be 

used to develop a detection and correction method. Since chapter 6 

combines the fault-tolerant architecture of a single core from chapter 5, this 

chapter must be read before reading chapter 6. Finally, in chapter 7, 

conclusions are given and some suggestions for future work are provided.  
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CHAPTER     2 

 
Sources, Terminology and 

Evaluation Methods of Soft-Errors 
  



 

 

12 

 

ABSTRACT- This chapter will cover the terminology of soft-errors, discuss the sources of 

soft-errors and also different evaluation methods to assess the vulnerability of a system with regard to 

soft-errors will be explained. Moreover, the details of our case study the Xentium processor, will be 

presented at the end of this chapter. It will serve later on as a test bench in developing a fault-injection 

framework, a new model for soft-errors and also its architecture will be modified to develop a reliable 

and low overhead DSP architecture to mitigate soft-errors.  

 

2.1 Introduction 
Until a decade ago, there was no consistency on whether it would 

make sense to invest in the mitigation of soft-errors in digital circuits or not. 

In general, a soft-error does not concern ordinary and low-critical 

applications. For example the cell-phone or audio industry is not concerned 

about soft-errors at all. However, if a correct and timely operation of a 

system is critical, especially in harsh environments, soft-errors will be an 

issue for sure. Some examples of critical systems are: the break system in 

modern electrical cars (drive-by-wire cars), electronic systems of an airplane 

or the communication backbone of a satellite. In these systems, the correct 

functionality of the system can be lost, temporarily or permanently, by the 

effect of soft-errors. If the impact of soft-errors is momentary, then a short 

malfunction will appear in the device. If the error manifests in the system, it 

might be required to reset the system completely, which can be sometimes 

very costly in terms of performance loss. This because the entire workload 

needs to be executed again. 

 

Since the nature of these temporary malfunctions are quite random, 

it is very hard to trace a failure which has been caused by a soft-error. These 

soft-error induced failures are even more harder to tackle when new 

information has already been loaded into the logic that has been affected by  

soft-errors. 

 

Another concern which makes tackling soft-error induced failures 

very hard, is the limitation of traditional test methods, such as Automatic 

Test Pattern Generation (ATPG). Because soft-errors appear and disappear 

in a very brief period of time, a permanent isolation of an affected net or 

logic gate is not practical in dealing with soft-errors.  
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As a result, all the methods that deal with soft-errors should be built  

based on an online detection and correction mechanism to mask the effect of 

soft-errors as soon as possible. On the other hand, a failure which has been  

induced by a soft-error is not reproducible, since it is random in nature; 

hence the online soft-error mechanism should be able to stop the 

propagation of a soft-error as soon as possible. One of the solutions which 

can be used to prove that a soft-error has caused a failure in a system, is to 

log every status of a system and then trace the root of the problem. 

However, it is generally too costly to log the status of all the components of a 

design at every instance of time.   

 

After the emerging of soft-error induced failures in modern digital 

systems during the nineties, different industrial sectors started research 

programs to address the problem of soft-errors. To name a few: Intel, IBM 

and Fujitsu in the semiconductor sector, Boeing, Airbus, Ericsson-Saab 

Avionics in the avionics sector, and the European Space Agency (ESA) and 

National Aeronautics and Space Administration (NASA) in space 

applications. As a real case of a soft-error induced failure, some random 

failures were found in a computer on a commercial aircraft in 1993 [Ols93, 

Yuh11]. The circuit which was affected by the random malfunctioning was a 

256 kilo-bit SRAM which showed failures at a rate of one error per eighty 

days. Moreover, there were some reports by IBM and Boeing in which a 

strong correlation between the rate of random malfunctioning and the 

altitude above sea level of the aircraft electronic system was recorded 

[Tab93]. Apart from these two well-known examples of soft-errors in digital 

systems, some other examples induced by soft-errors in the semiconductor 

industry have highlighted the importance of soft-error measurements in the 

electronic design industry. Some examples have been shortly listed in the 

next paragraph based on examples from [Yuh11].  

 

A phenomenon which is known as the Hera problem has been 

reported by IBM [Zie96]. During those years, IBM observed an increase in 

the rates of failures in Large Scale ICs (LSI) memories manufactured in the 

USA. Surprisingly, identical memories which were produced in Europe did 

not have this problem. The problem was traced back to the radiation which 

was emitted from the packaging material of a ceramic package. The problem 
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was further traced back to impurities inside the ceramic packaging which 

emit radioactive rays and caused the memory cells to toggle their values 

randomly in time.  

 

The second example is a problem being observed in a data server 

line,  the Enterprise of Sun [For00]. The server occasionally crashed for a 

brief amount of time. The rate of failures was as high as four times in one 

month and they were induced by high sensitivity of memory cells with 

regard to soft-errors. 

 

Another example concerned Cisco systems [Cis03]; some routers 

showed random failures caused by radiation-induced soft-errors. After Error 

Detection and Correction Codes (EDAC) [Nic11] were implemented in the 

memories, the rate of soft-errors diminished.  

 

The rest of this chapter serves as an introduction to soft-errors. First, 

the terminology of soft-errors will be discussed. Then, the origin of soft-

errors will be covered. Different methods to evaluate the vulnerability of 

systems against soft-errors will be discussed. Finally, the details of our case 

study, which is the Xentium processor [Rec11] will be provided. This 

processor will be used to analyse the impact of soft-errors in a complex 

digital system and also for the development of efficient methods to mitigate 

soft-errors. 

 

2.2   Terminology 
This section provides the common terminology which is being used 

by the soft-error community [Nic11, Sha11].  

The main cause of soft-errors in integrated circuits are high-energy 

particles coming from extra-terrestrial sources or from inside chip  

packaging materials. In case an energetic particle hits a CMOS transistor, it 

has the potential to produce a localized ionization which is able to change  

the data which has been latched in a flip-flop or a latch. If a particle has 

sufficient energy to change the charge content of a memory from 0 to 1, or 

vice versa, this phenomenon is called Single Event Upset, known as SEU 

[Bau02, Sha11]. However, this change in the content of the memory is not a 

permanent one, such as errors caused by stuck-at-0 or stuck-at-1 faults 
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[Cro99]. So if the affected latch or flip-flop is loaded with new data, the 

impact of the SEU will be masked. However, in many situations the 

erroneous value has the potential to propagate into the system before 

overwriting of data occurs. In this case, the SEU has the potential to modify 

the entire functionality of a system. These kind of errors are called soft since 

the actual hardware of the circuits is not permanently damaged. Hence, if 

the system is reset or is reloaded with the proper state, the system can 

operate correctly again.  

 

Figure 2.1 shows the moment when a high-energy particle hits a 

CMOS transistor. If the high-energy particle has sufficient energy, which is 

more than 1 Mega-electron-Volt (MeV), it has the potential to deposit a 

dense track of electron-hole pairs as they pass through a p-n junction [Shi02]. 

Some of the deposited charge will be absorbed by the gate of the transistor 

and form a short duration pulse of current at the internal circuit node. This 

short current pulse is depicted in Figure 2.2. This figure shows that a current 

pulse with maximum amplitude of 600µA has been produced by the 

particle. The duration and amplitude of this momentary pulse depends on 

the technology of implementation of the transistor, which can be 45nm, 

22nm, etc., the type and energy of high-energy particle as well as the 

temperature. 

 

source drain

gate
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+

- +

-
-

Isolator

channel

 
Figure 2.1. Striking a transistor by a high-energy particle. 
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Figure 2.2. The produced perturbation caused by a high-energy particle. 

 

Figure 2.3a shows a sequence of SRAM cells which have been 

configured as a Look-Up Table (LUT) in order to implement a logic OR 

function. Suppose that a radiation particle has hit the last SRAM cell (Figure 

2.3b) and changed the stored value from 0 to 1. In this situation, the logic 

which will be implemented by the new configuration is a permanent stuck-

at-1 value  connected to Vdd; this has been shown in the equivalent logic 

gate in Figure 2.3b. It will be shown later on that error detection and 

correction codes are a powerful mechanism to mitigate this kind of errors.  
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Figure 2.3. A soft-error in a Look-Up Table. a). the correct operation 

of the Look-Up Table. b). the erroneous operation of the Look-Up Table. 
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Another phenomenon caused by soft-errors is the Single Event 

Transient (SET) which occurs if a momentary pulse (glitch) is generated at 

the output of a logic gate. This glitch has the potential to traverse through 

other combinational logic gates and reach a flip-flop or logic gate input in 

the succeeding hierarchy. If the clock-edge occurs at the same time when the 

glitch reaches a flip-flop input, the erroneous value will be latched into the 

flip-flop and the status of the circuit will be changed. 

 

Figure 2.4 shows the propagation of a SET in several logic gates and 

reaching a memory cell. As can be seen in this figure, in the normal situation 

the value of 0 should be stored in the flip-flop, but as a result of a particle 

hit, the erroneous value of 1 has been latched in the flip-flop. This 

phenomenon is different from the SEU, since the value of the flip-flop has 

not been changed directly, but a wrong value has been produced by the 

combinational logic and then captured by the flip-flop. This type of error is 

very difficult to handle.   
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Figure 2.4. Propagation of a SET in the combinatorial part of a circuit. 

 

A metric which is used to refer to soft-errors is the frequency of 

occurrence of errors. This metric is commonly referred to as the soft-error 

rate or SER. The SER depends on many factors including altitude above sea 

level and temperature.   

 

In the following section, the origin of soft-errors and their occurrence 

rate will be discussed.  
 

2.3 The sources of soft-errors 
There are multiple physical phenomena that induce soft-errors in a 

MOS digital circuit, the two dominant ones being neutron and alpha 

particles. The effect of these two sources are quite different from each other 

and they will be discussed in different subsections.  

 

2.3.1 Neutrons 
High-energy neutrons are one of the most dominant sources of soft-

errors [Wan07]. Close to the orbit of planet Earth, the prime source of 

neutrons is cosmic radiation. The cosmic rays are radiation fluxes which 
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consist of high-energy particles originating from outer space. There are two 

main types of cosmic radiation that induce soft-errors: solar cosmic rays and 

galactic cosmic rays [Anc03].  

  

Solar cosmic rays originate from the sun and are primarily composed 

of proton and helium particles. Protons dominate the solar cosmic ray flux 

and are typically low energy particles. Galactic cosmic rays are high-energy 

particles that penetrate into the orbit of planet Earth from the outside of our 

solar system. In general, galactic cosmic rays typically have a very large 

energy and are the cause of most of the soft-errors in satellite and aerospace 

avionics. 

 

When the galactic cosmic radiation reaches ground sea level, the flux 

of particles is primarily composed of muon, proton, neutron, and pion 

particles [Zie81]. Neutrons are the most likely particles to cause a soft-error 

in a circuit since they have the highest energy. 

 

As a result of the interaction with the atmosphere, the radiation flux 

depends on the altitude. For example, there is about a 10 times difference in 

flux between the sea level and an altitude of 10000 feet [Zie81]. Thus, 

computers operating at a high altitude, for example in aircrafts, can 

experience soft-error rates in excess of an order of magnitude than they 

would have at sea level [Wan07]. 

 

The influence of neutron particles can be reduced to negligible levels 

with very strong physical shielding. For example, each 33 centimetres of 

concrete can reduce the neutron flux by approximately 1.4 times [Dir03]. As 

a consequence, shielding is an impractical soft-error mitigation solution in 

many computing installations where reliability is demanding, such as in 

embedded systems. 

 

2.3.2 Alpha radiation 
Another dominant source of soft-errors is considered to be alpha 

particle radiation [Wan07]. An alpha particle is composed of two protons 

and two neutrons. Alpha particles have a very high-energy as well as a large 

mass, and can be easily shielded by simple materials. Even a piece of paper 
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is sufficient to shield alpha-particle radiation. Moreover, alpha particles can 

travel only a few centimetres in the air. Consequently, alpha particles should 

originate from a source very close to the circuit to be able to cause a soft-

error. 

 

The discovery of alpha particles to produce soft-errors goes back to 

the nineties when the Intel corporation experienced some random behavior 

in its 16-Kbyte DRAM memories caused by packaging [Bau05]. Intel then 

tracked the origins of suspected radioactive impurities, and they found that 

a new LSI ceramic package was used for these chips. The package used 

uranium materials and consequently the level of radiation emitted to the 

chips was higher than normal. 

 

Nowadays, even very low alpha-particle rates can cause a 

malfunction in 45nm CMOS circuits and below. Packaging materials should 

therefore be selected carefully to reduce the amount of emission regarding  

alpha particles. Moreover, it turned out to be possible to shield the emission 

of alpha particles with shielding materials during packaging even if the 

technology was still less sensitive to alpha particles [Adv05].  

 

Regarding the contribution of these particles to cause a soft-error, the 

neutron soft-error rate is the dominant one. However, shrinking technology 

dimensions along with reducing supply voltages has made the alpha particle 

the second dominant source of soft-errors [Adv05].  

 

2.4 Soft-error vulnerability analysis  
Despite the fact that detection and isolation of hard errors 

(permanent errors) in modern digital circuits are mature, it is very 

challenging to detect the occurrence of a failure caused by soft-errors in a 

system. A measure of vulnerability with regard to soft-errors should be 

available to evaluate circuits that are going to be used in a safety-critical  

environment. Soft-error sensitivity analysis has since long been used to 

assess the vulnerability of different parts of a design in the presence of 

different sources of soft-errors. The process of soft-error analysis is based on 

stressing the system  under test with soft-errors. 
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Fault-injection has been used for many years as a method of soft-

error analysis [Dav09]. Fault-injection works by injection of a predefined 

model of soft-errors in different parts of a design, for different applications. 

The fault-injection further determines the functional response of a circuit 

with regard to the injected soft-errors. Fault-injection is generally a very 

time-consuming and complex procedure since it requires to inject soft-errors 

in different logic  states of a system (or at least the majority of states).  

 

Fault-injection provides several advantages [Zia04]. To name a few, 

one can mention that the designer is able to understand the effects of soft-

errors in a system under test. Moreover, if a protection mechanism is used in 

a system, fault-injection can be used to assess the efficiency of those 

mechanisms. Fault-injection can also be used to discover faulty behaviour of 

a system which is hidden during the normal tests. Finally, fault-injection 

needs to be carried out if a processor system is in operation. So it can be used 

to explore the behaviour of different benchmarks with regard to soft-errors. 

  

Fault-injection can be carried out at different levels of abstraction. In 

general, there are four categories of fault-injection, including Hardware-

Based Fault-injection, Software-Based Fault-injection, Simulation-Based 

Fault-injection and Emulation-based Fault-injection. The following 

paragraphs will briefly explain the different categories. The main focus is to 

list the benefits and drawbacks of each method [Zia4, Zha07, Dav09].    

 

  



 

 

24 

 

2.4.1 Hardware-based fault-injection techniques 
Hardware-Based Fault-Injection (HBFI) techniques are conducted by 

stressing the actual hardware with real environmental sources which are 

responsible for soft-errors. Those environmental parameters can be laser-

based radiation [Pou00], power-supply disturbance [Hut09], and Electro-

Migration Interference (EMI) [Var05]. HBFI techniques can be further 

categorized into [Zia04]:  

 

HBFI techniques with contacts; in this category the fault injector is in  

direct physical contact with the system under test. The injector produces 

voltage or current changes externally to the target chip. Figure 2.5a shows a 

power-supply injector which is being used for fault-injection at the chip 

pins. This power supply (blue box) generates a disturbance and this 

disturbance will be consequently injected in the chip by a power probe.   

 

In the case of HBFI without contact the injector has no direct physical 

contact with the system under test; an external source produces some 

physical activity, such as heavy-ion radiation to evoke a predefined 

disturbance of soft-errors in the circuit. Figure 2.5b shows a laser-based 

fault-injection which injects a very accurate  laser beam into a system. The 

laser beam is used to modify the contents of a chip, while the white box 

provides the proper characteristics of the laser that is being injected to the 

chip. This method of fault-injection needs to be highly accurate in 

positioning especially with the current trend of shrinking chip technology 

dimensions.   
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Figure 2.5. a) Fault-injection at chip pins. b) Laser-based fault-

injection (both pictures are a courtesy of [Opt12]). 
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Even though conducting hardware-based fault-injection techniques 

is very complex and costly, they are very close to the real physical nature of 

a soft-error. The benefits of hardware-based fault-injection can be 

summarized as [Zia04]: 

 

The HBFI methods can access locations that cannot be accessed by 

other fault-injection methods. For example, laser-based fault-injection can 

inject faults into all the flip-flops (after removing any protective layers) and 

registers which are simply not accessible by I/O pins or software. 

  

A physical analysis by injection of physical faults into a prototype is 

sometimes the only practical way to estimate the behaviour of a circuit with 

regard to soft-errors. This is the case if the source code of the system is not 

available or there is no simulation model of the predefined soft-error model 

to conduct fault-injection. Furthermore, there is no need to modify the 

architecture of the system under test to conduct fault-injection.  This is 

desirable if the system is only available as a prototype.  

 

Meanwhile there are different drawbacks for HBFI methods. Among 

them is limited observability, which means it is very hard to track an 

injected fault in the system. Moreover, HBFI techniques require special-

purpose hardware in order to perform the fault-injection experiments. 

 

In this thesis, the results of hardware-based fault-injection from 

others will be used to develop a simulation model for Single Event 

Transients (SETs) which can be incorporated in simulation-based fault-

injection techniques. 

 

2.4.2 Software-based fault-injection techniques 
Traditionally, software-based fault-injection techniques modify the 

software being executed under the operating system. Different sorts of faults 

can be injected at this level, varying from register and memory faults to 

faulty network packets. Software fault-injections are more focused on the  

aspects of a system which are accessible by a software developer, for 

example the operating system. Software simulations are normally non-

intrusive, i.e. the hardware of the system will not be changed. The benefits of 
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software-based fault-injection techniques are that these techniques can be 

carried out on the basis of operating systems, which are difficult to conduct 

using hardware-based fault-injection approaches. Furthermore, experiments 

can be executed almost in real-time, depending on whether the timing of the 

system under test is a target of fault-injection or not. This allows running of 

a large number of fault-injection experiments within a reasonable amount of 

time. The same amount of time needs to be executed without a fault. Finally, 

software-based fault-injection techniques do not require any special 

hardware, and in addition conducting fault-injection experiments by 

software modification has a low complexity and hence a low development 

and implementation cost. 

 

However, there are also a number of drawbacks; for example the 

fault-injection process needs to be executed at assembly language level. 

Therefore, the flexibility to model different soft-errors are limited. 

Furthermore, soft-errors cannot be injected into locations that are 

inaccessible by the software, such as an internal register file. Last but not 

least, it requires a modification of the source code to carry out fault-injection. 

As a result, the source code that will be executed for fault-injection will not 

be the same as the one that will run on the system under normal operational 

situations.  

 

2.4.3 Simulation-based fault-injection techniques 
Simulation-based fault-injections [Jen93] involves the construction of 

a simulation model of the system under analysis, including a detailed 

simulation model of the circuit which is being used for fault-injection. 

Moreover, the perturbation should be modelled at the same level as the 

circuit that has been modelled. The operational failure of the simulated 

system can occur according to a predetermined distribution of perturbations 

in order to accelerate the injection of soft-errors. This predetermination helps 

in terms of a more effective propagation of faults in the system, such as an 

overlap of an erroneous pulse with the positive clock edge of a flip-flop. 

First, the simulation model of the system under test is developed using a 

hardware description language such as VHDL or its American counterpart 

Verilog. Faults that have been modelled based on VHDL or Verilog are 

subsequently injected into the VHDL model of the system. The details of 
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simulation-based fault-injection techniques will be explained in the next 

chapter. However, as the benefits and drawbacks of this class of fault-

injection techniques the following comments can be made:  

As a benefit, simulated-based fault-injection techniques can support 

almost all abstraction levels, from the transistor level up to the architectural 

level. The only requirement is that a simulation model of the system under 

test as well as the soft-error should exist at the same hierarchical level. In 

addition, it is possible to carry out this fault-injection method while the 

system is still under development. Another advantage is that there is full 

controllability over when and where a fault is injected into the system. This 

feature is very important in fault-injection analysis since the hardware-based 

fault-injection approaches cannot provide this degree of controllability.  

 

Furthermore, the cost of computer infrastructure is low, in terms of 

special-purpose hardware. It also provides timely feedback to system design 

engineers because all the results of the simulation can be logged in the 

simulation computer for further investigation. In addition, during 

simulation-based fault-injection methods, a fault-injection is performed 

using the same software that will run in the field. 

 

One of the most beneficiary features of simulation–based fault-

injection methods is the degree of observability and controllability. In 

another words, any signal or register in the design can be accessed and 

modified. The result of this modification can be traced clock-by-clock in a 

simulation program.   

 

As drawbacks of simulation-based fault-injection techniques, the 

following issues can be mentioned: 

Fault-injection using simulation-based techniques needs a large 

development effort as the soft-errors should be modelled at the same 

hierarchical level as the system under test. Furthermore, conducting this 

type of fault-injection is very time consuming with regard to the experiment 

length; this is because carrying out simulation-based fault-injection is 

employing the simulation of the system in its fault-free version as well as in 

the presence of possible faults. This fact can cause the experimental length of 
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these experiments to take several days while the simulation computer needs 

to run the fault-injection experiments.  

 

2.4.4 Emulation-based fault-injection techniques 
In recent years, a new category has been added to the fault-injection 

methods, known as emulation-based fault-injection techniques. This method 

injects faults in a circuit description implemented in an FPGA [Civ02, Por07]. 

This approach combines the efficiency of hardware-based fault-injection 

techniques and the flexibility of simulation-based fault-injection techniques 

in one framework.  Experimental results have shown that a significant 

speed-up can be achieved as compared to simulation-based fault-injection 

techniques. However emulation-based fault-injections are generally only 

feasible for permanent faults, e.g. stuck-at faults. Moreover, the final circuit 

should be synthesizable and therefore the usage of test-benches in the fault-

injection process is not possible.  

 

The benefits of emulation-based fault-injection techniques are that 

the injection time is much shorter as compared to simulation-based 

techniques. This capability allows the designer to have a quick evaluation.  

 

There are also drawbacks of this method, as the initial VHDL 

description must be synthesizable and optimized to avoid the requirement 

of a large and costly emulator; in addition a reduction of total running time 

can be accomplished. This fact limits the usage of test-benches in a circuit. 

Other disadvantages are that the implementation cost concerns the general 

hardware emulation system and the implementation of an FPGA-based 

emulation board. Furthermore,  the algorithmic description of a circuit is not 

yet widely accepted by synthesis tools, and therefore emulation-based fault-

injection approaches can often only be applied at the Register-Transfer-Level 

(RTL) of a system. Finally, it  is necessary to have a high-speed 

communication link between the host computer and the emulation FPGA 

board which is a critical factor in the emulation set-up.  

 

As a summary of different fault-injection methods, hardware-based 

methods provide the fastest fault-injection in terms of the required time to 

carry out experiments; however, conducting such experiments is very costly 
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and complex to control. On the other hand, simulation-based fault-injections 

provide a high level of controllability to conduct perturbations; however, the 

required time to conduct such experiments is very long.       
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2.5 Architecture of our target processor 
This section provides the baseline architecture of our case study, the 

Xentium processor®, from Recore Systems [Rec11]. As mentioned before, the 

goal of this thesis is to investigate the impact of soft-errors on digital 

processors. This includes the development of a model for soft-errors, assess 

the impact of soft-errors in a digital processors and also increasing the 

robustness of digital processors with regard to soft-errors. In order to assess 

these different criteria  we have selected a Digital Signal Processor (DSP), the 

Xentium processor [Car11, Ker10] from Recore Systems [Rec11]. The 

Xentium processor is an ultra-low power DSP processor designed for high 

performance digital signal-based workloads.  

 

The default architecture of the Xentium core including a data-path, a 

control unit, an instruction cache, a network interface and memory banks is 

shown in Figure 2.6. The memory banks are static RAMs that are 

communicating with the data-path in parallel to increase parallelism. A 

detailed architecture of the data-path is shown in Figure 2.7. The data-path 

has been designed based on a Very Large Instruction Word (VLIW) 

architecture that consists of ten functional units and five register files. Each 

functional unit is responsible for a certain class of instructions. For example, 

E units (E0 and E1) perform load/store instructions,  M units (M0 and M1) 

are multipliers that are useful for accumulation operations. P and C units (P0 

and C0) are used in those operations where the  Program Counter (PC) is 

involved. Finally A (A0 and A1) and S units (S0 and S1) perform arithmetic 

and logical operations. All functional units can access five register files 

(RFA, RFB, RFC, RFD and RFE) in parallel. An actual implementation of the 

Xentium processor is based on 90nm CMOS technology leading to a silicon 

area of 1.2mm2 and running on a clock frequency of 200MHz. 

 

This processor has been developed as part of a multi-core System-on-

Chip (SoC) system as depicted in Figure 2.8. This chip contains nine 

Xentium cores, interconnected by a NoC. Each of the single cores are able to 

connect to the adjacent routers, while the routers are connected to a 

Network-on-Chip (NoC). The NoC can be connected to more conventional 

bus architectures to communicate with other peripherals, if required.  
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Different parts of the Xentium processor will be elaborated in 

different chapters of this thesis. More details of each part of the processor 

will be discussed in the most appropriate chapter concerned.    

 

 
Figure 2.6. Xentium processor with memory and network interface [Rec11]. 

 

 
Figure 2.7. The Xentium data-path architecture [Rec11]. 
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Figure 2.8 Photomicrograph of the multicore SoC consisting of nine 

Xentium core processors [Rec11]. 

 

2.6  Conclusions 
This chapter provides the basic background with regard to soft-

errors. The sources of soft-errors were discussed and also the terminology of 

soft-errors was provided. Different evaluation methods with regard to the 

effect of soft-errors in a digital system, including hardware, software, 

emulation and simulation–based fault-injections were covered in this 

chapter.  Furthermore, the basic architecture of our case study has been 

introduced, the Xentium processor. The Xentium processor will be used later 

on in the evaluation of our proposed fault-injection method; also its 

architecture will be modified to develop a reliable DSP architecture to 

mitigate the effect of soft-errors.     
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ABSTRACT - This chapter introduces two contributions in terms of simulation-based fault-

injection in HDL designs. The first contribution concerns acceleration of soft-error injection in HDL 

designs, with regard to the elapsed CPU time, which is the real time to conduct fault-injections. The 

second contribution is dealing with conventional challenges in conducting simulation-based fault-

injection, i.e. the importance of timing information in the net list on the accuracy of fault-injection 

results, as well as reaching the point of convergence in fault-injection results. The latter observation 

assures the designer that fault-injection results are not dependent on the number of fault-injections any 

longer. The introduced fault-injection framework is capable of simulating various fault models in a 

comparable elapsed CPU time, as compared to other conventional simulation-based fault-injection 

frameworks. The enhanced speed up has been assessed by conducting numerous simulation-based fault-

injections on a DSP processor and comparing the elapsed CPU time to some conventional fault-

injection tools. These experiments showed that the developed framework is capable of reducing the 

elapsed CPU time by a factor ranging from 27% to 67% as compared to conventional simulation-based 

fault-injection tools, and by a factor of 10% compared to available accelerated simulation-based 

frameworks. 

 

3.1 Introduction 
This chapter introduces a simulation framework to conduct 

simulation-based soft-error studies, as the first approach to deal with soft-

errors. 

 

As discussed in Chapter 2, simulation-based fault-injections are 

being used as a very detailed and accurate experimental method to assess 

the sensitivity of a system with regard to soft-errors, in the academic 

community as well as in the industrial world [Pec13]. Simulation-based 

fault-injection uses a simulation model of the system to evoke predefined 

fault models into different parts of a system. The simulation model of the 

system can be developed using any hardware description language, such as 

VHDL, Verilog or SystemC. The predefined fault models can also be 

described in any hardware language due to the availability of several 

integrated simulators which are able to simulate a design which is consisting 

of several types of HDL languages. 

 

Simulation-based fault-injections provide various advantages which 

make them very popular for soft-error analysis [Bar05]. Issues are a high 

controllability over where and when a fault should be evoked, as well as a 

high observability in terms of the propagation of faults. Very important is 

the fact that the designer is able to conduct soft-error analysis even before 

the system is actually implemented. However, there are a number of 
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downsides regarding some facets of simulation-based fault-injections. The 

first concern is that simulation-based fault-injections require an extensive 

period of Central-Processing-Unit (CPU) time of the host computer to 

conduct fault-injection experiments, or elapsed CPU time. This phenomenon 

is known as the CPU intensiveness [Zia04]. A long elapsed CPU time is 

induced by the fact that the simulation time is  several orders of magnitude 

longer compared to the real time. Hence a comprehensive simulation-based 

fault-injection might take several days to be accomplished. 

 

The second concern is due to the fact that the accuracy of fault-

injection results strongly depends on the level of hierarchy in which 

simulation-based fault-injections are conducted [Nic11]. This means the 

results of fault-injections will lead to different results if fault-injection 

experiments are carried out on a front-end HDL model (Register Transfer 

Level, RTL) versus a back-end HDL model (such as post-synthesized logic 

gate-level net list, including timing information). This issue will become 

more important as a number of emerging soft-error standards, such as the 

Reliability Information Interchange Format, RIIF [Ava12], focus on the RTL 

hierarchy level; this provides a universal soft-error library regardless of the 

final library in which a circuit will be implemented. The results of this 

chapter will show that fault-injection results can be interpreted differently if 

the timing information in a net list (which is represented at the logic gate-

level net list) is disregarded.  

 

In this chapter, the CPU intensiveness of simulation-based fault-

injections is addressed by developing a framework to speed-up injection of 

conventional models of soft-errors in a HDL design. Simulation-based fault 

analysis is composed of three different phases, set-up, fault-injection and 

evaluation phases. Our developed framework accelerates the whole 

simulation-based fault analysis by speeding up the fault-injection phase, 

while the set-up and evaluation phases are identical to other conventional 

fault-injection methods. It is also important to mention that the framework 

in this chapter has been developed to inject conventional models of soft-

errors, i.e. the bit-flip model for Single-Event-Upsets (SEUs) and the 

momentary rectangular pulse for Single-Event-Transients (SETs) [Kar04], as 

discussed in Chapter 2.  
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Another subject of this chapter is the contribution on the level of 

granularity of the system under analysis in producing an accurate fault-

injection. This issue will be addressed by conducting identical simulation-

based fault analysis on a Digital Signal Processing (DSP) processor at two 

levels of hierarchies, a post placed-and-routed gate-level net list (including 

timing information), and a pre-placed-and-routed RTL net list. It will be 

shown that taking the timing information in a net list into account  

contributes to a faster convergence of fault-injection results. The latter issue 

is very important since reaching a point of convergence in simulation-based 

fault analysis is a metric which indicates that the fault-injection results are 

no longer dependent on the number of simulations. 

 

The framework which will be presented in this chapter, will serve as 

a preliminary step in conducting soft-error evaluation studies. The outcome 

of this framework helps to distinguish the sensitivity of gates/nets of a 

system, with regard to soft-errors. Consequently,  these sensitive parts will 

be enhanced with soft-error mitigation methods to decrease the level of soft-

error vulnerability.  

 

The remainder of this chapter is organized as follows: section 3.2 

discusses state-of-the-art simulation-based fault analysis as well as the 

accelerated ones. Section 3.3 discusses the details of the developed 

framework. The achievements in terms of CPU intensiveness will be 

presented in Section 3.4 while the importance of hierarchical levels will be 

treated in Section 3.5. Finally, Section 3.6 will conclude this chapter. 

 

3.2 Simulation-based fault analysis 
The first step to conduct a simulation-based fault analysis is to 

represent the circuit under analysis in one of the HDL languages (VHDL, 

Verilog or SystemC). The next step involves perturbation of registers or nets  

according to a predetermined perturbation model, referred to as the fault 

model. This latter step is known as the fault-injection phase. An elementary 

simulation-based fault-injection experiment corresponds to one simulation 

execution during which one predefined fault model is injected into the 

simulation environment [Zia04]. A series of such simulations constitutes a 

simulation-based fault-injection campaign. A simulation-based fault-
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injection campaign might be composed of thousands of simulation-based 

fault-injection experiments. Finally, the logged results of the fault-injection 

campaign need to be interpreted to establish the sensitivity of the circuit 

under analysis or parts of it with regard to the injected fault model. This last 

step is formally known as the evaluation phase. 

 

In order to discuss the development of our framework, first the state-

of-the-art techniques that have been used in the fault-injection phase will be 

briefly presented. Then, the integration of two different approaches into one 

platform will be discussed in order to use their benefits in accomplishing an 

accelerated simulation-based fault-injection. 

 

3.2.1 State-of-the-art simulation-based fault-injection 
In general, implementing the fault-injection phase of a simulation-

based fault analysis can be divided into two categories [Bar04, Zia04, Gra10]: 

 using built-in commands of the simulator program, which 

approach is known as “built-in commands”. 

 using code-modifications techniques, which can be further 

divided into saboteur and mutant methods. 

 

3.2.1.1 Built-in commands 

Built-in commands are based on using, at simulation time, built-in 

commands of the HDL simulator in order to modify the value/timing of a 

net or register. This approach normally provides the fastest performance 

with regard to the total elapsed CPU time, since it does not modify any part 

of the representation of the circuit under analysis. However, the 

applicability of this technique strongly depends on the functionality of the 

built-in commands of the simulator program [Lee09]. For example, whether 

a momentary change in a value of a net is feasible or not depends on 

whether the force command has been embedded in a simulator kernel or 

not.  

 

One of the most widely-used techniques in the built-in commands 

category is to disconnect a particular signal (target signal for fault-injection) 

from its input(s) at a certain point of time (so-called ‘time instance’); then  

force  it to a new value for a brief period of time (so-called ‘fault duration’). 
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For example, to inject a temporary pulse on a signal named ‘V’ at a time-

instant ‘T1’, the sequence of the following pseudo-commands should be 

executed [Gaw10] as shown in Figure 3.1.: 

 

 

1- simulate-until @ (T1) ns 

2- force-signal (V) to (faulty-value) 

3- simulate until @ (‘fault duration’) ns 

4- release-signal (V) 

5- simulation-continue 

6- result-logged 

 

Figure 3.1.  Pseudo-commands of built-in simulation fault-

injection. 

 

Several existing frameworks exploit the built-in commands for the 

fault-injection phase. MEFISTO [Jen94] was one of the first tools that 

employed built-in commands in the fault-injection phase. Another example 

is  GSTF [Bar00] which is a VHDL-based fault-injection tool, was built based 

on the built-in commands of a commercial VHDL simulator (V-System®). It 

is capable of injecting soft-errors into different levels of hierarchy, which can 

be logic gate-, RTL- and chip-level. 

 

With respect to the implementation cost, the built-in commands  

tools are the easiest and lightest simulation-based frameworks to set up, 

since no parts of the circuit under analysis need to be modified. 

Furthermore, no re-compilation (even partial) of any parts of the HDL code 

is necessary. Finally, built-in commands methods are known as the fastest 

methods with regard to the elapsed CPU time [Zia04, Gra10]. However, 

since these methods strongly depend on the functionality of the built-in 

commands of the simulator, the possibilities of representing various fault 

models are rather limited. For instance, they are not able to inject fault 

models representative for buses, such as intermittent-short or intermittent-

delay faults [Zia04, Gra10].  
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3.2.1.2 Code-modification techniques 

Another category of simulation-based fault-injections is the code-

modification technique, where the HDL code of the circuit under analysis 

needs to be modified [Zia04]. Code-modification techniques are further 

categorized into saboteur and mutant techniques [Nic11].  

 

In the saboteur technique, a component called saboteur is added to 

the HDL description of the original component for the sole purpose of fault-

injection. The saboteur will be idle during normal system operation, while it 

modifies the value of one or more signals when it is active, i.e. at the 

moment a fault is being injected. For example suppose of a saboteur inserted 

at the input of an ‘OR’ gate. It is ‘0’ when inactive (so no interference with 

the gate), but is ‘1’ during activation. Saboteurs are inserted, in series or in 

parallel, either interactively at the schematic editor level or 

manually/automatically directly into the HDL source code. Serial insertion, 

in its simplest form, consists of breaking up the signal path between an input 

and its corresponding net and placing the saboteur in between. It is 

important to emphasize that the majority of fault models, including delay, 

stuck-at, SET and SEU can be implemented via the saboteur technique 

[Gil08]. However, saboteurs require a number of control signals to the 

original description of their target, such as gates, in order to indicate the 

type of the perturbation. Consequently, the additional control signals must 

be initialized for the top-level components, which consequently increases the 

complexity of the entire system  [Ben03, Gil08]. A simple example of this 

increased complexity is shown in Figure 3.2. Here, a saboteur has been 

inserted in the Half-adder-0 (the grey gate). The control mechanism of this 

saboteur is that if its value is ‘1’, the output of the gate ‘OR’ (the grey gate) 

will be ‘1’, otherwise the saboteur will not interfere with the normal 

workflow of this half-adder. However, this control signal (indicated by  

dotted signal) needs to be initialized at all higher levels, including the full-

adder, the Arithmetic-Logic-Unit (ALU) and finally in the microprocessor. 
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Figure 3.2. Interference of the control signal (dotted signal) of a saboteur 

with higher hierarchical levels. 

  A well-known framework which uses the saboteur technique is 

VFIT (VHDL-based Fault-Injection Tool) [Gil03]. One of the main features of 

VFIT is its automatic implementation of saboteurs. 

 

Mutants techniques are another category of code-modification 

techniques which contain dormant code blocks within the normal net list 

description. These blocks of code are activated by injecting faults, altering 

the operation of the logic device, for example an ‘AND’ gate. Because the 

fault response is generated internally within the model, fault-injection can be 

carried out at any level of abstraction for various fault models. However, the 

usage of mutants requires the original model of a component by the new 

mutant model. With regard to the cost of the set-up phase, as well as the 

CPU intensiveness in the fault-injection phase, the mutant technique is the 
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slowest simulation-based fault-analysis technique. Furthermore, a partial 

recompilation for every fault-injection might be required, which inherently  

results in an increased elapsed CPU time.  

 

The main advantage of the mutant technique is its independence of 

the adopted simulator, which as a result provides the opportunity of 

representing very complex fault models. A well-known framework which 

employs the mutant technique for fault-injection can be found in [SUN11]. 

 

In this chapter, a simulation-based fault analysis approach will be 

developed which is based on the simultaneous usage of built-in commands  

(in order to accelerate the fault-injection phase) and the saboteurs (in order 

to enhance the possibility of representing various fault models). The main 

achievement of the developed framework is to accelerate the fault-injection 

phase while having the capability of representing a larger fault model 

repository, as compared to the built-in commands technique. 

 

3.2.2 Accelerated simulation-based fault-injection 
framework 

Since the main contribution of this chapter is to develop a 

simulation-based fault-injection framework which accelerates the injection of 

diverse models of soft-errors, this subsection briefly surveys recent 

accelerated simulation-based fault analysis approaches presented in the 

literature. It is important to mention that only simulation-based methods 

have been covered in this subsection, while other methods which use a 

combination of simulation-based methods and other categories of fault-

injections, e.g. Field-Programmable-Gate-Arrays (FPGAs), emulation-based 

or software-based methods, are out of the scope of this section. 

 

The authors in [Ber02] proposed two methods in order to speed-up 

the fault-injection phase in simulation-based fault analysis. The first method 

relies on setting checkpoints on simulator commands and the second 

method employs the well-known fault collapsing technique to shrink the list 

of equivalent faults. The first method, checkpoints on the simulator-

commands, is based on restarting the simulator from the last known state for 

each fault-injection, rather than restarting from the beginning of simulations. 
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In the case of the second method, fault collapsing, a number of faults will be 

removed from the fault list based on the well-known fault collapsing 

techniques [Ben98]. Even though these two methods can decrease the 

elapsed CPU time of a simulation-based fault analysis, the check-point 

method is beneficiary only for rather simple designs. This because the more 

complex a design is, the more time is devoted to store/retrieve and manage 

the checkpoints. The authors in [Lee09] and [Mis07] convert a HDL design to 

a SystemC equivalent and subsequently employ capabilities of the C 

language, such as parallel computing, to speed up the simulations. Another 

approach transforms the soft-error analysis problem into the equivalent 

Boolean problem and subsequently exploits optimization techniques to 

speed-up fault analysis [Sha12]. A method which has been documented in 

[Lev05] relies on the generation of the mutants along with formal property 

checking. The technique is able to inject all models of soft-errors in a 

competitive elapsed CPU time. As examples of industrial platforms, one can 

mention [Reb00] and [Ber02], where acceleration of simulation time is 

achieved by re-arranging the simulator commands of the simulation 

program. De-rating factors of a net list, being masking factors of a gate, i.e. a 

‘0’ in an ‘OR’ gate and a ‘1’ in an ‘AND’ gate, have been used in [Ale11] to 

minimize the number of fault-injections.   

 

An accelerated fault-injection by engaging the RTL net list along with 

the logic gate-level net list is proposed in [Gar12]. A differential fault 

simulation approach, documented in [Ale12], has been developed based on 

conventional simulation tools and a novel parallel, soft-error optimized 

simulation tool. This method benefits from various optimization techniques 

targeting a smaller elapsed CPU time while preserving the accuracy of the 

results. As an example of engaging mathematical optimization methods in 

order to speed up the fault-injection phase, one can mention [Asa12], where 

an analytical soft-error reliability modelling technique has been employed in 

order to reduce the fault-injection time while achieving a higher accuracy. 

 

The presented framework in this chapter has been developed based 

on simultaneous usage of built-in commands, provided by commercial HDL 

simulators, along with the saboteurs technique. The latter is used in order to 

accelerate the fault-injection phase while preserving the possibility of 
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imitating different fault models. The simulation-commands will be used to 

directly modify the imposed control signals of each saboteur. As a result, it 

is not required to modify any component of a design, including the 

component which has been targeted for fault-injection as well as the top-

level modules. This is a key factor in our approach. 

In the next section, the details of our developed framework will be 

discussed.  

 

3.3 The developed fault-injection framework 
This section discusses the details of the developed fault-injection 

framework. The development phase will be explained in a bottom-up 

approach. First, the  finest granularity modules, the Fault-Injection-Units 

(FIUs) will be explained, and subsequently the function of FIUs in the fault-

injection process will be explained.  

 

3.3.1 Fault-injection units 
The developed fault-injection framework of this chapter is able to 

inject the majority of existing models of soft-errors in a HDL design. To be 

more specific, it can imitate all fault models which are supported by the 

saboteurs technique, including Single-Event-Transient (SET), Single-Event-

Upset (SEU) and delay faults. Furthermore, this framework is able to 

support different levels of hierarchy in order to conduct soft-error analysis. 

We will explore different levels of hierarchy to show the capabilities of our 

framework as compared to conventional fault-injection tools. 

 

A basic element in our framework is the introduction of Fault-

Injection-Units (FIU). FIUs are units which are added to the target 

components (which can be a net or register, in a hardware description 

language) in order to inject a fault of the intended fault model. FIUs work 

almost the same as saboteurs,  i.e. they are inactive during the normal 

system operation. They alter the value or timing characteristics of a net or 

register during fault-injection when they are active. However, the control 

mechanism of FIUs is completely different as compared to the saboteurs. If a 

FIU is attached to a net or register, it is not required to change any 

hierarchical levels of a design. The insertion of FIUs can be done either 

manually (for a small number of FIUs) or automatically (for a very large 
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number of FIUs) in a system. As the main goal of this chapter is to assess the 

degree of acceleration achieved by the proposed framework in the fault-

injection phase, FIUs are inserted manually into the net list of our design. 

However, all FIUs can be automatically inserted using the well-known 

automatic saboteur insertion techniques [Gri11]. 

 

 In order to control a FIU, a Fault-Injector-Signal (FIS) is incorporated 

into each FIU; it is directly controlled by built-in commands. Whenever the 

FIS takes value ‘1’, its corresponding FIU will inject the associated fault 

model into the target component, which can be a net or register. However, a 

FIU will not interfere in the normal operation of the component if its 

corresponding FIS holds the value ‘0’.  
 

All FIUs have to be inserted into the HDL net list prior to the 

compilation process. Characteristics of each FIU in terms of ‘time instance’ 
(i.e. time of occurrence) and ‘fault duration’  (i.e. the duration that a fault 

manifests itself in the system) are determined at the instantiation time of 

each FIU, during the set-up phase. Therefore, it is not required to recompile 

any part of the design during the fault-injection phase. 

 

In the following paragraphs, different models of FIUs will be 

introduced and discussed. The first FIU model has been developed to inject 

a SET in combinational-logic blocks. The second FIU model injects a SEU in 

sequential-logic blocks, and the last model injects a delay fault in a net in the 

critical path. Figures 3.3a and 3.3b show the first FIU model which injects a 

SET into a target net indicated by ‘V’. As can be seen in these figures, if the 

FIS signal is ‘0’, the ‘V’ signal will be derived from its normal signal value 

(input). However, if the FIS signal is ‘1’, a glitch will be injected in the ‘V’ 
signal. The characteristics of the perturbation in the ‘V’ signal, which are 

‘time instance’ and ‘fault duration’, are completely bounded to the FIS 

signal. It is important to mention that FIS signals are directly controlled by 

the built-in commands of the simulator program; hence no parts of the top-

level components need to be modified. Figure 3.3a forces a positive 

transition (0-to-1) in the ‘V’ signal while Figure 3.3b shows a FIU injected as 

a negative transition (1-to-0) in the ‘V’ signal. 
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Figure 3.3. FIU insertion for a SET. a) positive transition (0-to-1). b) 

negative transition (1-to-0). 

Figures 3.4a and 3.4b show two FIUs models in order to inject delay 

and SEU fault models in a nominal component, respectively. The delay fault 

model is represented by a buffer in Figure 3.4a. In this figure, when the FIS 

signal is ‘1’, a delayed value of the ‘V’ signal (via the buffer) will be passed 

to the output which is consistent with the delay-fault model. A FIU model to 

inject a SEU is shown in Figure 3.4b. If the signal FIS is ‘1’ in this figure, the 

inverted value of the input will be passed to the output, otherwise the 

normal input will go to the output gate. As can be seen in these figures, if the 

signal FIS is ‘0’, the ‘V’ signals in all FIUs will take their fault-free value. 

However, if the FIS signal is ‘1’, the V signal will get an erroneous value. 
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Figure 3.4. FIU insertion for delay and SEU faults. a) FIU insertion for a 

delay fault and b) the SEU fault model. 

One of the limitations of FIUs is that all key characteristics of the 

injected perturbation, such as ‘time instance’ and ‘fault duration’ are directly 

related to the FIS signal. In the conventional saboteur technique, all the 

calculations to perform an effective fault-injection (such as overlapping the 

duration of a perturbation with the positive clock edge) are dynamically 

carried out by observing the component of interest by saboteurs during run-
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time operation [Arl03]. This  dynamic assignment of fault durations during 

the run time makes saboteurs capable of injecting an effective fault. 

However, in our framework, all characteristics of a perturbation have been 

embedded in the FIS signals which need to be defined before run-time of a 

system. It will be shown that selection of a specific mathematical distribution 

function for the duration of the signal FIS with regard to the system clock 

period (Tclk) causes most of the changes of FIS signals cover a positive clock 

edge of the system clock; which means that a change in the FIS signal will be 

captured by the system clock and hence will be propagated into the higher 

levels of hierarchy. As a result, all FIS signals can be statically scheduled at 

the beginning of the fault-injection phase. This issue will be elaborated later 

on in this chapter. 

 

3.3.2 Embedding FIUs in the fault-injection phase 
The developed framework of this chapter is an integrated fault-

injection and evaluation framework. The main achievement of this 

framework is to provide a rapid soft-error injection in a HDL-based system. 

After the insertion of FIUs into the predefined nets/registers of a system 

(either manually or automatically), the user needs to specify some 

characteristics of the system under analysis. More specific the system clock 

period (Tclk) and the overall execution time of the workload (Texecution) for the 

circuit under analysis. Several mathematical distribution functions have 

been investigated in order to provide the possibility of statically determine 

fault durations with regard to Tclk. The detailed explanation of these 

assessments will be given in the section 3.4. As a result of those experiments, 

it has been established that if durations of FIS signals form an exponential 

distribution function with an arithmetic mean value µ which equals to Tclk, 

about 90% of the perturbations will overlap with the positive clock edge of 

the system. In this case the internal state of the circuit under analysis will be 

potentially affected.  

 

To determine the exponential distribution function for fault 

durations, any mathematical tool can be used. In our framework, a 

MATLAB routine determines fault durations of each FIS signal such that all 

the different fault durations compose an exponential distribution function 

with the mean value µ equal to the system clock period. As a result, each FIS 
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signal has a different sample with the same time instance but different fault 

durations. This concept is shown in Figure 3.5. Here, four different examples 

of a glitch signal are shown. All the samples have started from the same time 

instance (6ns) but the duration of each sample (fault duration) is different. In 

this example, the last two perturbations have an overlap with the positive 

clock edge of the system clock and so are able to propagate into the system.  

 

 

System clock

Time instance
Fault duration

Sample 1

Sample 2

Sample 3

Sample 4

Time (ns)

5 15 256

 
Figure 3.5. Different fault durations for a perturbation. 

 

Finally, the framework combines all the prerequisite information, 

including the number of samples for each FIS (which will be determined by 

the user), time instance (which is a random time) and fault duration (which 

will be determined by a MATLAB routine). To be able to automate the 
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execution of fault-injection, all the mentioned information is stored in a  

macro file. This  macro file is directly executable by a commercial simulator 

program, in our case QuestaSim® from Mentor Graphics [Men10]. Moreover, 

our  framework observes the logged result of the simulator to see whether a 

fault was able to affect the circuit under analysis or not, and the proportion 

of affected faults. 

 

Figure 3.6 shows an overview of our proposed framework. As can be 

seen in this figure, it is composed out of three main phases: set-up phase, 

fault-injection phase and evaluation phase. During the set-up phase, the user 

incorporates FIUs into the HDL representation of the system. As mentioned 

before, this step can be carried out automatically [Gri11]. The FIU 

incorporation is a partial code-modification that imports FIUs into the 

predefined nets/registers inside the HDL net list. The predefined 

nets/registers are selected randomly. The user also needs to define the 

specifications of the system under test for the framework. These 

specifications include the system clock period Tclk, the total execution time 

Texecution of the workload, and the total number Nfault-injections of fault-injection 

experiments. This information will be used by different parts of the 

framework in order to define a distribution of  fault durations for each FIS.  

As mentioned before, a software routine developed in MATLAB has been 

used to specify the distribution of fault durations, in such a way that the 

mean value µ  of all the samples of each FIS will be equal to the Tclk. This is 

because the maximum overlap between a perturbation and a positive clock 

edge of the system can be achieved. 
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Figure 3.6. Overview of our fault-injection framework. 

Each fault-injection is carried out during one execution of a 

workload. The time when the processor starts executing a workload is 

known as the reset time Treset, while the time when the processor finishes the 

workload is known as the  execution time Texecution. The time instance of each 

FIS is completely random in time, with the following marginal constraint. Its 

minimum limit equals to ten clock-cycles after the reset time, Treset + 10*Tclk, 

while its maximum limit is equal to ten clock-cycles before the end of the 

workload execution-time, Texecution – 10*Tclk. These boundaries can be 

represented as: 

 

        Treset + 10 * Tclk                  Texecution – 10 * Tclk                              (3.1) 

 

These constraints have been selected in this way to allow the injected 

faults to propagate during the active execution time of the system [Wan11]. 

Hence, there is potentially sufficient time for an injected fault to alter the 

status of the system.  

 

The fault duration of each FIS signal is calculated based on a specific 

distribution function, which is an exponential distribution function in our 
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case. The ‘time instance’ and ‘fault duration’ of each FIS is stored into a text 

file named FIS characteristics file (as is shown in Figure 3.6 ). 

 

In the fault-injection phase, a software program named ‘linker’, 
which has been implemented by a C++ program, combines the 

characteristics of each FIS signal, i.e.  ‘time instance’ and ‘fault duration’ in 

order to generate the macro file. The macro file can be read by a commercial 

simulator, which is QuestaSim [Men10] in our framework. Figure 3.7 shows 

the pseudo-code for the macro file.  

 

 

Do experiment j 

 { 

  Restart the design 

  Simulation top-module 

  Run @’time instance’ 
  Force FIS(j) to faulty-value 

  Run @’fault duration’ 
  Force FIS(j) to fault-free value 

} 

 

Figure 3.7. Pseudo-code of the generated macro file. 

The key information within this macro file include: 

 top module: the module that must be simulated during the fault-

injection phase. 

 time instance: the ‘time instance’ that the specific FIS signal FIS(j) 

will be activated. 

 force: direct access to each FIS via built-in commands of the 

simulator program. This direct access is the key part to accelerate 

the fault-injection  phase. 

 fault duration: the duration of each FIS signal, FIS(j), that has 

been calculated by a MATLAB program during the set-up phase 

and has already been saved in the FIS characteristic file. 
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 Number of Experiments: the total number of fault-injection 

experiments that has been determined by the user during the set-

up phase. This number is started from an initial value (which is 

random) and will be increased until a convergence point is 

determined in the fault-injection results. The determination of the 

convergence point is discussed in detail in the next section. After 

execution of the macro file, the simulator program logs the 

simulation data. The data include fault-free results (golden run) 

and the fault-injection results, obtained from the fault-injection 

phase. 

 

Constructing the macro file is a key issue in our approach, since it 

integrates all the information which has been produced by the MATLAB 

routine along with the specific requirements of each FIU in order to provide 

built-in commands a direct access to the FIS signals. When the macro file is 

applied to the simulator program, all fault-injections will be automatically 

carried out and the output information will be subsequently logged into a 

text file in order to be interpreted during the evaluation phase. This latter 

phase is accomplished by tracing differences between the golden-run and 

the data gathered during the fault-injection phase. The vulnerability of each 

net/register will be calculated by considering the proportion of faulty 

outputs over the total number of fault-injections in that net/register. 

 

In Section 3.4, the developed framework will be employed to carry 

out fault-injections in two processors, an AVR microprocessor and a DSP 

Xentium processor. Fault-injection experiments on the AVR microprocessor 

have been used to assess the degree of speed-up achieved by the proposed 

framework. The results of fault-injection in the Xentium processor has been 

used to address some other facets of simulation-based fault-injections. We 

mention the importance of hierarchy levels of simulation-based fault-

injection and the final number of fault-injections (number of experiments) in 

a fault-injection process. The architecture of the Xentium processor has 

already been explained in  Chapter 2. All the following data have been 

achieved by applying the developed framework to the original architecture 

of the mentioned processors. 
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3.4 Time acceleration results 
The main contribution of the developed framework is to integrate the 

possibilities of built-in commands techniques along with the saboteur 

technique to speed-up simulation-based fault-injections. Furthermore, it is 

very important to have the ability of modelling various fault models in the 

developed framework. As the dominant fault models for soft-errors are SET 

and SEU [Wan11], there is a particular interest in emulating these two fault 

models in our framework. A SET fault is modelled by the logic depicted in 

Figure 3.3a and a SEU will be modelled by the logic as shown in Figure 3.4b.  

 

Table 3.1 summarizes possible fault models for different simulation-

based fault-injection techniques. Since the representation of fault models in 

our framework is based on the saboteur technique, the capability of 

modelling faults for the saboteur technique and our developed methods is 

identical. However, fault-injection experiments will show that the elapsed 

CPU time in our developed framework is much lower (up to 67%) as 

compared to mutant techniques. It is important to mention that even though 

the mutant technique has the best capability to model different faults, 

conducting fault-injection experiments with this technique requires a 

considerable amount of elapsed CPU time. The mutant technique is known 

as the slowest simulation-based fault-injection method.   

 

Table 3.1. Possible fault models in different simulation-based 

fault-injection methods. 

 

 

                                                      
1 Multiple Event Upset 

Injection technique Possible fault models 

Built-in commands SET, delay fault 

Mutant SET, SEU, delay fault, MEU21 

Saboteur SET, SEU, delay fault 

Check-point on simulator [Rod02] SET, SEU, delay fault 

Fault collapsing [Rod02] SET 

Our developed framework SET, SEU, delay fault 
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To assess the degree of acceleration gained by the developed 

framework, our fault-injection results on an AVR microprocessor have been 

used. During the fault-injection phase, the AVR microprocessor executes 

two benchmarks from the Mibench benchmark suite [Gut01]: a bit-count and 

a quick-sort program, both from the automotive and industrial control 

domain of the Mibench benchmark repository. The bit-count program tests 

the bit-manipulation abilities of a processor by counting the number of bits 

that are set to ’1’ in an array of integers. The quick-sort program sorts one 

hundred integer numbers. The motivation to use these two benchmarks is to 

provide a fair comparison between different fault-injection frameworks of 

the AVR microprocessor; this because other simulation-based methods also 

used these two benchmarks to conduct fault-injection results with respect to 

the AVR microprocessor. 

 

The framework described in the Section 3.3 has been used  to inject 

SEUs on sequential components (registers and flip-flips) of an AVR 

microprocessor (flip-flops, SRAM) as well as SET faults into its 

combinational components (nets inside the combinatorial logic). 

Furthermore, the challenge of static determination of fault durations is 

addressed in the following.   

 

As mentioned before, saboteur and mutant techniques can gather the 

timing information of a net/register during run-time and then inject a fault at 

a positive clock edge. However, this is not feasible in our framework since 

all the information about faults need to be stored in a macro file before 

starting a fault-injection experiment. In other words, all fault characteristics 

should be statically scheduled prior to a fault-injection experiment.  

 

Two essential parameters for each injected fault are ‘time instance’ 
and ‘fault duration’. While ‘time instances’ are assigned randomly, ‘fault 

durations’ need to be pre-calculated to cause SETs to appear during a 

positive clock edge. In order to statically schedule fault durations, several 

distribution functions have been evaluated to assess their degree of 

effectiveness with regard to fault-injection. As a rule of thumb, the more 

fault-injections occur during the positive edge of the system clock, the more 

it propagates faults into a system. Therefore the goal is to define a 
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distribution function of the fault duration which can cause maximum 

overlap between fault durations and a positive edge of the system clock (a 

so-called effective fault). Figure 3.8 shows the concept of effective and 

ineffective faults. An effective faults occurs during the positive edge of a 

system clock and has a potential to be captured by a flip-flop or register; 

while an ineffective fault occurs outside of the time window of being 

captured by sequential logic. Suppose that a distribution function 

‘Distribution_a‘ causes 10 effective faults out of 100 samples of a SET while 

distribution function ‘Distribution_b‘ causes 50 effective faults out of 100 

samples, then distribution function ‘Distribution_b‘ is a better candidate to 

define the duration of fault signals. 

 

 

System-clock

Effective SET fault

Ineffective SET fault

 
Figure 3.8. Effective and ineffective SET faults. 

Table 3.2 shows three distribution functions which have been 

investigated to define the duration of FIS signals in our experiments. This 

table shows three different distribution functions, which are ‘Normal’, 
‘Poisson’ and ‘Exponential’ distribution functions. The second column of 

this table shows three different mean values µ which have been considered 

to calculate duration of faults. The third column of this table is the 
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percentage of injected faults which overlap with the positive edge of the 

system clock. 

 

 As can be seen in Table 3.2, in the case of an exponential distribution 

with mean value µ  equals to the system clock period Tclk, 90% of the injected 

FIS signals will overlap with a positive edge of the clock. This result implies 

that by defining an exponential distribution with a mean value equal to the 

system clock period Tclk, is a feasible solution to assign the duration of FIS 

signals at the beginning of the fault-injection experiments in the set-up 

phase. 

 

Table 3.2. Fault duration classifications for the AVR 

microprocessor. 

Distribution function 
Mean value 

 µ 

Percentage of effected 

faults (%) 

Normal 

Tclk 54 

0.5*Tclk 62 

2*Tclk 38 

Poisson 

Tclk 40 

0.5*Tclk 68 

2*Tclk 53 

Exponential 

Tclk 90 

0.5*Tclk 76 

2*Tclk 78 

 

To conduct fault-injection experiments in the case of the AVR 

microprocessor, 100 FIUs were inserted into different random parts of the 

data path of the AVR and then 200 samples were applied to each FIS signal, 

resulting in 20,000 fault-injections in total. The duration of the samples of 

each FIS were assigned by an exponential distribution with a mean value µ 

equal to the system clock period. The ‘time instances’ of all FIS signals have 

been selected randomly, with the boundary conditions of  Equation (3.1). 

The density of the injected FIS signals in the net/registers of a component is 

proportional with the occupied silicon area of that component. For instance 

if the Program-Counter (PC) occupies two times more area as compared to 
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the Accumulator (AC), the number of FIS signals on the PC should be two 

times larger as compared to the AC. 

 

The elapsed CPU time (real time) for our developed framework as 

well as that of some conventional simulation-based methods have been 

summarized in Table 3.3. The numbers in this table have been achieved by 

implementing all three methods, including saboteur, mutant and our 

developed method with identical parameters with regard to the AVR 

microprocessor. The last column of this table shows the achieved 

improvement for our framework as compared to saboteur and mutant 

techniques. The ‘reference point’ in this table means that the elapsed CPU 

time for the saboteur and mutant techniques has been compared to the 

elapsed CPU time of our proposed framework. It shows that using our 

framework instead of the saboteur technique leads to 23% reduction in 

elapsed CPU time while using our framework instead of the mutant 

technique leads to 66% reduction.  

  

Table 3.3. Elapsed CPU time for conventional simulation-based methods. 

Fault-injection technique 
Elapsed CPU time 

(hours) 

 

Elapsed CPU time 

improvements if our 

presented framework was 

used (%) 

Saboteur [Nic11] 5.2 23% 

Mutant [Nic11] 12 66% 

Our presented framework 4 Reference point 

 

As mentioned before, all experiments listed in Table 3.3 have been 

carried out with similar parameters, in terms of the total number of fault-

injections (20,000), fault models, the circuit under analysis (AVR 

microprocessor) and the infrastructure which has been used to carry out 

simulations. Table 3.3 shows that the elapsed CPU time decreases from 23% 

(as compared to the saboteur technique) up to 66% (as compared to the 

mutant technique). It is noted that part of the longer elapsed CPU time for 

the mutant technique is caused by the fact that the circuit under analysis 

needs to be partially recompiled if a different FIS signal is selected for fault-
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injection. This means 200 partial recompilations are carried out for this 

campaign. This recompilation is not required for the saboteur technique as 

well as for our developed technique. In addition, the speed-up of our 

method as compared to the saboteur technique is based on the static 

schedule of the control signals at the beginning of the fault-injection 

experiments, during the setup phase. 

 

A comparison between the required CPU time of our proposed 

framework over some accelerated methods have been given in Table 3.4. The 

numbers shown in Table 3.4 have been extracted from [Ber02]. It is also 

important to mention that the numbers of Table 3.4 are extracted directly 

from the associated literature, so the target system is not identical for all 

these three methods. Even though the improvement of the check-pointing 

method is better than ours, the check-point method is only beneficiary if the 

size of the execution time of the workload is time-limited, meaning only a 

small number of checkpoints is required. Otherwise, storing  and retrieving 

checkpoints impose a high overhead on CPU time, which will cause a 

significant increase in elapsed CPU time.  

 

Table 3.4. Elapsed CPU time improvement using accelerated techniques. 

Accelerated technique CPU time improvement (%) 

Check-pointing [Ber02] 43.9 

Fault collapsing [Ber02] 15 

Our presented method 23 

 

 

3.5 Level of hierarchy versus results of simulation-
based fault-injections 

This section addresses two issues concerning simulation-based fault-

injections. The first issue is addressing the impact of timing information of 

the net list in fault-injection experiments. Our goal here is to determine the 

difference in fault-injection results if the experiments are carried out on a 

pre-synthesized HDL net list versus a detailed post-synthesized timing net 

list of a processor.  
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The second issue is the impact of the number of fault-injection 

experiments on the convergence of fault-injection results. The motivation to 

address the latter is that a different number of fault-injections might lead to 

a different sensitivity level for a system [Tou07]. Our goal is to find the point 

in the number of fault-injection experiments where the behaviour of the 

processor to injected faults is not dependent on the number of fault-

injections any longer. 

 

In this section, the above-mentioned questions are answered by the 

assessment of the effect of SETs on a modern high performance DSP 

processor, the Xentium processor from Recore-Systems [Rec11]. The 

Xentium processor has been used as a case study here; however, the 

mechanism employed here can be used in any other processor to achieve a 

convergent point in fault-injection results.  The detailed architecture of the 

Xentium processor has already been described in Chapter 2.  Two sets of 

fault-injection campaigns have been carried out by using two models of the 

Xentium processor: the first model is a pre placed-and-routed VHDL net list 

(RTL net list, without timing information) and the second model is a post 

placed-and-routed Verilog net list (gate-level net list including estimated 

timing information). The number of fault-injection experiments has been 

increased from an initial value. The initial value  should be fairly small; i.e. it 

would be possible to increase that number tens of times and still conducting 

fault-injection experiments for this increased number would be feasible. This 

initial value depends on the workload execution-time as well. For example if 

a workload takes 10s (simulation-time) to be executed, 500 fault-injections 

need 5,000 seconds (about 1 hour and a half). The number of fault-injections 

will be increased from that initial value until a point of convergence in fault-

injection results is established.  

 

These simulation experiments only investigate the effect of SETs on 

the data path of the Xentium processor. The framework described in Section 

3.3  has been used to carry out SET injections on two models of the Xentium 

processor; a timed net list (hereafter referred to as gate-level net list) and a  

behavioural net list (hereafter referred to as RTL). 
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The types of impact of each injected fault on the processor can be 

classified as Silent Data Corruption (SDC) or Detected-Unrecoverable-Error 

(DUE) [Nic11]. Since the original design of the Xentium processor does not 

have an error indicator signal, which indicates detection of an error by the 

Xentium processor, the experimenter cannot observe DUEs. As a result, the 

functional response of the processor with respect to each injected fault has 

been classified into one of the following categories: 

 Silent Data Corruption, SDC: this condition is met if the error propagates 

through the circuit without awareness of its occurrence by the system. So 

the processor will provide an output without any error flag while its 

output is not correct. 

 Time out: is the possibility that the processor unexpectedly stops its 

application, before execution of the whole workload. The outputs of the 

processor provide no meaningful output data in this case. 

 Correct behaviour: the processor completes the application. 

 

The results of the processor have been represented by a percentage 

(%), e.g. if 10 out of 100 fault-injections produce a Silent Data Corruption 

(SDC) failure, the SDC failure-sensitivity of the processor will be represented 

as 10%. 

 

The fault-injections have been carried out on all ten functional-units 

of the data path of the Xentium processor. In order to get an overall view of 

the data path behaviour, one should consider that the data path of the 

Xentium consists of six functional-units (A, E, M, S, C, P), so the total 

sensitivity rate of the data path (Ptotal) can be  calculated as: 

 

Ptotal = (AE/Atotal)*PE + (AS/Atotal)*PS + (AA/Atotal)*PA + (AC/Atotal)*PC      (3.2) 

+ (AP/Atotal)*PP + (AM/Atotal)*PM 

 

Here AE, AS, AA, AC, AP, AM denote the area of each functional-unit 

(E, S, A, C, P and M units, respectively) and the Atotal represents the total area 

of the data path. This information can be extracted from the synthesis results 

of the Xentium Processor. The parameters PE, PS, PA, PC, PP, PM in Equation 

(3.2) are the SDC sensitivity for each functional-unit obtained directly from 

fault-injection results. 
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In each fault-injection experiment, one net within a specific 

functional-unit is automatically selected; then the desired fault model is 

injected into the design and finally the simulation results of the processor are 

compared with the correct values obtained from fault-free simulations. The 

number of fault-injection experiments, which means a higher number of 

selected nets, has been increased from 500 (0.5K) to 5500 (5.5K) experiments. 

It is important to note that all fault-injection experiments have been 

conducted for three processor workloads, quick-sort, bit-count and basic-

math program from the Mibench benchmark repository [Gut01]. The basic-

math workload  implements more complicated functions, such as the square 

and exponential function.   

 

The behaviour of each model of the Xentium net list for three 

different workloads has been depicted in the charts of Figures 3.7a and 3.7b. 

Figure 3.7a shows the results of the gate-level net list whereas Figure 3.7b 

depicts the results for the RTL net list. The Y-axis in these charts shows the 

sensitivity of the processor for Silent Data Corruption (SDC), because this 

category means the percentage of injected faults that produce a functional 

failure at the output. The X-axis represents the number of fault-injections. 

The initial value of the number of fault-injections has been randomly 

selected to 500. The selection of this number does not play any role in fault-

injection results because this initial value will be increased until the 

difference between the results of fault-injection are negligible.  

 

The first observation from the graphs of Figure 3.9 is with regard to 

the general behaviour of the RTL net list with regard to SETs. It can be seen 

that the RTL model shows lower sensitivity for SETs as compared to the 

gate-level net list. An explanation for this observation is that the gate-level 

net list has more possibilities for fault propagation than to the RTL gate-level 

net list. For example, an injected glitch will interfere with the delay of a gate 

in the gate-level net list and consequently changes the whole timing of an 

output, which in turn could result into a functional error;  however this 

situation cannot occur in the RTL net list since there is no timing information 

for gates.  
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Our goal is to find the point where fault-injection results are almost  

identical and it is not worth increasing the number of fault-injection results 

after that. We call this behaviour the point of convergence. Also, the 

contribution of each net list to produce a point of convergence will be 

discussed.  As a general rule, the sooner fault-injection results can reach a  

point of convergence, the better that net list qualifies to explore a fast 

estimation of the fault behaviour of the processor. 
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Figure 3. 9. Sensitivity for SDC faults of different workloads versus the 

number of fault-injections (a0 to a5 correspond to the first to sixth 

campaign of fault-injections, respectively). 
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To explore the convergence of RTL versus the gate-level net list, the 

theory of convergence of real numbers has been employed; i.e. the distance 

between two real numbers is the absolute value of their difference. For 

example, if ‘ai’ and ‘aj‘ are two terms of a sequence ‘an’, the distance between 

‘ai’ and ‘aj‘, denoted by ‘d(ai,aj)’ is defined as: 

 

                                     d(ai,aj) =|ai - aj|                                            (3.3) 

 

We define ‘aconvergence’ as a limit-of-sequence ‘an’ if for all terms after 

‘aconvergence’ the difference between two sequential terms is negligible. In 

another words, after some point, the terms of a sequence should get closer to 

each other. The mentioned behaviour can be formulated as 

(  means a very small value and   means for every instance)  

 

                 (               )                                               (3.4) 

 

Which means for all  the items after the location    the difference 

between those items and the limit-of-sequence ‘aconvergence’ is negligible. 

Furthermore, one can conclude that the sequence ‘an’ is a convergent 

sequence and  it converges to ‘aconvergence’. In our experiments, ‘an’ is defined 

as the series of SDC sensitivities, which can be extracted directly from Figure 

3.9. As an example, in the case of the gate-level net list (Figure 3.9a) for the 

basic-math benchmark, one obtains sensitivities as a0=5%, a1=6%, a2=8%, 

a3=10%, a4=11% and a5=12% (also indicated in the figure). It is interesting to 

know how the results of convergence of each fault-injection are. Let us  

assume that ‘aconvergence’ in each fault-injection case is the SDC sensitivity of 

5500 fault-injections for that specific workload, or ‘a5’ (which can be directly 

extracted from the graphs in of Figure 3.9). For example, the ‘aconvergence’ of the 

gate-level net list for the basic-math workload is 12%. If one can find an n0 

value in Equation (3.4) while the   value is relatively small (for example 0.2 

as compared to 3), one could state that the fault-injection results are 

relatively increasing in terms of convergence.  

 

To achieve the mentioned goal, the distance ‘d’ needs to be calculated 

for different numbers of fault-injections in each net list/workload. A 
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reasonably small value of ‘d’ for the smallest number of fault-injections is an 

indication in terms of the speed of convergence of that sequence.   

 

Table 3.5 shows the calculated ‘d’ for the gate-level net list for 

different numbers of fault-injections. Table 3.6 depicts ‘d’ for the RTL net list 

for different numbers of fault-injections. These numbers have been directly 

extracted by calculating the difference between the SDC sensitivity of a 

specific number of fault-injections (the chart in the Figure 3.9) and the SDC 

sensitivity of 5500 fault-injections for the same net list/workload. As the 

difference between 5500 fault-injections and itself is zero, the ‘d’ value for 

5500 fault-injections has been removed from the tables. For example, in the 

case of the gate-level fault model and basic-math workload, a1 is 6% while 

the ‘aconvergence’ is 12%, which gives: 

 

                                   d=|a1 - aconvergence|= 6%.                                 (3.5) 

 

This value has been indicated by underlining in Table 3.5. All values 

of ‘d’ in the Tables 3.5 and 3.6 have been calculated in a similar way. The last 

row in each table shows the average ‘d’ of all three workloads. 

 

 

Table 3.5. Distance d between the SDC sensitivity and the  

SDC of 5500 fault-injections for the gate-level net list. 

Benchmark 
Number of fault-injections 

500 1500 2500 3500 4500 

Basic-Math 7 6 4 2 1 

Quick-sort 17 13 9 2 1 

Bit-count 9 5 1 0 0 

Average value for 

three workloads 
11 8 4.6 1.3 0.6 
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Table 3.6. Distance d between the SDC sensitivity and the SDC of 5500 

fault-injections for RTL net list. 

Benchmark 
Number of fault-injections 

500 1500 2500 3500 4500 

Basic-Math 6 6 4 4 4 

Quick-sort 5 5 6 5 2 

Bit-count 6 6 3 4 3 

Average value for 

three workloads 
5.6 5.6 4.3 4.3 3 

 

Let us assume that the epsilon value   is considered 2 in Equation 

(3.4). The average values (last rows) of Table 3.5 show that the gate-level net 

list indicates a better convergence with regard to the RTL net list if the 

number of experiments are equal or more than 3500; this is because the value 

‘d’ for the average workloads is relatively small in the gate-level fault-

injections at this point and after that. The RTL net list shows a smaller ‘d’, 
only if the number of fault-injections are smaller than 1500 (5.6 as compared 

to 11 and 5.6 as compared to 8); however, the d value for the gate-level net 

list is smaller if the number of experiments is more than 1500.   

 

The above discussion shows that the results of increasing the number 

of fault-injections are more convergent in the gate-level net list if the number 

of experiments reaches 3500 fault-injections. In other words, the response of 

the Xentium processor will not be dependent on the number of fault-

injections exceeding 3500. 

 

As a summary, with the involvement of timing information of the net 

list and a sufficient number of fault-injections, the experimenter can rely on a 

relative small number of experiments to come to a solid conclusion with 

regard to the SDC sensitivity of a circuit under analysis. However, including 

timing information during the fault-injection phase will result in an 

increased value of the elapsed CPU time; this, because the Standard-Delay-

Format (SDF) back annotation to assign the timing information to each net 

increases the simulation time. However, by using the developed framework 

in section 3.3, the overall experiments can be carried out faster. 
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3.6 Conclusions 
In this chapter, an accelerated simulation-based fault-injection 

technique for soft-errors was presented. Considering that the main 

drawback of simulation-based fault-injection techniques is the long elapsed 

CPU time required to conduct experiments, the main goal of the proposed 

framework was to decrease the elapsed CPU time required to carry out 

fault-injection experiments. This goal was achieved by using the benefits of 

the saboteur technique in order to model different faults along with built-in 

commands techniques to speed-up fault-injections. A special distribution 

function, the exponential distribution, was used to statically schedule the 

characteristics of each FIS signal at the start of  fault-injection experiments, 

during the start-up phase. Simulation experiments carried out on an AVR 

microprocessor revealed that the elapsed CPU time improves between 27% 

to 67% as compared to conventional fault-injection models. 

 

Moreover, the importance of timing information of the net list in soft-

error sensitivity analysis was addressed in this chapter. Conducting fault-

injections on the gate-level net list which has timing information leads to a 

faster point of convergence in fault-injection results.   
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CHAPTER     4 
 

 

Pulse-Length Determination 

Techniques for Rectangular SET 

Faults 1 
  

                                                      
Parts of this chapter have been published as paper titled "Pulse-length determination 

techniques in the rectangular single event transient fault model" in the IEEE International 

Conference on Embedded Computer Systems: Architectures, Modelling, and Simulation 

(SAMOS), 2013.  
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ABSTRACT - In the previous chapter, it was shown that the logic-gate level net list of a 

circuit is quite suitable to conduct simulation-based fault-injection with regard to Single Event 

Transients (SETs). However, the accuracy of the SET model itself is crucial in logic-gate level 

simulation-based fault-injections. For example, the fault duration of a rectangular pulse, which means 

how long a SET will manifest itself in a net list, will affect the influence of the injected fault on the 

system. To the best of our knowledge, there is still no consensus over techniques for determination of 

the length of SET fault models. This chapter addresses two techniques to determine the pulse length of a 

rectangular SET fault model. The first determination approach has been extracted from radiation 

testing (carried out by iRoC-Technologies [Iro12]) along with using a fined-grained transistor level 

SET analysis tool on simple library logic gates. The second determination approach has been extracted 

from analysing asymptotic behaviour  of SETs in a 45nm CMOS technology node. These two 

determination techniques have been employed to develop two models for SETs at the logic-gate level. To 

examine the applicability of the developed models, they have both been applied to fault-injection 

experiments based on the logic-gate level net list of the Xentium processor. Fault analysis shows that 

applying these two fault models causes the fault-injection results to converge up to four times faster, as 

compared to conventional SET fault models. 

 

4.1 Introduction 
Single Event Effects (SEEs) have gained importance since the early 

nineties when several experiments repeatedly revealed that about one third 

of system failures are due to SEEs, rather than permanent faults [Rie94]. 

SEEs appear as a data corruption in the sequential or combinational logic of 

a digital circuit. As mentioned in Chapter 2, the impact of SEEs in the 

combinatorial logic might lead to a momentary voltage pulse at the output 

of the logic, a so-called Single Event Transient (SET) [Nic11]. This SET might 

be captured by a consecutive flip-flop and as a result, the status of a system 

will be erroneous.    

 

Recently, there have been many industrial domains where the 

reliability of digital ICs is a crucial contributing factor in the reliability of the 

entire system. As examples, one can mention the automotive industry, in 

which full hybrid and auto-drive cars are about to be produced (at the time 

of writing this thesis, 2014), as well as medical instruments in which a single 

failure might harm a human life. As a consequence, there is a great interest 

to study the sensitivity of particular systems with regard to SEEs. 

 

Fault-injection has long been recognized as a particularly attractive 

method to assess the vulnerability of a system with regard to SEEs [Arl03]. 

Fault-injection evaluates the vulnerability of a circuit under test by speeding 
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up the occurrence rate of SEEs. Fault-injection can be carried out at different 

abstraction levels, including real-life radiation testing, simulation-based and 

emulation-based fault-injections [Zia04]. 

 

Starting from the first category, real-life radiation-testing is carried 

out by stressing the actual hardware with real environmental parameters, 

for example by means of a laser beam or bombarding it with high-energy 

particles. This injection  method is similar to the real physical nature of SEEs, 

but conducting such experiments is very complex and expensive. 

Simulation-based fault-injections are conducted by modelling SEEs in a 

simulation model of a system; subsequently the faults will be evoked in the 

logic-gate level net list of a circuit. The simulation-based fault-injection is a 

very useful experimental approach to evaluate the vulnerability of a system; 

the system can still be under development, as only an HDL net list is used. 

Moreover, the simulation-based fault-injection provides a very high degree 

of controllability over where and at which time faults are injected. As a 

result, there is a high degree of observability of the propagation of an 

injected fault. Finally, emulation-based fault-injections which have recently 

been introduced in [Ent12], can combine the flexibility and controllability of 

simulation-based fault-injections with the speed of radiation-based fault- 

injections. However, the circuit under test must be fully synthesizable which 

limits the usage of benchmarks in fault-injection experiments. 

 

Considering the above mentioned categories, simulation-based fault- 

injections have raised the attention in the academic community as well as in 

the industrial world [Arl03]. However, the development of a realistic 

simulation model is a crucial factor to conduct simulation-based fault- 

injections. In this chapter, the focus will be on the influence of SEEs in  

combinational logic, or SETs, and a realistic simulation model will be 

developed which can be used in complex logic-gate level net lists (in the 

remainder of this chapter, gate-level net list means logic-gate level net list). 

 

One of the well-known models to imitate the effect of SETs in 

combinational logic is the rectangular pulse model (also known as the 

double exponential model) [Wir07]. However, determination of a pulse 

length which accurately imitates a realistic behaviour  of a SET in this double 
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exponential model is an open question. The key contribution of this chapter 

is the development of two approaches in order to determine the pulse length 

of a rectangular SET. The first approach of determination has been extracted 

based on the results of real-life radiation testing of a 45nm gate-level library 

along with a precise transistor-level SET analysis tool. The latter  has been 

developed by iRoC-Technologies [Iro12]. This determination technique takes 

into account the contribution of different gates in the gate-level net list to 

determine its pulse length; i.e. it differentiates between an ‘OR’ gate and 
‘AND’ gate to conduct a fault-injection. Moreover, a weighted probability of 

different pulse lengths is assigned to each gate, while in traditional pulse-

length determination techniques a constant value is assigned to a pulse 

length. 

 

The second pulse-length determination approach uses the asymptotic 

analytical behaviour  of the SPICE representation of SETs [Lim12]. This 

model takes into account the runtime activities of the node of strike (node 

that is hit by a high-energy particle), i.e. whether the node of strike is idle or 

it is accessed by the circuit (read or write a value) at the time of striking.  

 

In order to evaluate the accuracy of the developed SET models, four 

sets of fault-injection experiments with several SET models have been 

conducted on a DSP processor (post-synthesized, including timing 

information). The first two campaigns constitute of using the SET fault 

model with our developed pulse-length determination techniques. The other 

two campaigns use conventional determinations of the SET pulse length. 

Our case study employs a gate-level net list of the Xentium processor, 

developed by RecoreSystems which has been synthesized by using the 45nm 

Nangate library [Si212].  

 

The remainder of this chapter has been organized as follows: section 

4.2 briefly surveys some previous works dealing with SET fault models. 

Section 4.3 introduces the first pulse-length representation derived from 

physical laser-based stimulation along with a transistor-level SET-analysis 

tool. The development of the analytical-based pulse-length determination 

technique has been described in section 4.4. Section 4.5 discusses details of 

fault-injection experiments on the Xentium processor for different fault 
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models, including our developed models as well as two conventional 

models. The results of fault-injection are discussed in section 4.6 and finally 

the conclusion is provided in section 4.7.  

  

4.2 Conventional determination of pulse length in 
rectangular SETs  

A considerable amount of literature has been published to develop a 

realistic model for a gate-level representation of a SET. As a definition, a SET 

is a momentary corruption of the voltage of a signal that would appear at a 

random time (known as time instance) and lasts for a brief period of time 

(known as fault duration) [Ent12].  

 

There is a well-accepted model for the circuit-level representation of 

a SET pulse, i.e. the double exponential pulse model [Wir07, Nas07], as 

depicted in Figure 4.1.  
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Figure 4.1. The double-exponential model of a SET [Wir07]. 
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The pulse depicted in Figure 4.1. can have different durations. Up to 

this moment, there is no consensus on the pulse-length determination for 

this model in literature. For example, the authors in [Bar90] define the pulse 

length as the time between a time instance of the strike and the end of a 

simulation run, which is the time that a workload takes to be executed. The 

authors in [Rie94] and [She08] interpret a SET as a momentary pulse with a 

random time instance and a fixed fault length. The technique in [Rie94] deals 

with older CMOS technology nodes in which the length of a pulse is in the 

order of hundreds of nanoseconds, while [She08] determines the fault length 

in sub 100nm CMOS technology nodes in the order of hundreds of 

picoseconds. None of the above mentioned models take into account the 

contribution of different gates in the net list. As a result, a constant value is 

assigned to all SETs regardless of the specific gate. Recent work published in 

[Lim12] determines a fixed pulse length for every different gate in a gate-

level net list, so the value of a pulse length depends on the gate on which the 

SET occurred. It will be shown that a more realistic determination technique 

is to consider a weighted probability of different pulse lengths for each gate. 

A publication that considers the system clock period in pulse-length 

determination is [Kan95], in which the pulse length is determined between 

the time instance until the start of the next succeeding clock edge. Another 

recent work, is [Ent12] where the authors take the length of each SET 

identical to the system clock period.  

 

Recently, dedicated tools such as TFIT [Iro12] and HSECT-SPI 

[She08] have been specifically developed to predict and improve the logic 

gate Soft Error Rate (SER) performance at the circuit-level. These tools use a 

SPICE model (transistor-level) of a cell which is considered as the most 

accurate level of representation for a SET. While it perfectly fits for SET 

analysis purposes, a transistor-level description is cumbersome, difficult to 

generate for large circuits and cannot be fully simulated in acceptable time. 

A more practical approach consists in using a Gate-Level Net list (GLN, in a 

Verilog/VHDL format) complemented with timing information (e.g. SDF - 

Standard Delay Format files). However, SETs have to be represented in a 

logic model in order to be used within the mentioned descriptions. Our first 

determination technique of SETs in the circuit-logic  model uses the well-

known rectangular-pulse model in which its pulse length has been extracted 
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based on the results of the SER characterization for a complete standard cell 

library (via TFIT). Hereafter, we call this first model the circuit-based model. 

The second model (hereafter to be referred as analytical-based model) uses 

the most common SPICE-level representation of a SET in order to develop a 

simplified logical pulse length. 

 

4.3 The circuit-based determination approach 
In order to extract the pulse length from real physical experiments, 

the first step consists in characterizing the electrical effects induced by 

energetic particles in a standard-cell library. This characterization is 

performed using a transistor implementation of each cell in a gate-level 

library. The used library is the 45nm open-access NANGATE repository 

[Si212]. The circuit implementation of the library and real measurements 

have been gathered in a SER database to build a logic fault model dedicated 

to each cell. As our ultimate aim is to determine a SET logic model for each 

cell, the following parameters with regard to the SET have been investigated: 

a) The Pulse Length (PL) of the SET 

b) The Soft-Error-Rate (SER) of a SET with a specific PL 

The above mentioned information will be unique for each cell in the 

standard-cell library. A complete characterization will produce an 

occurrence rate for a specific pulse length for each gate (cell), represented as    

cell(PL,SER). 

 

In order to find the (PL, SER) associated with each cell, an Electronic 

Design Automation (EDA) tool can be used. Dedicated tools such as TFIT 

[Iro12] from iRoC-Technologies represents a new generation of tools that 

allows a reasonably accurate calculation of the impact of electrical effects of 

particles with respect to a transistor or a library cell. A vast number of 

experiments have been carried out to specify a complete database for all 

possible cell(PL,SER) in the 45nm NANGATE library. Since the scope of this 

chapter is to use the outcome of those experiments to develop a pulse length 

in order to build a realistic logical SET-pulse model, the following 

paragraphs give a general overview of performing those experiments. The 

detailed explanation of experiments has been published by iRoC 

technologies in [Ale11]. 
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The TFIT tool works by pre-characterizing a cell with regard to SETs. 

Different SETs are injected and simulated in all the relevant nodes of a 

library cell. The expected outcome is a SET with the minimal duration. Then, 

the tool analyses the operating environment, for example being exposed to 

neutron or alpha particles. TFIT uses a nuclear database to evaluate any 

possible secondary particle produced by an atomic reaction between a 

neutron/alpha particle and the silicon atoms. Direction and energy of those 

secondary particles are studied to account for their interaction with the 

sensitive volumes of the cell. Depending on the type of interaction, a current 

is injected while the output value of the cell is monitored to observe any 

possible electrical event. The tool also uses a technology SER process- 

response model (in this case a 45nm generic), which is a database where a 

collection of relevant (with respect to a given process technology) current-

pulses are stored. These current-pulses are the ones used to perform the 

analysis. By cross-checking the possible environment-induced events versus 

the data recorded during the experiments, the TFIT tool is able to compute 

the Soft-Error-Rate (SER) value, expressed in FIT (Failure In Time) for each 

pulse length value. 

 

The specific pulse length values have been defined as 50ps, 75ps, 

100ps, 125ps, 150ps and 175ps. The occurrence probability of a pulse length 

smaller than 50ps is almost zero [Ale11]. Table 4.1 presents the SER 

(expressed in ‘FIT’) for different cells in the 45nm NANGate library. As an 

example, for the ‘AND2’ cell, the SER of a SET with a pulse length of 50ps is 

equal to 51.1 FIT, which means 51.1 times of occurrence in 114 years (1 

billion hours). 
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Table 4.1. SER expressed in FIT for different cells in the NANGATE Library 

under different pulse lengths. 

Cells 
Pulse Lengths (PL) 

50ps 75ps 100ps 125ps 150ps 175ps 

AND2 51.10 29.88 9.39 0.30 0 0 

NAND2 41.60 20.60 2.80 0.02 0 0 

XNOR2 69.60 60.20 30.41 2.00 0 0 

AND3 40.70 28.50 12.62 2.15 0 0 

AND4 38.00 17.30 12.02 7.93 0.76 0 

AOI211 41.30 17.30 12.02 7.93 0.76 0 

AOI21 41.30 27.30 17.38 2.47 0.04 0 

AOI221 40.40 24.00 19.54 11.30 2.22 0.07 

INV 28.30 10.10 0.50 0 0 0 

NAND3 44.30 25.70 10.29 0.40 0 0 

NAND4 46.80 27.00 15.03 3.58 0.10 0 

NOR2 30.90 20.49 7.35 0.15 0 0 

NOR3 19.50 10.71 7.95 1.68 0.02 0 

NOR4 16.80 5.56 4.48 3.88 0.19 0 

OAI211 76.50 44.30 3.69 1.00 0.18 0 

OAI21 66.70 44.26 20.66 0.83 0 0 

OAI221 70.90 44.00 36.60 12.33 6.43 0.34 

OAI222 61.30 39.10 28.10 23.60 15.99 5.51 

OAI22 52.20 30.90 23.71 11.17 0.50 0 

OAI33 43.00 21.00 14.20 11.10 10.10 2.60 

OR2 56.90 33.70 10.93 4.75 0.10 0 

OR3 52.50 26.90 9.96 6.15 0.61 0 

OR4 54.20 23.90 6.41 3.99 2.90 0.15 

TINV 12.10 11.33 6.61 0.21 0 0 

MUX2 63.00 37.50 36.70 30.70 13.08 10.10 

TBUF 16.20 13.23 7.94 0.88 0.50 0.20 

XOR2 62.50 50.30 34.08 5.86 0.10 0 

BUF 47.30 21.84 8.14 2.87 2.14 1.32 

CLKBUF 48.10 22.22 3.39 0 0 0 

FA on S 52.00 50.00 45.80 43.60 16.89 0.10 

FA on CO 47.30 29.70 19.90 15.64 3.39 0.01 

HA on S 64.80 42.30 34.35 5.47 0.09 0 

HA on CO 55.20 29.22 4.50 0.08 0 0 
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A comprehensive list of (PL,SER) values for all the cells in the library 

(thirty-two cells), similar to Table 4.1, is stored in a database. The next step 

will be representing a logic-gate level model based on the SER calculations 

and pulse lengths. 

 

Given the fact that the key concept of simulation-based fault-

injections is to accelerate the occurrence rate of faults, assume the initial 

number of fault-injections for each cell is βtotal. The logic fault model for one 

cell can then be represented by Equation (4.1): 

                          ∑                                                                     (   ) 
(PL=50, 75, 100, 125, 150, 175) 

 

Where        is the relative occurrence-number of a pulse with a 

length of ‘PL’ and           is the SER of a pulse with length ‘PL’ for a 

particular cell, labelled  as ‘cell’ in the library ‘lib’ (this information can be 

directly extracted from the cell SER repository, Table 4.1.) Therefore        

values can be readily calculated for all the possible PLs (six values in our 

experiments), and for all the possible cells in the library (thirty-two cells for 

our NanGate library) using any conventional mathematical tool. 

 

As a result of Equation (4.1), the combination of (Cell, PL,       ) can 

be defined for all the available cells and pulse lengths. This information will 

be stored in a database for any desirable number of fault-injections. Table 4.2 

uses Equation (4.1) and the information of Table 4.1 to calculate the 

occurrence-number for each pulse length for every cell if the total number of 

fault-injections for each cell (      ) equals to 1000 (this in order to simplify 

the calculations). This table shows that, e.g. for the ‘AND2’ cell, 564 out of 

1000 SET signals have the length of 50ps, 329 have the length of 75ps and so 

on. 
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Table 4.2. Occurrence rate of all six different PLs if the total 

number of fault-injections for each cell is 1000. 

Cell 
Pulse lengths 

50ps 75ps 100ps 125ps 150ps 175ps 

AND2 563 329 103 3 0 0 

NAND2 639 301 43 0 0 0 

XNOR2 427 369 186 12 0 0 

AND3 484 339 150 25 1 0 

AND4 500 227 158 104 10 0 

AOI211 500 227 158 104 10 0 

AOI21 460 308 169 27 1 0 

AOI22 424 321 195 56 1 0 

INV 727 256 12 0 0 0 

NAND3 549 318 127 5 0 0 

NAND4 505 291 162 386 1 0 

NOR2 524 347 124 3 0 0 

NOR3 489 268 200 43 1 0 

NOR4 543 179 144 125 6 0 

OAI211 609 353 29 8 2 0 

OAI21 503 334 155 6 0 0 

OAI221 415 257 214 72 37 2 

OAI222 353 225 161 135 90 0 

OAI22 440 260 200 94 4 0 

OAI33 265 129 87 68 62 17 

OR2 520 308 127 43 1 0 

OR3 540 279 103 63 6 0 

OR4 592 261 70 43 31 2 

TINV 400 374 218 6 0 0 

MUX2 329 169 192 160 68 50 

TBUF 415 339 203 23 13 5 

XOR2 408 329 222 38 1 0 

BUF 565 261 97 34 25 15 

CLKBUF 675 303 45 0 0 0 

FA on S 250 240 219 209 80 1 

FA on CO 407 256 171 134 292 0 

HA on S 440 287 233 37 1 0 

HA on CO 620 328 50 1 0 0 
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Starting from an initial number of fault-injections, the simulator 

program selects a cell in the synthesized gate-level net list and based on the 

occurrence numbers shown in Table 4.2, the exact number of that specific 

pulse length will be injected into the selected cell. The initial number of 

fault-injections will be increased until a point of convergence for fault-

injection results will be recognized. Figure 4.2 shows the relationship 

between FIT values of Table 4.1 and the occurrence rate derived by the 

simulator program. As can be seen in this figure, the FIT value of each cell 

per pulse length is taken from Table 4.1, considering that the total value for 

fault-injection is given by the experimenter; the occurrence rate of each pulse 

length for each cell can be determined by using Equation (4.1).     
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Simulator-program start

(ModelSim)

A cell is selected

Table 4.1

FIT of a cell is known

Equation (4.1)

Total number of fault-

injections

Occurrence-rate is known 

(Table 4.2)

SETs are injected 

HDL net list

 
Figure 4.2. The relationship between FIT and occurrence rates. 
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Equation (4.2) shows a formula that takes into account the initial 

number of fault-injections as well as the final value to calculate the total 

number of fault-injections for each pulse length. The j value denotes the 

number of fault-injections which will be increased from an initial value until 

reaching the point of convergence. The details of reaching the point of 

convergence has already been explained in chapter 3.  

                           ∑              ∑                
         
                                                        (   ) 

 

Where    denotes the total number of fault-injections in each run and       is the occurrence rate of a pulse length with ‘i’ Pico-seconds on a gate 

labelled as ‘cell’. It is important to mention that the proportion of different 

gates in a gate-level net list should be taken into account when the initial 

number of fault-injections is calculated. For example, if the number of 

‘NAND2’ gates in the net list is two times the number of  ‘XOR2’ gates (this 

information can be easily extracted from synthesis results), then if the initial 

number of fault-injections in ‘NAND2’ was defined as 100, the number of 

fault-injections in ‘XOR2’ should be defined as 50.   
 

4.4 The analytical-based determination approach  
This section describes a logical pulse model in which the pulse length 

will be determined based on the analytical model of a SET at the SPICE-

level. The starting point is to define a SPICE representation of a SET. There 

are several models for such a phenomenon. The most commonly used 

representation is a transient pulse current   ( ), inserted between ground 

and the strike node, as shown in Figure 4.3.  
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Figure 4.3. SPICE representation of the induced voltage V(t) in the 

strike node as result of a strike (R is the resistance of the NMOS). 

Figure 4.3 indicates that part of the induced transient current comes 

from the node capacitance C, while the other part comes from VDD via the 

other transistor (in this case the PMOS transistor). While several models 

have been employed to formulate   ( ), the most commonly accepted model 

is the double exponential pulse method which has been presented in [Wir07, 

Nas07] and given by Equation (4.3). This model has two timing parameters, 

α and β, which are respectively the rising and falling time constants of the 
exponential equation. 

                                               ( )    (           )                                         (   ) 
 

Where    represents the maximum charge collection current. The 

values of   , α and β are dependent on the used technological process and 
the particle of interest. 

 

In the following paragraphs, an analytical calculation will be made in 

order to simplify Equation (4.3) to determine the pulse length of this 

VDD

strike node

R
   

C

V(t)V input



 

 

90 

 

equation based on the timing parameters of the node, i.e. α and β. Parts of 
this calculation being Equations (4.4) to (4.6) originate from reference 

[Wir07]. The remainder has been developed by us. 

 

From Figure 4.1, the following first-order differential equation can be 

derived (this is if the PMOS is off and the NMOS is on, so the output is 0): 

 

                                             ( )    ( )    ( )                                                 (   )  
 

Where  ( ) is the voltage of the strike node and R is the resistance of 

the strike transistor (in this case NMOS transistor because it is on). Solving 

this differential equation provides the voltage  ( ) at the strike node. This 

equation is given by: 

 

                                     ( )          (            )                                        (   ) 
 

We are interested to extract two parameters from Equation (4.5). 

First, the time       at which the strike node voltage  ( ) reaches its peak 

value Vpeak. The other parameter is            , the time when the SET voltage 

will be de-activated due to conduction of the NMOS transistor. The 

difference between       and            defines the pulse length. The 

threshold of de-activation is set to 
    , in order to simplify the calculations. 

Using mathematical optimization theory, the value of       can then be 

represented as: 

                                                                (    )                                         (   ) 
 

Solving Equation (4.5) for  ( ) = 
     will provide the value of            , as shown in Equation (4.7): 
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                       (    )            (          )
    (          )                                                                       (   ) 

 

As the Pulse Length (PL) is defined as the difference between             and      : 

                                                                                                 (   ) 
 

Where   denotes   (          )   In Equation (4.8)   is a constant 

number which depends on the technology of implementation. However, it 

will be shown that using asymptotic analysis [Mil06] applied to Equation 

(4.8) will decrease the importance of   in calculating the pulse length.  

  

Equation (4.8) shows the pulse length as a function of the strike-node 

parameters, such as R, C and  . It is important to mention this model of 

pulse length is valid if the maximum amplitude of a SET  (V(t)) is lower than 

the       (which is typically true). In the following paragraphs, the 

asymptotic behaviour  of Equation (4.8) will be exploited in order to define a 

simplified model for PL. 

 

Let us suppose that RC is much larger than  , in Equation (4.8). In 

that case the Pulse Length (PL) will be dominated by the RC of the strike 

transistor and the particle would not have sufficient energy to alter the 

output of the gate (V(t)). This condition would be fulfilled if the strike 

transistor (NMOS) changes its state (on to off or vice-versa) by Vinput at the 

moment of strike. However, if   is much larger than RC, then the pulse 

length (PL) will be dominated by the energy of the particle. Hence, as long 

as there is no transaction happening at the strike node, the pulse length will 

be dominated by the energy of the particle; otherwise the pulse length will 
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be dominated by the parameters of the strike node (R) and the load (C) of 

the strike node. 

 

The described behaviour  can be implemented in modern logic 

simulators via advanced programming languages. We have developed a VPI 

interface (Verilog Peripheral Interface) that emulates the described 

behaviour  of Equation (4.8). The gate-level net list of the Xentium processor 

has been used to assess the applicability of the SET models described in this 

chapter.  

 

The following mechanism has been used to apply the asymptotic 

model (Equation (4.8)) via a logic simulator. During execution of a 

workload, a random signal will be selected for fault-injection. Also a random 

time will be assigned to conduct a single fault-injection. The logic simulator 

tracks the net that has been selected for fault-injection at the time of 

injection; if there is a transaction at the strike node, such as writing a new 

value, the impact of the particle will be dominated by the transaction. 

However,  a particle can impose a perturbation on a node if at the time of 

strike there is no transaction on that particular node. In this situation, the 

particle can change the status of a circuit and the SET model will behave as 

the one developed in section 4.3.  

 

In the next section, the behaviour of the two presented models will 

be compared to some conventional SET models by carrying out a fault-

injection campaign on the Xentium processor. It is important to mention that 

based on the experiments carried out by iRoC-Technologies [Iro12] on 

simple gates, the model of section 4.3 only deviates 15% from the real-life 

laser-based experiments. However, conducting such a laser-based 

experiment for a DSP processor is very complex. In the section it is assumed 

the model of section 4.3 is the most accurate model (based on the laser 

experiments on simple gates). Our goal is to assess the accuracy of the model 

presented in section 4.4 with regard to the model presented in section 4.3; 

moreover, the accuracy of some conventional SET models will be evaluated.  
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4.5  Details of fault-injection 
To show the behaviour  of different pulse-length determination 

techniques in the rectangular SET fault model, four different sets of gate-

level fault-injection campaigns have been conducted on the Xentium 

processor. The detailed architecture of the Xentium processor was discussed 

in Chapter 2 of this thesis.  

The first fault-injection campaign uses the circuit-based extracted 

pulse length which is based on Equation (4.2) in section 4.3. This model takes 

into account a weighted contribution of each cell in the library as well as the 

system clock. Moreover, following the laser-based experiments carried out 

by iRoC-Technologies on basic library gates, it is known that this pulse 

model only deviates 15% from the real impact of laser-based experiments. 

Since conducting laser-based experiments for a complex processor is not 

feasible, we consider this circuit-based model as the baseline for comparison 

to assess the accuracy of other determination techniques.  

 

The second campaign is based on the analytical pulse-length 

determination technique which has been discussed in section 4.4, which is  

represented by Equation (4.8). This model takes a possible transaction of 

each strike node into account along with the circuit-based model to construct 

a pulse-length model. In order to compare the efficiency of these two SET 

pulse-length determination models over conventional models, two other sets 

of fault-injection experiments have been carried out.  

 

The third campaign uses a conventional determination technique of 

SETs  where a constant pulse length value is assigned to every gate that is 

injected with a fault [She08]. The constant value is different from 100ps to 

300ps for different CMOS technology nodes. However, we have selected the 

value of 100ps which has been recommended for a 45 / 90nm CMOS 

technology node [She08].  

 

Finally the fourth campaign employs the discrete logic of a SET pulse 

model that calculates pulse-lengths based on an exponential distribution-

function of the system clock period. The details of this model have already 

been discussed in Chapter 3. This model takes the system clock period into 
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account, but not the contribution of different cells in the library. Table 4.3 

shows the parameters which have been considered in each model. 

 

Table 4.3. Parameters which have been taken into account in 

different pulse-length models. 

Pulse-model System clock Cell  contribution Technology 

Circuit-based yes yes yes 

Analytical-based yes yes yes 

Constant yes no yes 

Distribution-

function-based 
yes no yes 

 

A digital signal processing program, being the Finite Impulse 

Response (FIR), has been used as a workload for the Xentium processor in 

all fault-injection experiments. The Xentium processor receives all the 

required inputs (filter coefficients, input vector) from an input text file and 

produces the output vector in an output text file. The required time to 

execute one run of the FIR program is about eight seconds (in real time on 

the simulation host computer). 

 

The types of failures in the processor can be classified as Silent Data 

Corruption (SDC) or Detected Unrecoverable Error (DUE) [Muk08]. Since 

the original design of the Xentium processor does not have an error 

indicator signal, which indicates detection of an error by the Xentium 

processor, the experimenter cannot observe DUEs. As a result, the functional 

response of the processor with respect to each injected fault has been 

classified into one of the following categories, as described in Chapter 3: 

• Silent Data Corruption, SDC: this condition is met if the error propagates 

through the circuit without awareness of its occurrence by the system. So 

the processor will provide an output without any error flag while that 

output is not correct. 

• Time out: is the possibility that the processor unexpectedly stops its 

application, before execution of the whole workload. The outputs of the 

processor provide no meaningful output data in this case. 
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• Correct behaviour: the processor completes the application with the 

correct output. 

 

The results of the processor have been represented as a percentage 

(%), e.g. if 10 out of 100 fault-injections produce a Silent Data Corruption 

(SDC) failure, then the SDC failure-sensitivity of the processor will be 

represented as 10%.  

 

The fault-injections have been carried out on all ten functional units 

of the Xentium processor, which was shown in Figure 2.7 in chapter 2. In 

each fault-injection experiment, one net within one functional unit is 

automatically selected; then the desired fault model is injected into the net 

list and finally the results of the processor are compared with the correct 

values obtained from a Java-based fault-free simulator, called XentiumSim 

[Rec10]. The number of experiments has been increased from 500 to 16,000 

experiments. It is worth mentioning that with 500 experiments, only 1% of 

all nets in the Xentium data path are affected. This rate is about 32% if the 

number of experiments reaches 16000. Table 4.4 shows the percentage of 

nets which are affected, as well as the elapsed CPU time (on a dual six-core 

Intel processor) if the number of fault-injection grows from 500 to 16000. 

 

 

Table 4.4. Percentage of affected nets and elapsed CPU-time for 

different numbers of fault-injections. 

Parameters of 

fault-injection 

Number of fault-injections 

500 1000 2000 4000 8000 16000 

% of affected nets 1 2 4 8 16 32 

CPU time (hours) 1.1 2.3 5 11 24 49 

 

 

4.6 Experimental results 
The behaviour  of the Xentium processor for the rectangular SET 

model with four different pulse-length determination techniques has been 

depicted in Figure 4.4. The Y-axis in this chart shows the sensitivity of the 

processor for Silent Data Corruption. This sensitivity is derived based on the 
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fault- injection experiments. The X-axis is the number of fault-injections 

(campaign) which ranges from 500 to 16000. The initial number of fault- 

injection experiments has been set randomly.  Increasing the number of 

fault-injections is stopped at 16000 fault-injections because the elapsed CPU-

time to accomplish this number of fault-injections then reaches forty-eight 

hours (two days). 

 

Figure 4.4. The SDC sensitivity of the Xentium processor for different SET 

fault models21. 

 

                                                      
1 TD_1 stands for Traditional model 1 and TD_4 stands for Traditional model 4 
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The first observation from Figure 4.4 can be made about the general 

behaviour  of conventional SET models, labelled with constant Pulse Length 

(PL) and depicted with the red line (TD_1). The constant length of each pulse 

has been set to 100ps to be consistent with the associated literature [She08]. It 

can be seen that the constant pulse-length model overestimates up to three 

times the influence of SETs in the Xentium processor as compared to the 

other fault models. This can be explained due to the worst-case scenario 

which is applied to the circuit under test by using this model. For example 

Table 4.2 clearly shows that most of the pulses in the realistic pulse-length 

model (circuit-based) have a duration less than 100ps and contribution of 

longer pulse durations is very small. Our further detailed analysis of fault 

propagation in this model shows that many signals will be forced to change 

their value for a relatively longer time and as a result an injected fault 

usually changes the status of the succeeding storage elements. This in turn 

results to a pessimistic model of SET contribution in failures.  

 

The exponential distribution-based model has been explained in 

chapter 3 and is depicted by a yellow line (TD_4). It is important to mention 

that the workload here is different from the ones being used in chapter 3; as 

a result the behaviour  of the Xentium processor is different as compared to 

the results of chapter 3. As can be seen in Figure 4.4, this model 

underestimates the contribution of SETs as compared to the realistic fault 

model (circuit-based model), especially  for a low number of fault-injections. 

However, if the number of fault-injection grows, the results will be closer to 

the realistic model. This can be explained due to the fact that by increasing 

the number of fault-injections more perturbations are generated overlapping 

with clock edges (the so-called effective faults). However, we were not able 

to see the actual behaviour  of this model with regard to fault-injections for 

higher numbers (more than 16000) of experiments, since conducting fault-

injection with a higher number of fault-injections was not manageable in 

time. The conclusion for this fault model is that a low number of fault-

injections is useless for this fault model while extracting a convergence point 

requires a very high number of fault-injections. Subsequently an enormous 

amount of elapsed CPU time is required by using this model.  
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The behaviour of the Xentium processor for the two newly 

developed fault models is also shown in Figure 4.4. This figure shows that if 

the number of fault-injections grows, the behaviour of the circuit-based 

model and analytical-based model will be similar. Since the experiments 

which have been carried out by iRoC-Technologies on simple gates showed 

that the circuit-based pulse determination technique only deviates only 15% 

from the real behaviour of soft-errors, we consider this model as the most 

accurate model of SETs. Figure 4.4 shows that the behaviour of fault-

injection for the analytical-based pulse model is getting close (6% difference 

for 16000 fault-injections) to the circuit-based model. This is because the 

analytical-based model uses circuit-based model determination if there is no 

activity at the striking node. However an important interesting aspect is the 

speed of convergence of  the response of the processor for these two 

developed pulse models.  In the other words, the sooner a fault model can 

reach a point of convergence, the better that fault model is to explore a fast 

anticipation of the behaviour  of a system with regard to SETs. 

 

A detailed analysis about finding a point of convergence in fault-

injection experiments was already provided in chapter 3 section 3.5. The 

extracted numbers of Figure 4.4 have been applied to Equations (3.3) to (3.5) 

to define a point of convergence for these two fault models.   

 

Table 4.5 shows the calculated d for each fault model for different 

numbers of fault-injections. As mentioned before, these numbers have been 

extracted by applying Equations (3.3) to (3.5) of chapter 3 to the numbers of 

Figure 4.4.  
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Table 4.5. The distance ‘d’ between the SDC sensitivity and the 

final SDC (for 16000 fault-injections) for each fault model. 

Fault model 
Number of fault-injections 

500 1000 2000 4000 8000 

Analytical-based 2 1.3 1.91 0.85 0.04 

Constant-based 27.6 26.1 21.75 13.73 7.15 

Exponential 

distribution-based 
5.9 5.9 5.9 5.9 2.04 

Circuit-based 19.07 13.27 9.05 3.93 0.64 

 

Referring to Table 4.5, it can be concluded that if   is assumed to be 4 

(in Equation (3.4) of chapter 3), the analytical-based and circuit-based fault 

models show the best convergence (smaller d, which are indicated by 

underlining in Table 4.5) if the number of experiments are equal and more 

than 4000. This means that the results of the fault-injections is more stable 

for these two SET fault models, as compared to the constant-based and 

exponential distribution-based models if the number of fault-injections is 

4000 or more. In other words, the response of the Xentium processor will be 

less dependent on the number of fault-injections for 4000 fault-injections and 

more in the case of analytical and circuit-based fault models. Hence that 

results after 4000 fault-injections already give a good indication for the SDC 

sensitivity of a system. For the other two fault models, the constant PL and 

exponential distribution-based models, the results of fault-injection are still 

deviating if the number of fault- injections is even in the order of 8000.  This 

indicates that no conclusion can be made based on a small number of fault-

injections for constant and exponential distribution-based fault models. One 

needs to increase the number of fault-injections for these two fault models 

(especially the constant -PL model, since it exhibits a large ‘d’ in Table 4.5) to 

reach convergence. 

 

Figure 4.5 shows the ‘d’ number (the behaviour  with regard to  

convergence) of the analytical-based model and the circuit-based model 

(derived from Table 4.5) in one diagram. The X-axis shows the number of 

fault-injections while the Y-axis shows the ‘d’ value for each number of fault-

injections. As mentioned earlier, the circuit-based model has been 
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considered as the most accurate simulation model in our experiments; 

however, an interesting observation in Figure 4.5 can be made by looking at 

the convergence of the analytical-based fault model for a very small number 

of fault-injections (starting from 1000) as compared to the circuit-based 

model. It shows that one is able to have a very quick estimation of the 

processor sensitivity with regard to a SET even with a very low number of 

experiments (1000 fault-injections instead of 16000), while experience shows 

that the required CPU time to carry out 1000  experiments is sixteen times 

smaller as compared to the required time to carry out all 16000 fault-

injections (linear dependency). Therefore it has a linear relationship. 
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Figure 4.5. The convergence of the analytical-based and circuit-

based models. 
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4.7 Conclusions 

In this chapter, two approaches have been introduced for the 

determination of pulse lengths to be used in the rectangular SET logic 

model. The first method has been extracted from laser-based experiments 

along with a detailed transistor-level SET analysis tool. This model 

represents the most realistic model to anticipate the system response to 

SETs.  

The second determination technique is based on the asymptotic 

behaviour  of SETs in the SPICE model along with the circuit-based model. 

We showed that the analytical-based model can provide a very fast 

anticipation of the behaviour  of the system while the accuracy of fault-

injection results is very close to the final response of fault-injection. Hence, 

the circuit-based model is useful if the accuracy of fault-injection results is 

important (only 15% deviation from real-life laser-based experiments) while 

the analytical-based model is beneficiary if the elapsed time of fault-injection 

experiments is important (21% deviation from real-life laser experiments). 

These two fault models will contribute to solve the current challenge of 

developing/adopting EDA tools for fast and improved SER evaluation. In 

the next chapter, the behaviour  of the Xentium processor with regard to 

SETs has been used to propose a dependable architecture for the data path 

and control-logic of each functional unit in the Xentium processor. 
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CHAPTER   5 
 

 

Soft-Error Mitigation 

Techniques for DSP Functional 

units 1 
  

                                                      
Parts of this chapter have been published as papers titled "An on-line soft-error mitigation 

technique for control logic of VLIW processors” in the international symposium on Defect 

and Fault Tolerance in VLSI and Nanotechnology Systems (DFTS 2013) in Austin, USA; and 

“Two soft-error mitigation techniques for functional units of DSP processors” in the European 
Test Symposium (ETS 2014) in Paderborn, Germany; and a European patent titled 

“Functional unit for a DSP processor” filed in November 2013, under the number EP13191370.   
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ABSTRACT- This chapter presents two soft-error mitigation techniques for Digital Signal 

Processing (DSP) processors. As explained in the previous chapters, each DSP processor consists of 

several functional units, which are subsequently composed of sequential parts and pure combinational 

logic. The sequential parts include a local control unit and input registers, while the combinational 

logic is just a collection of combinatorial logic gates. Since the control unit of each functional unit is an 

unstructured part, it is impossible to use Error-Detection-And-Correction (EDAC) codes to mitigate 

the impact of soft-errors in these units. Moreover, because the combinatorial nature of combinational 

logic, the effect of SETs will be destructive in the combinational parts of the functional unit. To develop 

an effective method to mitigate the effect of soft-errors in the two before-mentioned parts, unique 

characteristics of DSP workloads have been deployed to develop a masking mechanism for the local 

control unit of each functional unit. At the same time the combinational logic of each functional unit 

has been enhanced with a fast recovery mechanism to isolate the faulty unit from the other fault-free 

functional units and re-execute the erroneous instruction. An assumption in all the proposed methods 

is that the input registers inside of each functional unit are robust to soft-errors. This is a fair 

assumption since there are straightforward solutions such as EDAC codes to mitigate soft-errors in 

structured sequential parts of a design. The developed techniques have been implemented in the 

Xentium DSP processor, in order to assess the achieved enhanced SET resilience versus the imposed 

area and performance penalty. The experimental results show that the soft-error sensitivity will 

decrease by a factor of eight in the local control units and by a factor of two in the combinational logic. 

The penalty on area and clock-speed is less than 10%. 

 

5.1  Introduction 
Increasingly miniaturized CMOS processes along with the reduction 

of operating voltage have made soft-errors a major source of threat for 

today’s digital Integrated Circuits (ICs). As discussed in the previous 

chapters, soft-errors can arise from different sources, including high-energy 

particles from cosmic radiations or terrestrial phenomenon such as power-

supply sparks and high-energy particles emitting from inside the packaging 

due to impurities [Mie12]. The impact of soft-errors on a digital IC can be 

classified into two categories: Single Event Transient (SET) and Single Event 

Upset (SEU). In the case of SET, a high-energy particle hits the 

combinational logic of a circuit and consequently a momentary voltage pulse 

will be generated at the output of the strike gate; this in turn might reach 

either a storage element (flip-flop, register) or the output of the succeeding 

logic gates. Chapter 4 of this dissertation showed a simulation model for this 

kind of soft-errors. We have used that developed model to evoke the SETs in 

the Xentium DSP processor.  

 

Next to SETs, a SEU will be generated if a high-energy particle 

directly hits the sequential parts of a processor, in which their stored value 
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might be toggled [Sch04]. Even-though SEU was the main concern in the 

soft-error community in the past, it has been forecasted that increasing the 

system frequency will cause the system errors to be dominated by the SETs 

originating from the combinational logic rather than SEUs from the 

sequential logic [Tou07]. In other words, the regular and structured elements 

of a processor, such as SRAM memories and register-files were the major 

point of concern with regard to soft-errors in the past; thus effective EDAC 

codes have been developed in order to decrease the vulnerability of these 

structures against soft-errors. In contrast, developing low-overhead 

mitigation methods for unstructured and irregular parts of a processor such 

as the control unit is still an open question [Gha08]. This problem is 

escalating with advancements in processor structures as the amount of chip 

area devoted to complex structures will grow with chip complexity. On the 

other hand, traditional hardware redundancy-based approaches exploiting 

m-way replication of complex structures of a processor are no longer viable 

as they impose an unacceptable overhead on the entire system. The scope of 

this chapter is about the impact of SETs in the unstructured parts of a 

functional unit.  

 

The next subsection quickly surveys some state-of-the-art mitigation 

methods which are being used in high-performance processors. Having 

mentioned the existing methods and their limitations, the contribution of 

our developed mechanisms will be discussed in subsection 5.1.2.  Section 5.2 

describes the details of our masking mechanism in local control units while 

section 5.3 deals with the recovery mechanism in combinatorial logic.   

 

5.1.1 State-of-the-art 
One of the most well-known approaches to eliminate the impact of 

soft-errors in modern processors is the Checkpoint and Recovery (CR) 

method [Akk03] in which the current state of the processor is saved in a 

memory device at various points in the execution of the program code 

(referred to as check-points). If a soft-error is detected, the processor status 

will be re-loaded with the last check-point (this reloading process is referred 

to as roll-back) . The program execution is resumed once the status of the 

processor is restored from the latest check-point. Generally, CR-based 

methods impose a heavy load on the system, as the whole status of the 
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processor needs to be stored and reloaded at specific intervals. Many 

parameters are involved in when and how a roll-back needs to be triggered. 

Thus, different versions of CR-based methods have been proposed in the 

literature.  

 

Wang et al. [Wan06] proposed the well-known ReStore architecture, 

in which the activation of a rollback is triggered by some symptoms which 

alert the presence of a soft-error, such as control flow miss-speculations or a 

high number of cache misses within the normal flow of a program. 

Ghasemzadeh-Mohammadi et al. [Gha08] presented a signature-based error 

detection and rollback recovery technique for the control logic of MIPS 

processors. As specific works on combinatorial logic, Chen et al. [Che06] 

reconfigured the redundancy of functional units of a DSP processor as an M-

way replication architecture to mitigate soft-errors. Even though this method 

could considerably diminish the impact of soft-errors, the execution time of 

a program will increase significantly (up to three times). This is due to 

assigning some functional units to the fault-mitigation mechanisms.  

Recently, a hardware/software CR-based scheme, called Reli, has been 

proposed in [Tli12] which is based on enhancing micro-instructions with 

additional micro-operations to facilitate check-pointing. However, it suffers 

from a common issue in all CR-based methods, which is a long recovery 

time (16 clock cycles in the case of Reli).  

 

Another category of recovery methods is based on employing 

redundancy techniques to achieve fault-tolerance. In general, the detection 

latency of these methods is negligible (less than one clock cycle) but the 

imposed overhead on the area, or power might be significant.  

 

Gaisler et al. [Gai02] employed EDAC codes along with Triple 

Modular Redundancy (TMR) to provide a spatial redundancy in the 

combinational logic of a Scalable Processor Architecture (SPARC) processor. 

The main drawback of their methods is a high degradation in the 

performance. Cota et al. [Cot01] explored the usage of a special finite-state 

machine-based controller that uses the Hamming code to correct SEUs in the 

control unit of MIPS processors. Kim et al. [Kim01] and Ganesh et al. 

[Gan06] explored a signature-based caching scheme to mitigate soft-errors 
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during run-time. In their methods, all the control signals used in each 

pipeline stage are integrated into a signature which is subsequently verified 

before the commitment stage. A potential drawback of this method is that 

data dependency can stall the pipeline stages for a very long time.  

 

As a software mechanism, Bolchini [Bol03] has proposed a software 

methodology for detecting hardware faults, while Chen et al. [Che10] 

proposed a reliable data path using Duplication And Comparison (DAC) 

along with the TMR method.  

 

VOLTaiRE, is a low cost fault detection solution tailored for DSP 

processors that has been proposed by Shyam et al. in [Shy06]. Their method 

deals with detection of faults in the data path of DSP processors. Two soft-

error mitigation schemes, being Soft-Error Mitigation (SEM) and Soft and 

Timing Error Mitigation (STEM), use the approach of multiple clocking of 

data for protecting combinational logic from soft-errors; they have been 

recently proposed in [Avi12]. While both of those methods can detect nearly 

100 percent of soft-errors, they unfortunately impose a 100 percent 

deterioration in the speed of the processor. 

 

In this chapter, a mitigation method for the control logic and a 

recovery method for the combinatorial logic of DSP processors will be 

developed. It will be shown that by exploiting the characteristics of DSP 

workloads and DSP architectures, our method can benefit from the 

advantages of redundancy-based methods (very short detection latency) and 

CR-based methods (low overhead in area/power/performance). 

 

5.1.2 Our DSP mitigation techniques 
This chapter proposes a new architecture for DSP processors by 

developing two architectural mechanisms to mitigate SEUs and SETs in 

functional units of a DSP processor. These mitigation mechanisms have been 

developed based on exploiting the unique characteristics of DSP workloads 

as well as DSP architectures. This section gives an overall view of these two 

methods and following sections provide the details of each mechanism. 
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As depicted in Figure 5.1, a DSP processor is consisting of several 

functional units that execute a Very-Long-Instruction-Word (VLIW) 

instruction in parallel. Each functional unit is composed of several input 

registers, a Local Control Unit (LCU) and combinational logic. Considering 

the fact that input registers can be protected by readily available EDAC 

codes, a soft-error masking method has been developed for the LCUs, and a 

SET recovery mechanism has been designed for the combinatorial part of 

each functional unit. 
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Figure 5.1. A typical architecture of a DSP processor. The grey parts 

will be enhanced in this chapter. 
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LCUs are responsible for generating control signals based on the 

fetched opcode. In order to protect the control-signals produced by each 

LCU, the control signals have been classified into either opcode-dependent 

or instruction-dependent control signals, based on their changeability over 

time during the execution of an instruction. To avoid a momentary change 

in the value of these opcode-dependent control signals during an execution 

of an opcode, they have been replaced by a Read-Only Memory (ROM) 

memory. This ROM memory acts as a Look-Up Table (LUT). 

  

To protect instruction-dependent control signals, an inherent 

characteristic of DSP workloads, the locality of references [Hen11], has been 

employed. The details of these proposed architectures will be explained 

later. Experimental results show that the percentage of failures drops from 

40% to 5.4%, while they impose a 4% increase in silicon area and a 10% 

deterioration in speed.  

 

In the second approach, the combinational logic inside each 

functional unit has been enriched with shadow registers which enables re-

execution of very fine grained part of an instruction while the rest of the 

processor is waiting, the so-called freezing. Considering that the duration of 

soft-errors in a modern digital ICs is less than one clock cycle [Ale11], this 

freezing period can mitigate the impact of soft-errors. Experimental results 

show that this recovery mechanism in the combinatorial logic part imposes a 

10% increase in silicon-area and no degradation in speed, while the 

percentage of induced failures drops from 30% to 15%. 

 

The above mentioned recovery mechanism in the combinational logic 

has several advantages, such as: 

a. There is no need to store (checkpoint) or reload (rollback) the 

whole status of the processor during a recovery, as the recovery 

mechanism performs a very fine-grained local re-execution. 

b. Freezing the healthy functional units of a DSP processor for only 

one clock cycle while the erroneous part of the instruction is being re-

executed. This mechanism can employ the existence of the ‘wait’ 
signal in a processor to freeze the healthy parts of the processor; 
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therefore the central-control logic of the DSP processor does not need 

to be modified. 

c. Storing the minimum amount of information as back-up data in 

each functional unit considerably decreases the reloading overhead 

during the recovery time. As mentioned before, our recovery method 

needs only one clock cycle to recover from soft-errors, while one of 

the fast versions of the check-point and recovery technique [Wan06]  

requires 16 clock cycles to recover from a soft-error. 

d. This recovery mechanism imposes a negligible area overhead in 

the processor and there is no penalty in the performance. 

  

5.2 Our SET masking mechanism in LCUs 
The mechanism of masking SETs in the LCUs is based on classifying 

the control signals of each functional unit, generated by LCUs, to either 

opcode-dependent or instruction-dependent control signals. Figure 5.2 

shows the concept of opcode-dependent and instruction-dependent control 

signals.  
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Figure 5.2. Opcode- and instruction-dependent control signals. 
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As can be seen in this figure, the value of opcode-dependent control 

signals depends only on the opcode part of an instruction. For example as 

long as the opcode part of an instruction is ‘add’, the value of the ‘add-

signal’ is 1, irrespective of the address part. In contrast, the value of 

instruction-dependent control signals depends on the whole instruction and 

not only on the opcode part. For example, the ‘write-address’ of a register 

depends on the address part of an instruction as well as the opcode part.  

The following subsections present two different masking mechanisms for 

each category. 

 

5.2.1 Opcode-dependent control signals  
Since the value of an opcode-dependent control signal depends only 

on the opcode part of an instruction, and the number of possible opcodes 

per functional unit is limited, a distributed ROM memory has been used to 

store the value of the opcode-dependent control signals for each opcode. The 

term distributed implies that each execution unit can access this ROM unit. 

A limited number of different opcodes per functional unit (32 different 

opcodes per functional unit in our case study) along with a limited number 

of opcode-dependent control signals (16 different signals in our case study) 

make it feasible to store the value of these control signals for each opcode in 

a ROM memory during the design phase and then retrieve them during run 

time. The organization of this ROM memory is depicted in Figure 5.3 and 

consists of several entries (equal to the number of different opcodes per 

functional unit) and the expected value of their control signals as the 

contents. In order to retrieve the value of a particular control signal during 

the run-time, the opcode of a fetched instruction is converted into an input 

address for the ROM memory in which the expected value of a particular 

control signal has already been stored (e.g. ‘ALU-selection’).  
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Figure 5.3. ROM structure to mask soft-errors in the opcode-

dependent control signals. 

Suppose that a typical functional unit has four different opcodes 

(add, shift, multiply and load). The opcodes are recognized by two-bit 

binary numbers, add=00, shift=01, multiply=10, load=11. This functional unit 

has also two control signals of which their value depends on the opcodes, 

named ‘ALU-selection’ and ‘shift’ . The designer knows the value of these 

two control signals for each opcode during the design phase of a processor, 

so the value of these control signals per opcode can be stored during the 

design phase. For example, ‘ALU-selection’ is 1 for the add and multiply 

opcodes and 0 for the other two opcodes. The ‘shift’ signal is only 1 during 

the execution of the shift operation. Consequently, the ROM structure has 

four entries (associated with four opcodes) while each entry has a two-bit 

width representing the contents. The content of this ROM memory is 

constant and independent of the executed workload. 

 

The probability that a SEU or SET can change the contents of a ROM 

memory is very low (near 0%) as compared to the traditional unstructured 

organization of local control units [Esa11]. Moreover, EDAC codes can be 

readily used to protect this ROM memory [Wen96] since it is a regular 

structure, i.e. there is at least one clock latency between when a value is 
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written and when it is being read. However, the input/output lines or the 

opcode-to-address convertor are still vulnerable to SETs. In the experimental 

results, the efficiency of this method will be assessed.  

 

It is important to mention that the value of each opcode-dependent 

control signal will be generated by this ROM-unit in a look-up table manner.  

 

5.2.2 Instruction-dependent control signals 
Another category of control signals is the instruction-dependent 

control signal. Since the number of different instructions per functional unit 

is infinite, the previously introduced look-up table is not feasible in this case. 

In order to propose a novel soft-error masking mitigation method, a 

common principle in computer architectures, the so-called locality of 

reference [Hen11] has been employed. This concept implies that most of the 

program execution time is spent on a small piece of code. Especially for DSP 

workloads, about 90% of the computational time is spent in a very small 

kernel [Smi07]. As a result, the variety of instructions per workload is 

limited; however, the exact instructions are not known to the designer at 

design-time. 

 

Our idea that has been used here is to store a history of an 

instruction-dependent control signal during the first and second execution 

of an instruction and then subsequently compare the succeeding generated 

run-time values with the ones stored as a history of the signal to detect any 

momentary change. Considering that the values of an instruction-dependent 

control signal are identical for all the executions of the same instruction, 

unless an error occurred, this mechanism can detect any singular errors in 

these signals. 

 

In order to implement the previously mentioned idea, a cache 

structure has been used. This cache architecture has several entries which 

are associated with the number of different instructions within the kernel of 

the DSP program. The higher number of entries in the cache, the more 

different instructions can be tracked. To track each instruction, the unique 

Program-Counter (PC) can be used.  
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The structure of this cache has been depicted in Figure 5.4. Suppose 

that N different signals have been classified as instruction-dependent control 

signals. The ‘PC-to-cache-address-decoder’ assigns a unique address in the 

cache entries to each instruction. The values of the control signals, which 

have been produced by the normal control unit during the run-time (Figure 

5.1), are saved in the cache memory. This occurs during the first and second 

execution of the kernel of the DSP program. From the third execution 

onwards, the run-time value of a signal (which has been generated by the 

conventional LCUs) will be compared with two previously stored instances. 

The final output is the result of a majority vote of these three values. 

Considering that the likelihood of an identical perturbation of two or three 

instances of one signal is very small, this scheme can mask the effects of soft-

errors for the associated signals. 
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Figure 5.4. Cache structure to store a history of control signals. 
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The replacement mechanism of this cache structure plays an 

important role in the efficiency of our mechanism. The random replacement 

policy, which randomly selects a candidate for being discarded from the 

cache, was used here to simplify the implementation. Moreover, the number 

of entries of each cache memory has been limited to 16, i.e. 16 different 

instructions can be tracked at any given point of time. A larger cache can 

protect more signals, however as a trade-off, the complexity of the ‘PC-to-

cache-address-decoder’ and the area overhead of the cache structure need to 

be considered as well. Another issue that needs to be addressed here is the 

controller (or FSM) which is responsible for determining the status of an 

instruction-dependent control signal with regard to its history. Figure 5.5 

depicts the state diagram of this FSM.  

 

The state diagram shown in Figure 5.5 takes the signal ‘active’ as 
input. In this figure, the output signal of each label is indicated by 

underlining (for example output) while the normal letters shows the label of 

a status (for example no-history).  This signal is unique for each instruction 

and means that the program flow has reached this instruction. ‘Activej = 1’ 
means that the program flow for instruction ‘j’ has been executed for the first 

time. The ‘output’ signal indicates whether three executions of instruction ‘j’ 
have occurred in the program flow or not. So ‘output = 0’ means less than 
thee executions of a particular instruction occurred while ‘output = 1’  
indicates three or more executions of an instruction have taken place. As can 

be observed from the FSM machine, the third execution of instruction ‘j’ 
causes the FSM machine to reach the status ‘three-history’. In this state 

(‘three-history’) the ‘output’ signal is always high because at least three 
executions of instruction ‘j‘ have occurred before.  
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Figure 5.5. The state diagram of the FSM in the cache structure. 

 

   

 Figure 5.6 shows the complete scheme. This figure will be explained 

by following a simple pseudo-code which has been depicted in Figure 5.7.   
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Figure 5.6. The complete scheme composed of a cache memory, 

majority voter and the FSM controller. 

 

Suppose that a control signal ‘i’ has come from the LCU and its value 

depends on the whole instruction. This signal is also enhanced during the 

execution of a particular instruction, named ‘instruction-1’ in the pseudo-

code of Figure 5.7. 

 

 

PC Instruction 

0XXXX beginning of the program 

0X0011 Loop L1 

0X0100       instruction-1  (the ‘active-1’ signal is 1) 
0X0101       The remaining of the loop L1 

0X0110 end loop 

0XXXX rest of the program 

 

Figure 5.7. A pseudo-code consisting of one loop.  
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Prior to the first iteration of the loop, there is no history of the ‘i’ 
signal. Therefore the FSM of Figure 5.5 will be in the status labelled by ‘no-

history’ in which the ‘output’ signal is zero. This means that the current 

value of ‘i’ is written in the cache memory of Figure 5.6 and more 

importantly it will be passed by the multiplexer to the rest of the system.  

 

During the first iteration of the loop (first execution of ‘instruction-1’) 
the activation signal named ‘active-1’ is made one via the PC which indicates 

that ‘instruction-1’ has been reached the program flow. As a result the FSM 

will move on to the status labelled ‘one-history’ which means one history of 

signal ‘i’ resides in the cache. At this stage, the value of ‘output’ signal of 
FSM machine is still zero and hence the value which is passed to the system 

by the multiplexer of Figure 5.6 will not yet come from the cache.  

 

During the second execution of ‘instruction-1’, the value of ‘signal-i’ 
signal will be stored as the second history of this signal in the cache. The 

FSM machine will be in the status labelled  ‘two-history’ and the value of the 

‘i’ signal will be passed from the LCU to the system (as the ‘output’ signal is 

still 0).  

 

During the third iteration of the loop, the ‘active-1’ signal will 
become one for the third time. Now the FSM machine will move to the status 

labeled ‘three-history’ and the value of ‘output’ signal will be ‘1’. At this 
point the multiplexer in Figure 5.6 will assign the value that results from the 

majority voter to the control signal.  

 

Even if one instance is corrupted in the above mentioned scenario, 

being either one of the stored values of the cache or the value of the LCUs, 

the faulty value will be masked by the majority voter and the fault-free 

signal will traverse through the system.  

 

It is important to note that the structure of Figure 5.6 is a redundant 

module along with the conventional LCUs, i.e. this structure will not replace 

the LCUs, but work as a redundant unit along with the LCUs to enhance 

redundancy. It is also worth mentioning that many readily available 

mechanisms to harden the cache memory with regard to soft-errors can be 
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used in the mentioned structure in order to make the cache structure of 

Figure 5.6 more resilient [Zar03]. 

 

5.3 A recovery mechanism in combinational logic 
Another concern in a functional unit of a DSP processor, apart from 

the unstructured LCUs, is the combinatorial logic. This is because each 

functional unit receives its associated opcode from the program memory and 

the required data from the data memory. The opcode of the received 

instruction is decoded by the LCU (or equivalent logic, such as a look-up 

table, as indicated in section 5.2) and subsequently the decoded signals will 

be stored in associated input registers. Similarly, the required operands from 

the memory or register-file will be fetched and stored in their associated 

input registers. As long as the data presented in the input registers are 

identical at time instances  T1 and T2, the output signal of the combinational 

logic at time instances T1 and T2 will be identical.  

 

The idea of our recovery method is based on accompanying every 

input register with one shadow register in order to hold a copy of the 

associated data during one consecutive clock cycle. Since every instruction 

in a VLIW architecture is distributed over different functional units, it is 

feasible to halt the fault-free functional units and re-execute the faulty 

operating in that specific functional unit. 

 

To achieve this goal, both the decoded signal received from the LCU 

and the data received from the data memory need to be available for one 

extra clock cycle. Upon error detection, the normal flow of the processor will 

be halted, and the stored data will be sent to the combinational logic one 

more time, resulting in a one clock cycle latency on the overall execution 

time. The limitation of this method is that if two SETs occur at two 

consecutive clock cycles, the proposed mechanism will fail to recover the 

processor. Even though the probability of such an occurrence is very rare, 

adding more shadow registers per input register can solve this problem. 

However, only one shadow register per input register will be used here. 
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There are two possibilities to implement this mechanism:  

The first is to store the value of an input register at the ‘ith’ clock 

cycle, denoted at ’datai‘ in a shadow register; then upon error detection,  

pass the  ’datai‘ to the combinational logic at the ‘(i+1)th’ clock cycle and 

simultaneously store the new arrived value ‘datai+1’ (which was supposed to 

be applied to the combinational logic) in the input registers.  

The second implementation is to re-fetch the  ’datai‘ at the ‘(i+1)th’ 
clock cycle and store the ‘datai+1’ in the shadow register. The second 

implementation has been selected in this work because the implementation 

is simpler. This mechanism explained above is shown Figure 5.8.  
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Figure 5.8. The recovery method in the combinational logic part. 
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Referring to this figure, a detection signal will be generated by the 

combinational logic (shown with bold letters in Figure 5.8). This signal can 

be generated by any mechanism, providing that it detects an error in less 

than one clock cycle (a so-called zero latency), such as the Duplication With 

Comparison (DWC) approach [Hen11]. This detection signal will set a wait 

register that will raise the wait signal during the next consecutive clock cycle 

(also indicated by bold letters) to halt the fault-free functional units.  

 

The timing diagram of the error detection and correction scheme is 

depicted in Figure 5.9.  
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Figure 5.9. Timing diagram of the recovery mechanism in a 

functional unit (the grey parts are invalid data). 
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As can be seen in this figure, after error detection during the ‘(i+3)th’ 
clock cycle (denoted by ‘error’), the input register will be loaded during the 

next clock cycle ( ‘(i+4)th’ clock cycle) with previous data (labelled as input-3) 

instead of a new data (this status is indicated by letter a in the timing 

diagram). New data labelled as  ‘input-4’ is temporary saved in the shadow 
register (this status is indicated by letter b in the timing diagram). This will 

be passed to the combinatorial logic during the ‘(i+5)th’ clock cycle (this 

status is indicated by letter c in the timing diagram).  

 

The multiplexers 1 and 1a in Figure 5.8 provide the possibility of 

loading either a value from the data memory or the value of the last clock 

cycle, depending on the value of the detection signal. The multiplexers 2 and 

2a provide the possibility of loading the output of an input register or a 

shadow register into the combinatorial logic, depending on the value of the 

wait-signal. 

 

Referring to Figure 5.9, during the ‘(i+3)th’ clock cycle, the detection-

signal becomes high, while at the beginning of the ‘(i+4)th’ clock cycle, the 

detection-signal is still high and each input register will be loaded by its 

previous value. During the ‘(i+4)th’ clock cycle, ‘input-3’ will be processed 

again in the combinatorial logic. At the beginning of ‘(i+5)th’ clock cycle, the 

wait-signal is still high and the combinational logic will be loaded by the 

contents of the shadow registers.  

 

It is worth mentioning that considering the experiments carried out 

by iRoC-Technologies [Iro12] and [Ale11], the duration of a SET is 

considerably less than one clock cycle. So, simultaneously re-executing the 

faulty instruction after a clock cycle will stop the faulty results to propagate 

through the rest of the processor. 

 

The main novel feature of the presented recovery method is the 

isolation of the faulty functional unit from the fault-free ones for one clock 

cycle, referred to as freezing, and simultaneously re-executing the faulty part 

of the instruction. Another novel feature is that a minimum amount of 

information needs to be stored in each functional unit; this mechanism 

decreases the recovery timing overhead to only one clock cycle, while a 
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typical recovery mechanism takes 16 clock cycles for the CR-based 

mechanism [Tli12]. Moreover, the speed of the enriched processor is 

identical to the performance of the original processor, as long as no SET is 

present in the system. Furthermore, several clock cycles are required to store 

a check-point in the conventional CR-based methods irrespective of the 

occurrence rate of SETs. Our presented method stores the value of every 

input register simultaneously in a shadow register; therefore as long as no 

error has been detected by the detection mechanism, the total execution time 

of a workload is identical in both cases of the original as well as the enriched 

processor. 

 

5.4  Experimental results 
In this section, our results are presented based on the 

implementation of the described methods in a DSP Xentium processor from 

Recore System [Rec11]. The details of the Xentium processor have been 

already discussed in chapter 2. 

 

The RTL code of the Xentium processor has been modified in such a 

way that the LCUs of functional units are enhanced by the method 

presented in Section 5.2 and the combinatorial parts of the functional units 

have been modified based on the mechanism presented in the section 5.3.  

 

5.4.1 Area overhead and performance degradation 
To assess the area overhead and performance degradation induced 

by the presented methods, a fault-tolerant version of the DSP Xentium 

processor was developed using the RTL VHDL code.  

 

First, twenty different DSP workloads were executed on the 

enhanced version of this processor to assure the correct functionality of the 

modified processor. Subsequently, the synthesis tool Synopsys Design 

Compiler was used to synthesize the RTL design using the UMC 90nm 

technology node. The implementation data has been divided into two parts: 

the area/timing overhead induced by the LCU-related methods (first 

approach) and the overhead imposed by combinatorial logic–based methods 

(second approach). By doing so we were able to compare the efficiency of 

our method with its counter parts available in literature. 
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The achieved results are shown in Table 5.1. The ‘original Xentium’ 
label stands for the original implementation of the Xentium processor, 

without any modification. The ‘FT LCU’ is a Xentium processor in which the 

LCUs of all its functional units have been enhanced by the method of section 

5.3, while the remainder of the hardware in the functional units is identical 

to the original design. The next two rows (FT. combinational logic including 

detection and excluding detection) show a Xentium processor in which the 

combinational logic has been modified on the basis of the method presented 

in section 5.3. Moreover, the reported area for the combinational logic has 

been divided into two parts: including the detection mechanism and 

disregarding the detection mechanism. As detection mechanism for 

combinational logic, a DWC approach [Gos08] has been employed, as shown 

in Figure 5.10. For example, for the 32*32-bit multipliers inside the M 

functional unit [Figure 2.7 of Chapter 2], two 8-Least Significant Bits (LSB) of 

each input are concurrently multiplied by a smaller redundant multiplier 

and then the calculated result will be compared to the 8-LSB of the 32*32 bit 

multiplier, in which any mismatch indicates an error. However, this partial 

comparison suffers from an inability of discovering an error in the high 

significant bits of an input. It is important to mention that this simple partial 

comparison has been employed here just as an example of the detection of 

soft-errors in a functional unit.  
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Table 5.1. The area overhead and performance deterioration for the 

proposed approaches. 

 
total cell 

area (µ2) 

area 

overhead 

(%) 

critical-path 

(ns) 

speed 

deterioration 

(%) 

original Xentium 293462 0 7.87 0 

FT. LCU 304785 4 8.70 10 

FT. combinational 

logic (including 

detection) 

341316 16 7.87 0 

FT. combinational 

logic (excluding 

detection) 

325247 10 7.87 0 

 

 

 

 
 

Figure 5.10. A possible detection mechanism (partial DWC). 

 

redundant multiplier 
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5.4.2 SET sensitivity 
A simulation-based fault study at gate-level implementation has 

been conducted to assess the achieved fault tolerance of the enriched 

processor. For the simulation model of SETs, the most recent model of SETs 

presented in chapter four has been employed. During the fault-injection 

process, a digital signal-processing program, the well-known Finite Impulse 

Response (FIR) has been used as a workload. Using additional DSP 

workloads would have been desirable, however, the computational time to 

conduct FIR experiments was already more than several days and involving 

more workloads was not feasible at this time. 

 

The induced effect of a fault can be classified as wrong-results, which 

means the injected fault has been propagated into the system while correct-

behaviour indicates the injected fault has been masked before propagating 

into the system [Muk08]. The behaviour of the processor has been indicated 

in terms of a percentage, for example if 10 out of 100 fault-injections produce 

wrong-results, the sensitivity of the processor is 10%. 

 

The number of fault-injections in each set of experiments has been 

increased from an initial value (200 for LCU and 500 for the combinatorial 

logic) until a clear convergence could be recognized in the obtained 

sensitivity level of the processor. The mathematical details of calculating the 

convergence point is exactly the same as discussed in chapter four. 

 

Table 5.2 shows the results of the sensitivity analysis. It can be seen 

that for the original processor, the percentage of propagated faults in the 

LCUs is 40% while this number is 30% for the combinational logic (these two 

numbers are indicated by underlining in Table 5.2). The sensitivity of the 

enriched LCUs (the row labelled with FT LCU) has decreased to 5.4% with a 

detection-latency of 0 clock cycles (indicated by bold letters in Table 5.2) 

which means faults will be masked. Further investigation showed that 

undetected faults have escaped from the detection mechanism as they 

occurred in the ‘opcode-to-address-convertor’ in the look-up table scheme. 

For fault-tolerant  combinational logic (labelled as FT. combinational logic), 

15% of injected faults could escape from the detection mechanism (is 

indicated by bold letters in Table 5.2). However, as long as a fault is 
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detected, the recovery mechanism can stop the fault from propagating 

through the rest of the processor and the processor is recovered within one 

clock cycle. 

 

Table 5.2. SET sensitivity in the enriched Xentium processor. 

 

# fault-injections  # wrong answers  sensitivity (%) detection 

latency  

(# clk. 

cycles) 

LCU comb. LCU comb. LCU comb. 

original 

Xentium 
12800 32000 5120 9600 40 30 N.A 

FT. LCU 12800 32000 700 9600 5.4 30 0 

FT. comb.* 12800 32000 5120 5100 40 15 1 

*comb. stands for combinational logic 

 

 

5.4.3 Comparison of our methods with other available 
methods  

Table 5.3 shows the comparison of our proposed methods with some 

available solutions of soft-error mitigation in either LCU or combinational 

logic. A thorough comparison is not feasible as the imposed overhead 

depends on many parameters such as the exact architecture of the case 

study, the workloads, etc.  

 

Starting with the mitigation methods in the control unit, our work 

has been compared with [Gha08]. It can be seen that even though the area-

overhead of [Gha08] is similar to ours (3.4% as compared to 4%), our method 

will cause less performance deterioration (10% as compared to 17%). 

 

Comparing our combinational logic mitigation method with the one 

presented in [Che06], our method is quite competitive in terms of area 

overhead (10% as compared to 17%) while both methods cause no 

performance deterioration. 

 



 

 

130 

 

Table 5.3. Comparison of our method versus other known methods 

penalties 

method 

area overhead (%) speed deterioration (%) 

LCU 
combinational 

logic 
LCU 

combinational 

logic 

our method 4 10 10 0 

[Gha08] 3.4 N.A 17 N.A 

[Che06] N.A 15 N.A 0 

 

 

5.5   Conclusions 
DSP processors are emerging more and more in in domains, such as 

automotive applications, where low cost and dependability are primary 

concerns. As traditional hardware redundancy methods are usually not 

affordable for current-day applications, new solutions for modern 

processors with regard to the ever-increasing threat of soft-errors have to be 

developed. In this chapter, two novel solutions to mitigate soft-errors in DSP 

processors were introduced.  

 

The first methods use the limited number of opcode-dependent 

control signals to construct a look-up table to retrieve the value of each 

signal. Moreover, they have used the high degree of locality of reference in 

DSP kernels to organize a cache memory structure to mitigate soft-errors in 

the control unit of a DSP processor. These methods could decrease the 

sensitivity of control unit  of a Xentium processor from 40% to 5.4% with 

regard to SETs while imposing  4% on silicon area and 10% deterioration on 

the speed of the processor. 

 

The second approach targets the combinatorial logic and benefits 

from the inherent architecture of DSP processors to be able to isolate faulty 

functional units from the fault-free ones in order to carry out a fast recovery. 

Our simulation results showed that the proposed methods are able to reduce 

the vulnerability of a DSP functional unit from 30% to 15% with regard to 

soft-errors, while the area overhead and performance deterioration imposed 

on the system are 16% and zero, respectively. 
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CHAPTER       6 

 
 

Using Multi-core Architectures to 

Mitigate Soft-Errors1 
  

                                                      
Parts of this chapter have been submitted as a paper titled "A soft-error mitigation technique 

in a multicore architecture composed of DSP cores" in 16th IEEE Latin-American Test 

Symposium (LATS), 2015 in Mexico. 
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ABSTRACT- As the organization of modern computer systems is moving more and more 

towards multi-core architectures, the investigation of the effect of soft-errors in multi-core architectures 

is more important than ever before. Multi-core architectures have some unique features that can be 

exploited for the purpose of soft-error mitigation. For example, existence of several identical cores in a 

typical multi-core architecture can be very beneficiary to discover any mismatch between the internal 

architecture of two identical cores. This chapter extends the soft-error mitigation mechanism presented 

in the previous chapter (chapter 5, for single-core) to a multi-core processor environment. We will 

exploit the existence of similar cores in a semi-homogenous multi-core architecture to enhance the fault 

coverage of our mitigation method. The internal modification of each core is the same as the freezing 

method which has been already explained in chapter 5. However, external units to control the internal 

actions of each core after a soft-error detection are required. A zero-latency soft-error detection 

mechanism has been implemented by comparing the internal status of each functional unit of two 

identical cores, while both cores execute the same workloads. The status of internal functional units are 

compared continuously and in case of a mismatch, which is an indication of the occurrence of soft-

errors, both cores re-execute the last instruction one more time to recover. Due to our zero-latency 

detection mechanism, re-execution of the very last instruction can recover the correct status of 

functional units. This internal re-execution eliminates the need of copying the entire status of one 

processor core to another one, which is currently used in some state-of-the-art soft-error mitigation 

solutions. As a result, the performance loss during the recovery time of our mechanism is much shorter 

as compared to similar methods. A detailed RTL model of our architecture has been designed and an 

excessive fault-injection campaign has been performed to evaluate the achieved soft-error coverage. The 

fault-injection results show that 90% of the failures caused by soft-errors can be mitigated.    

 

6.1 Introduction 
Shrinking the technology to sub-100nm technology nodes has several 

consequences with regard to the performance and soft-error sensitivity of 

modern digital integrated systems. On one hand, complex processors can be 

built with much faster performance; however, because there are very 

irregular and complex structures in the architectures of these modern 

designs, the soft-error sensitivity of these high-performance systems needs 

to be investigated accurately. Because of Moor’s law, one is able to 

implement Integrated Circuits (ICs) with an enormous number of 

transistors; but since many of these transistors are packed tightly together, a 

huge power density and low noise margin will make the advanced digital 

systems very vulnerable to environmental failures. As a result, counter-

measures should be considered to enhance the reliability of such a system 

which is manufactured in an advanced process technologies. 

 

Another phenomenon that is pursued in implementing digital 

systems is that Vth and VDD shrink in every new generation of transistors. 
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Since the transistors work with a very small Vth and VDD, even very low 

energy particles from cosmic radiation are able to modify the behaviour of a 

transistor. As a result, a large variety of radiation particles are able to toggle 

the stored value of a flip-flop or latch or cause a glitch in the combinatorial 

logic. Hence, soft-error sensitivity should be considered carefully for digital 

systems which are implemented in sub-nanometer technologies.    

 

Another trend is that the technology of computer systems 

experiences the movement from single-core architectures towards multi-core 

architectures. Multi-core architectures remain the main architecture of 

computer systems for the upcoming years because they provide a solution to 

continue enhancing the performance, while the increase in power 

consumption is still manageable. As a result, multi-core architectures have 

become very popular recently in the computer architecture community 

[Jey11], e.g. the Intel core 2 duo, Intel core i7, AMD Opteron and IBM Cell 

processor. However, these architectures host an enormous number of 

transistors, while the resilience of these systems to soft-errors is still an open 

question. As a result, the resilience of the whole architecture with regard to 

soft-errors needs to be investigated carefully. In the next paragraph, a well-

documented effect of soft-errors in a multi-core architecture that has recently 

happened will be discussed. 

 

Soft-errors are a threat for causing temporary damage in complex 

computer systems. For example in 2003, a multi-processor Sun server, called 

SUN flagship, experienced a temporary crash. The crash lasted for a few 

seconds but the server needed to be reset in order to recover again. 

Investigation of the logged data showed that the failure was induced by 

toggling the value of one of the flip-flops; it turned out it was most probably 

caused by the strike of neutron particles originating from cosmic radiation 

[Lyo00]. That crash happened only once in the life time of that Sun server; 

however studies show that if the technology of implementation is less than 

90nm, the soft-error rate at the end-point server can reach the rate of once 

per 170 hours [Jey11]. With the trends of  shrinking technology and 

reduction of power supply, advanced digital systems can experience a 

failure induced by soft-errors at a rate of once per 24 hours [Kay00]. This 

failure rate will be critical if the end-point server will be used in mission-
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critical applications. For example, modern electric cars use multi-core 

processors [Tes14] to process data which can be related to navigation, 

collision-avoidance and lane detection. The other obvious example is 

airplane computers in which most computations are highly mission-critical.    

  

Multi-core architectures are categorized into homogeneous and 

heterogeneous architectures. In a homogeneous architecture, all cores (or at 

least the majority of cores) are identical, with regard to the internal 

architecture. Moreover the type of workload which is being executed in each 

core falls in the same category (for example DSP workloads).  

 

The architecture and type of the cores in a heterogeneous 

architecture are diverse. Some architectures use a mixture of homogeneous 

and heterogeneous architectures; so while there are different cores in the 

design, some parts of the design (most frequently the majority of cores) are 

identical. If the majority of cores are identical, the architecture is called semi-

homogeneous architecture. As will be shown later, the architecture of our 

target multi-core system in this chapter falls into this category. 

 

One similarity between homogeneous and heterogeneous 

architectures is that they are both composed of redundant processor cores. 

At some instances of time, some processor cores are idle and can be used for 

other purposes, such as soft-error mitigation mechanisms. In this chapter, 

the inherent redundancy of identical cores in a semi-homogeneous 

architecture will be used for soft-error mitigation purposes. Our method 

does not strongly depend on whether the architecture is fully homogeneous 

or not. When two similar cores can be identified in a multi-core architecture, 

the proposed method of this chapter can be implemented. 

 

6.2. State-of-the-art methods 
 Different methods to enhance the soft-error resilience of multi-core 

systems with regard to soft-errors have been already proposed at all levels of 

design hierarchy, including packaging level [Bau95], fabrication level 

[Can04], circuit design [Roc92] as well as software level  [Shr10].  

In chapter 5, various architectural-level methods to decrease the 

vulnerability for soft-errors in single-core architectures were discussed.  
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Generally speaking, all those single-core based methods are applicable to a 

multi-core architecture. For instance, every core can be extended with error-

detection-and-correction codes so that it is able to handle a fault that 

occurred by its own.  

 

However, two issues have to be considered carefully if a single-core 

based method is applied to a multi-core architecture. First, inherent 

redundancy of multi-core architectures might be ignored if all the 

mechanisms to mitigate soft-errors are implemented internally in each 

single-core. Second, the overhead of each processor core will contribute to 

the overall overhead of the entire multi-core system. As a result, recent 

research has suggested that the problem of soft-error resilience in multi-core 

systems needs to be approached from an orthogonal perspective [Jey11]; this 

means the approach should consider redundancy of different resources 

during the soft-error mitigation procedure. 

  

An important issue with regard to the reliability of a multi-core 

architecture which uses redundancy of similar cores is to maintain identical 

instruction streams between redundant processor cores. In other words, the 

internal status of two cores should be the same at any given point of time. 

One of the most well-known methods to tightly synchronize two processors 

is called lock-stepping which has been proposed in [Smo06]. As a result, the 

first challenge of synchronizing two or more processor cores can be resolved 

by using lock-stepping. It will be shown that most of the methods that work 

based on comparing results of two identical processor cores rely on lock-

stepping as a way of synchronization. However, lock-stepping incurs some 

drawbacks on the system. For example, if one processor core has to wait for 

an external handler, the other core needs to halt its procedure as well, until 

both processors will be timely aligned again. 

 

A number of methods that take the advantage of inherent 

replication of processor cores in a multi-core architecture for soft-error 

detection or corrections can be found in [Agg07, Gom03]. These methods 

work by pairing two or more cores to check their execution results. The two 

above mentioned papers use lock-stepping in order to maintain the 

synchronization between identical processor cores. However the amount of 
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information which is checked to detect a mismatch is different between the 

different approaches. For example, while [Agg07] checks all the outputs of 

two processors at every clock cycle, the Redundant-Multi-Threading (RMT) 

[Rei00] is developed in such a way that only stored addresses and associated 

values will be checked to detect soft-errors. Limiting the amount of data that 

should be checked for soft-error detection is useful to develop a light and 

fast soft-error detection mechanism; however, the error coverage of its error-

detection mechanism might be compromised.      

  

The authors of [Gup08] proposed a method which connects the 

internal pipeline stages of two processor cores via high-speed routers. Since 

the intermediate results of a pipeline stage are earlier available in the 

pipeline stage as compared to the main output of the processor, a faster soft-

error detection can be obtained. The drawback of this method lies in a more 

complicated structure of the communication grid. Moreover, if the multi-

core architecture is highly homogeneous, the regular structure of the multi-

core architecture might be jeopardized. As a result, this architecture is more 

suitable for designs which are composed of a combination of dedicated 

cores, general-purpose cores, memories etc. (so-called semi-homogeneous 

systems). 

 

As mentioned before, the inherent redundancy of multi-core 

architectures was an interesting framework to implement many readily 

available redundancy-based soft-error mitigation methods. One can mention 

the Dual Modular Redundancy (DMR) [Vad10], Triple Modular 

Redundancy (TMR) [Tha08], and check pointing [Wan06] techniques. The 

following paragraphs will discuss two redundancy-based soft-error 

mitigation techniques, including their shortcomings.   

 

An example of one of the promising redundancy-based methods is 

Reunion [Smo06] which is based on check-point and recovery. It offers a low 

overhead recovery mechanism. In this method, a set of instructions called 

‘fingerprints’ are generated by identical cores at some specific time intervals. 

Before committing each instruction, the ‘fingerprints’ should be compared 
against the same redundant cores executing the same instructions. The 

instructions are allowed to change the status of the processors only if the 
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compared ‘fingerprints’ match each other. In the case of a mismatch, the 
status of both processors will be resumed from the last known status (check-

point). At that moment the stored status will be loaded again in both 

processors and the execution will be continued from a previously known 

status.  

 

The Reunion architecture has the following drawbacks:  

a) It is required to add a new pipeline stage to each processor core because 

every instruction should be verified before the commit stage. This 

requirement adds an extra complexity to this design and it incurs extra 

power overhead.   

 

b) Serializing instructions might cause problems. Since every instruction 

should be halted for one extra clock cycle, this can decrease the performance 

of the processor if the workload is serially oriented. 

  

Another state-of-the-art method has been proposed in [Jey11]. It is a 

promising method which is called Unsync. In this method each core will be 

enriched with some hardware soft-error detection-and-correction 

mechanisms (such as the parity or Hamming codes). Upon detection of soft-

errors in one of the cores, the status of the correct core will be transferred to 

the status registers of the erroneous core. Figure 6.1 shows this mechanism. 

The bold link between the two processors (indicated as link) is being used to 

copy the required status, including memory and register contents, from the 

correct core to the faulty core. Each processor signals the interrupt unit if an 

error occurs in one of the processor cores (via the previous hardware-

detection mechanism). The interrupt handler halts both processors and then 

transfers the status of the correct processor to the faulty processor.  
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interruptinterrupt

 
Figure 6.1. The basic set-up of the Unsync architecture. 

The most important benefit of the Unsync architecture is that there is 

no need to synchronize the internal status between the two processors; since 

soft-error detection is carried out by internal error-detection-and-correction 

codes rather than comparing the internal status of identical cores. However, 

this architecture suffers from the following shortcomings: 

 

a) Transferring the correct status of one processor to the other one 

might be very costly. This is because the content of all registers and 

memory needs to be transferred from one processor core to the other 

one. 

 

b) Performing soft-error detection by internal hardware mechanisms 

might be a solution to eliminate the synchronization between two 

cores; however, the coverages of those methods are very low. For 

example, comparing the status of two processors clock-by-clock can 

hamper the propagation of all single errors. However, the parity 

code is only able to detect an error in the sequential parts. Moreover, 

there should be one clock-cycle delay between reading and writing 
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data in that particular sequential unit so that the parity code can 

detect an error.  

 

6.3. The motivation to propose our technique 
 Our motivation to develop a new soft-error recovery mechanism 

was to eliminate the requirement of transferring the status of one processor 

to another during the recovery process. Also, there was an interest to 

integrate the soft-error mitigation mechanism that has been developed in 

chapter 5 into a multi-core architecture. 

 

With regard to the soft-error detection in our proposed architecture, 

the output of each functional unit of each processor core will be connected 

together for the purpose of soft-error detection. Therefore the complexity of 

our communication grid is less than methods which connect pipeline units; 

on the other hand it is more than those ones that connect the output of each 

processor core for comparison.  

 

It is also important to mention that the architecture of our multi-core 

system is composed of DSP processor cores, a general purpose processor, 

memories and peripherals. A scheme of this multi-core architecture is shown 

in Figure 6.2. As can be seen, the architecture of our system is semi-

homogeneous; therefore introducing a new communication grid to connect 

functional units does not jeopardize the regularity of this architecture.  
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DSP core 2
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DSP core 3
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DSP core 4
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general purpose 

processor core
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memory 1 memory 2 peripherals bridge

peripherals 

NoC grid

 
 

Figure 6.2 The organization of our multi-core system. 

 

With regard to the soft-error correction method in our architecture, 

each core resolves the impact of soft-errors internally and therefore there is 

no need to copy the whole status of one processor core to the other one. This 

mechanism works by re-execution of the last instruction locally in both 

processor cores as it will be shown later, this mechanism provides 90% soft-

error detection coverage, while the recovery overhead to mitigate the impact 

of soft-errors is very low. 

 

6.4 Our approach for soft-error mitigation in multi-core 
systems 

The first subsection discusses the details of the soft-error detection 

mechanism in our architecture and the second subsection provides our 

recovery mechanism.  
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6.4.1. Soft-error detection approach 
The soft-error detection mechanism in our architecture is based on 

comparing the output of identical functional units of two processor cores 

against each other. This is because our multi-core architecture is composed 

of several DSP cores which in turn are VLIW architectures composed of 

several functional units (as described in chapter 2 section 2.5). It is therefore 

feasible to use a more fine-grained detection mechanism for each core as 

compared to the Reunion architecture [Smo06]. Moreover, we require a fast 

detection mechanism which can detect a failure in a processor as quickly as 

one clock cycle after its occurrence. This latter criteria is required for the 

correct operation of the ‘freezing’ mechanism, which was introduced in 
chapter 5, in this multi-core architecture.  

 

Having mentioned all required considerations, the immediate 

output of each functional unit is compared to the counterparts functional 

units in identical cores to detect an impact of soft-errors. Figure 6.3 shows 

this mechanism; identical functional units will be compared with each other. 

For example, the A0 unit of processor core 1 is compared to the A0 unit of 

processor core 2, while processor core 1 and core 2 are executing the same 

workload. By comparing the output of two functional units, it is feasible to 

detect an error almost immediately before propagating to the higher 

succeeding levels, such as Memory units. This quick soft-error detection 

mechanism is essential in our architecture because we are interested to 

employ the error-recovery mechanism which was proposed in Chapter 5 

(was called ‘freezing’) in this multi-core environment. This is because the 

‘freezing’ approach works by re-execution of the very last instruction and 

hence a zero-latency detection mechanism is absolutely necessary for its 

correct operation.    
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Figure 6.3. Comparison between identical functional units in identical 

processor cores. 
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The error-status register in figure 6.3 (indicated with bold lines) 

signals an error in at one of the functional units. The bits in this register 

indicate which functional units are erroneous. For example, bit 0 for A0, bit 1 

for A1 etc. All the bits of this error-status register go to an ‘OR’ gate which 

its output is providing a soft-error detection signal. This signal indicates that 

at least one of the functional units is erroneous.  All the compare units, error-

status register and soft-error detection signal (indicated by a dotted line) are 

hereafter referred to as the ‘comparator’.  
 

Figure 6.4 depicts the overview of the entire architecture. It shows 

two processor cores that are compared together to form a core pair. The 

details of the comparator have already been shown in Figure 6.3. The 

workloads that are executed in both processor cores are identical and 

synchronized. Hence, the internal status of these two processor cores should 

be the same; otherwise there is a failure in one of the cores. However, this 

mechanism does not indicate which core is erroneous.  

 

Each core in this architecture has been modified by employing the 

mechanism of chapter 5; this means there are shadow registers in each 

functional unit which make it feasible to re-execute the last instruction in 

each core upon detection of a soft-error. The soft-error recovery unit is 

responsible to initiate a re-execution in both processor cores.  To be able to 

re-execute the last instruction, the normal operation of a core must be halted 

and then the very last inputs will be propagated again in the functional unit 

one more time. The details of the re-execution mechanism will not be 

discussed here since detailed explanations have already been discussed in 

Chapter 5. In the remainder of this chapter the focus will be on how to 

integrate that architecture into a multi-core environment. 
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igure 6.4. The general architecture of our mechansim. 

 

  

6.4.2 Soft-error recovery approach 
 

As shown in Figure 6.4, a recovery handler has been added to the 

architecture to be able to carry out the recovery mechanism. The 

responsibility of the recovery handler is to start the recovery process in each 

core. The recovery mechanism is based on halting the healthy functional 

units in each core, and activating the re-execution of the last instruction in 

the erroneous functional unit (or functional units, if more than one). As a 

result, both cores will halt their normal flow after a soft-error detection, and 

subsequently the last instruction will be re-executed in both cores. Providing 

that the detection mechanism can detect a soft-error within at most one clock 

cycle after its occurrence, this partial re-execution will eliminate the effect of 

a soft-error in the erroneous core.  

 

Figure 6.5 shows the timing of the described mechanism. At time T1, 

a soft-error has occurred in core 1 (indicated by X), it has been detected in T2 

by the comparison mechanism of the two processor cores 1 and 2. As a 

result, a re-execution has started in both cores at time T3. For one clock cycle 

(T3 - T4), both processor cores will re-execute the last instruction.  After re-
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execution, both processor cores can continue their normal execution 

providing that the soft-error is eliminated (the detection-signal is turned low 

in this case). 

 

 

Processor 

core 1

Processor 

core 2

T1 T2 T4

Re-execution

T3

Normal flow

Normal flow

Clock signal

time

Re-execution

Error-

detection

Recovery 

handler

 

Figure 6.5. Timing diagram of error-recovery of two processor cores 

1 and 2. 

However, there exist some situations where this re-execution is not 

able to recover the correct status of the erroneous processor core. For 

example, in some cases the fault has already occurred several clock cycles 

prior to detection. In this case, re-execution of the last instruction is not 

helpful to recover the correct status of the processor cores. In other words, if 

a fault has occurred more than one clock cycle before the detection, rolling 

back one clock cycle before will re-produce an erroneous status again, and 

hence the recovery mechanism has failed.  

 

Figure 6.6 shows an example of the mentioned scenario. Suppose 

that a fault has occurred in register-1 of processor core 2 of Figure 6.6 during 

clock cycle ‘I’. This change takes two clock cycles for being read and 
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propagated to the output of the functional unit. So detection can only take 

place in clock cycle ‘I+2’. At this point, rolling back one clock cycle before, or 

‘I+1’ and reading the status of the processor core is useless. This is because 

the data which is present in clock cycle ‘I+1’ in register-1 is already faulty.   

 

 

Register-1 Register-2
Output of 

functional unit

A fault occurs in clock 

cycle I

Fault propagates here 

in clock cycle I+1

Register-1 Register-2
Output of 

functional unit

Comparator

Processor core 1

Processor core 2

1 clock cyle 1 clock cyle

1 clock cyle 1 clock cyle

Detection takes place  

at clock cycle I+2

 

Figure 6.6. Detection of an error more than one clock cycle after the 

occurrence. 

  The probability of the above mentioned scenario is rare, because 

the execution time for most of the instructions in a DSP processor is one 

clock cycle (DSP instructions are based on Reduced-Instruction-Set-

Computer, RISC architecture). However, in some cases a fault can be latent, 

i.e. a fault can manifest itself in a register that is going to be used in several 

(more than one) following clock cycles. 

      

In the case of a detection of more than one clock cycle after 

occurrence, two scenarios can be followed. The first approach suggests 

loading a safe check-point from one clock cycle prior to the fault occurrence. 
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This scenario requires a heavy overhead for saving the intermediate status of 

each processor core at several time intervals.  

 

The second method is to reset both processors to the initial state, a 

so called re-boot procedure to the beginning of the program code. This 

method implies a large performance loss, because both processor cores have 

to execute their entire workload one more time from the beginning. It is 

important to note that the detection mechanism of our method does not have 

the possibility of recognizing the erroneous processor core; so every action 

including a re-boot should be applied to both processor cores. 

 

 

 

6.4.3 Operational phases of our architecture 
The operational mechanisms of the proposed architecture can be 

best understood by observing its different phases of operation: 

 

a) Error-free mode: the two identical cores execute the same 

instructions in a synchronous mode. The memory provides the 

same data for both cores and also the interrupts are received in 

both cores at the same time. As long as the detection-signal is low it 

implies that the internal statuses of the two cores are identical and 

the normal behaviour of the system will be continued. 

 

b) Detection mode: detection is carried out by the comparator 

which was depicted in Figure 6.3. This comparator compares the 

outputs of two identical functional units in two identical processor 

cores (such as A0 in processor core 1 and A0 in processor core 2, 

while processor core 1 and 2 are identical) in order to detect a 

mismatch. Upon a mismatch detection, the comparator signals the 

recovery handler of the core pair, as shown in Figure 6.4. The 

recovery handler starts the recovery mode subsequently.  

 

c) Recovery mode: in the case the recovery handler receives a signal 

from the compare unit, a recovery process in both processor cores 
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of the core pair will be started. In this mode, the following 

procedure will be carried out in both processor cores: 

 

First, the normal execution flow in both processor cores of the core 

pair will be halted temporarily. Then the correct functional units in 

both cores will enter the ‘freezing’ state (which means the output 

data of unaffected functional units will be held for one clock cycle), 

while the erroneous functional units in both processor cores will re-

execute the last instruction to mitigate the error. One clock cycle 

after this re-execution, two scenarios are likely to happen: the first 

scenario is that the detection-signal is low which implies the 

erroneous functional unit has recovered. In this case the normal 

procedure of the core pair can be continued. The second scenario is 

that there is still a mismatch between the two processor cores. As 

discussed earlier, this can be due to the occurrence of a fault in an 

earlier clock cycle than the clock cycle prior to its detection. As a 

result, rolling back to one clock cycle before the detection cannot 

recover the error. In this case, both processors cores will be re-

booted to the starting point of workloads (after IO initialization). 

This scenario has been depicted in Figure 6.7.  This shows two 

processor cores, core 1 and 2. The second mismatch after the first 

mismatch indicates that the re-execution could not recover the 

processor core pair and hence a re-boot has been performed in both 

processors.  

 

time

Processor core 1

Processor core 2

first mismatch 

Re-execution

second mismatch 

T0 T1 T2

Re-boot

Re-boot

 
Figure 6.7. Timing diagram of our proposed architecture. 
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It is important to mention that even though the re-boot results in a 

large performance loss, fault-injection experiments show that about 90% of 

detected soft-errors can be mitigated within only one clock cycle via the re-

execution method and only 10% require a re-boot. For example, if one 

considers the extreme rate of soft-errors of occurring once per day, our 

mechanism induces a re-boot with a rate of only once per ten days.   

 

6.5 Additional features of our architecture 
The architecture we have proposed in this chapter has some benefits 

as compared to other similar state-of-the-art methods. However, some 

challenges should be resolved in order to implement this mechanism in a 

multi-core environment. In the following paragraphs, the advantages and 

disadvantages of the proposed architecture will be discussed. 

 

The first advantage is that inter-core communication is not required. 

Our proposed method recovers processor cores by re-execution of the last 

instruction in each core separately, in the case the fault has occurred just one 

clock cycle before its detection; or it re-boots both cores separately in the 

scenario that a fault has manifested itself in the system and is appearing 

several clock cycles after its occurrence. In any case, there is no need to 

exchange the status between two processor cores. This feature is beneficiary 

as compared to Unsync [Jey11] in which the correct status of a core should 

be copied from the unaffected core to the erroneous one. 

 

A second advantage is that there is no need to add any extra unit to 

the internal pipeline units of processor cores. For example, in the Reunion 

[Smo06] architecture, one extra check unit should be incorporated in the 

pipeline units of each core to be able to check the correctness of fingerprints. 

That modification incurs a performance degradation to each core even in the 

situation that there is no error in the system. However, the only modification 

which is required in our method is the insertion of shadow registers and 

multiplexers which hardly interfere with the normal flow of the pipeline 

units.  

 

Last but not least, the performance of each individual processor core 

will not be compromised. Every core in the modified multi-core architecture 
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has the same performance as the base-line core architecture. This factor is an 

advantage over the Reunion architecture in which the fingerprints should be 

generated (extra clock cycles) and then be compared together no matter of 

the occurrence of a fault or net. 

 

However, there are still some challenges that need to be resolved in 

order to implement our method in a multi-core architecture. First, it is 

required to have a reliable method of synchronization between two 

processor cores. Since the fault detection is carried out by comparing the 

partial results, these two processor cores should execute exactly the same 

instruction at the exact same moment. This challenge also exists in other 

methods [Smo06] which rely on comparison to detect an error. Unsync 

[Jey11] claims that there is no need to synchronize cores (as the name 

implies), because the detection mechanism is carried out by internal 

hardware error-detection mechanisms, such as usage of the Hamming code. 

However, the soft-error coverage of this method is about 33% which is much 

lower as compared to comparison based methods. Moreover, input data 

might be lost during a re-boot, however, all the other approaches have 

similar problems. We use two cores for one workload, so the efficiency is 

reduced, but other approaches have this problem as well.  

 

The re-boot process is depicted in Figure 6.7; even though it might 

seem simple, it requires a more detailed explanation.  

The normal re-boot process, a so-called hard re-boot or reset, is 

performed via the hardware. In this case, the Program-Counter (PC) is rolled 

back to the start address of the program memory and all the data will be 

lost. This address is normally 0 as it requires a hardware reset in the register 

containing the PC.  

However, another form of re-boot has been used in our mechanism 

where the PC will be rolled back to an intermediate address which is not 

necessarily the start of a program code. This concept is called a soft re-boot 

and is depicted in Figure 6.8. As can be seen in this figure, the information 

resides in the program memory which is divided into two parts; the 

initialization part where information like the address of a NoC handler and 

the memory address are stored (from address 0000 to 00FF) and the program 

code in which the actual code of a workload is stored (address 0100 to FFFF). 
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This initial information is essential in a multicore environment for the 

correct execution of the program code and this information needs to be 

loaded again if any re-execution is performed. 

 

 
Figure 6.8. Concept of soft re-boot. 

 

Suppose that a soft-error has been occurred when the PC is at the 

address 0FFF and a re-execution is performed to recover from this error. A 

soft re-boot implies that the PC is set to the beginning of the program code 

and after the initialization information (0100 in this example); hence the 

initialization information will be intact. However, one is able to perform a 

soft re-boot only in a simulation environment and not in the real hardware. 

This issue needs to be investigated if the proposed mechanism is going to be 

implemented in a chip. One solution could be storing the initial information 

in a separate memory and then re-loading that information upon a hard re-

boot. However, the cost on performance needs to be studied first. This issue 

has not been addressed in this thesis any further, since all the experiments 

were performed in a simulation environment. 

Table 6.1 summarizes the differences between our proposed method 

as compared to the Reunion [Smo06] and UnSync approach [Jey11]. 
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Table 6.1. Comparison of some features of our approach with 

others.  

feature 

 

method 

modification 

of pipeline 

units 

requires 

synchronization 

soft-error 

coverage 

Inter-core 

communication 

Reunion 

[Smo06] 
Yes Yes 

High (more 

than 75%) 
Yes 

UnSync 

[Jey11] 
No No Low (33%) Yes 

Our proposed 

approach 
No Yes High (90%) No 

 

 

6.6 Experimental setup and evaluation of our approach 
The first sub-section discusses the details of our evaluation method 

and the second subsection provides the results of our analysis. 

   

6.6.1 Experimental set-up 
In order to evaluate the effectiveness of our proposed architecture, a 

VHDL Register Transfer Level (RTL) set-up has been developed. The RTL 

architecture is composed of four DSP Xentium cores (as was already shown 

in Figure 6.2).  These four Xentium processor cores have formed two core 

pairs combinations. Moreover, each core pair has only one memory handler, 

one interrupt receiver and one clock source. In this case, both Xentium 

processors in a core pair will receive and observe the same actions and 

remain synchronous with each other. In addition, one comparator and one 

recovery handler are required for each core pair. These units have been 

developed in VHDL as well. The internal architecture of each Xentium 

processor is exactly identical as described in Chapter 5.  

  

The workload which is executed in each processor core is a FIR filter 

program. It is only required to have an identical workload in each core pair 

as the results of two processor cores are compared with each other to detect 

a mismatch. So, it is possible that one core pair executes a FIR program while 

the other core pair executes a FFT program.  

 



 

 

155 

 

During execution of the workloads, a fault-injection process has been 

carried out on all functional units of each Xentium processor to evaluate the 

soft-error coverage of the modified multi-core architecture. The fault 

injection process has been conducted by injection of SET fault models at 

random times in random nets of each functional unit. The final outputs of 

the processor cores have been monitored to trace the propagation path of 

each injected fault. The model used to emulate SETs is the same model 

which was described in Chapter 4. The simulation framework which has 

been used to conduct soft-error injection is the one described in Chapter 3.  

 

6.6.2. The soft-error coverage 
As mentioned before, a simulation-based soft-error study at VHDL 

level has been carried out to assess the achieved sensitivity of our multi-core 

architecture with regard to soft-errors.  

 

Each core pair executes a FIR workload and during the execution of 

the workload, predefined soft-error fault models were injected into the 

design. Soft-error faults have been injected in all functional units of each 

Xentium core during our fault-injection process.  

 

The classification of the impact of faults in the output of each core 

pair are categorized as failure and not-effective ones. If an injected fault can 

alter the output of the core pair, then that fault is classified as a cause of a 

failure, otherwise it is counted as a not-effective fault that has no impact on 

the system. The behaviour of each core pair with regard to injected faults has 

been stated in terms of a percentage. For example, if 10 out of 100 injected 

faults are able to modify the output of the core pair, then the sensitivity of 

this core pair with regard to injected faults is 10%. Our goal is to decrease 

the sensitivity of each core pair. 

 

The number of fault-injections in each core has started from the 

initial value of 1000 (a random value) and has been increased until a point of 

convergence can be observed in terms of the sensitivity of a core pair. The 

mathematical details of obtaining the convergence point are out of the scope 

of this chapter and have been discussed in detail in Chapter 4. 
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Table 6.2 shows the number of fault-injections and the sensitivity of 

each core pair for 20,000 fault-injection experiments. As can be seen in this 

table, about 8,130 faults can change the correct output of a core pair in an 

unprotected design, resulting in a SET sensitivity value of 41%. This value is 

for an architecture without any error mitigation measure. As a result, 59% of 

the injected faults could not modify the output of a core pair while 41% of 

injected faults propagated from the internal functional units to the output 

core level.  

 

As Table 6.2 shows, our modified architecture can mitigate 94% of 

failures in a core pair. In another words, only 1230 faults could escape the 

detection mechanism and change the correct functionality of a processor 

core; which implies the sensitivity of our architecture is 6%. The reason that 

still 6% of SET faults can escape the detection mechanism is that our 

detection mechanism only checks the output of the functional units. So, 

some injected faults were unable to reveal themselves at the output of a 

functional unit while they could propagate to the output of a core pair.  

 

The last two columns of Table 6.2 (indicated by grey) show the 

recovery latency of our proposed architecture. It can be seen that 90% of the 

detected faults could be recovered with the re-execution approach, which 

takes only one clock cycle. However 10% of the detected faults could not be 

mitigated via the re-execution approach and hence a re-boot to the initial 

status of both cores was required. If one considers the occurrence rate of 

soft-errors in digital systems as once per 24 hours, our architecture incurs a 

re-boot only once per 10 days.  
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Table 6.2. The parameters of our mitigation method. 

Parameter 

Design 

# Fault-

injections 
# Failures 

Soft-error 

Sensitivity 

(%) 

Recovery method (%) 

With Re-

execution 

With Re-

boot 

Original design 20,000 8130 40.65 N.A N.A 

Our enhanced 

architecture 
20,000 1230 6.15 90 10 

   

Table 6.3 compares the achievements of our design as compared to  

UnSync [Jey11] and Reunion [Smo06] architectures. As a comparison 

between our method and UnSync, this latter approach has a low detection 

coverage (indicated by underlining), since the detection-mechanism in 

UnSync is based on error-detection-and-correction codes, for example the 

parity code. It is important to mention that the parity code is able to discover 

an error in sequential units only, while there should be at least one clock 

cycle delay between writing information and reading in that particular 

sequential unit. Moreover, the recovery latency in the Unsync architecture is 

higher (indicated by underlining) as compared to ours since the mitigation 

method in this architecture is based on transferring the status between two 

processors.   

 

As a comparison between our architecture and Reunion, Table 6.3 

shows that the Reunion architecture has a long recovery latency. This is 

because the recovery mechanism in the Reunion is based on checkpoints and 

recovery. So, after a detection, both processor cores should load a correct 

checkpoint (which includes an image of all the registers and memory files).  

The recovery latency of our method results from the fact that 90% of the 

detected faults can be mitigated within one clock cycle while the remaining 

10% need a re-boot of the processor. Based on our fault-injection 

experiments, the average latency of re-boot was 80 clock cycles which results 
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in a latency of our method to 8.9 (0.9 * 1 clk + 0.1*80 clk) clock cycles 

(indicated by grey).  

 

The outcome of Table 6.3 is that our architecture has the best 

recovery latency among these three methods. So, if the performance is a 

concern, our method is the best candidate to implement a soft-error reliable 

multi-core architecture.  

 

Table 6.3. The comparison between our architecture and two other 

state-of-the-art methods. 

Parameter 

design 

Detection 

coverage 

(%) 

Recovery 

Latency (clock 

cycles) 

UnSync 33 30 

Reunion 100 18 

Our architecture 94 8.9 

   

 

6.7 Conclusions 
Computer architectures are moving towards multi-processor core 

approaches. Using increasing dense architectures in the new generation of 

multi-cores along with shrinking the technology dimension to 14nm make 

the introduction of lightweight soft-error resilient mechanisms a mandatory 

feature for future architectures. We proposed in this chapter a soft-error 

mitigation technique for multi-core architectures which is based on re-

execution of the last instruction of each core. This architecture does not 

require transferring the whole status of one processor core to another. Hence 

the recovery time is short, as compared to other state-of-the-art methods.  

Fault-injection simulation results on the Xentium multi-core target system 

show that 90% of the detected SET faults can be recovered within one clock 

cycle while the remaining 10% will incur a re-boot of the system. As a result, 

if the execution time of a workload is limited (a re-boot to the start of the 

workload does not incur a huge performance loss) our proposed method 

will be beneficiary.   
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7.1 Introduction 
The topic of this thesis is soft-error mitigation techniques in digital 

circuits. In order to be able to propose an efficient mitigation technique, 

other prerequisites need to be investigated first. This includes investigation 

of sources of soft-errors, a framework to study the impact of soft-errors in 

digital circuits and also a realistic and practical simulation model for soft-

errors. Being able to study the impact of soft-errors in the early development 

phases enables the designer to propose efficient soft-error mitigation 

mechanisms.  

 

7.2 Contributions 
The contributions of this thesis can be listed as follows: 

 In chapter 2 the sources and effects of soft-errors have been 

investigated and related work in the field of soft-error 

injection have been addressed. 

 

• In chapter 3, a framework has been developed to assess soft-

error vulnerability of complex designs which are modelled in 

an HDL language. Minimizing the required CPU time to 

carry out soft-error analysis is one of the main challenges of 

an HDL–based soft-error analysis framework. The developed 

framework can invoke a conventional model of soft-errors in 

a design, assess its vulnerability to soft-errors and also extract 

the most vulnerable parts of an HDL design with regard to 

soft-errors. Since this soft-error analysis is carried out during 

the design development phase (before prototype 

manufacturing), the vulnerability of components can be 

investigated in detail and redesigned before the actual 

component is ready for manufacturing. Fault-injection 

experiments show that the elapsed CPU time to carry out a 

soft-error assessment can be decreased by 10% as compared 

to fast fault-injection methods and over 67% as compared to 

normal simulation-based fault injection methods [Roh11a, 

Roh11b, Roh13a].   
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• One of the current challenges regarding soft-error 

vulnerability analysis lies in how realistic simulation SET 

models are. In other words, there is still no consensus on the 

accuracy of the degree of similarity between the conventional 

discrete-pulse model of logic gate-level simulation as 

compared to real physical soft-errors. In chapter 4 of this 

thesis, a new logic gate-level fault model has been developed 

that accurately imitates (less than 15% error) the real 

behaviour of SETs for a 45nm CMOS technology node. This 

SET model has been extracted using laser-based fault-

injections along with the asymptotic behaviour of SETs in a 

SPICE model. These simulation fault models solve one of the 

challenging aspects of the HDL-based soft-error simulation, 

which is the lack of a realistic model of soft-errors to mimic 

the impact of soft-errors in the development phase of a 

product [Roh13b].  

 

• In chapter 5 of this thesis, an efficient detection and correction 

method for control logic of Very Large Instruction Word 

(VLIW) processors is introduced. The characteristics of VLIW 

processors along with features of DSP workloads have been 

used to develop an efficient soft-error mitigation technique 

for VLIW processors. This mitigation method imposes 4% 

overhead on silicon area and causes a 10% performance 

degradation, while the sensitivity of the DSP processor with 

regard to soft-errors decreases from 40% to 5% [Roh12].  

 

• Another mitigation method which has been proposed in 

chapter 5 targets the data path of VLIW processors. The 

developed method, called freezing, has the ability to limit the 

penalty imposed on a design based on the soft-error 

occurrence rate that a system is experiencing. This method 

benefits from the architecture of DSP processors to halt the 

correct functional units for one clock cycle while re-execute 

the unit that was hit by a soft-error. Experiments show that 

the proposed method can mitigate half of the occurred soft-
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errors while the imposed overhead in terms of silicon area is 

only 10% and the speed of the processor is similar to the 

baseline design [Roh13c, Roh14a].  

 

 Multi-core architectures have some unique features that can 

be exploited for the purpose of mitigation of soft-errors, such 

as the existence of several identical cores. One of our 

contributions in chapter 6 of this thesis is to develop a soft-

error mitigation mechanism which exploits the existence of 

similar cores in the homogenous parts of multi-core 

architectures. In case of a soft-error detection, the two 

processor cores re-execute an instruction. This internal re-

execution eliminates the requirement to transfer the entire 

status between two processor cores. The fault injection results 

show that 94% of detected soft-errors can be mitigated with 

this mechanism. The average recovery time is 8.9 clock cycles 

[Roh14b]. 

 

7.3 Conclusions 
This thesis investigated different aspects of soft-errors in digital 

systems. The issue of soft-errors in a digital system is normally started with 

an evaluation phase to recognize the most sensitive parts of a system which 

affect the most from soft-errors. The next step will be modifying those 

sensitive parts to enhance the robustness of the entire system with regard to 

soft-errors. 

  

In this thesis, in particular we proposed a fast simulation-based soft-

error evaluation framework to analyse the behaviour of a system in presence 

of soft-errors. An enormous CPU time is a common drawback in simulation-

based fault studies, so it was shown that it is possible to decrease the CPU 

time required to conduct fault injections up to 67% as compared to 

conventional methods. This achievement helps the designer to rapidly 

evaluate a system during its development phase and recognize the weak 

parts.  
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A realistic soft-error model which can be used in simulation-based 

fault-injections in logic-gate level was also developed in this thesis. This 

model helps to decrease the total time required to conduct fault-injections at 

a gate-level even further while preserving the accuracy of experiments. This 

model is only deviates 15% with real physical soft-errors and therefore can 

predict a realistic behaviour of a system. Integration of this model in the 

framework discussed in the previous paragraph can introduce an accurate 

and fast fault-injection framework. 

 

Furthermore, some efficient mitigation methods to diminish the 

impact of soft-errors in DSP processors were introduced. These methods 

impose low overhead on area and speed of the system while they mitigate a 

large portion of soft-errors. These achievements show that using unique 

characteristics of a design can potentially result in efficient and customized 

solutions with regard to soft errors. Finally, a soft-error mitigation method 

for a multicore system which is composed of DSP processors was researched 

in this thesis. The results show that 94% of soft-errors can be mitigated in a 

multicore environment while on average 9 extra clock-cycles are imposed on 

the system. In the case of no soft-error, no performance loss is imposed on 

the system. 

 

The results of this thesis can be used to propose a complete flow to 

investigate the impact of soft-errors during the development phase of a 

digital system. The results of chapters 3 and 4 can be applied to build the 

framework to study the impact of soft-errors on a system, while chapters 5 

and 6 can be used as examples to employ the unique features of a system to 

decrease its sensitivity with regard to soft-errors. 

 

7.4 Future work 
The results of this thesis can be used in different frameworks for 

mitigating the impact of soft-errors. For example, the framework of chapter 3 

which uses the logic gate-level model of soft-errors described in chapter 4 

can be integrated with automatic insertion of saboteurs to build a fully 

automated and fast fault-injection tool. This tool can be used in the soft-error 

sensitivity phase in an ASIC digital design flow. This is shown in Figure 7.1 

with a grey background. The input of the tool will be the synthesized gate-
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level net list (the output of a logic synthesis tool) and the output will be the 

sensitivity of the design with regard to soft-errors.  The information can be 

used to improve the designs to reduce their sensitivity to soft-errors. 

 

Finally, applying and testing the developed approach in other DSP 

processors will be interesting. Moreover, the investigation of soft-errors in a 

multicore architecture when also inter-core communication, shared memory 

access and I/O are taken into account, can be considered challenging topics 

for future work. 
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Figure 7.1 Soft-error analyses in an ASIC digital design flow. 

     



 

 

168 

 

List of our publications 
[Roh11a] A. Rohani, H. G. Kerkhoff, ”Study of the effects of SET induced faults on 

submicron technologies,” in IEEE/IFIP International Conference on 
Dependable Systems and Networks Workshops (DSN-W),  pp. 41-46, 2011. 

[Roh11b] A. Rohani, H. G. Kerkhoff, ”A Technique for Accelerating Injection of 
Transient Faults in Complex SoCs,” in Euro-micro Conference on Digital 

System Design  (DSD), pp. 213-220, 2011. 

[Roh12] A. Rohani, H. G. Kerkhoff, ”An online soft error mitigation technique for 
control logic of VLIW processors,” in Proceedings of IEEE International 
Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology 

Systems (DFTS), pp. 85-91, 2012. 

[Roh13a] A. Rohani, H. G. Kerkhoff, ”Rapid Transient Fault Insertion in Large 
Digital Systems,” in Microprocessors and microsystems Journals, ISSN 

0141-9331, Vol. 37, No. 2, pp. 147-154, , 2013. 

[Roh13b] A. Rohani, H. G. Kerkhoff, ”Functional unit for a processor,” European 
Patent, EP13191370.9, 2013. 

[Roh13c] A. Rohani, H. G. Kerkhoff, E. Costenaro, D Alexandrescu, ”Pulse-length 

determination techniques in the rectangular single event transient fault 

model,” in  International Conference on Embedded Computer Systems: 
Architectures, Modelling, and Simulation (SAMOS), pp. 15-18, 2013. 

[Roh14a] A. Rohani, H. G. Kerkhoff, “Two soft-error mitigation techniques for 

functional units of DSP processors,” in IEEE European Test Symposium 
(ETS), pp. 1-6, 2014. 

[Roh14b] A. Rohani, H. G. Kerkhoff, “A soft-error mitigation technique in a 

multicore architecture composed of DSP cores,” to be submitted for 16th 

IEEE Latin-American Test Symposium (LATS), 2015. 

 

 

 

 

 



 

 

169 

 

BIOGRAPHY 

 

Alireza Rohani obtained his B.Sc. degree in Computer Engineering from the 

Shahed University, Tehran, Iran, in 2006. Later, he obtained his M.Sc. degree 

in Computer Architecture from Amirkabir University of Technology, Tehran, 

Iran, in 2010. In June of 2010, he joined the Computer Architecture for 

Embedded System (CAES) group at the University of Twente to pursue his 

Ph.D. degree in the field of Dependability of modern processors. During this 

time, he worked on the TOETS research project and published several papers 

on international conferences and scientific journals. 

 


