
Modelling and Mitigation of Soft-Errors
in CMOS Processors

Alireza Rohani

i

Modelling and Mitigation of Soft-Errors

in CMOS Processors

Alireza Rohani

ii

Members of the dissertation committee:

Prof. dr. ir. G.J.M. Smit University of Twente (promoter)

Dr. ir. H.G. Kerkhoff University of Twente (co-promoter)

Prof. dr. ir. B.R.H.M Haverkort University of Twente

Prof. dr. ir. J.C. van de Pol University of Twente

Prof. dr. ir. K.L.M. Bertels Delft University of Technology

Prof. dr. H.S. Wunderlich University of Stuttgart (Germany)

Dr. D. Alexandrescu iRoC Technologies (France)

Prof. dr. P.M.G Apers University of Twente (chairman and

secretary)

This work has been carried out as part of the Catrene

project “TOETS” [CT302] and supported by the
Netherlands Enterprise Agency.

 CTIT PhD. Thesis Series No. 978-90-365-3807-7

 Center of Telematic and Information Technology

University of Twente, P.O. Box 217, NL-7500 AE,

Enschede, The Netherlands

Copyright © 2014 by Alireza Rohani, Enschede, The Netherlands.

All rights reserved. No part of this book may be reproduced or transmitted, in

any form or by any means, electronic or mechanical, including photocopying,

recording, or by any information storage or retrieval system, without prior

written permission of the author.

This thesis was printed by Gildeprint, the Netherlands.

ISBN 978-90-365-3807-7

DOI 10.3990/1.9789036538077

iii

MODELLING AND MITIGATION OF SOFT-ERRORS

IN CMOS PROCESSORS

DISSERTATION

to obtain

the degree of doctor at the University of Twente,

on the authority of the rector magnificus

Prof. dr. H. Brinksma,

on account of the decision of the graduation committee

to be publicly defended

on Friday, 12
th

 of December 2014 at 16:45

by

Alireza Rohani

born on 13
th

 July 1983,

in Damghan, Iran

iv

This dissertation is approved by:

Prof. dr. ir. G.J.M. Smit University of Twente (promoter)

Dr. ir. H.G. Kerkhoff University of Twente (co-promoter)

v

Abstract
The topic of this thesis is about soft-errors in digital systems. Different aspects

of soft-errors have been addressed here, including an accurate model to

simulate soft-errors in a gate-level net list, a simulation framework to study the

impact of soft-errors in a VHDL design and an efficient architecture to minimize

the effect of soft-errors in a DSP.

The first two chapters of this thesis introduce the background knowledge with

regard to soft-errors. Chapter three introduces a simulation framework to study

the impact of soft-errors in complex digital systems modelled in the VHDL

language. This framework has been introduced to resolve the enormous CPU

time typically required in simulation-based soft-error experiments.

Chapter four introduces two realistic models that can simulate the impact of

soft-errors in a 45-nm CMOS technology node at gate level. One of the

approaches has been extracted from radiation testing along with using a

transistor-level soft-error analysis tool. Another approach has been developed

by analysing the behaviour of soft-errors in a 45-nm CMOS technology node.

 In chapter 5, some unique features of DSPs have been exploited to introduce

low-overhead soft-error mitigation architectures to minimize the impact of soft-

errors in a DSP processor. This mitigation technique concerns irregular parts of

a processor (such as the control unit and data path). The unique features of DSP

processors are the existence of several functional units, a limited number of

different opcodes in each functional unit and also a highly-repetitive instruction

flow in a DSP workload. Moreover, the mitigation method which has been

developed for a single core has been applied to a multi-core environment in

chapter 6 to propose a soft-error mitigation technique for multi-core

architectures.

As a conclusion, based on simulated data and experiments, this thesis proposes

a methodology to investigate the impact of soft-errors during the design phase

of a digital system.

vi

This page intentionally left blank.

vii

Nederlandse samenvatting

Het onderwerp van dit proefschrift betreft sporadische fouten in digitale

systemen. Deze sporadische fouten worden veelal aangeduid als soft errors.

Verschillende aspecten van soft errors worden belicht in dit proefschrijft,

waaronder een accuraat simulatiemodel om soft errors op poort-niveau te

emuleren, een simulatieraamwerk om de gevolgen van soft errors in een VHDL-

ontwerp te bestuderen en een efficiënte architectuur om de effecten van soft

errors in DSP’s te minimaliseren.
De eerste twee hoofdstukken van dit proefschrift behandelen de

achtergrondkennis met betrekking tot soft errors. Hoofdstuk drie introduceert

een simulatieraamwerk om de gevolgen van soft errors in complexe, in VHDL

beschreven digitale systemen te onderzoeken. Het raamwerk wordt

geïntroduceerd om extreem lange rekentijden, die normaliter gepaard gaan

met simulatiegebaseerde soft error-experimenten, te voorkomen.

Hoofdstuk vier introduceert twee realistische modellen die de effecten van soft

errors op poort-niveau emuleren in 45-nm CMOS-technologie. De eerste

methode is gebaseerd op stralingsmetingen tezamen met een soft error

analyse-applicatie op transistorniveau. De tweede methode is ontwikkeld op

basis van de analyse van de fysieke gevolgen van soft errors in 45-nm CMOS-

technologie.

In hoofdstuk 5 wordt een architectuur met lage complexiteit geïntroduceerd

waarmee de effecten van soft errors in DSP’s teniet worden gedaan door
gebruik te maken van enkele speciale eigenschappen van DSP’s. Deze methode
werkt op de onregelmatige onderdelen van de processor (zoals de regeleenheid

en het datapad). De speciale eigenschappen van DSP’s betreffen 1) het bestaan
van verschillende functie-eenheden, 2) een beperkt aantal opcodes in elke

functie-eenheid en 3) programma’s met veel herhaaldelijk uitgevoerde
instructies. Daarnaast kan de methode, hoewel deze ontwikkeld is om soft

errors in single-core systemen te verhelpen, ook toegepast worden in een

multicore context, zoals beschreven in hoofdstuk 6.

Tot slot, is er een methode ontwikkeld op basis van simulatieresultaten en

experimenten om al tijdens de ontwerpfase rekening te houden met soft errors

en de gevolgen daarvan te minimaliseren.

viii

This page intentionally left blank.

ix

Acknowledgements

Looking back to my life reminds me of many great people who have influenced

me to become a better human being. To mention a few, I would like to thank

Mr. Abolfazl Khalilnejad, my first English teacher back in high school who was

not only one of the greatest teachers I have ever had, but also a symbol of

responsibility and discipline to me. I would also like to give my appreciation to

Dr. Hamid Reza Zarandi, my supervisor during my master degrees at Amirkabir

University of Technology.

Starting my PhD in the Netherlands back in 2010 went smoother with having

wonderful people around me. To name few, I would like to thank Masi

Amirpour, Pouria Zand, Marziyeh Malekinajad, Siavash Aflaki, Mitra Baratchi,

Sina Behfard, Alireza Masum, Zahra Taghikhani, Amirhossein Ghamarian, Wim

Korevaar and Majid Bahrepour.

I would like to appreciate my promoter, Prof. Gerard Smit, for giving me the

opportunity to carry out my PhD in CAES group. I would like to give my greatest

appreciation to my daily supervisor, Dr. Hans Kerkhoff. He has not only helped

me regarding my PhD research, but I learned responsibility, dedication and

morality from him. I could not think of any better supervisor than Hans.

 I would like to thank people of the CAES group, especially Muhammad Aamir

Khan, Ahmed Ibrahim, Hassan Ebrahimi, Andreina Zambrano, Jinbo Wan, Yong

Zhao, Wim Korevaar, Robert de Groote, Koen Blom, Marco Gerards, Philip

Hölzenspies and Bert Molenkamp. I especially would like to thank Marlous

Weghorst, Thelma Nordholt – Prenger, Nicole Baveld, and Bert Helthuis that

made the CAES group a more pleasant environment to work.

I would also like to thank my paranymphs, Anja Kolesnichenko and Amir

Meshkat for helping me during my defence. I am thankful of Wim Korevaar how

helped me to translate the summary of this thesis to Dutch.

I would like to thank my parents, Masoume Amirahmadi and Nematollah

Rohani who taught me self-devotion. I believe being raised by those made me a

person who is eager of pursuing his dreams. Also, thanks to my two lovely and

amazing sisters, Aida and Mitra. There were many moments in my life when I

missed them here in the Netherlands.

And special thanks to my lovely and beautiful wife, Mahroo Zandrahimi. I met

Mahroo during my studies in 2009 and she made my academic life special as

x

well. She always understood my work situation, especially during this last year

when I was travelling between Enschede and Delft. She means an endless

source of kindness, love and support to me. I also like to thank my father-in-

law, Dr. Morteza Zandrahimi for his support.

Alireza Rohani, November 2014

xi

Contents

1 Introduction 1

 1.1 Introduction 2

 1.2 Motivation and problem statement 7

 1.3 Outline of the thesis 8

2 Sources, Terminology and Evaluation Methods of Soft-Errors 11

 2.1 Introduction 12

 2.2 Terminology 14

 2.3 The sources of soft-errors 20

 2.3.1 Neutrons 20

 2.3.2 Alpha radiation 21

 2.4 Soft-error vulnerability analysis 22

 2.4.1 Hardware-based fault-injection techniques 24

 2.4.2 Software-based fault-injection techniques 26

 2.4.3 Simulation-based fault-injection techniques 27

 2.4.4 Emulation-based fault-injection techniques 29

 2.5 Architecture of our target processor 31

 2.6 Conclusions 33

3 A Framework for Accelerating Soft-Error Analysis in HDL Designs 37

 3.1 Introduction 38

 3.2 Simulation-based fault analysis 40

 3.2.1 State-of-the-art simulation-based fault-injection 41

 3.2.1.1 Built-in commands 41

 3.2.1.2 Code-modification techniques 43

 3.2.2 Accelerated simulation-based fault-injection framework 45

 3.3 The developed fault-injection framework 47

 3.3.1 Fault-injection units 47

 3.3.2 Embedding FIUs in the fault-injection phase 51

 3.4 Time acceleration results 57

 3.5 Level of hierarchy versus results of simulation-based fault-injections 58

 3.6 Conclusions 71

4 Pulse-Length Determination Techniques for Rectangular SET Faults 75

 4.1 Introduction 76

 4.2 Conventional determination of pulse length in

rectangular SETs 79

 4.3 The circuit-based determination approach 81

 4.4 The analytical-based determination approach 88

 4.5 Details of fault-injection 93

xii

 4.6 Experimental results 95

 4.7 Conclusions 101

5 Soft-Error Mitigation Techniques for DSP Functional units 105

 5.1 Introduction 106

 5.1.1 State-of-the-art 107

 5.1.2 Our DSP mitigation techniques 109

 5.2 Our SET masking mechanism in LCUs 112

 5.2.1 Opcode-dependent control signals 113

 5.2.2 Instruction-dependent control signals 115

 5.3 A recovery mechanism in combinational logic 121

 5.4 Experimental results 125

 5.4.1 Area overhead and performance degradation 125

 5.4.2 SET sensitivity 128

 5.4.3 Comparison of our methods with other methods 129

 5.5 Conclusions 130

6 Using Multi-core Architectures to Mitigate Soft-Errors 133

 6.1 Introduction 134

 6.2. State-of-the-art methods 136

 6.3. The motivation to propose our technique 141

 6.4 Our approach for soft-error mitigation in multi-core

 systems 142

 6.4.1. Soft-error detection approach 143

 6.4.2 Soft-error recovery approach 146

 6.4.3 Operational phases of our architecture 149

 6.5 Additional features of our architecture 151

 6.6 Experimental setup and evaluation of our approach 154

 6.6.1 Experimental set-up 154

 6.6.2. The soft-error coverage 155

 6.7 Conclusions 158

7 Conclusions, Contributions and Recommendations for Future Work 161

 7.1 Introduction 162

 7.2 Contributions 162

 7.3 Conclusions 164

 7.4 Future work 165

List of our publications 168

Biography 169

xiii

List of Acronyms

AC Accumulator

ADIRUs Air Data Inertial Reference Units

ALU Arithmetic Logic Unit

ATPG Automatic Test Pattern Generation

CMOS Complementary Metal Oxide Semiconductor

CPU Central Processing Unit

CR Checkpoint and Recovery

DAC Duplication And Comparison

DMR Modular Redundancy

DRAM Dynamic Random Access Memory

DSP Digital Signal Processing

DUE Detected-Unrecoverable-Error

DWC Duplication With Comparison

EDA Electronic Design Automation

EDAC Error Detection and Correction Codes

EMI Electro Migration Interference

ESA European Space agency

FIR Finite Impulse Response

FIS Fault Injector Signal

FIT Failure In Time

FIUs Fault Injection Units

FPGA Field Programmable Gate Arrays

GLN Gate Level Net-list

HBFI Hardware-Based Fault Injection

HDL Hardware Description Language

ICs Integrated Circuits

LCU Local Control Unit

LSB Least Significant Bits

LUT Look-Up Table

MEU Multiple Memory Upset

MeV Mega electron Volt

MOS Metal Oxide Semiconductor

NASA Aeronautics and Space Administration

NoC Network on Chip

PC Program Counter

QoS Quality of Service

xiv

RIIF Reliability Information Interchange Format

RISC Reduced Instruction Set Computer

RMT Redundant Multi-Threading

ROM Read only Memory

RTL Register Transfer Level

SDC Silent Data Corruption

SDF Standard Delay Format

SEE Single Event Effect

SEM Soft Error Mitigation

SER Soft Error Rate

SET Single Event Transient

SEU Single Event Upset

SoC System on Chip

SPARC Scalable Processor Architecture

SRAM Static Random Access Memory

STEM Soft and Timing Error Mitigation

TMR Triple Modular Redundancy

VLIW Very long Instruction Word

VLSI Very Large Scale Integration

VPI Verilog Programming Interface

1

CHAPTER 1

Introduction

2

1.1 Introduction
The unprecedented progress of CMOS technology has enabled

digital systems to be emerged ubiquitously in every aspect of our life.

Nowadays it is difficult to imagine a task in which digital computing is not

involved. This includes portable electronic systems like laptop computers,

cellular phones, and music players up to different embedded computing

systems in the medical, automotive and avionics industry. The sharp rate of

growth in CMOS technology has been sustained by shrinking the minimum

technology sizes of transistors to smaller and smaller dimensions along with

the continuous reduction in the operating and threshold voltages [Hir02].

While this technology scaling has provided modern VLSI systems with a

higher performance and lower power consumption, their sensitivity to

certain types of faults has dramatically increased. As a result, the reliability

of a system which are implemented in a modern CMOS process node is a

key concern [Cao09].

The required level of reliability of a device depends on different

parameters. For example, a very brief momentary malfunction in an audio

device embedded in a car might cause no harm other than inconvenience

and a slight reduction of Quality of Service (QoS). However, even a slight

temporary malfunction in the lane-detection system of a modern car might

lead to the loss of human life.

As a real example, the sudden dive of a Qantas flight, back in 2008

[Wik08] will be briefly discussed. The airplane had to carry out an

emergency landing due to an inflight accident featuring a pair of sudden un-

commanded pitch-down manoeuvres that resulted in serious injuries to

many of the passengers. The final report issued in 2011 concluded that the

accident occurred due to a failure mode affecting one of the aircraft’s three
air-data inertial reference units (ADIRUs). The failure mode was further

tracked down to design limitations, in which in a very rare and specific

situation, multiple spikes were formed in one of the ADIRUs which in turn

could command the aircraft to pitch down.

A primary source of momentary malfunction of advanced CMOS

computing is known as soft-errors [Nic11]. A soft-error, also referred to as

http://en.wikipedia.org/wiki/Aviation_accident
http://en.wikipedia.org/wiki/Pitch_%28aviation%29

3

Single Event Effect (SEE), can occur when an energetic particle from extra-

terrestrial space or from impurities in packaging material hits the surface of

a CMOS transistor. As a consequence of this collision, a current glitch might

be generated in the transistor channel, which subsequently results into a

voltage glitch at a circuit node. This voltage glitch has the potential to

propagate into the subsequent logic gates of the system and can even cause a

functional failure of the system. Soft-errors can occur in any internal node of

a circuit, at random times. Depending on the timing of the clock, glitches can

propagate to higher hierarchical levels and load a wrong value into a latch

or flip-flop. For example, in Figure 1.1, a glitch has been generated in logic

gate1 at time T1. This glitch has reached the positive edge-triggered flip-

flop-1 at time T2. Because the positive clock-edge for flip-flop-1 is occurring

at time T2, an erroneous value which is now 1 instead of 0, will be stored in

the flip-flop. However, this erroneous value will not reside permanently in

the flip-flop; so when a new value reaches the positive edge-triggered flip-

flop in the next clock-cycle, the flip-flop stores the new value. Hence, the

output of the flip-flop will be high for one clock-cycle.

4

Gate1

Flip-Flop-1

Time=T1

Time=T2
D

Q

Time=T2

 Q normal

 Q faulty

Clock signal

Clock

D

Figure 1.1. Loading an erroneous value in a flip-flop due to a glitch

in a circuit.

Historically speaking, the first concern of soft-errors emerged during

the nineties when several studies repeatedly showed that the majority of

system failures in modern digital circuits can be categorized as soft-errors,

rather than traditional manufacturing errors or permanent faults [Gre94].

Recent VLSI technology trends such as shrinking the transistor features has

helped the design of transistors for higher integration density, higher

performance and lower power consumption. Higher integration densities,

increase in operating frequencies along with reduction of operating supply

voltage all have considerably increased the soft-error vulnerability of current

digital systems [Cao09]. Moreover, the increased use of wireless technology,

such as Wi-Fi and mobile phone transceivers has increased the hostility of

our environment as a threat from soft-errors.

5

The amount of erroneous glitches in a transistor depends on many

parameters, being the speed of the circuit, the environment where the

system is being used, altitude, etc. While the soft-error rate of individual

transistors are projected to increase with every new generation of VLSI,

incorporating more and more transistors into a device even exacerbates the

soft-error problem. Taking into account all the above-mentioned

consequences of technology scaling, it has been consistently proven that soft-

errors are a major threat of circuit/system reliability for the sub-100nm

technology [Kar04]. Figure 1.2 shows the rate of soft-errors for a matured

technology as well as the projected soft-error rate for the 16nm process node.

As can be seen in this Figure, for a technology node larger than 100nm, the

soft-error rate was not a concern at all. However, if the technology shrinks to

45nm, a typical Intel processor chip can experience 20 failures in its life time.

This number will increase exponentially with shrinking dimensions in

technology.

Figure 1.2. Soft-error rate in recent process technology nodes

[Kar01].

 Historically, soft-errors have been mainly of concern to those

systems designed to be used in safety-critical systems, or systems that were

Technology nodes (nm)

S
E

R
 p

er
 c

h
ip

6

going to be used in hostile environments, such as satellites, spaceships and

aircrafts. Those particular applications could benefit from expensive

fabrication technology and complex fault-tolerant solutions to reduce the

impact of soft-errors. However, those expensive advances in developing

fault-tolerant designs will not be cost-effective for mass-produced consumer

products. Furthermore, emerging issues like process variations have

introduced additional sources of soft-errors [Xfu09] which exacerbate the

sensitivity of present computer systems to soft-errors.

As a conclusion, the concerns of soft-errors for current embedded

systems are not limited to space applications anymore, since device scaling

accompanied by supply power reduction has caused reliability issues for

embedded system manufactured in sub 100nm process nodes.

7

1.2 Motivation and problem statement
In the TOETS (Towards One European Test Solution) project,

developing new methods to deal with failures occur in sub 100nm

technology nodes are investigated. Our special concern in this thesis is to

develop a soft-error hardened system to be used in automotive industry. At

the time of writing of this thesis (2014), full-hybrid and X-by-wire cars are

already driving in the streets (such as Tesla [Tes14] and Nissan [Nis14]).

Moreover, the first auto-drive car has been authorized to be emerged on the

streets of the USA (Google project) [Goo14].

So, it is no longer possible to consider the automotive industry as a

low-critical domain regarding soft-errors. For example, Toyota had one of

the biggest recalls of the automotive industry across the globe in 2010 to fix

the electronic systems of its cars. The problem was claimed to be related to

the very sensitive parts of the car with regard to soft-errors [Men12, Fin13a,

Fin13b]. It was shown that a glitch in the electronic system of the car could

influence the functionality of its acceleration system.

The other important concern regarding the automotive industry is

the total cost, which limits the usage of expensive soft-error mitigation

solutions. As a result, the digital architect has to develop an electronic device

that has an acceptable vulnerability level concerning soft-errors, while its

final cost/performance is acceptable to be used in a car.

Since safety-critical applications in a car are more towards DSP

applications, such as lane detection or distance prediction, our main goal in

this work is to develop a soft-error hardened architecture for DSP processors

which satisfies the performance criteria.

This thesis addresses the soft-error problems occurring in DSP

processors fabricated in a 45nm technology node. Several aspects of soft-

errors, from an architectural soft-error model to proposing light-weight

architectural solutions for detection and correction of soft-errors in single

and multicore DSP systems will be studied throughout this thesis.

Specifically, the problem statement can be stated as follows:

8

 A soft-error analysis framework to assess the effect of soft-

errors in complex processors needs to be investigated.

Traditional simulation-based fault-injection frameworks are

slow and not practical to conduct soft-error analysis on

complex DSP processors. So, accelerated frameworks are

essential for soft-error analysis on complex digital processors.

 An efficient model to emulate the impact of soft-errors in sub

100nm technology nodes needs to be developed. As the

CMOS technology of implementation shrinks beyond 45nm

technology nodes, already developed fault models are not

practical anymore. A realistic and accurate simulation model

of soft-errors in a 45nm and beyond technology nodes is

essential in order to study the impact of soft-errors in

complex digital processors.

 While there are many general soft-error mitigation

mechanisms in digital processors, we are especially interested

to use the unique characteristics of DSP processors, such as

existence of identical resources, to develop an efficient fault-

tolerant mechanism. Moreover, we want to investigate

unstructured parts of a processor, such as the data-path or

control-logic, since these two units cannot be protected by

conventional fault-tolerance methods.

 Since the increasing usage of multicore architectures in

modern digital systems, we also want to develop a fault-

tolerant architecture customized for multicore architectures

consisting of DSP cores. Moreover, the existence of several

identical cores in multicore architecture might be very useful

for soft-error mitigation mechanisms.

1.3 Outline of the thesis
The remainder of this thesis has been organized as follows:

Chapter 2 describes the basic terminology of soft-errors, including

the origin of soft-errors and a survey of the state-of-the-art methods dealing

with detection and correction of soft-errors in processors.

9

The details of our simulation-based fault-injection framework will be

discussed in chapter 3. This framework is able to inject conventional logic

gate-level fault models, like a fixed-duration glitch, into a Hardware-

Description-Language (HDL)-based design. In chapter 4, a realistic

simulation model for soft-errors in 45nm process nodes will be proposed.

Two unique techniques to detect and correct soft-errors in DSP processors

are described in chapter 5. The framework provided in chapter 3 along with

the realistic fault model described in chapter 4 form the basis of two

advanced methods being developed to harden a DSP processor with respect

to soft-errors. In chapter 6, the architecture of a multi-core design will be

used to develop a detection and correction method. Since chapter 6

combines the fault-tolerant architecture of a single core from chapter 5, this

chapter must be read before reading chapter 6. Finally, in chapter 7,

conclusions are given and some suggestions for future work are provided.

10

References

[Cao09] Y. Cao, P. Bose, J. Tschanz, “Reliability challenges in Nano-CMOS design,”
IEEE Design and Test of Computers, pp. 6-7, 2009.

[Fin13a] Financial Times Press, www.sddt.com, 2013.

[Fin13b] Financial Times Press, www.eetimes.com, 2013.

[Goo14] Google Self-Driving Car Project, www.GoogleSelfDrivingCars.com,

2014.

[Gre94] L. Gregory, S. Gwan, K. Ravishankar, “Device-level transient fault

modeling,” in International Symposium on Fault-Tolerant Computing, pp.

86-94, 1994.

[Hir02] M. Hirose, “Challenge for future semiconductor development,” in

Microprocessors and Nanotechnology Conference, pp. 2-3, 2002.

[Kar01] T. Karnik, B. Bloechel, K. Soumyanath, “Scaling trends of cosmic ray

induced soft-errors in static latches beyond 180nm,” in International

Symposium on VLSI Circuits, pp. 61-62, 2001.

[Kar04] T. Karnik, P. Hazucha, J. Patel, “Characterization of soft-errors caused by

Single-Event-Upset in CMOS processes,” in IEEE Transactions on

Dependable and Secure Computing, Vol. 1, No. 2, pp. 128-143, 2004.

[Men12] Report by MentorGraphics, www.chipdesignmag.com, 2012.

[Nic11] M. Nicolaidis, “Soft-errors in Modern Electronic Systems,” in Frontiers in

Electronic Testing, ISBN 978-1-4419-6993-4, 2011.

[Nis14] www.nissanusa.com/electric-cars/leaf, 2014.

[Tes14] www.teslamotors.com, 2014.

[Xfu09] X. Fu, T. Li, J. A. B. Fortes, “Soft-error vulnerability aware process variation

mitigation,” in International Symposium on High Performance Computer

Architecture, pp. 93-104, 2009.

 [Wik08] WikiPedia, http://en.wikipedia.org/wiki/Qantas_Flight_72, 2008.

http://www.eetimes.com/
http://www.googleselfdrivingcars.com/
http://www.chipdesignmag.com/
http://www.nissanusa.com/electric-cars/leaf
http://www.teslamotors.com/
http://en.wikipedia.org/wiki/Qantas_Flight_72

11

CHAPTER 2

Sources, Terminology and

Evaluation Methods of Soft-Errors

12

ABSTRACT- This chapter will cover the terminology of soft-errors, discuss the sources of

soft-errors and also different evaluation methods to assess the vulnerability of a system with regard to

soft-errors will be explained. Moreover, the details of our case study the Xentium processor, will be

presented at the end of this chapter. It will serve later on as a test bench in developing a fault-injection

framework, a new model for soft-errors and also its architecture will be modified to develop a reliable

and low overhead DSP architecture to mitigate soft-errors.

2.1 Introduction
Until a decade ago, there was no consistency on whether it would

make sense to invest in the mitigation of soft-errors in digital circuits or not.

In general, a soft-error does not concern ordinary and low-critical

applications. For example the cell-phone or audio industry is not concerned

about soft-errors at all. However, if a correct and timely operation of a

system is critical, especially in harsh environments, soft-errors will be an

issue for sure. Some examples of critical systems are: the break system in

modern electrical cars (drive-by-wire cars), electronic systems of an airplane

or the communication backbone of a satellite. In these systems, the correct

functionality of the system can be lost, temporarily or permanently, by the

effect of soft-errors. If the impact of soft-errors is momentary, then a short

malfunction will appear in the device. If the error manifests in the system, it

might be required to reset the system completely, which can be sometimes

very costly in terms of performance loss. This because the entire workload

needs to be executed again.

Since the nature of these temporary malfunctions are quite random,

it is very hard to trace a failure which has been caused by a soft-error. These

soft-error induced failures are even more harder to tackle when new

information has already been loaded into the logic that has been affected by

soft-errors.

Another concern which makes tackling soft-error induced failures

very hard, is the limitation of traditional test methods, such as Automatic

Test Pattern Generation (ATPG). Because soft-errors appear and disappear

in a very brief period of time, a permanent isolation of an affected net or

logic gate is not practical in dealing with soft-errors.

13

As a result, all the methods that deal with soft-errors should be built

based on an online detection and correction mechanism to mask the effect of

soft-errors as soon as possible. On the other hand, a failure which has been

induced by a soft-error is not reproducible, since it is random in nature;

hence the online soft-error mechanism should be able to stop the

propagation of a soft-error as soon as possible. One of the solutions which

can be used to prove that a soft-error has caused a failure in a system, is to

log every status of a system and then trace the root of the problem.

However, it is generally too costly to log the status of all the components of a

design at every instance of time.

After the emerging of soft-error induced failures in modern digital

systems during the nineties, different industrial sectors started research

programs to address the problem of soft-errors. To name a few: Intel, IBM

and Fujitsu in the semiconductor sector, Boeing, Airbus, Ericsson-Saab

Avionics in the avionics sector, and the European Space Agency (ESA) and

National Aeronautics and Space Administration (NASA) in space

applications. As a real case of a soft-error induced failure, some random

failures were found in a computer on a commercial aircraft in 1993 [Ols93,

Yuh11]. The circuit which was affected by the random malfunctioning was a

256 kilo-bit SRAM which showed failures at a rate of one error per eighty

days. Moreover, there were some reports by IBM and Boeing in which a

strong correlation between the rate of random malfunctioning and the

altitude above sea level of the aircraft electronic system was recorded

[Tab93]. Apart from these two well-known examples of soft-errors in digital

systems, some other examples induced by soft-errors in the semiconductor

industry have highlighted the importance of soft-error measurements in the

electronic design industry. Some examples have been shortly listed in the

next paragraph based on examples from [Yuh11].

A phenomenon which is known as the Hera problem has been

reported by IBM [Zie96]. During those years, IBM observed an increase in

the rates of failures in Large Scale ICs (LSI) memories manufactured in the

USA. Surprisingly, identical memories which were produced in Europe did

not have this problem. The problem was traced back to the radiation which

was emitted from the packaging material of a ceramic package. The problem

14

was further traced back to impurities inside the ceramic packaging which

emit radioactive rays and caused the memory cells to toggle their values

randomly in time.

The second example is a problem being observed in a data server

line, the Enterprise of Sun [For00]. The server occasionally crashed for a

brief amount of time. The rate of failures was as high as four times in one

month and they were induced by high sensitivity of memory cells with

regard to soft-errors.

Another example concerned Cisco systems [Cis03]; some routers

showed random failures caused by radiation-induced soft-errors. After Error

Detection and Correction Codes (EDAC) [Nic11] were implemented in the

memories, the rate of soft-errors diminished.

The rest of this chapter serves as an introduction to soft-errors. First,

the terminology of soft-errors will be discussed. Then, the origin of soft-

errors will be covered. Different methods to evaluate the vulnerability of

systems against soft-errors will be discussed. Finally, the details of our case

study, which is the Xentium processor [Rec11] will be provided. This

processor will be used to analyse the impact of soft-errors in a complex

digital system and also for the development of efficient methods to mitigate

soft-errors.

2.2 Terminology
This section provides the common terminology which is being used

by the soft-error community [Nic11, Sha11].

The main cause of soft-errors in integrated circuits are high-energy

particles coming from extra-terrestrial sources or from inside chip

packaging materials. In case an energetic particle hits a CMOS transistor, it

has the potential to produce a localized ionization which is able to change

the data which has been latched in a flip-flop or a latch. If a particle has

sufficient energy to change the charge content of a memory from 0 to 1, or

vice versa, this phenomenon is called Single Event Upset, known as SEU

[Bau02, Sha11]. However, this change in the content of the memory is not a

permanent one, such as errors caused by stuck-at-0 or stuck-at-1 faults

15

[Cro99]. So if the affected latch or flip-flop is loaded with new data, the

impact of the SEU will be masked. However, in many situations the

erroneous value has the potential to propagate into the system before

overwriting of data occurs. In this case, the SEU has the potential to modify

the entire functionality of a system. These kind of errors are called soft since

the actual hardware of the circuits is not permanently damaged. Hence, if

the system is reset or is reloaded with the proper state, the system can

operate correctly again.

Figure 2.1 shows the moment when a high-energy particle hits a

CMOS transistor. If the high-energy particle has sufficient energy, which is

more than 1 Mega-electron-Volt (MeV), it has the potential to deposit a

dense track of electron-hole pairs as they pass through a p-n junction [Shi02].

Some of the deposited charge will be absorbed by the gate of the transistor

and form a short duration pulse of current at the internal circuit node. This

short current pulse is depicted in Figure 2.2. This figure shows that a current

pulse with maximum amplitude of 600µA has been produced by the

particle. The duration and amplitude of this momentary pulse depends on

the technology of implementation of the transistor, which can be 45nm,

22nm, etc., the type and energy of high-energy particle as well as the

temperature.

source drain

gate

High-energy particle

+

- +

-
-

Isolator

channel

Figure 2.1. Striking a transistor by a high-energy particle.

16

80 120 160 200 240 280 320 360 400 440

100

200

300

400

500

600

Time (PS)

C
u

rr
e

n
t

(µ
A

)

Figure 2.2. The produced perturbation caused by a high-energy particle.

Figure 2.3a shows a sequence of SRAM cells which have been

configured as a Look-Up Table (LUT) in order to implement a logic OR

function. Suppose that a radiation particle has hit the last SRAM cell (Figure

2.3b) and changed the stored value from 0 to 1. In this situation, the logic

which will be implemented by the new configuration is a permanent stuck-

at-1 value connected to Vdd; this has been shown in the equivalent logic

gate in Figure 2.3b. It will be shown later on that error detection and

correction codes are a powerful mechanism to mitigate this kind of errors.

17

1 1 1 11 1 01

I_1

I_2

I_3

output

SRAM Look-

Up Table

(LUT)

An SRAM

Cell

I_1

I_2

I_3

output

Multiplexer

equivalent

a)

18

1 1 1 11 1 11

I_1

I_2

I_3

output

SRAM Look-

Up Table

(LUT)

High energy

particle hit

Multiplexer

Vdd (logic 1)

output

equivalent

b)

Figure 2.3. A soft-error in a Look-Up Table. a). the correct operation

of the Look-Up Table. b). the erroneous operation of the Look-Up Table.

19

Another phenomenon caused by soft-errors is the Single Event

Transient (SET) which occurs if a momentary pulse (glitch) is generated at

the output of a logic gate. This glitch has the potential to traverse through

other combinational logic gates and reach a flip-flop or logic gate input in

the succeeding hierarchy. If the clock-edge occurs at the same time when the

glitch reaches a flip-flop input, the erroneous value will be latched into the

flip-flop and the status of the circuit will be changed.

Figure 2.4 shows the propagation of a SET in several logic gates and

reaching a memory cell. As can be seen in this figure, in the normal situation

the value of 0 should be stored in the flip-flop, but as a result of a particle

hit, the erroneous value of 1 has been latched in the flip-flop. This

phenomenon is different from the SEU, since the value of the flip-flop has

not been changed directly, but a wrong value has been produced by the

combinational logic and then captured by the flip-flop. This type of error is

very difficult to handle.

20

Q

Q
SET

CLR

D

0

1

1

1

0

High-energy

particle

clk

clk

Figure 2.4. Propagation of a SET in the combinatorial part of a circuit.

A metric which is used to refer to soft-errors is the frequency of

occurrence of errors. This metric is commonly referred to as the soft-error

rate or SER. The SER depends on many factors including altitude above sea

level and temperature.

In the following section, the origin of soft-errors and their occurrence

rate will be discussed.

2.3 The sources of soft-errors
There are multiple physical phenomena that induce soft-errors in a

MOS digital circuit, the two dominant ones being neutron and alpha

particles. The effect of these two sources are quite different from each other

and they will be discussed in different subsections.

2.3.1 Neutrons
High-energy neutrons are one of the most dominant sources of soft-

errors [Wan07]. Close to the orbit of planet Earth, the prime source of

neutrons is cosmic radiation. The cosmic rays are radiation fluxes which

21

consist of high-energy particles originating from outer space. There are two

main types of cosmic radiation that induce soft-errors: solar cosmic rays and

galactic cosmic rays [Anc03].

Solar cosmic rays originate from the sun and are primarily composed

of proton and helium particles. Protons dominate the solar cosmic ray flux

and are typically low energy particles. Galactic cosmic rays are high-energy

particles that penetrate into the orbit of planet Earth from the outside of our

solar system. In general, galactic cosmic rays typically have a very large

energy and are the cause of most of the soft-errors in satellite and aerospace

avionics.

When the galactic cosmic radiation reaches ground sea level, the flux

of particles is primarily composed of muon, proton, neutron, and pion

particles [Zie81]. Neutrons are the most likely particles to cause a soft-error

in a circuit since they have the highest energy.

As a result of the interaction with the atmosphere, the radiation flux

depends on the altitude. For example, there is about a 10 times difference in

flux between the sea level and an altitude of 10000 feet [Zie81]. Thus,

computers operating at a high altitude, for example in aircrafts, can

experience soft-error rates in excess of an order of magnitude than they

would have at sea level [Wan07].

The influence of neutron particles can be reduced to negligible levels

with very strong physical shielding. For example, each 33 centimetres of

concrete can reduce the neutron flux by approximately 1.4 times [Dir03]. As

a consequence, shielding is an impractical soft-error mitigation solution in

many computing installations where reliability is demanding, such as in

embedded systems.

2.3.2 Alpha radiation
Another dominant source of soft-errors is considered to be alpha

particle radiation [Wan07]. An alpha particle is composed of two protons

and two neutrons. Alpha particles have a very high-energy as well as a large

mass, and can be easily shielded by simple materials. Even a piece of paper

22

is sufficient to shield alpha-particle radiation. Moreover, alpha particles can

travel only a few centimetres in the air. Consequently, alpha particles should

originate from a source very close to the circuit to be able to cause a soft-

error.

The discovery of alpha particles to produce soft-errors goes back to

the nineties when the Intel corporation experienced some random behavior

in its 16-Kbyte DRAM memories caused by packaging [Bau05]. Intel then

tracked the origins of suspected radioactive impurities, and they found that

a new LSI ceramic package was used for these chips. The package used

uranium materials and consequently the level of radiation emitted to the

chips was higher than normal.

Nowadays, even very low alpha-particle rates can cause a

malfunction in 45nm CMOS circuits and below. Packaging materials should

therefore be selected carefully to reduce the amount of emission regarding

alpha particles. Moreover, it turned out to be possible to shield the emission

of alpha particles with shielding materials during packaging even if the

technology was still less sensitive to alpha particles [Adv05].

Regarding the contribution of these particles to cause a soft-error, the

neutron soft-error rate is the dominant one. However, shrinking technology

dimensions along with reducing supply voltages has made the alpha particle

the second dominant source of soft-errors [Adv05].

2.4 Soft-error vulnerability analysis
Despite the fact that detection and isolation of hard errors

(permanent errors) in modern digital circuits are mature, it is very

challenging to detect the occurrence of a failure caused by soft-errors in a

system. A measure of vulnerability with regard to soft-errors should be

available to evaluate circuits that are going to be used in a safety-critical

environment. Soft-error sensitivity analysis has since long been used to

assess the vulnerability of different parts of a design in the presence of

different sources of soft-errors. The process of soft-error analysis is based on

stressing the system under test with soft-errors.

23

Fault-injection has been used for many years as a method of soft-

error analysis [Dav09]. Fault-injection works by injection of a predefined

model of soft-errors in different parts of a design, for different applications.

The fault-injection further determines the functional response of a circuit

with regard to the injected soft-errors. Fault-injection is generally a very

time-consuming and complex procedure since it requires to inject soft-errors

in different logic states of a system (or at least the majority of states).

Fault-injection provides several advantages [Zia04]. To name a few,

one can mention that the designer is able to understand the effects of soft-

errors in a system under test. Moreover, if a protection mechanism is used in

a system, fault-injection can be used to assess the efficiency of those

mechanisms. Fault-injection can also be used to discover faulty behaviour of

a system which is hidden during the normal tests. Finally, fault-injection

needs to be carried out if a processor system is in operation. So it can be used

to explore the behaviour of different benchmarks with regard to soft-errors.

Fault-injection can be carried out at different levels of abstraction. In

general, there are four categories of fault-injection, including Hardware-

Based Fault-injection, Software-Based Fault-injection, Simulation-Based

Fault-injection and Emulation-based Fault-injection. The following

paragraphs will briefly explain the different categories. The main focus is to

list the benefits and drawbacks of each method [Zia4, Zha07, Dav09].

24

2.4.1 Hardware-based fault-injection techniques
Hardware-Based Fault-Injection (HBFI) techniques are conducted by

stressing the actual hardware with real environmental sources which are

responsible for soft-errors. Those environmental parameters can be laser-

based radiation [Pou00], power-supply disturbance [Hut09], and Electro-

Migration Interference (EMI) [Var05]. HBFI techniques can be further

categorized into [Zia04]:

HBFI techniques with contacts; in this category the fault injector is in

direct physical contact with the system under test. The injector produces

voltage or current changes externally to the target chip. Figure 2.5a shows a

power-supply injector which is being used for fault-injection at the chip

pins. This power supply (blue box) generates a disturbance and this

disturbance will be consequently injected in the chip by a power probe.

In the case of HBFI without contact the injector has no direct physical

contact with the system under test; an external source produces some

physical activity, such as heavy-ion radiation to evoke a predefined

disturbance of soft-errors in the circuit. Figure 2.5b shows a laser-based

fault-injection which injects a very accurate laser beam into a system. The

laser beam is used to modify the contents of a chip, while the white box

provides the proper characteristics of the laser that is being injected to the

chip. This method of fault-injection needs to be highly accurate in

positioning especially with the current trend of shrinking chip technology

dimensions.

25

System under

test

Power probe

To the computer

Pin used for

fault injection

a)

System under

test

To the computer

Laser injector

b)

Figure 2.5. a) Fault-injection at chip pins. b) Laser-based fault-

injection (both pictures are a courtesy of [Opt12]).

26

Even though conducting hardware-based fault-injection techniques

is very complex and costly, they are very close to the real physical nature of

a soft-error. The benefits of hardware-based fault-injection can be

summarized as [Zia04]:

The HBFI methods can access locations that cannot be accessed by

other fault-injection methods. For example, laser-based fault-injection can

inject faults into all the flip-flops (after removing any protective layers) and

registers which are simply not accessible by I/O pins or software.

A physical analysis by injection of physical faults into a prototype is

sometimes the only practical way to estimate the behaviour of a circuit with

regard to soft-errors. This is the case if the source code of the system is not

available or there is no simulation model of the predefined soft-error model

to conduct fault-injection. Furthermore, there is no need to modify the

architecture of the system under test to conduct fault-injection. This is

desirable if the system is only available as a prototype.

Meanwhile there are different drawbacks for HBFI methods. Among

them is limited observability, which means it is very hard to track an

injected fault in the system. Moreover, HBFI techniques require special-

purpose hardware in order to perform the fault-injection experiments.

In this thesis, the results of hardware-based fault-injection from

others will be used to develop a simulation model for Single Event

Transients (SETs) which can be incorporated in simulation-based fault-

injection techniques.

2.4.2 Software-based fault-injection techniques
Traditionally, software-based fault-injection techniques modify the

software being executed under the operating system. Different sorts of faults

can be injected at this level, varying from register and memory faults to

faulty network packets. Software fault-injections are more focused on the

aspects of a system which are accessible by a software developer, for

example the operating system. Software simulations are normally non-

intrusive, i.e. the hardware of the system will not be changed. The benefits of

27

software-based fault-injection techniques are that these techniques can be

carried out on the basis of operating systems, which are difficult to conduct

using hardware-based fault-injection approaches. Furthermore, experiments

can be executed almost in real-time, depending on whether the timing of the

system under test is a target of fault-injection or not. This allows running of

a large number of fault-injection experiments within a reasonable amount of

time. The same amount of time needs to be executed without a fault. Finally,

software-based fault-injection techniques do not require any special

hardware, and in addition conducting fault-injection experiments by

software modification has a low complexity and hence a low development

and implementation cost.

However, there are also a number of drawbacks; for example the

fault-injection process needs to be executed at assembly language level.

Therefore, the flexibility to model different soft-errors are limited.

Furthermore, soft-errors cannot be injected into locations that are

inaccessible by the software, such as an internal register file. Last but not

least, it requires a modification of the source code to carry out fault-injection.

As a result, the source code that will be executed for fault-injection will not

be the same as the one that will run on the system under normal operational

situations.

2.4.3 Simulation-based fault-injection techniques
Simulation-based fault-injections [Jen93] involves the construction of

a simulation model of the system under analysis, including a detailed

simulation model of the circuit which is being used for fault-injection.

Moreover, the perturbation should be modelled at the same level as the

circuit that has been modelled. The operational failure of the simulated

system can occur according to a predetermined distribution of perturbations

in order to accelerate the injection of soft-errors. This predetermination helps

in terms of a more effective propagation of faults in the system, such as an

overlap of an erroneous pulse with the positive clock edge of a flip-flop.

First, the simulation model of the system under test is developed using a

hardware description language such as VHDL or its American counterpart

Verilog. Faults that have been modelled based on VHDL or Verilog are

subsequently injected into the VHDL model of the system. The details of

28

simulation-based fault-injection techniques will be explained in the next

chapter. However, as the benefits and drawbacks of this class of fault-

injection techniques the following comments can be made:

As a benefit, simulated-based fault-injection techniques can support

almost all abstraction levels, from the transistor level up to the architectural

level. The only requirement is that a simulation model of the system under

test as well as the soft-error should exist at the same hierarchical level. In

addition, it is possible to carry out this fault-injection method while the

system is still under development. Another advantage is that there is full

controllability over when and where a fault is injected into the system. This

feature is very important in fault-injection analysis since the hardware-based

fault-injection approaches cannot provide this degree of controllability.

Furthermore, the cost of computer infrastructure is low, in terms of

special-purpose hardware. It also provides timely feedback to system design

engineers because all the results of the simulation can be logged in the

simulation computer for further investigation. In addition, during

simulation-based fault-injection methods, a fault-injection is performed

using the same software that will run in the field.

One of the most beneficiary features of simulation–based fault-

injection methods is the degree of observability and controllability. In

another words, any signal or register in the design can be accessed and

modified. The result of this modification can be traced clock-by-clock in a

simulation program.

As drawbacks of simulation-based fault-injection techniques, the

following issues can be mentioned:

Fault-injection using simulation-based techniques needs a large

development effort as the soft-errors should be modelled at the same

hierarchical level as the system under test. Furthermore, conducting this

type of fault-injection is very time consuming with regard to the experiment

length; this is because carrying out simulation-based fault-injection is

employing the simulation of the system in its fault-free version as well as in

the presence of possible faults. This fact can cause the experimental length of

29

these experiments to take several days while the simulation computer needs

to run the fault-injection experiments.

2.4.4 Emulation-based fault-injection techniques
In recent years, a new category has been added to the fault-injection

methods, known as emulation-based fault-injection techniques. This method

injects faults in a circuit description implemented in an FPGA [Civ02, Por07].

This approach combines the efficiency of hardware-based fault-injection

techniques and the flexibility of simulation-based fault-injection techniques

in one framework. Experimental results have shown that a significant

speed-up can be achieved as compared to simulation-based fault-injection

techniques. However emulation-based fault-injections are generally only

feasible for permanent faults, e.g. stuck-at faults. Moreover, the final circuit

should be synthesizable and therefore the usage of test-benches in the fault-

injection process is not possible.

The benefits of emulation-based fault-injection techniques are that

the injection time is much shorter as compared to simulation-based

techniques. This capability allows the designer to have a quick evaluation.

There are also drawbacks of this method, as the initial VHDL

description must be synthesizable and optimized to avoid the requirement

of a large and costly emulator; in addition a reduction of total running time

can be accomplished. This fact limits the usage of test-benches in a circuit.

Other disadvantages are that the implementation cost concerns the general

hardware emulation system and the implementation of an FPGA-based

emulation board. Furthermore, the algorithmic description of a circuit is not

yet widely accepted by synthesis tools, and therefore emulation-based fault-

injection approaches can often only be applied at the Register-Transfer-Level

(RTL) of a system. Finally, it is necessary to have a high-speed

communication link between the host computer and the emulation FPGA

board which is a critical factor in the emulation set-up.

As a summary of different fault-injection methods, hardware-based

methods provide the fastest fault-injection in terms of the required time to

carry out experiments; however, conducting such experiments is very costly

30

and complex to control. On the other hand, simulation-based fault-injections

provide a high level of controllability to conduct perturbations; however, the

required time to conduct such experiments is very long.

31

2.5 Architecture of our target processor
This section provides the baseline architecture of our case study, the

Xentium processor®, from Recore Systems [Rec11]. As mentioned before, the

goal of this thesis is to investigate the impact of soft-errors on digital

processors. This includes the development of a model for soft-errors, assess

the impact of soft-errors in a digital processors and also increasing the

robustness of digital processors with regard to soft-errors. In order to assess

these different criteria we have selected a Digital Signal Processor (DSP), the

Xentium processor [Car11, Ker10] from Recore Systems [Rec11]. The

Xentium processor is an ultra-low power DSP processor designed for high

performance digital signal-based workloads.

The default architecture of the Xentium core including a data-path, a

control unit, an instruction cache, a network interface and memory banks is

shown in Figure 2.6. The memory banks are static RAMs that are

communicating with the data-path in parallel to increase parallelism. A

detailed architecture of the data-path is shown in Figure 2.7. The data-path

has been designed based on a Very Large Instruction Word (VLIW)

architecture that consists of ten functional units and five register files. Each

functional unit is responsible for a certain class of instructions. For example,

E units (E0 and E1) perform load/store instructions, M units (M0 and M1)

are multipliers that are useful for accumulation operations. P and C units (P0

and C0) are used in those operations where the Program Counter (PC) is

involved. Finally A (A0 and A1) and S units (S0 and S1) perform arithmetic

and logical operations. All functional units can access five register files

(RFA, RFB, RFC, RFD and RFE) in parallel. An actual implementation of the

Xentium processor is based on 90nm CMOS technology leading to a silicon

area of 1.2mm2 and running on a clock frequency of 200MHz.

This processor has been developed as part of a multi-core System-on-

Chip (SoC) system as depicted in Figure 2.8. This chip contains nine

Xentium cores, interconnected by a NoC. Each of the single cores are able to

connect to the adjacent routers, while the routers are connected to a

Network-on-Chip (NoC). The NoC can be connected to more conventional

bus architectures to communicate with other peripherals, if required.

32

Different parts of the Xentium processor will be elaborated in

different chapters of this thesis. More details of each part of the processor

will be discussed in the most appropriate chapter concerned.

Figure 2.6. Xentium processor with memory and network interface [Rec11].

Figure 2.7. The Xentium data-path architecture [Rec11].

33

Figure 2.8 Photomicrograph of the multicore SoC consisting of nine

Xentium core processors [Rec11].

2.6 Conclusions
This chapter provides the basic background with regard to soft-

errors. The sources of soft-errors were discussed and also the terminology of

soft-errors was provided. Different evaluation methods with regard to the

effect of soft-errors in a digital system, including hardware, software,

emulation and simulation–based fault-injections were covered in this

chapter. Furthermore, the basic architecture of our case study has been

introduced, the Xentium processor. The Xentium processor will be used later

on in the evaluation of our proposed fault-injection method; also its

architecture will be modified to develop a reliable DSP architecture to

mitigate the effect of soft-errors.

34

References

[Adv05] S. Adve, P. Sanda, “Reliability aware microarchitecture,” in the IEEE/ACM

International Symposium on Microarchitecture, Vol. 25, No. 6, pp. 8–9,

2005.

[Anc03] L. Anchordoqui, T. Paul, S. Reucroft et al. “Ultra-high energy cosmic rays:

The state of the art before the auger observatory,” in International Journal

of Modern Physics, Vol. 18, pp. 2229–2366, 2003.

[Bau02] R. Baumann, “Soft-errors in Commercial Semiconductor Technology:

Overview and Scaling Trends,” in IEEE Reliability Physics Tutorial Notes,

Reliability Fundamentals, pp. 1–14, 2002.

[Bau05] R. Baumann, “Radiation-induced soft-errors in advanced semiconductor

technologies,” in IEEE Transactions on Device and Materials Reliability,

Vol. 5, No. 3, pp. 305–316, 2005.

[Car11] J. Cardoso, M. Hubner, “Reconfigurable computing, from FPGAs to
hardware/software co-design,” Springer, ISBN 978-1-4614-0061-5, 2011.

[Cis03] Cisco 12000 Single Event Upset Failures Overview and Work Around

Summary, http://www.cisco.com/en/US/ts/fn/200/fn25994.html, 2003.

[Civ02] P. Civera, M. Macchiarula, “An FPGA-Based approach for speeding-up

fault-injection campaigns on safety-critical circuit,” in Journal of Electronic

Testing: theory and applications (JETTA), Vol. 18, No. 3, pp. 261-271, 2002.

[Cro99] A. Crouch, “Design-for-test for digital IC's and embedded core systems,”
Prentice Hall, ISBN 978-0130848277, 1999.

[Dav09] J. M. Daveau, A. Blampey, G. Gasiot et al., “An industrial fault-injection

platform for soft-error dependability analysis and hardening of complex

system-on-a-chip,” in the Proceedings of IEEE International Reliability
Physics Symposium (IRPS), pp. 212-220, 2009.

[Dir03] J. D. Dirk, M. E. Nelson, J. F. Ziegler, et al., “Terrestrial thermal neutrons,” in

IEEE Transactions on Nuclear Science, Vol. 50, No. 6, pp. 2060–2064, 2003.

[For00] D. Lyons, “Sun Screen,” in Forbes Magazine,
http://members.forbes.com/global/2000/1113/0323026a.html, 2000.

[Hut09] M. Hutter, J. M. Schmidt, T. Plos, “Contact-Based fault-injections and power

analysis on RFID tags,” in European Conference on Circuit Theory and

Design, pp. 409-412, 2009.

[Jen93] E. Jenn, M. Rimen, J. Ohlsson et al., “Design guidelines of a VHDL-Based

simulation tool for the validation of fault tolerance,” in Proceedings of

Open Workshop LAAS/CNRS, pp. 461-483, 1993.

[Ker10] H. G. Kerkhoff, X. Zhang, “Design of an infrastructural IP dependability
manager for a dependable reconfigurable many-core processor,” in IEEE

http://www.cisco.com/en/US/ts/fn/200/fn25994.html
http://members.forbes.com/global/2000/1113/0323026a.html

35

International Symposium on Electronic Design, Test and Applications

(DELTA), pp. 270-275, 2010.

[Nic11] M. Nicolaidis, “Soft-errors in modern electronic systems,” Springer, ISBN

978-1-4419-6993-4, 2011.

[Ols93] J. Olsen, P. E. Becher, P. B. Fynbo, et al., “Neutron induced Single Event
Upsets (SEUs) in Static RAMs observed at 10km flight altitude,” in IEEE
Transactions on Nuclear Science, Vol. 40, pp. 120-126, 1993.

[Opt12] www.opto.de, 2012.

[Pou00] V. Pouget, D. Lewis, P. Fouillat, “Time-resolved scanning of integrated

circuits with a pulsed laser: application to transient fault-injection in an

ADC,” in IEEE Transactions on Instrumentation and Measurement, Vol. 53,

No. 4, pp. 1227-1231, 2000.

[Pou07] M. Portela-Garcia, L. O. Celia, M. Garcia-Valderas et al., “A rapid fault-

injection approach for measuring SEU sensitivity in complex processors,”
in IEEE International On-Line Testing Symposium, pp. 101-106, 2007.

[Rec11] Recore-systems, http://www.recoresystems.com/, 2011.

[Sha11] S. Z. Shazli, “High level modeling and mitigation of transient errors in nano-

scale systems,” PhD Thesis, ISBN 3443832, Northeastern University, 2011.

[Shi02] P. Shivakumar, M. Kistler, S. W. Keckler, et al., “Modelling the effect of

technology trends on the soft-error rate of combinational logic,” in the
Proceedings of International Conference on Dependable Systems and

Networks (DSN), pp. 1-10, 2002.

[Tab93] A. Taber and E. Normand, “Single Event Upset in avionics,” in IEEE

Transactions on Nuclear Science, Vol. 40, pp. 120-126,1993.

[Var05] F. Vargas, D. L. Cavalcante, E. Gatti, et al., “On the proposition of an EMI-
Based fault-injection approach,” in IEEE International On-Line Testing

Symposium (IOLTS), pp. 207-208, 2005.

[Wan07] N. J. Wang, “Cost effective soft-error mitigation in microcontrollers,” PhD

Thesis, ISBN 978-1-4114-8598-5, University of Illinois at Urbana-

Champaign, 2007.

[Yuh11] H. Yu, “Low-cost highly-efficient fault tolerant processor design for

mitigating the reliability issues in nano-metric technologies,” PhD Thesis,

ISBN 978-1-1275-3245-1, TIMA Lab., 2011.

[Zha07] W. Zhang, X. Fu, T. Li, et al., “An analysis of microarchitecture vulnerability

to soft-errors on simultaneous multithreaded architectures,” in IEEE
International Symposium on Performance Analysis of Systems and

Software (PASS), pp. 169-178, 2007.

http://www.opto.de/

36

[Zia04] H. Ziade, R. Ayoubi and R. Velazco, “A survey on fault-injection

techniques,” in the International Arab Journal of Information Technology,

Vol. 1, pp. 171-186, 2004.

[Zie81] J. F. Ziegler and W. A. Lanford, “The effect of sea level cosmic rays on
electronic devices,” in the Journal of Applied Physics, Vol. 52, pp. 4305–
4312, 1981.

[Zie96] J. F. Ziegler, H. W. Curtis, H. P. Muhlfeld et al., “IBM experiments in soft
fails in computer electronics,” in IBM Journal, Vol. 40, pp. 3-18, 1994.

CHAPTER 3

A Framework for Accelerating

Soft-Error Analysis in HDL

Designs1

Parts of this chapter have been published in the papers titled "A technique for accelerating

injection of transient faults in complex SoCs" in the IEEE Euro-micro conference on digital

system design in 2011, "Study of the effects of SET induced faults on sub-micron technologies"

in the IEEE/IFIP international conference on dependable systems and networks in 2011 and

"Rapid transient fault insertion in large digital systems" in the Elsevier journal of

microprocessors and microsystems in 2013.

38

ABSTRACT - This chapter introduces two contributions in terms of simulation-based fault-

injection in HDL designs. The first contribution concerns acceleration of soft-error injection in HDL

designs, with regard to the elapsed CPU time, which is the real time to conduct fault-injections. The

second contribution is dealing with conventional challenges in conducting simulation-based fault-

injection, i.e. the importance of timing information in the net list on the accuracy of fault-injection

results, as well as reaching the point of convergence in fault-injection results. The latter observation

assures the designer that fault-injection results are not dependent on the number of fault-injections any

longer. The introduced fault-injection framework is capable of simulating various fault models in a

comparable elapsed CPU time, as compared to other conventional simulation-based fault-injection

frameworks. The enhanced speed up has been assessed by conducting numerous simulation-based fault-

injections on a DSP processor and comparing the elapsed CPU time to some conventional fault-

injection tools. These experiments showed that the developed framework is capable of reducing the

elapsed CPU time by a factor ranging from 27% to 67% as compared to conventional simulation-based

fault-injection tools, and by a factor of 10% compared to available accelerated simulation-based

frameworks.

3.1 Introduction
This chapter introduces a simulation framework to conduct

simulation-based soft-error studies, as the first approach to deal with soft-

errors.

As discussed in Chapter 2, simulation-based fault-injections are

being used as a very detailed and accurate experimental method to assess

the sensitivity of a system with regard to soft-errors, in the academic

community as well as in the industrial world [Pec13]. Simulation-based

fault-injection uses a simulation model of the system to evoke predefined

fault models into different parts of a system. The simulation model of the

system can be developed using any hardware description language, such as

VHDL, Verilog or SystemC. The predefined fault models can also be

described in any hardware language due to the availability of several

integrated simulators which are able to simulate a design which is consisting

of several types of HDL languages.

Simulation-based fault-injections provide various advantages which

make them very popular for soft-error analysis [Bar05]. Issues are a high

controllability over where and when a fault should be evoked, as well as a

high observability in terms of the propagation of faults. Very important is

the fact that the designer is able to conduct soft-error analysis even before

the system is actually implemented. However, there are a number of

39

downsides regarding some facets of simulation-based fault-injections. The

first concern is that simulation-based fault-injections require an extensive

period of Central-Processing-Unit (CPU) time of the host computer to

conduct fault-injection experiments, or elapsed CPU time. This phenomenon

is known as the CPU intensiveness [Zia04]. A long elapsed CPU time is

induced by the fact that the simulation time is several orders of magnitude

longer compared to the real time. Hence a comprehensive simulation-based

fault-injection might take several days to be accomplished.

The second concern is due to the fact that the accuracy of fault-

injection results strongly depends on the level of hierarchy in which

simulation-based fault-injections are conducted [Nic11]. This means the

results of fault-injections will lead to different results if fault-injection

experiments are carried out on a front-end HDL model (Register Transfer

Level, RTL) versus a back-end HDL model (such as post-synthesized logic

gate-level net list, including timing information). This issue will become

more important as a number of emerging soft-error standards, such as the

Reliability Information Interchange Format, RIIF [Ava12], focus on the RTL

hierarchy level; this provides a universal soft-error library regardless of the

final library in which a circuit will be implemented. The results of this

chapter will show that fault-injection results can be interpreted differently if

the timing information in a net list (which is represented at the logic gate-

level net list) is disregarded.

In this chapter, the CPU intensiveness of simulation-based fault-

injections is addressed by developing a framework to speed-up injection of

conventional models of soft-errors in a HDL design. Simulation-based fault

analysis is composed of three different phases, set-up, fault-injection and

evaluation phases. Our developed framework accelerates the whole

simulation-based fault analysis by speeding up the fault-injection phase,

while the set-up and evaluation phases are identical to other conventional

fault-injection methods. It is also important to mention that the framework

in this chapter has been developed to inject conventional models of soft-

errors, i.e. the bit-flip model for Single-Event-Upsets (SEUs) and the

momentary rectangular pulse for Single-Event-Transients (SETs) [Kar04], as

discussed in Chapter 2.

40

Another subject of this chapter is the contribution on the level of

granularity of the system under analysis in producing an accurate fault-

injection. This issue will be addressed by conducting identical simulation-

based fault analysis on a Digital Signal Processing (DSP) processor at two

levels of hierarchies, a post placed-and-routed gate-level net list (including

timing information), and a pre-placed-and-routed RTL net list. It will be

shown that taking the timing information in a net list into account

contributes to a faster convergence of fault-injection results. The latter issue

is very important since reaching a point of convergence in simulation-based

fault analysis is a metric which indicates that the fault-injection results are

no longer dependent on the number of simulations.

The framework which will be presented in this chapter, will serve as

a preliminary step in conducting soft-error evaluation studies. The outcome

of this framework helps to distinguish the sensitivity of gates/nets of a

system, with regard to soft-errors. Consequently, these sensitive parts will

be enhanced with soft-error mitigation methods to decrease the level of soft-

error vulnerability.

The remainder of this chapter is organized as follows: section 3.2

discusses state-of-the-art simulation-based fault analysis as well as the

accelerated ones. Section 3.3 discusses the details of the developed

framework. The achievements in terms of CPU intensiveness will be

presented in Section 3.4 while the importance of hierarchical levels will be

treated in Section 3.5. Finally, Section 3.6 will conclude this chapter.

3.2 Simulation-based fault analysis
The first step to conduct a simulation-based fault analysis is to

represent the circuit under analysis in one of the HDL languages (VHDL,

Verilog or SystemC). The next step involves perturbation of registers or nets

according to a predetermined perturbation model, referred to as the fault

model. This latter step is known as the fault-injection phase. An elementary

simulation-based fault-injection experiment corresponds to one simulation

execution during which one predefined fault model is injected into the

simulation environment [Zia04]. A series of such simulations constitutes a

simulation-based fault-injection campaign. A simulation-based fault-

41

injection campaign might be composed of thousands of simulation-based

fault-injection experiments. Finally, the logged results of the fault-injection

campaign need to be interpreted to establish the sensitivity of the circuit

under analysis or parts of it with regard to the injected fault model. This last

step is formally known as the evaluation phase.

In order to discuss the development of our framework, first the state-

of-the-art techniques that have been used in the fault-injection phase will be

briefly presented. Then, the integration of two different approaches into one

platform will be discussed in order to use their benefits in accomplishing an

accelerated simulation-based fault-injection.

3.2.1 State-of-the-art simulation-based fault-injection
In general, implementing the fault-injection phase of a simulation-

based fault analysis can be divided into two categories [Bar04, Zia04, Gra10]:

 using built-in commands of the simulator program, which

approach is known as “built-in commands”.

 using code-modifications techniques, which can be further

divided into saboteur and mutant methods.

3.2.1.1 Built-in commands

Built-in commands are based on using, at simulation time, built-in

commands of the HDL simulator in order to modify the value/timing of a

net or register. This approach normally provides the fastest performance

with regard to the total elapsed CPU time, since it does not modify any part

of the representation of the circuit under analysis. However, the

applicability of this technique strongly depends on the functionality of the

built-in commands of the simulator program [Lee09]. For example, whether

a momentary change in a value of a net is feasible or not depends on

whether the force command has been embedded in a simulator kernel or

not.

One of the most widely-used techniques in the built-in commands

category is to disconnect a particular signal (target signal for fault-injection)

from its input(s) at a certain point of time (so-called ‘time instance’); then

force it to a new value for a brief period of time (so-called ‘fault duration’).

42

For example, to inject a temporary pulse on a signal named ‘V’ at a time-

instant ‘T1’, the sequence of the following pseudo-commands should be

executed [Gaw10] as shown in Figure 3.1.:

1- simulate-until @ (T1) ns

2- force-signal (V) to (faulty-value)

3- simulate until @ (‘fault duration’) ns

4- release-signal (V)

5- simulation-continue

6- result-logged

Figure 3.1. Pseudo-commands of built-in simulation fault-

injection.

Several existing frameworks exploit the built-in commands for the

fault-injection phase. MEFISTO [Jen94] was one of the first tools that

employed built-in commands in the fault-injection phase. Another example

is GSTF [Bar00] which is a VHDL-based fault-injection tool, was built based

on the built-in commands of a commercial VHDL simulator (V-System®). It

is capable of injecting soft-errors into different levels of hierarchy, which can

be logic gate-, RTL- and chip-level.

With respect to the implementation cost, the built-in commands

tools are the easiest and lightest simulation-based frameworks to set up,

since no parts of the circuit under analysis need to be modified.

Furthermore, no re-compilation (even partial) of any parts of the HDL code

is necessary. Finally, built-in commands methods are known as the fastest

methods with regard to the elapsed CPU time [Zia04, Gra10]. However,

since these methods strongly depend on the functionality of the built-in

commands of the simulator, the possibilities of representing various fault

models are rather limited. For instance, they are not able to inject fault

models representative for buses, such as intermittent-short or intermittent-

delay faults [Zia04, Gra10].

43

3.2.1.2 Code-modification techniques

Another category of simulation-based fault-injections is the code-

modification technique, where the HDL code of the circuit under analysis

needs to be modified [Zia04]. Code-modification techniques are further

categorized into saboteur and mutant techniques [Nic11].

In the saboteur technique, a component called saboteur is added to

the HDL description of the original component for the sole purpose of fault-

injection. The saboteur will be idle during normal system operation, while it

modifies the value of one or more signals when it is active, i.e. at the

moment a fault is being injected. For example suppose of a saboteur inserted

at the input of an ‘OR’ gate. It is ‘0’ when inactive (so no interference with

the gate), but is ‘1’ during activation. Saboteurs are inserted, in series or in

parallel, either interactively at the schematic editor level or

manually/automatically directly into the HDL source code. Serial insertion,

in its simplest form, consists of breaking up the signal path between an input

and its corresponding net and placing the saboteur in between. It is

important to emphasize that the majority of fault models, including delay,

stuck-at, SET and SEU can be implemented via the saboteur technique

[Gil08]. However, saboteurs require a number of control signals to the

original description of their target, such as gates, in order to indicate the

type of the perturbation. Consequently, the additional control signals must

be initialized for the top-level components, which consequently increases the

complexity of the entire system [Ben03, Gil08]. A simple example of this

increased complexity is shown in Figure 3.2. Here, a saboteur has been

inserted in the Half-adder-0 (the grey gate). The control mechanism of this

saboteur is that if its value is ‘1’, the output of the gate ‘OR’ (the grey gate)

will be ‘1’, otherwise the saboteur will not interfere with the normal

workflow of this half-adder. However, this control signal (indicated by

dotted signal) needs to be initialized at all higher levels, including the full-

adder, the Arithmetic-Logic-Unit (ALU) and finally in the microprocessor.

44

Full-adder0

A(3-0) B(3-0)

C0

C1 S0

Half-adder0

Half-adder1

Half-adder2

Half-adder3

ALU

Full-adder1

Microprocessor

Saboteur

control signal

Figure 3.2. Interference of the control signal (dotted signal) of a saboteur

with higher hierarchical levels.

 A well-known framework which uses the saboteur technique is

VFIT (VHDL-based Fault-Injection Tool) [Gil03]. One of the main features of

VFIT is its automatic implementation of saboteurs.

Mutants techniques are another category of code-modification

techniques which contain dormant code blocks within the normal net list

description. These blocks of code are activated by injecting faults, altering

the operation of the logic device, for example an ‘AND’ gate. Because the

fault response is generated internally within the model, fault-injection can be

carried out at any level of abstraction for various fault models. However, the

usage of mutants requires the original model of a component by the new

mutant model. With regard to the cost of the set-up phase, as well as the

CPU intensiveness in the fault-injection phase, the mutant technique is the

45

slowest simulation-based fault-analysis technique. Furthermore, a partial

recompilation for every fault-injection might be required, which inherently

results in an increased elapsed CPU time.

The main advantage of the mutant technique is its independence of

the adopted simulator, which as a result provides the opportunity of

representing very complex fault models. A well-known framework which

employs the mutant technique for fault-injection can be found in [SUN11].

In this chapter, a simulation-based fault analysis approach will be

developed which is based on the simultaneous usage of built-in commands

(in order to accelerate the fault-injection phase) and the saboteurs (in order

to enhance the possibility of representing various fault models). The main

achievement of the developed framework is to accelerate the fault-injection

phase while having the capability of representing a larger fault model

repository, as compared to the built-in commands technique.

3.2.2 Accelerated simulation-based fault-injection
framework

Since the main contribution of this chapter is to develop a

simulation-based fault-injection framework which accelerates the injection of

diverse models of soft-errors, this subsection briefly surveys recent

accelerated simulation-based fault analysis approaches presented in the

literature. It is important to mention that only simulation-based methods

have been covered in this subsection, while other methods which use a

combination of simulation-based methods and other categories of fault-

injections, e.g. Field-Programmable-Gate-Arrays (FPGAs), emulation-based

or software-based methods, are out of the scope of this section.

The authors in [Ber02] proposed two methods in order to speed-up

the fault-injection phase in simulation-based fault analysis. The first method

relies on setting checkpoints on simulator commands and the second

method employs the well-known fault collapsing technique to shrink the list

of equivalent faults. The first method, checkpoints on the simulator-

commands, is based on restarting the simulator from the last known state for

each fault-injection, rather than restarting from the beginning of simulations.

46

In the case of the second method, fault collapsing, a number of faults will be

removed from the fault list based on the well-known fault collapsing

techniques [Ben98]. Even though these two methods can decrease the

elapsed CPU time of a simulation-based fault analysis, the check-point

method is beneficiary only for rather simple designs. This because the more

complex a design is, the more time is devoted to store/retrieve and manage

the checkpoints. The authors in [Lee09] and [Mis07] convert a HDL design to

a SystemC equivalent and subsequently employ capabilities of the C

language, such as parallel computing, to speed up the simulations. Another

approach transforms the soft-error analysis problem into the equivalent

Boolean problem and subsequently exploits optimization techniques to

speed-up fault analysis [Sha12]. A method which has been documented in

[Lev05] relies on the generation of the mutants along with formal property

checking. The technique is able to inject all models of soft-errors in a

competitive elapsed CPU time. As examples of industrial platforms, one can

mention [Reb00] and [Ber02], where acceleration of simulation time is

achieved by re-arranging the simulator commands of the simulation

program. De-rating factors of a net list, being masking factors of a gate, i.e. a

‘0’ in an ‘OR’ gate and a ‘1’ in an ‘AND’ gate, have been used in [Ale11] to

minimize the number of fault-injections.

An accelerated fault-injection by engaging the RTL net list along with

the logic gate-level net list is proposed in [Gar12]. A differential fault

simulation approach, documented in [Ale12], has been developed based on

conventional simulation tools and a novel parallel, soft-error optimized

simulation tool. This method benefits from various optimization techniques

targeting a smaller elapsed CPU time while preserving the accuracy of the

results. As an example of engaging mathematical optimization methods in

order to speed up the fault-injection phase, one can mention [Asa12], where

an analytical soft-error reliability modelling technique has been employed in

order to reduce the fault-injection time while achieving a higher accuracy.

The presented framework in this chapter has been developed based

on simultaneous usage of built-in commands, provided by commercial HDL

simulators, along with the saboteurs technique. The latter is used in order to

accelerate the fault-injection phase while preserving the possibility of

47

imitating different fault models. The simulation-commands will be used to

directly modify the imposed control signals of each saboteur. As a result, it

is not required to modify any component of a design, including the

component which has been targeted for fault-injection as well as the top-

level modules. This is a key factor in our approach.

In the next section, the details of our developed framework will be

discussed.

3.3 The developed fault-injection framework
This section discusses the details of the developed fault-injection

framework. The development phase will be explained in a bottom-up

approach. First, the finest granularity modules, the Fault-Injection-Units

(FIUs) will be explained, and subsequently the function of FIUs in the fault-

injection process will be explained.

3.3.1 Fault-injection units
The developed fault-injection framework of this chapter is able to

inject the majority of existing models of soft-errors in a HDL design. To be

more specific, it can imitate all fault models which are supported by the

saboteurs technique, including Single-Event-Transient (SET), Single-Event-

Upset (SEU) and delay faults. Furthermore, this framework is able to

support different levels of hierarchy in order to conduct soft-error analysis.

We will explore different levels of hierarchy to show the capabilities of our

framework as compared to conventional fault-injection tools.

A basic element in our framework is the introduction of Fault-

Injection-Units (FIU). FIUs are units which are added to the target

components (which can be a net or register, in a hardware description

language) in order to inject a fault of the intended fault model. FIUs work

almost the same as saboteurs, i.e. they are inactive during the normal

system operation. They alter the value or timing characteristics of a net or

register during fault-injection when they are active. However, the control

mechanism of FIUs is completely different as compared to the saboteurs. If a

FIU is attached to a net or register, it is not required to change any

hierarchical levels of a design. The insertion of FIUs can be done either

manually (for a small number of FIUs) or automatically (for a very large

48

number of FIUs) in a system. As the main goal of this chapter is to assess the

degree of acceleration achieved by the proposed framework in the fault-

injection phase, FIUs are inserted manually into the net list of our design.

However, all FIUs can be automatically inserted using the well-known

automatic saboteur insertion techniques [Gri11].

 In order to control a FIU, a Fault-Injector-Signal (FIS) is incorporated

into each FIU; it is directly controlled by built-in commands. Whenever the

FIS takes value ‘1’, its corresponding FIU will inject the associated fault

model into the target component, which can be a net or register. However, a

FIU will not interfere in the normal operation of the component if its

corresponding FIS holds the value ‘0’.

All FIUs have to be inserted into the HDL net list prior to the

compilation process. Characteristics of each FIU in terms of ‘time instance’
(i.e. time of occurrence) and ‘fault duration’ (i.e. the duration that a fault

manifests itself in the system) are determined at the instantiation time of

each FIU, during the set-up phase. Therefore, it is not required to recompile

any part of the design during the fault-injection phase.

In the following paragraphs, different models of FIUs will be

introduced and discussed. The first FIU model has been developed to inject

a SET in combinational-logic blocks. The second FIU model injects a SEU in

sequential-logic blocks, and the last model injects a delay fault in a net in the

critical path. Figures 3.3a and 3.3b show the first FIU model which injects a

SET into a target net indicated by ‘V’. As can be seen in these figures, if the

FIS signal is ‘0’, the ‘V’ signal will be derived from its normal signal value

(input). However, if the FIS signal is ‘1’, a glitch will be injected in the ‘V’
signal. The characteristics of the perturbation in the ‘V’ signal, which are

‘time instance’ and ‘fault duration’, are completely bounded to the FIS

signal. It is important to mention that FIS signals are directly controlled by

the built-in commands of the simulator program; hence no parts of the top-

level components need to be modified. Figure 3.3a forces a positive

transition (0-to-1) in the ‘V’ signal while Figure 3.3b shows a FIU injected as

a negative transition (1-to-0) in the ‘V’ signal.

49

Input

Output

FIS

Saboteur

a)

Input

Output

FIS

Saboteur

b)

V

V

Figure 3.3. FIU insertion for a SET. a) positive transition (0-to-1). b)

negative transition (1-to-0).

Figures 3.4a and 3.4b show two FIUs models in order to inject delay

and SEU fault models in a nominal component, respectively. The delay fault

model is represented by a buffer in Figure 3.4a. In this figure, when the FIS

signal is ‘1’, a delayed value of the ‘V’ signal (via the buffer) will be passed

to the output which is consistent with the delay-fault model. A FIU model to

inject a SEU is shown in Figure 3.4b. If the signal FIS is ‘1’ in this figure, the

inverted value of the input will be passed to the output, otherwise the

normal input will go to the output gate. As can be seen in these figures, if the

signal FIS is ‘0’, the ‘V’ signals in all FIUs will take their fault-free value.

However, if the FIS signal is ‘1’, the V signal will get an erroneous value.

50

Input

outputMultiplexer

FIS

buffer

Saboteur

Input output

D
 f

li
p

-f
lo

p

D

clock

Q

FIS

V

buffer

Saboteur

a)

b)
Figure 3.4. FIU insertion for delay and SEU faults. a) FIU insertion for a

delay fault and b) the SEU fault model.

One of the limitations of FIUs is that all key characteristics of the

injected perturbation, such as ‘time instance’ and ‘fault duration’ are directly

related to the FIS signal. In the conventional saboteur technique, all the

calculations to perform an effective fault-injection (such as overlapping the

duration of a perturbation with the positive clock edge) are dynamically

carried out by observing the component of interest by saboteurs during run-

51

time operation [Arl03]. This dynamic assignment of fault durations during

the run time makes saboteurs capable of injecting an effective fault.

However, in our framework, all characteristics of a perturbation have been

embedded in the FIS signals which need to be defined before run-time of a

system. It will be shown that selection of a specific mathematical distribution

function for the duration of the signal FIS with regard to the system clock

period (Tclk) causes most of the changes of FIS signals cover a positive clock

edge of the system clock; which means that a change in the FIS signal will be

captured by the system clock and hence will be propagated into the higher

levels of hierarchy. As a result, all FIS signals can be statically scheduled at

the beginning of the fault-injection phase. This issue will be elaborated later

on in this chapter.

3.3.2 Embedding FIUs in the fault-injection phase
The developed framework of this chapter is an integrated fault-

injection and evaluation framework. The main achievement of this

framework is to provide a rapid soft-error injection in a HDL-based system.

After the insertion of FIUs into the predefined nets/registers of a system

(either manually or automatically), the user needs to specify some

characteristics of the system under analysis. More specific the system clock

period (Tclk) and the overall execution time of the workload (Texecution) for the

circuit under analysis. Several mathematical distribution functions have

been investigated in order to provide the possibility of statically determine

fault durations with regard to Tclk. The detailed explanation of these

assessments will be given in the section 3.4. As a result of those experiments,

it has been established that if durations of FIS signals form an exponential

distribution function with an arithmetic mean value µ which equals to Tclk,

about 90% of the perturbations will overlap with the positive clock edge of

the system. In this case the internal state of the circuit under analysis will be

potentially affected.

To determine the exponential distribution function for fault

durations, any mathematical tool can be used. In our framework, a

MATLAB routine determines fault durations of each FIS signal such that all

the different fault durations compose an exponential distribution function

with the mean value µ equal to the system clock period. As a result, each FIS

52

signal has a different sample with the same time instance but different fault

durations. This concept is shown in Figure 3.5. Here, four different examples

of a glitch signal are shown. All the samples have started from the same time

instance (6ns) but the duration of each sample (fault duration) is different. In

this example, the last two perturbations have an overlap with the positive

clock edge of the system clock and so are able to propagate into the system.

System clock

Time instance
Fault duration

Sample 1

Sample 2

Sample 3

Sample 4

Time (ns)

5 15 256

Figure 3.5. Different fault durations for a perturbation.

Finally, the framework combines all the prerequisite information,

including the number of samples for each FIS (which will be determined by

the user), time instance (which is a random time) and fault duration (which

will be determined by a MATLAB routine). To be able to automate the

53

execution of fault-injection, all the mentioned information is stored in a

macro file. This macro file is directly executable by a commercial simulator

program, in our case QuestaSim® from Mentor Graphics [Men10]. Moreover,

our framework observes the logged result of the simulator to see whether a

fault was able to affect the circuit under analysis or not, and the proportion

of affected faults.

Figure 3.6 shows an overview of our proposed framework. As can be

seen in this figure, it is composed out of three main phases: set-up phase,

fault-injection phase and evaluation phase. During the set-up phase, the user

incorporates FIUs into the HDL representation of the system. As mentioned

before, this step can be carried out automatically [Gri11]. The FIU

incorporation is a partial code-modification that imports FIUs into the

predefined nets/registers inside the HDL net list. The predefined

nets/registers are selected randomly. The user also needs to define the

specifications of the system under test for the framework. These

specifications include the system clock period Tclk, the total execution time

Texecution of the workload, and the total number Nfault-injections of fault-injection

experiments. This information will be used by different parts of the

framework in order to define a distribution of fault durations for each FIS.

As mentioned before, a software routine developed in MATLAB has been

used to specify the distribution of fault durations, in such a way that the

mean value µ of all the samples of each FIS will be equal to the Tclk. This is

because the maximum overlap between a perturbation and a positive clock

edge of the system can be achieved.

54

Figure 3.6. Overview of our fault-injection framework.

Each fault-injection is carried out during one execution of a

workload. The time when the processor starts executing a workload is

known as the reset time Treset, while the time when the processor finishes the

workload is known as the execution time Texecution. The time instance of each

FIS is completely random in time, with the following marginal constraint. Its

minimum limit equals to ten clock-cycles after the reset time, Treset + 10*Tclk,

while its maximum limit is equal to ten clock-cycles before the end of the

workload execution-time, Texecution – 10*Tclk. These boundaries can be

represented as:

 Treset + 10 * Tclk Texecution – 10 * Tclk (3.1)

These constraints have been selected in this way to allow the injected

faults to propagate during the active execution time of the system [Wan11].

Hence, there is potentially sufficient time for an injected fault to alter the

status of the system.

The fault duration of each FIS signal is calculated based on a specific

distribution function, which is an exponential distribution function in our

FIUs
system
charac. HDL

files

MATLAB

FIS
charac.

file

macro
file

linker

simulator

golden
run

MATLAB

fault
injections

user

set-up phase fault injection phase evaluation phase

55

case. The ‘time instance’ and ‘fault duration’ of each FIS is stored into a text

file named FIS characteristics file (as is shown in Figure 3.6).

In the fault-injection phase, a software program named ‘linker’,
which has been implemented by a C++ program, combines the

characteristics of each FIS signal, i.e. ‘time instance’ and ‘fault duration’ in

order to generate the macro file. The macro file can be read by a commercial

simulator, which is QuestaSim [Men10] in our framework. Figure 3.7 shows

the pseudo-code for the macro file.

Do experiment j

 {

 Restart the design

 Simulation top-module

 Run @’time instance’
 Force FIS(j) to faulty-value

 Run @’fault duration’
 Force FIS(j) to fault-free value

}

Figure 3.7. Pseudo-code of the generated macro file.

The key information within this macro file include:

 top module: the module that must be simulated during the fault-

injection phase.

 time instance: the ‘time instance’ that the specific FIS signal FIS(j)

will be activated.

 force: direct access to each FIS via built-in commands of the

simulator program. This direct access is the key part to accelerate

the fault-injection phase.

 fault duration: the duration of each FIS signal, FIS(j), that has

been calculated by a MATLAB program during the set-up phase

and has already been saved in the FIS characteristic file.

56

 Number of Experiments: the total number of fault-injection

experiments that has been determined by the user during the set-

up phase. This number is started from an initial value (which is

random) and will be increased until a convergence point is

determined in the fault-injection results. The determination of the

convergence point is discussed in detail in the next section. After

execution of the macro file, the simulator program logs the

simulation data. The data include fault-free results (golden run)

and the fault-injection results, obtained from the fault-injection

phase.

Constructing the macro file is a key issue in our approach, since it

integrates all the information which has been produced by the MATLAB

routine along with the specific requirements of each FIU in order to provide

built-in commands a direct access to the FIS signals. When the macro file is

applied to the simulator program, all fault-injections will be automatically

carried out and the output information will be subsequently logged into a

text file in order to be interpreted during the evaluation phase. This latter

phase is accomplished by tracing differences between the golden-run and

the data gathered during the fault-injection phase. The vulnerability of each

net/register will be calculated by considering the proportion of faulty

outputs over the total number of fault-injections in that net/register.

In Section 3.4, the developed framework will be employed to carry

out fault-injections in two processors, an AVR microprocessor and a DSP

Xentium processor. Fault-injection experiments on the AVR microprocessor

have been used to assess the degree of speed-up achieved by the proposed

framework. The results of fault-injection in the Xentium processor has been

used to address some other facets of simulation-based fault-injections. We

mention the importance of hierarchy levels of simulation-based fault-

injection and the final number of fault-injections (number of experiments) in

a fault-injection process. The architecture of the Xentium processor has

already been explained in Chapter 2. All the following data have been

achieved by applying the developed framework to the original architecture

of the mentioned processors.

57

3.4 Time acceleration results
The main contribution of the developed framework is to integrate the

possibilities of built-in commands techniques along with the saboteur

technique to speed-up simulation-based fault-injections. Furthermore, it is

very important to have the ability of modelling various fault models in the

developed framework. As the dominant fault models for soft-errors are SET

and SEU [Wan11], there is a particular interest in emulating these two fault

models in our framework. A SET fault is modelled by the logic depicted in

Figure 3.3a and a SEU will be modelled by the logic as shown in Figure 3.4b.

Table 3.1 summarizes possible fault models for different simulation-

based fault-injection techniques. Since the representation of fault models in

our framework is based on the saboteur technique, the capability of

modelling faults for the saboteur technique and our developed methods is

identical. However, fault-injection experiments will show that the elapsed

CPU time in our developed framework is much lower (up to 67%) as

compared to mutant techniques. It is important to mention that even though

the mutant technique has the best capability to model different faults,

conducting fault-injection experiments with this technique requires a

considerable amount of elapsed CPU time. The mutant technique is known

as the slowest simulation-based fault-injection method.

Table 3.1. Possible fault models in different simulation-based

fault-injection methods.

1 Multiple Event Upset

Injection technique Possible fault models

Built-in commands SET, delay fault

Mutant SET, SEU, delay fault, MEU21

Saboteur SET, SEU, delay fault

Check-point on simulator [Rod02] SET, SEU, delay fault

Fault collapsing [Rod02] SET

Our developed framework SET, SEU, delay fault

58

To assess the degree of acceleration gained by the developed

framework, our fault-injection results on an AVR microprocessor have been

used. During the fault-injection phase, the AVR microprocessor executes

two benchmarks from the Mibench benchmark suite [Gut01]: a bit-count and

a quick-sort program, both from the automotive and industrial control

domain of the Mibench benchmark repository. The bit-count program tests

the bit-manipulation abilities of a processor by counting the number of bits

that are set to ’1’ in an array of integers. The quick-sort program sorts one

hundred integer numbers. The motivation to use these two benchmarks is to

provide a fair comparison between different fault-injection frameworks of

the AVR microprocessor; this because other simulation-based methods also

used these two benchmarks to conduct fault-injection results with respect to

the AVR microprocessor.

The framework described in the Section 3.3 has been used to inject

SEUs on sequential components (registers and flip-flips) of an AVR

microprocessor (flip-flops, SRAM) as well as SET faults into its

combinational components (nets inside the combinatorial logic).

Furthermore, the challenge of static determination of fault durations is

addressed in the following.

As mentioned before, saboteur and mutant techniques can gather the

timing information of a net/register during run-time and then inject a fault at

a positive clock edge. However, this is not feasible in our framework since

all the information about faults need to be stored in a macro file before

starting a fault-injection experiment. In other words, all fault characteristics

should be statically scheduled prior to a fault-injection experiment.

Two essential parameters for each injected fault are ‘time instance’
and ‘fault duration’. While ‘time instances’ are assigned randomly, ‘fault

durations’ need to be pre-calculated to cause SETs to appear during a

positive clock edge. In order to statically schedule fault durations, several

distribution functions have been evaluated to assess their degree of

effectiveness with regard to fault-injection. As a rule of thumb, the more

fault-injections occur during the positive edge of the system clock, the more

it propagates faults into a system. Therefore the goal is to define a

59

distribution function of the fault duration which can cause maximum

overlap between fault durations and a positive edge of the system clock (a

so-called effective fault). Figure 3.8 shows the concept of effective and

ineffective faults. An effective faults occurs during the positive edge of a

system clock and has a potential to be captured by a flip-flop or register;

while an ineffective fault occurs outside of the time window of being

captured by sequential logic. Suppose that a distribution function

‘Distribution_a‘ causes 10 effective faults out of 100 samples of a SET while

distribution function ‘Distribution_b‘ causes 50 effective faults out of 100

samples, then distribution function ‘Distribution_b‘ is a better candidate to

define the duration of fault signals.

System-clock

Effective SET fault

Ineffective SET fault

Figure 3.8. Effective and ineffective SET faults.

Table 3.2 shows three distribution functions which have been

investigated to define the duration of FIS signals in our experiments. This

table shows three different distribution functions, which are ‘Normal’,
‘Poisson’ and ‘Exponential’ distribution functions. The second column of

this table shows three different mean values µ which have been considered

to calculate duration of faults. The third column of this table is the

60

percentage of injected faults which overlap with the positive edge of the

system clock.

 As can be seen in Table 3.2, in the case of an exponential distribution

with mean value µ equals to the system clock period Tclk, 90% of the injected

FIS signals will overlap with a positive edge of the clock. This result implies

that by defining an exponential distribution with a mean value equal to the

system clock period Tclk, is a feasible solution to assign the duration of FIS

signals at the beginning of the fault-injection experiments in the set-up

phase.

Table 3.2. Fault duration classifications for the AVR

microprocessor.

Distribution function
Mean value

 µ

Percentage of effected

faults (%)

Normal

Tclk 54

0.5*Tclk 62

2*Tclk 38

Poisson

Tclk 40

0.5*Tclk 68

2*Tclk 53

Exponential

Tclk 90

0.5*Tclk 76

2*Tclk 78

To conduct fault-injection experiments in the case of the AVR

microprocessor, 100 FIUs were inserted into different random parts of the

data path of the AVR and then 200 samples were applied to each FIS signal,

resulting in 20,000 fault-injections in total. The duration of the samples of

each FIS were assigned by an exponential distribution with a mean value µ

equal to the system clock period. The ‘time instances’ of all FIS signals have

been selected randomly, with the boundary conditions of Equation (3.1).

The density of the injected FIS signals in the net/registers of a component is

proportional with the occupied silicon area of that component. For instance

if the Program-Counter (PC) occupies two times more area as compared to

61

the Accumulator (AC), the number of FIS signals on the PC should be two

times larger as compared to the AC.

The elapsed CPU time (real time) for our developed framework as

well as that of some conventional simulation-based methods have been

summarized in Table 3.3. The numbers in this table have been achieved by

implementing all three methods, including saboteur, mutant and our

developed method with identical parameters with regard to the AVR

microprocessor. The last column of this table shows the achieved

improvement for our framework as compared to saboteur and mutant

techniques. The ‘reference point’ in this table means that the elapsed CPU

time for the saboteur and mutant techniques has been compared to the

elapsed CPU time of our proposed framework. It shows that using our

framework instead of the saboteur technique leads to 23% reduction in

elapsed CPU time while using our framework instead of the mutant

technique leads to 66% reduction.

Table 3.3. Elapsed CPU time for conventional simulation-based methods.

Fault-injection technique
Elapsed CPU time

(hours)

Elapsed CPU time

improvements if our

presented framework was

used (%)

Saboteur [Nic11] 5.2 23%

Mutant [Nic11] 12 66%

Our presented framework 4 Reference point

As mentioned before, all experiments listed in Table 3.3 have been

carried out with similar parameters, in terms of the total number of fault-

injections (20,000), fault models, the circuit under analysis (AVR

microprocessor) and the infrastructure which has been used to carry out

simulations. Table 3.3 shows that the elapsed CPU time decreases from 23%

(as compared to the saboteur technique) up to 66% (as compared to the

mutant technique). It is noted that part of the longer elapsed CPU time for

the mutant technique is caused by the fact that the circuit under analysis

needs to be partially recompiled if a different FIS signal is selected for fault-

62

injection. This means 200 partial recompilations are carried out for this

campaign. This recompilation is not required for the saboteur technique as

well as for our developed technique. In addition, the speed-up of our

method as compared to the saboteur technique is based on the static

schedule of the control signals at the beginning of the fault-injection

experiments, during the setup phase.

A comparison between the required CPU time of our proposed

framework over some accelerated methods have been given in Table 3.4. The

numbers shown in Table 3.4 have been extracted from [Ber02]. It is also

important to mention that the numbers of Table 3.4 are extracted directly

from the associated literature, so the target system is not identical for all

these three methods. Even though the improvement of the check-pointing

method is better than ours, the check-point method is only beneficiary if the

size of the execution time of the workload is time-limited, meaning only a

small number of checkpoints is required. Otherwise, storing and retrieving

checkpoints impose a high overhead on CPU time, which will cause a

significant increase in elapsed CPU time.

Table 3.4. Elapsed CPU time improvement using accelerated techniques.

Accelerated technique CPU time improvement (%)

Check-pointing [Ber02] 43.9

Fault collapsing [Ber02] 15

Our presented method 23

3.5 Level of hierarchy versus results of simulation-
based fault-injections

This section addresses two issues concerning simulation-based fault-

injections. The first issue is addressing the impact of timing information of

the net list in fault-injection experiments. Our goal here is to determine the

difference in fault-injection results if the experiments are carried out on a

pre-synthesized HDL net list versus a detailed post-synthesized timing net

list of a processor.

63

The second issue is the impact of the number of fault-injection

experiments on the convergence of fault-injection results. The motivation to

address the latter is that a different number of fault-injections might lead to

a different sensitivity level for a system [Tou07]. Our goal is to find the point

in the number of fault-injection experiments where the behaviour of the

processor to injected faults is not dependent on the number of fault-

injections any longer.

In this section, the above-mentioned questions are answered by the

assessment of the effect of SETs on a modern high performance DSP

processor, the Xentium processor from Recore-Systems [Rec11]. The

Xentium processor has been used as a case study here; however, the

mechanism employed here can be used in any other processor to achieve a

convergent point in fault-injection results. The detailed architecture of the

Xentium processor has already been described in Chapter 2. Two sets of

fault-injection campaigns have been carried out by using two models of the

Xentium processor: the first model is a pre placed-and-routed VHDL net list

(RTL net list, without timing information) and the second model is a post

placed-and-routed Verilog net list (gate-level net list including estimated

timing information). The number of fault-injection experiments has been

increased from an initial value. The initial value should be fairly small; i.e. it

would be possible to increase that number tens of times and still conducting

fault-injection experiments for this increased number would be feasible. This

initial value depends on the workload execution-time as well. For example if

a workload takes 10s (simulation-time) to be executed, 500 fault-injections

need 5,000 seconds (about 1 hour and a half). The number of fault-injections

will be increased from that initial value until a point of convergence in fault-

injection results is established.

These simulation experiments only investigate the effect of SETs on

the data path of the Xentium processor. The framework described in Section

3.3 has been used to carry out SET injections on two models of the Xentium

processor; a timed net list (hereafter referred to as gate-level net list) and a

behavioural net list (hereafter referred to as RTL).

64

The types of impact of each injected fault on the processor can be

classified as Silent Data Corruption (SDC) or Detected-Unrecoverable-Error

(DUE) [Nic11]. Since the original design of the Xentium processor does not

have an error indicator signal, which indicates detection of an error by the

Xentium processor, the experimenter cannot observe DUEs. As a result, the

functional response of the processor with respect to each injected fault has

been classified into one of the following categories:

 Silent Data Corruption, SDC: this condition is met if the error propagates

through the circuit without awareness of its occurrence by the system. So

the processor will provide an output without any error flag while its

output is not correct.

 Time out: is the possibility that the processor unexpectedly stops its

application, before execution of the whole workload. The outputs of the

processor provide no meaningful output data in this case.

 Correct behaviour: the processor completes the application.

The results of the processor have been represented by a percentage

(%), e.g. if 10 out of 100 fault-injections produce a Silent Data Corruption

(SDC) failure, the SDC failure-sensitivity of the processor will be represented

as 10%.

The fault-injections have been carried out on all ten functional-units

of the data path of the Xentium processor. In order to get an overall view of

the data path behaviour, one should consider that the data path of the

Xentium consists of six functional-units (A, E, M, S, C, P), so the total

sensitivity rate of the data path (Ptotal) can be calculated as:

Ptotal = (AE/Atotal)*PE + (AS/Atotal)*PS + (AA/Atotal)*PA + (AC/Atotal)*PC (3.2)

+ (AP/Atotal)*PP + (AM/Atotal)*PM

Here AE, AS, AA, AC, AP, AM denote the area of each functional-unit

(E, S, A, C, P and M units, respectively) and the Atotal represents the total area

of the data path. This information can be extracted from the synthesis results

of the Xentium Processor. The parameters PE, PS, PA, PC, PP, PM in Equation

(3.2) are the SDC sensitivity for each functional-unit obtained directly from

fault-injection results.

65

In each fault-injection experiment, one net within a specific

functional-unit is automatically selected; then the desired fault model is

injected into the design and finally the simulation results of the processor are

compared with the correct values obtained from fault-free simulations. The

number of fault-injection experiments, which means a higher number of

selected nets, has been increased from 500 (0.5K) to 5500 (5.5K) experiments.

It is important to note that all fault-injection experiments have been

conducted for three processor workloads, quick-sort, bit-count and basic-

math program from the Mibench benchmark repository [Gut01]. The basic-

math workload implements more complicated functions, such as the square

and exponential function.

The behaviour of each model of the Xentium net list for three

different workloads has been depicted in the charts of Figures 3.7a and 3.7b.

Figure 3.7a shows the results of the gate-level net list whereas Figure 3.7b

depicts the results for the RTL net list. The Y-axis in these charts shows the

sensitivity of the processor for Silent Data Corruption (SDC), because this

category means the percentage of injected faults that produce a functional

failure at the output. The X-axis represents the number of fault-injections.

The initial value of the number of fault-injections has been randomly

selected to 500. The selection of this number does not play any role in fault-

injection results because this initial value will be increased until the

difference between the results of fault-injection are negligible.

The first observation from the graphs of Figure 3.9 is with regard to

the general behaviour of the RTL net list with regard to SETs. It can be seen

that the RTL model shows lower sensitivity for SETs as compared to the

gate-level net list. An explanation for this observation is that the gate-level

net list has more possibilities for fault propagation than to the RTL gate-level

net list. For example, an injected glitch will interfere with the delay of a gate

in the gate-level net list and consequently changes the whole timing of an

output, which in turn could result into a functional error; however this

situation cannot occur in the RTL net list since there is no timing information

for gates.

66

Our goal is to find the point where fault-injection results are almost

identical and it is not worth increasing the number of fault-injection results

after that. We call this behaviour the point of convergence. Also, the

contribution of each net list to produce a point of convergence will be

discussed. As a general rule, the sooner fault-injection results can reach a

point of convergence, the better that net list qualifies to explore a fast

estimation of the fault behaviour of the processor.

67

5
6

8

10
11

12

9

15

19

26
27

28

6

12

16
17 17 17

0

5

10

15

20

25

30

500 1500 2500 3500 4500 5500

basic-math

quick-sort

bit-count

Number of fault-injections

S
e

n
si

ti
v
it

y
 (

%
)

a0

a1

a2

a3 a4
a5

a) gate-level net list

1 1
2 2 2

7

3 3
4

5

8
10

3 3
4

6
6

9

0

5

10

15

20

25

30

500 1500 2500 3500 4500 5500

basic-math

quick-sort

bit-count

S
e

n
si

ti
v
it

y
 (

%
)

Number of fault-injections

a0 a1

a2

a3
a4

a5

b) RTL-level net list

Figure 3. 9. Sensitivity for SDC faults of different workloads versus the

number of fault-injections (a0 to a5 correspond to the first to sixth

campaign of fault-injections, respectively).

68

To explore the convergence of RTL versus the gate-level net list, the

theory of convergence of real numbers has been employed; i.e. the distance

between two real numbers is the absolute value of their difference. For

example, if ‘ai’ and ‘aj‘ are two terms of a sequence ‘an’, the distance between

‘ai’ and ‘aj‘, denoted by ‘d(ai,aj)’ is defined as:

 d(ai,aj) =|ai - aj| (3.3)

We define ‘aconvergence’ as a limit-of-sequence ‘an’ if for all terms after

‘aconvergence’ the difference between two sequential terms is negligible. In

another words, after some point, the terms of a sequence should get closer to

each other. The mentioned behaviour can be formulated as

(means a very small value and means for every instance)

 () (3.4)

Which means for all the items after the location the difference

between those items and the limit-of-sequence ‘aconvergence’ is negligible.

Furthermore, one can conclude that the sequence ‘an’ is a convergent

sequence and it converges to ‘aconvergence’. In our experiments, ‘an’ is defined

as the series of SDC sensitivities, which can be extracted directly from Figure

3.9. As an example, in the case of the gate-level net list (Figure 3.9a) for the

basic-math benchmark, one obtains sensitivities as a0=5%, a1=6%, a2=8%,

a3=10%, a4=11% and a5=12% (also indicated in the figure). It is interesting to

know how the results of convergence of each fault-injection are. Let us

assume that ‘aconvergence’ in each fault-injection case is the SDC sensitivity of

5500 fault-injections for that specific workload, or ‘a5’ (which can be directly

extracted from the graphs in of Figure 3.9). For example, the ‘aconvergence’ of the

gate-level net list for the basic-math workload is 12%. If one can find an n0

value in Equation (3.4) while the value is relatively small (for example 0.2

as compared to 3), one could state that the fault-injection results are

relatively increasing in terms of convergence.

To achieve the mentioned goal, the distance ‘d’ needs to be calculated

for different numbers of fault-injections in each net list/workload. A

69

reasonably small value of ‘d’ for the smallest number of fault-injections is an

indication in terms of the speed of convergence of that sequence.

Table 3.5 shows the calculated ‘d’ for the gate-level net list for

different numbers of fault-injections. Table 3.6 depicts ‘d’ for the RTL net list

for different numbers of fault-injections. These numbers have been directly

extracted by calculating the difference between the SDC sensitivity of a

specific number of fault-injections (the chart in the Figure 3.9) and the SDC

sensitivity of 5500 fault-injections for the same net list/workload. As the

difference between 5500 fault-injections and itself is zero, the ‘d’ value for

5500 fault-injections has been removed from the tables. For example, in the

case of the gate-level fault model and basic-math workload, a1 is 6% while

the ‘aconvergence’ is 12%, which gives:

 d=|a1 - aconvergence|= 6%. (3.5)

This value has been indicated by underlining in Table 3.5. All values

of ‘d’ in the Tables 3.5 and 3.6 have been calculated in a similar way. The last

row in each table shows the average ‘d’ of all three workloads.

Table 3.5. Distance d between the SDC sensitivity and the

SDC of 5500 fault-injections for the gate-level net list.

Benchmark
Number of fault-injections

500 1500 2500 3500 4500

Basic-Math 7 6 4 2 1

Quick-sort 17 13 9 2 1

Bit-count 9 5 1 0 0

Average value for

three workloads
11 8 4.6 1.3 0.6

70

Table 3.6. Distance d between the SDC sensitivity and the SDC of 5500

fault-injections for RTL net list.

Benchmark
Number of fault-injections

500 1500 2500 3500 4500

Basic-Math 6 6 4 4 4

Quick-sort 5 5 6 5 2

Bit-count 6 6 3 4 3

Average value for

three workloads
5.6 5.6 4.3 4.3 3

Let us assume that the epsilon value is considered 2 in Equation

(3.4). The average values (last rows) of Table 3.5 show that the gate-level net

list indicates a better convergence with regard to the RTL net list if the

number of experiments are equal or more than 3500; this is because the value

‘d’ for the average workloads is relatively small in the gate-level fault-

injections at this point and after that. The RTL net list shows a smaller ‘d’,
only if the number of fault-injections are smaller than 1500 (5.6 as compared

to 11 and 5.6 as compared to 8); however, the d value for the gate-level net

list is smaller if the number of experiments is more than 1500.

The above discussion shows that the results of increasing the number

of fault-injections are more convergent in the gate-level net list if the number

of experiments reaches 3500 fault-injections. In other words, the response of

the Xentium processor will not be dependent on the number of fault-

injections exceeding 3500.

As a summary, with the involvement of timing information of the net

list and a sufficient number of fault-injections, the experimenter can rely on a

relative small number of experiments to come to a solid conclusion with

regard to the SDC sensitivity of a circuit under analysis. However, including

timing information during the fault-injection phase will result in an

increased value of the elapsed CPU time; this, because the Standard-Delay-

Format (SDF) back annotation to assign the timing information to each net

increases the simulation time. However, by using the developed framework

in section 3.3, the overall experiments can be carried out faster.

71

3.6 Conclusions
In this chapter, an accelerated simulation-based fault-injection

technique for soft-errors was presented. Considering that the main

drawback of simulation-based fault-injection techniques is the long elapsed

CPU time required to conduct experiments, the main goal of the proposed

framework was to decrease the elapsed CPU time required to carry out

fault-injection experiments. This goal was achieved by using the benefits of

the saboteur technique in order to model different faults along with built-in

commands techniques to speed-up fault-injections. A special distribution

function, the exponential distribution, was used to statically schedule the

characteristics of each FIS signal at the start of fault-injection experiments,

during the start-up phase. Simulation experiments carried out on an AVR

microprocessor revealed that the elapsed CPU time improves between 27%

to 67% as compared to conventional fault-injection models.

Moreover, the importance of timing information of the net list in soft-

error sensitivity analysis was addressed in this chapter. Conducting fault-

injections on the gate-level net list which has timing information leads to a

faster point of convergence in fault-injection results.

72

References
[Arl03] J. Arla, Y. Crouzet, J. Karlsson et al., “Comparison of physical and software

implemented fault-injection techniques,” in IEEE International On-Line

Testing Symposium (IOLTS), pp. 1115-1133, 2003.

[Ale11] D. Alexandrescu, E. Costenaro, M. Nicolaidis, “A practical approach to

single event transients analysis for highly complex designs,” in IEEE

International Symposium on Defect and Fault Tolerance in VLSI and

Nanotechnology Systems (DFTS), pp. 155-163, 2011.

[Ale12] D. Alexandrescu, E. Costenaro, “Towards optimized functional evaluation
of SEE-induced failures in complex designs,” in IEEE International On-Line

Testing Symposium (IOLTS), pp. 182-187, 2012.

[Ava12] A. Avans, M. Nicolaidis, W. Shi-Jie et al., “RIIF - reliability information

interchange format,” in IEEE International On-Line Testing Symposium

(IOLTS), pp. 103-108, 2012.

[Asa12] H. Asadi, M. B. Tahoori, “Soft-error modeling and remediation techniques

in ASIC designs,” in Microelectronics Journal, Vol. 41, No. 8, pp. 506-522,

2012.

[Bar00] J. C. Baraza, J. Gracia, D. Gil et al., “A prototype of a VHDL-Based fault-

injection tool,” in Proceedings of Design for Test Conference, pp. 396-404,

2000.

[Bar04] J. C. Baraza, J. Gracia-Moran, D. Gil-Tomas et al., “A prototype of a VHDL-

based fault-injection tool: description and application,” in Journal of

System Architecture, Vol. 74, No. 2, pp. 847-867, 2004.

[Bar05] J. C. Baraza, J. Gracia, D. Gil et al., “Improvement of fault-injection

techniques based on VHDL code-modification,” in IEEE International

Conference on High-Level Design Validation and Test (HLVT), pp. 16-26,

2005.

[Ben03] A. Benso, P. Prinetto, “Fault-injection techniques and tools for embedded

systems reliability evaluation,” Springer, ISBN 978-0-306-48711-8, 2003.

[Ben98] A. Benso, M. Rebaudengo, L. Impagliazzo et al., “Fault-list collapsing for

fault-injection experiments,” in Proceeding of the Reliability and

Maintainability Symposium, pp. 383-388, 1998.

[Ber02] L. Berrojo, I. Gonzalez, F. Corno et al., “New techniques for speeding-up

fault-injection campaigns,” in Proceedings of Design Automation and Test
in Europe (DATE), pp. 847-852, 2002.

[Gil03] D. Gil, J. Gracia, J. C. Baraza et al., “Study, comparison and application of
different VHDL-based fault-injection techniques for the experimental

validation of a fault-tolerant system,” in Microelectronics Journal, Vol. 34,

pp. 41-51, 2003.

73

[Gil08] D. Gil, J. C. Baraza, J. Gracia et al., “VHDL simulation-based fault-injection

techniques,” in Fault-Injection Techniques and Tools for Embedded

Systems Reliability Evaluation, Springer, ISBN 978-0-306-48711-8, 2008.

[Gar12] M. Garcia-Valderas, R. Fernandez-Cardenal, A. Lindoso et al., “Soft-error

sensitivity evaluation of microprocessors by multilevel emulation-based

fault-injection,” in IEEE Transactions on Computers, Vol. 61, No. 3, pp.

313-322, 2012.

[Gra10] J. Gracia-Moran, D. Gil-Tomas, J. C. Baraza et al., “Searching representative
and low cost fault models for intermittent faults in microcontrollers: a case

study,” in Pacific-Rim International Symposium on Dependable

Computing (PRDC), pp. 11-18, 2010.

[Gri11] J. Grinschgl, A. Krieg, C. Steger et al., “Automatic saboteur placement for
emulation-based multi-bit fault-injection,” in International Workshop on

Reconfigurable Communication-Centric Systems-on-Chip, pp. 51-8, 2011.

[Gut01] M. R. Guthaus, J. S. Ringenberg, D. Ernst et al., “Mibench: a free,
commercially representative embedded benchmark suite,” in IEEE

Workshop on Workload Characterization, pp. 3-14, 2001.

[Gaw10] P. Gawkowski, G. Smulko, “Speeding-up fault-injection experiments with

dynamic code injection,” in International Conference on Information

Technology, pp. 171-174, 2010.

[Jen94] E. Jenn, J. Arlat, M. Rimen et al., “Fault-injection into VHDL models: the

MEFISTO tool,” in International Symposium on Fault-Tolerant Computing,

pp. 66-75, 1994.

[Kar04] T. Karnik, P. Hazucha, “Characterization of soft-errors caused by single

event upsets in CMOS processes,” in IEEE Transactions on Dependable

and Secure Computing, Vol. 1, No. 2, pp. 128-143, 2004.

[Lev05] R. Leveugle, “A new approach for early dependability evaluation based on
formal property checking and controlled mutations,” in IEEE International

On-Line Testing Symposium (IOLTS), pp. 260-265, 2005.

[Lee09] D. Lee, J. Na, “A novel simulation fault-injection method for dependability

analysis,” in IEEE Design and Test of Computers, pp. 50-59, 2009.

[Men10] Mentor Graphics, www.mentor.com, 2010.

[Mis07] S. Misera, H. T. Vierhaus, A. Sieber, “Fault-injection techniques and their

accelerated simulation in SystemC,” in Euro-Micro Conference on Digital

System Design Architectures, Methods and Tools (DSD), pp. 587-595, 2007.

[Nic11] M. Nicolaidis, “Soft-errors in modern electronic systems,” Springer, ISBN
978-1-4419-6993-4, Cambridge, 2011.

http://www.mentor.com/

74

[Pec13] A. Pecchia, A. Lanzaro, A. Salkham et al., “Leveraging fault-injection

techniques in critical industrial applications,” in Innovative Technologies

for Dependable OTS-based Critical Systems, ISBN-13: 9788847027718,

Lecture Notes in Computer Science (LNCS), 2013.

[Reb00] M. Rebaudengo, B. Prrota, M. Violante et al., “New techniques for
accelerating fault-injection in VHDL description,” in Proceedings of
International On-Line Test Workshop (IOLTS), pp. 61-66, 2000.

[Rec11] Recore-systems, www.recoresystems.com, 2011.

[Rod02] F. Rodriguez, J. C. Campelo and J. J. Serrano, “Reducing the VHDL-based

fault-injection simulation time in a distributed environment,” in

Proceedings of European Test Workshop (ETS), pp. 40-50, 2002.

[Sun11] A. Sunga, B. Choia, W. E. Wongb et al., “Mutant generation for embedded
systems using kernel-based software and hardware fault simulation,” in

Journal of Information and Software Technology, Vol. 53, No. 10, pp. 1153-

1164, 2011.

[Sha12] S. Z. Shazli, M. B. Tahoori, “Using Boolean satisfiability for computing soft-

error rates in early design stages,” in Microelectronics Journal, Vol. 50, No.

1, pp. 149-159, 2012.

[Tou07] E. Touloupis, J. A. Flint, V. A. Chouliaras et al., “Study of the effects of SEU
induced faults on a pipeline protected microprocessor,” in IEEE
Transaction on Computers, Vol. 56, No. 12, pp. 1585-1596, 2007.

[Wan11] F. Wang, Y. Xie, “Soft-error rate analysis for combinational logic using an

accurate electrical masking model,” in IEEE Transactions on Dependable

and Secure Computing, Vol. 8, No. 1, pp. 137-146, 2011.

[Zia04] H. Ziade, R. Ayoubi, R. Velazco, “A survey on fault-injection techniques,” in

International Arab Journal of Information Technology, Vol. 1, No. 2, pp.

171-185, 2004.

75

CHAPTER 4

Pulse-Length Determination

Techniques for Rectangular SET

Faults 1

Parts of this chapter have been published as paper titled "Pulse-length determination

techniques in the rectangular single event transient fault model" in the IEEE International

Conference on Embedded Computer Systems: Architectures, Modelling, and Simulation

(SAMOS), 2013.

76

ABSTRACT - In the previous chapter, it was shown that the logic-gate level net list of a

circuit is quite suitable to conduct simulation-based fault-injection with regard to Single Event

Transients (SETs). However, the accuracy of the SET model itself is crucial in logic-gate level

simulation-based fault-injections. For example, the fault duration of a rectangular pulse, which means

how long a SET will manifest itself in a net list, will affect the influence of the injected fault on the

system. To the best of our knowledge, there is still no consensus over techniques for determination of

the length of SET fault models. This chapter addresses two techniques to determine the pulse length of a

rectangular SET fault model. The first determination approach has been extracted from radiation

testing (carried out by iRoC-Technologies [Iro12]) along with using a fined-grained transistor level

SET analysis tool on simple library logic gates. The second determination approach has been extracted

from analysing asymptotic behaviour of SETs in a 45nm CMOS technology node. These two

determination techniques have been employed to develop two models for SETs at the logic-gate level. To

examine the applicability of the developed models, they have both been applied to fault-injection

experiments based on the logic-gate level net list of the Xentium processor. Fault analysis shows that

applying these two fault models causes the fault-injection results to converge up to four times faster, as

compared to conventional SET fault models.

4.1 Introduction
Single Event Effects (SEEs) have gained importance since the early

nineties when several experiments repeatedly revealed that about one third

of system failures are due to SEEs, rather than permanent faults [Rie94].

SEEs appear as a data corruption in the sequential or combinational logic of

a digital circuit. As mentioned in Chapter 2, the impact of SEEs in the

combinatorial logic might lead to a momentary voltage pulse at the output

of the logic, a so-called Single Event Transient (SET) [Nic11]. This SET might

be captured by a consecutive flip-flop and as a result, the status of a system

will be erroneous.

Recently, there have been many industrial domains where the

reliability of digital ICs is a crucial contributing factor in the reliability of the

entire system. As examples, one can mention the automotive industry, in

which full hybrid and auto-drive cars are about to be produced (at the time

of writing this thesis, 2014), as well as medical instruments in which a single

failure might harm a human life. As a consequence, there is a great interest

to study the sensitivity of particular systems with regard to SEEs.

Fault-injection has long been recognized as a particularly attractive

method to assess the vulnerability of a system with regard to SEEs [Arl03].

Fault-injection evaluates the vulnerability of a circuit under test by speeding

77

up the occurrence rate of SEEs. Fault-injection can be carried out at different

abstraction levels, including real-life radiation testing, simulation-based and

emulation-based fault-injections [Zia04].

Starting from the first category, real-life radiation-testing is carried

out by stressing the actual hardware with real environmental parameters,

for example by means of a laser beam or bombarding it with high-energy

particles. This injection method is similar to the real physical nature of SEEs,

but conducting such experiments is very complex and expensive.

Simulation-based fault-injections are conducted by modelling SEEs in a

simulation model of a system; subsequently the faults will be evoked in the

logic-gate level net list of a circuit. The simulation-based fault-injection is a

very useful experimental approach to evaluate the vulnerability of a system;

the system can still be under development, as only an HDL net list is used.

Moreover, the simulation-based fault-injection provides a very high degree

of controllability over where and at which time faults are injected. As a

result, there is a high degree of observability of the propagation of an

injected fault. Finally, emulation-based fault-injections which have recently

been introduced in [Ent12], can combine the flexibility and controllability of

simulation-based fault-injections with the speed of radiation-based fault-

injections. However, the circuit under test must be fully synthesizable which

limits the usage of benchmarks in fault-injection experiments.

Considering the above mentioned categories, simulation-based fault-

injections have raised the attention in the academic community as well as in

the industrial world [Arl03]. However, the development of a realistic

simulation model is a crucial factor to conduct simulation-based fault-

injections. In this chapter, the focus will be on the influence of SEEs in

combinational logic, or SETs, and a realistic simulation model will be

developed which can be used in complex logic-gate level net lists (in the

remainder of this chapter, gate-level net list means logic-gate level net list).

One of the well-known models to imitate the effect of SETs in

combinational logic is the rectangular pulse model (also known as the

double exponential model) [Wir07]. However, determination of a pulse

length which accurately imitates a realistic behaviour of a SET in this double

78

exponential model is an open question. The key contribution of this chapter

is the development of two approaches in order to determine the pulse length

of a rectangular SET. The first approach of determination has been extracted

based on the results of real-life radiation testing of a 45nm gate-level library

along with a precise transistor-level SET analysis tool. The latter has been

developed by iRoC-Technologies [Iro12]. This determination technique takes

into account the contribution of different gates in the gate-level net list to

determine its pulse length; i.e. it differentiates between an ‘OR’ gate and
‘AND’ gate to conduct a fault-injection. Moreover, a weighted probability of

different pulse lengths is assigned to each gate, while in traditional pulse-

length determination techniques a constant value is assigned to a pulse

length.

The second pulse-length determination approach uses the asymptotic

analytical behaviour of the SPICE representation of SETs [Lim12]. This

model takes into account the runtime activities of the node of strike (node

that is hit by a high-energy particle), i.e. whether the node of strike is idle or

it is accessed by the circuit (read or write a value) at the time of striking.

In order to evaluate the accuracy of the developed SET models, four

sets of fault-injection experiments with several SET models have been

conducted on a DSP processor (post-synthesized, including timing

information). The first two campaigns constitute of using the SET fault

model with our developed pulse-length determination techniques. The other

two campaigns use conventional determinations of the SET pulse length.

Our case study employs a gate-level net list of the Xentium processor,

developed by RecoreSystems which has been synthesized by using the 45nm

Nangate library [Si212].

The remainder of this chapter has been organized as follows: section

4.2 briefly surveys some previous works dealing with SET fault models.

Section 4.3 introduces the first pulse-length representation derived from

physical laser-based stimulation along with a transistor-level SET-analysis

tool. The development of the analytical-based pulse-length determination

technique has been described in section 4.4. Section 4.5 discusses details of

fault-injection experiments on the Xentium processor for different fault

79

models, including our developed models as well as two conventional

models. The results of fault-injection are discussed in section 4.6 and finally

the conclusion is provided in section 4.7.

4.2 Conventional determination of pulse length in
rectangular SETs

A considerable amount of literature has been published to develop a

realistic model for a gate-level representation of a SET. As a definition, a SET

is a momentary corruption of the voltage of a signal that would appear at a

random time (known as time instance) and lasts for a brief period of time

(known as fault duration) [Ent12].

There is a well-accepted model for the circuit-level representation of

a SET pulse, i.e. the double exponential pulse model [Wir07, Nas07], as

depicted in Figure 4.1.

80 120 160 200 240 280 320 360 400 440

100

200

300

400

500

600

Time (ps)

C
u

rr
e

n
t

(µ
A

)

Figure 4.1. The double-exponential model of a SET [Wir07].

80

The pulse depicted in Figure 4.1. can have different durations. Up to

this moment, there is no consensus on the pulse-length determination for

this model in literature. For example, the authors in [Bar90] define the pulse

length as the time between a time instance of the strike and the end of a

simulation run, which is the time that a workload takes to be executed. The

authors in [Rie94] and [She08] interpret a SET as a momentary pulse with a

random time instance and a fixed fault length. The technique in [Rie94] deals

with older CMOS technology nodes in which the length of a pulse is in the

order of hundreds of nanoseconds, while [She08] determines the fault length

in sub 100nm CMOS technology nodes in the order of hundreds of

picoseconds. None of the above mentioned models take into account the

contribution of different gates in the net list. As a result, a constant value is

assigned to all SETs regardless of the specific gate. Recent work published in

[Lim12] determines a fixed pulse length for every different gate in a gate-

level net list, so the value of a pulse length depends on the gate on which the

SET occurred. It will be shown that a more realistic determination technique

is to consider a weighted probability of different pulse lengths for each gate.

A publication that considers the system clock period in pulse-length

determination is [Kan95], in which the pulse length is determined between

the time instance until the start of the next succeeding clock edge. Another

recent work, is [Ent12] where the authors take the length of each SET

identical to the system clock period.

Recently, dedicated tools such as TFIT [Iro12] and HSECT-SPI

[She08] have been specifically developed to predict and improve the logic

gate Soft Error Rate (SER) performance at the circuit-level. These tools use a

SPICE model (transistor-level) of a cell which is considered as the most

accurate level of representation for a SET. While it perfectly fits for SET

analysis purposes, a transistor-level description is cumbersome, difficult to

generate for large circuits and cannot be fully simulated in acceptable time.

A more practical approach consists in using a Gate-Level Net list (GLN, in a

Verilog/VHDL format) complemented with timing information (e.g. SDF -

Standard Delay Format files). However, SETs have to be represented in a

logic model in order to be used within the mentioned descriptions. Our first

determination technique of SETs in the circuit-logic model uses the well-

known rectangular-pulse model in which its pulse length has been extracted

81

based on the results of the SER characterization for a complete standard cell

library (via TFIT). Hereafter, we call this first model the circuit-based model.

The second model (hereafter to be referred as analytical-based model) uses

the most common SPICE-level representation of a SET in order to develop a

simplified logical pulse length.

4.3 The circuit-based determination approach
In order to extract the pulse length from real physical experiments,

the first step consists in characterizing the electrical effects induced by

energetic particles in a standard-cell library. This characterization is

performed using a transistor implementation of each cell in a gate-level

library. The used library is the 45nm open-access NANGATE repository

[Si212]. The circuit implementation of the library and real measurements

have been gathered in a SER database to build a logic fault model dedicated

to each cell. As our ultimate aim is to determine a SET logic model for each

cell, the following parameters with regard to the SET have been investigated:

a) The Pulse Length (PL) of the SET

b) The Soft-Error-Rate (SER) of a SET with a specific PL

The above mentioned information will be unique for each cell in the

standard-cell library. A complete characterization will produce an

occurrence rate for a specific pulse length for each gate (cell), represented as

cell(PL,SER).

In order to find the (PL, SER) associated with each cell, an Electronic

Design Automation (EDA) tool can be used. Dedicated tools such as TFIT

[Iro12] from iRoC-Technologies represents a new generation of tools that

allows a reasonably accurate calculation of the impact of electrical effects of

particles with respect to a transistor or a library cell. A vast number of

experiments have been carried out to specify a complete database for all

possible cell(PL,SER) in the 45nm NANGATE library. Since the scope of this

chapter is to use the outcome of those experiments to develop a pulse length

in order to build a realistic logical SET-pulse model, the following

paragraphs give a general overview of performing those experiments. The

detailed explanation of experiments has been published by iRoC

technologies in [Ale11].

82

The TFIT tool works by pre-characterizing a cell with regard to SETs.

Different SETs are injected and simulated in all the relevant nodes of a

library cell. The expected outcome is a SET with the minimal duration. Then,

the tool analyses the operating environment, for example being exposed to

neutron or alpha particles. TFIT uses a nuclear database to evaluate any

possible secondary particle produced by an atomic reaction between a

neutron/alpha particle and the silicon atoms. Direction and energy of those

secondary particles are studied to account for their interaction with the

sensitive volumes of the cell. Depending on the type of interaction, a current

is injected while the output value of the cell is monitored to observe any

possible electrical event. The tool also uses a technology SER process-

response model (in this case a 45nm generic), which is a database where a

collection of relevant (with respect to a given process technology) current-

pulses are stored. These current-pulses are the ones used to perform the

analysis. By cross-checking the possible environment-induced events versus

the data recorded during the experiments, the TFIT tool is able to compute

the Soft-Error-Rate (SER) value, expressed in FIT (Failure In Time) for each

pulse length value.

The specific pulse length values have been defined as 50ps, 75ps,

100ps, 125ps, 150ps and 175ps. The occurrence probability of a pulse length

smaller than 50ps is almost zero [Ale11]. Table 4.1 presents the SER

(expressed in ‘FIT’) for different cells in the 45nm NANGate library. As an

example, for the ‘AND2’ cell, the SER of a SET with a pulse length of 50ps is

equal to 51.1 FIT, which means 51.1 times of occurrence in 114 years (1

billion hours).

83

Table 4.1. SER expressed in FIT for different cells in the NANGATE Library

under different pulse lengths.

Cells
Pulse Lengths (PL)

50ps 75ps 100ps 125ps 150ps 175ps

AND2 51.10 29.88 9.39 0.30 0 0

NAND2 41.60 20.60 2.80 0.02 0 0

XNOR2 69.60 60.20 30.41 2.00 0 0

AND3 40.70 28.50 12.62 2.15 0 0

AND4 38.00 17.30 12.02 7.93 0.76 0

AOI211 41.30 17.30 12.02 7.93 0.76 0

AOI21 41.30 27.30 17.38 2.47 0.04 0

AOI221 40.40 24.00 19.54 11.30 2.22 0.07

INV 28.30 10.10 0.50 0 0 0

NAND3 44.30 25.70 10.29 0.40 0 0

NAND4 46.80 27.00 15.03 3.58 0.10 0

NOR2 30.90 20.49 7.35 0.15 0 0

NOR3 19.50 10.71 7.95 1.68 0.02 0

NOR4 16.80 5.56 4.48 3.88 0.19 0

OAI211 76.50 44.30 3.69 1.00 0.18 0

OAI21 66.70 44.26 20.66 0.83 0 0

OAI221 70.90 44.00 36.60 12.33 6.43 0.34

OAI222 61.30 39.10 28.10 23.60 15.99 5.51

OAI22 52.20 30.90 23.71 11.17 0.50 0

OAI33 43.00 21.00 14.20 11.10 10.10 2.60

OR2 56.90 33.70 10.93 4.75 0.10 0

OR3 52.50 26.90 9.96 6.15 0.61 0

OR4 54.20 23.90 6.41 3.99 2.90 0.15

TINV 12.10 11.33 6.61 0.21 0 0

MUX2 63.00 37.50 36.70 30.70 13.08 10.10

TBUF 16.20 13.23 7.94 0.88 0.50 0.20

XOR2 62.50 50.30 34.08 5.86 0.10 0

BUF 47.30 21.84 8.14 2.87 2.14 1.32

CLKBUF 48.10 22.22 3.39 0 0 0

FA on S 52.00 50.00 45.80 43.60 16.89 0.10

FA on CO 47.30 29.70 19.90 15.64 3.39 0.01

HA on S 64.80 42.30 34.35 5.47 0.09 0

HA on CO 55.20 29.22 4.50 0.08 0 0

84

A comprehensive list of (PL,SER) values for all the cells in the library

(thirty-two cells), similar to Table 4.1, is stored in a database. The next step

will be representing a logic-gate level model based on the SER calculations

and pulse lengths.

Given the fact that the key concept of simulation-based fault-

injections is to accelerate the occurrence rate of faults, assume the initial

number of fault-injections for each cell is βtotal. The logic fault model for one

cell can then be represented by Equation (4.1):

 ∑ ()
(PL=50, 75, 100, 125, 150, 175)

Where is the relative occurrence-number of a pulse with a

length of ‘PL’ and is the SER of a pulse with length ‘PL’ for a

particular cell, labelled as ‘cell’ in the library ‘lib’ (this information can be

directly extracted from the cell SER repository, Table 4.1.) Therefore

values can be readily calculated for all the possible PLs (six values in our

experiments), and for all the possible cells in the library (thirty-two cells for

our NanGate library) using any conventional mathematical tool.

As a result of Equation (4.1), the combination of (Cell, PL,) can

be defined for all the available cells and pulse lengths. This information will

be stored in a database for any desirable number of fault-injections. Table 4.2

uses Equation (4.1) and the information of Table 4.1 to calculate the

occurrence-number for each pulse length for every cell if the total number of

fault-injections for each cell () equals to 1000 (this in order to simplify

the calculations). This table shows that, e.g. for the ‘AND2’ cell, 564 out of

1000 SET signals have the length of 50ps, 329 have the length of 75ps and so

on.

85

Table 4.2. Occurrence rate of all six different PLs if the total

number of fault-injections for each cell is 1000.

Cell
Pulse lengths

50ps 75ps 100ps 125ps 150ps 175ps

AND2 563 329 103 3 0 0

NAND2 639 301 43 0 0 0

XNOR2 427 369 186 12 0 0

AND3 484 339 150 25 1 0

AND4 500 227 158 104 10 0

AOI211 500 227 158 104 10 0

AOI21 460 308 169 27 1 0

AOI22 424 321 195 56 1 0

INV 727 256 12 0 0 0

NAND3 549 318 127 5 0 0

NAND4 505 291 162 386 1 0

NOR2 524 347 124 3 0 0

NOR3 489 268 200 43 1 0

NOR4 543 179 144 125 6 0

OAI211 609 353 29 8 2 0

OAI21 503 334 155 6 0 0

OAI221 415 257 214 72 37 2

OAI222 353 225 161 135 90 0

OAI22 440 260 200 94 4 0

OAI33 265 129 87 68 62 17

OR2 520 308 127 43 1 0

OR3 540 279 103 63 6 0

OR4 592 261 70 43 31 2

TINV 400 374 218 6 0 0

MUX2 329 169 192 160 68 50

TBUF 415 339 203 23 13 5

XOR2 408 329 222 38 1 0

BUF 565 261 97 34 25 15

CLKBUF 675 303 45 0 0 0

FA on S 250 240 219 209 80 1

FA on CO 407 256 171 134 292 0

HA on S 440 287 233 37 1 0

HA on CO 620 328 50 1 0 0

86

Starting from an initial number of fault-injections, the simulator

program selects a cell in the synthesized gate-level net list and based on the

occurrence numbers shown in Table 4.2, the exact number of that specific

pulse length will be injected into the selected cell. The initial number of

fault-injections will be increased until a point of convergence for fault-

injection results will be recognized. Figure 4.2 shows the relationship

between FIT values of Table 4.1 and the occurrence rate derived by the

simulator program. As can be seen in this figure, the FIT value of each cell

per pulse length is taken from Table 4.1, considering that the total value for

fault-injection is given by the experimenter; the occurrence rate of each pulse

length for each cell can be determined by using Equation (4.1).

87

Simulator-program start

(ModelSim)

A cell is selected

Table 4.1

FIT of a cell is known

Equation (4.1)

Total number of fault-

injections

Occurrence-rate is known

(Table 4.2)

SETs are injected

HDL net list

Figure 4.2. The relationship between FIT and occurrence rates.

88

Equation (4.2) shows a formula that takes into account the initial

number of fault-injections as well as the final value to calculate the total

number of fault-injections for each pulse length. The j value denotes the

number of fault-injections which will be increased from an initial value until

reaching the point of convergence. The details of reaching the point of

convergence has already been explained in chapter 3.

 ∑ ∑

 ()

Where denotes the total number of fault-injections in each run and is the occurrence rate of a pulse length with ‘i’ Pico-seconds on a gate

labelled as ‘cell’. It is important to mention that the proportion of different

gates in a gate-level net list should be taken into account when the initial

number of fault-injections is calculated. For example, if the number of

‘NAND2’ gates in the net list is two times the number of ‘XOR2’ gates (this

information can be easily extracted from synthesis results), then if the initial

number of fault-injections in ‘NAND2’ was defined as 100, the number of

fault-injections in ‘XOR2’ should be defined as 50.

4.4 The analytical-based determination approach
This section describes a logical pulse model in which the pulse length

will be determined based on the analytical model of a SET at the SPICE-

level. The starting point is to define a SPICE representation of a SET. There

are several models for such a phenomenon. The most commonly used

representation is a transient pulse current (), inserted between ground

and the strike node, as shown in Figure 4.3.

89

Figure 4.3. SPICE representation of the induced voltage V(t) in the

strike node as result of a strike (R is the resistance of the NMOS).

Figure 4.3 indicates that part of the induced transient current comes

from the node capacitance C, while the other part comes from VDD via the

other transistor (in this case the PMOS transistor). While several models

have been employed to formulate (), the most commonly accepted model

is the double exponential pulse method which has been presented in [Wir07,

Nas07] and given by Equation (4.3). This model has two timing parameters,

α and β, which are respectively the rising and falling time constants of the
exponential equation.

 () () ()

Where represents the maximum charge collection current. The

values of , α and β are dependent on the used technological process and
the particle of interest.

In the following paragraphs, an analytical calculation will be made in

order to simplify Equation (4.3) to determine the pulse length of this

VDD

strike node

R

C

V(t)V input

90

equation based on the timing parameters of the node, i.e. α and β. Parts of
this calculation being Equations (4.4) to (4.6) originate from reference

[Wir07]. The remainder has been developed by us.

From Figure 4.1, the following first-order differential equation can be

derived (this is if the PMOS is off and the NMOS is on, so the output is 0):

 () () () ()

Where () is the voltage of the strike node and R is the resistance of

the strike transistor (in this case NMOS transistor because it is on). Solving

this differential equation provides the voltage () at the strike node. This

equation is given by:

 () () ()

We are interested to extract two parameters from Equation (4.5).

First, the time at which the strike node voltage () reaches its peak

value Vpeak. The other parameter is , the time when the SET voltage

will be de-activated due to conduction of the NMOS transistor. The

difference between and defines the pulse length. The

threshold of de-activation is set to
 , in order to simplify the calculations.

Using mathematical optimization theory, the value of can then be

represented as:

 () ()

Solving Equation (4.5) for () =
 will provide the value of , as shown in Equation (4.7):

91

 () ()
 () ()

As the Pulse Length (PL) is defined as the difference between and :

 ()

Where denotes () In Equation (4.8) is a constant

number which depends on the technology of implementation. However, it

will be shown that using asymptotic analysis [Mil06] applied to Equation

(4.8) will decrease the importance of in calculating the pulse length.

Equation (4.8) shows the pulse length as a function of the strike-node

parameters, such as R, C and . It is important to mention this model of

pulse length is valid if the maximum amplitude of a SET (V(t)) is lower than

the (which is typically true). In the following paragraphs, the

asymptotic behaviour of Equation (4.8) will be exploited in order to define a

simplified model for PL.

Let us suppose that RC is much larger than , in Equation (4.8). In

that case the Pulse Length (PL) will be dominated by the RC of the strike

transistor and the particle would not have sufficient energy to alter the

output of the gate (V(t)). This condition would be fulfilled if the strike

transistor (NMOS) changes its state (on to off or vice-versa) by Vinput at the

moment of strike. However, if is much larger than RC, then the pulse

length (PL) will be dominated by the energy of the particle. Hence, as long

as there is no transaction happening at the strike node, the pulse length will

be dominated by the energy of the particle; otherwise the pulse length will

92

be dominated by the parameters of the strike node (R) and the load (C) of

the strike node.

The described behaviour can be implemented in modern logic

simulators via advanced programming languages. We have developed a VPI

interface (Verilog Peripheral Interface) that emulates the described

behaviour of Equation (4.8). The gate-level net list of the Xentium processor

has been used to assess the applicability of the SET models described in this

chapter.

The following mechanism has been used to apply the asymptotic

model (Equation (4.8)) via a logic simulator. During execution of a

workload, a random signal will be selected for fault-injection. Also a random

time will be assigned to conduct a single fault-injection. The logic simulator

tracks the net that has been selected for fault-injection at the time of

injection; if there is a transaction at the strike node, such as writing a new

value, the impact of the particle will be dominated by the transaction.

However, a particle can impose a perturbation on a node if at the time of

strike there is no transaction on that particular node. In this situation, the

particle can change the status of a circuit and the SET model will behave as

the one developed in section 4.3.

In the next section, the behaviour of the two presented models will

be compared to some conventional SET models by carrying out a fault-

injection campaign on the Xentium processor. It is important to mention that

based on the experiments carried out by iRoC-Technologies [Iro12] on

simple gates, the model of section 4.3 only deviates 15% from the real-life

laser-based experiments. However, conducting such a laser-based

experiment for a DSP processor is very complex. In the section it is assumed

the model of section 4.3 is the most accurate model (based on the laser

experiments on simple gates). Our goal is to assess the accuracy of the model

presented in section 4.4 with regard to the model presented in section 4.3;

moreover, the accuracy of some conventional SET models will be evaluated.

93

4.5 Details of fault-injection
To show the behaviour of different pulse-length determination

techniques in the rectangular SET fault model, four different sets of gate-

level fault-injection campaigns have been conducted on the Xentium

processor. The detailed architecture of the Xentium processor was discussed

in Chapter 2 of this thesis.

The first fault-injection campaign uses the circuit-based extracted

pulse length which is based on Equation (4.2) in section 4.3. This model takes

into account a weighted contribution of each cell in the library as well as the

system clock. Moreover, following the laser-based experiments carried out

by iRoC-Technologies on basic library gates, it is known that this pulse

model only deviates 15% from the real impact of laser-based experiments.

Since conducting laser-based experiments for a complex processor is not

feasible, we consider this circuit-based model as the baseline for comparison

to assess the accuracy of other determination techniques.

The second campaign is based on the analytical pulse-length

determination technique which has been discussed in section 4.4, which is

represented by Equation (4.8). This model takes a possible transaction of

each strike node into account along with the circuit-based model to construct

a pulse-length model. In order to compare the efficiency of these two SET

pulse-length determination models over conventional models, two other sets

of fault-injection experiments have been carried out.

The third campaign uses a conventional determination technique of

SETs where a constant pulse length value is assigned to every gate that is

injected with a fault [She08]. The constant value is different from 100ps to

300ps for different CMOS technology nodes. However, we have selected the

value of 100ps which has been recommended for a 45 / 90nm CMOS

technology node [She08].

Finally the fourth campaign employs the discrete logic of a SET pulse

model that calculates pulse-lengths based on an exponential distribution-

function of the system clock period. The details of this model have already

been discussed in Chapter 3. This model takes the system clock period into

94

account, but not the contribution of different cells in the library. Table 4.3

shows the parameters which have been considered in each model.

Table 4.3. Parameters which have been taken into account in

different pulse-length models.

Pulse-model System clock Cell contribution Technology

Circuit-based yes yes yes

Analytical-based yes yes yes

Constant yes no yes

Distribution-

function-based
yes no yes

A digital signal processing program, being the Finite Impulse

Response (FIR), has been used as a workload for the Xentium processor in

all fault-injection experiments. The Xentium processor receives all the

required inputs (filter coefficients, input vector) from an input text file and

produces the output vector in an output text file. The required time to

execute one run of the FIR program is about eight seconds (in real time on

the simulation host computer).

The types of failures in the processor can be classified as Silent Data

Corruption (SDC) or Detected Unrecoverable Error (DUE) [Muk08]. Since

the original design of the Xentium processor does not have an error

indicator signal, which indicates detection of an error by the Xentium

processor, the experimenter cannot observe DUEs. As a result, the functional

response of the processor with respect to each injected fault has been

classified into one of the following categories, as described in Chapter 3:

• Silent Data Corruption, SDC: this condition is met if the error propagates

through the circuit without awareness of its occurrence by the system. So

the processor will provide an output without any error flag while that

output is not correct.

• Time out: is the possibility that the processor unexpectedly stops its

application, before execution of the whole workload. The outputs of the

processor provide no meaningful output data in this case.

95

• Correct behaviour: the processor completes the application with the

correct output.

The results of the processor have been represented as a percentage

(%), e.g. if 10 out of 100 fault-injections produce a Silent Data Corruption

(SDC) failure, then the SDC failure-sensitivity of the processor will be

represented as 10%.

The fault-injections have been carried out on all ten functional units

of the Xentium processor, which was shown in Figure 2.7 in chapter 2. In

each fault-injection experiment, one net within one functional unit is

automatically selected; then the desired fault model is injected into the net

list and finally the results of the processor are compared with the correct

values obtained from a Java-based fault-free simulator, called XentiumSim

[Rec10]. The number of experiments has been increased from 500 to 16,000

experiments. It is worth mentioning that with 500 experiments, only 1% of

all nets in the Xentium data path are affected. This rate is about 32% if the

number of experiments reaches 16000. Table 4.4 shows the percentage of

nets which are affected, as well as the elapsed CPU time (on a dual six-core

Intel processor) if the number of fault-injection grows from 500 to 16000.

Table 4.4. Percentage of affected nets and elapsed CPU-time for

different numbers of fault-injections.

Parameters of

fault-injection

Number of fault-injections

500 1000 2000 4000 8000 16000

% of affected nets 1 2 4 8 16 32

CPU time (hours) 1.1 2.3 5 11 24 49

4.6 Experimental results
The behaviour of the Xentium processor for the rectangular SET

model with four different pulse-length determination techniques has been

depicted in Figure 4.4. The Y-axis in this chart shows the sensitivity of the

processor for Silent Data Corruption. This sensitivity is derived based on the

96

fault- injection experiments. The X-axis is the number of fault-injections

(campaign) which ranges from 500 to 16000. The initial number of fault-

injection experiments has been set randomly. Increasing the number of

fault-injections is stopped at 16000 fault-injections because the elapsed CPU-

time to accomplish this number of fault-injections then reaches forty-eight

hours (two days).

Figure 4.4. The SDC sensitivity of the Xentium processor for different SET

fault models21.

1 TD_1 stands for Traditional model 1 and TD_4 stands for Traditional model 4

30.39%
27.09% 26.48% 27.54% 28.43% 28.39%

61.57%
63.11%

67.47%

75.49%

82.07%

89.22%

0.00%
0.00% 0.04% 0.00%

3.94%
5.98%

2.96%

9.39%
13.61%

18.73%
22.02% 22.66%

500 1000 2000 4000 8000 16000

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

Number of fault-injections

S
e

n
si

ti
v

it
y

 (
%

)

Analytical-based (our second model)

Constant PL (TD_1)

Ex. Distribution-based (TD_4)

Circuit-based (referenced model)

97

The first observation from Figure 4.4 can be made about the general

behaviour of conventional SET models, labelled with constant Pulse Length

(PL) and depicted with the red line (TD_1). The constant length of each pulse

has been set to 100ps to be consistent with the associated literature [She08]. It

can be seen that the constant pulse-length model overestimates up to three

times the influence of SETs in the Xentium processor as compared to the

other fault models. This can be explained due to the worst-case scenario

which is applied to the circuit under test by using this model. For example

Table 4.2 clearly shows that most of the pulses in the realistic pulse-length

model (circuit-based) have a duration less than 100ps and contribution of

longer pulse durations is very small. Our further detailed analysis of fault

propagation in this model shows that many signals will be forced to change

their value for a relatively longer time and as a result an injected fault

usually changes the status of the succeeding storage elements. This in turn

results to a pessimistic model of SET contribution in failures.

The exponential distribution-based model has been explained in

chapter 3 and is depicted by a yellow line (TD_4). It is important to mention

that the workload here is different from the ones being used in chapter 3; as

a result the behaviour of the Xentium processor is different as compared to

the results of chapter 3. As can be seen in Figure 4.4, this model

underestimates the contribution of SETs as compared to the realistic fault

model (circuit-based model), especially for a low number of fault-injections.

However, if the number of fault-injection grows, the results will be closer to

the realistic model. This can be explained due to the fact that by increasing

the number of fault-injections more perturbations are generated overlapping

with clock edges (the so-called effective faults). However, we were not able

to see the actual behaviour of this model with regard to fault-injections for

higher numbers (more than 16000) of experiments, since conducting fault-

injection with a higher number of fault-injections was not manageable in

time. The conclusion for this fault model is that a low number of fault-

injections is useless for this fault model while extracting a convergence point

requires a very high number of fault-injections. Subsequently an enormous

amount of elapsed CPU time is required by using this model.

98

The behaviour of the Xentium processor for the two newly

developed fault models is also shown in Figure 4.4. This figure shows that if

the number of fault-injections grows, the behaviour of the circuit-based

model and analytical-based model will be similar. Since the experiments

which have been carried out by iRoC-Technologies on simple gates showed

that the circuit-based pulse determination technique only deviates only 15%

from the real behaviour of soft-errors, we consider this model as the most

accurate model of SETs. Figure 4.4 shows that the behaviour of fault-

injection for the analytical-based pulse model is getting close (6% difference

for 16000 fault-injections) to the circuit-based model. This is because the

analytical-based model uses circuit-based model determination if there is no

activity at the striking node. However an important interesting aspect is the

speed of convergence of the response of the processor for these two

developed pulse models. In the other words, the sooner a fault model can

reach a point of convergence, the better that fault model is to explore a fast

anticipation of the behaviour of a system with regard to SETs.

A detailed analysis about finding a point of convergence in fault-

injection experiments was already provided in chapter 3 section 3.5. The

extracted numbers of Figure 4.4 have been applied to Equations (3.3) to (3.5)

to define a point of convergence for these two fault models.

Table 4.5 shows the calculated d for each fault model for different

numbers of fault-injections. As mentioned before, these numbers have been

extracted by applying Equations (3.3) to (3.5) of chapter 3 to the numbers of

Figure 4.4.

99

Table 4.5. The distance ‘d’ between the SDC sensitivity and the

final SDC (for 16000 fault-injections) for each fault model.

Fault model
Number of fault-injections

500 1000 2000 4000 8000

Analytical-based 2 1.3 1.91 0.85 0.04

Constant-based 27.6 26.1 21.75 13.73 7.15

Exponential

distribution-based
5.9 5.9 5.9 5.9 2.04

Circuit-based 19.07 13.27 9.05 3.93 0.64

Referring to Table 4.5, it can be concluded that if is assumed to be 4

(in Equation (3.4) of chapter 3), the analytical-based and circuit-based fault

models show the best convergence (smaller d, which are indicated by

underlining in Table 4.5) if the number of experiments are equal and more

than 4000. This means that the results of the fault-injections is more stable

for these two SET fault models, as compared to the constant-based and

exponential distribution-based models if the number of fault-injections is

4000 or more. In other words, the response of the Xentium processor will be

less dependent on the number of fault-injections for 4000 fault-injections and

more in the case of analytical and circuit-based fault models. Hence that

results after 4000 fault-injections already give a good indication for the SDC

sensitivity of a system. For the other two fault models, the constant PL and

exponential distribution-based models, the results of fault-injection are still

deviating if the number of fault- injections is even in the order of 8000. This

indicates that no conclusion can be made based on a small number of fault-

injections for constant and exponential distribution-based fault models. One

needs to increase the number of fault-injections for these two fault models

(especially the constant -PL model, since it exhibits a large ‘d’ in Table 4.5) to

reach convergence.

Figure 4.5 shows the ‘d’ number (the behaviour with regard to

convergence) of the analytical-based model and the circuit-based model

(derived from Table 4.5) in one diagram. The X-axis shows the number of

fault-injections while the Y-axis shows the ‘d’ value for each number of fault-

injections. As mentioned earlier, the circuit-based model has been

100

considered as the most accurate simulation model in our experiments;

however, an interesting observation in Figure 4.5 can be made by looking at

the convergence of the analytical-based fault model for a very small number

of fault-injections (starting from 1000) as compared to the circuit-based

model. It shows that one is able to have a very quick estimation of the

processor sensitivity with regard to a SET even with a very low number of

experiments (1000 fault-injections instead of 16000), while experience shows

that the required CPU time to carry out 1000 experiments is sixteen times

smaller as compared to the required time to carry out all 16000 fault-

injections (linear dependency). Therefore it has a linear relationship.

Number of fault-injections

d
 v

a
lu

e
 (

co
n

v
e

rg
e

n
ce

)

2
1.3 1.91

0.85
0.04

19.07

13.27

9.05

3.93
0.64

0

5

10

15

20

25

5000 1000 2000 4000 8000

analytical-based

circuit-based

Figure 4.5. The convergence of the analytical-based and circuit-

based models.

101

4.7 Conclusions

In this chapter, two approaches have been introduced for the

determination of pulse lengths to be used in the rectangular SET logic

model. The first method has been extracted from laser-based experiments

along with a detailed transistor-level SET analysis tool. This model

represents the most realistic model to anticipate the system response to

SETs.

The second determination technique is based on the asymptotic

behaviour of SETs in the SPICE model along with the circuit-based model.

We showed that the analytical-based model can provide a very fast

anticipation of the behaviour of the system while the accuracy of fault-

injection results is very close to the final response of fault-injection. Hence,

the circuit-based model is useful if the accuracy of fault-injection results is

important (only 15% deviation from real-life laser-based experiments) while

the analytical-based model is beneficiary if the elapsed time of fault-injection

experiments is important (21% deviation from real-life laser experiments).

These two fault models will contribute to solve the current challenge of

developing/adopting EDA tools for fast and improved SER evaluation. In

the next chapter, the behaviour of the Xentium processor with regard to

SETs has been used to propose a dependable architecture for the data path

and control-logic of each functional unit in the Xentium processor.

102

References
[Ale11] D. Alexandrescu, E. Costenaro, M. Nicolaidis, “A practical approach to

single event transients analysis for highly complex designs,” in IEEE

Symposium on Defect and Fault Tolerance in VLSI Systems (DFTS), pp.

155-163, 2011.

[Arl03] J. Arlat, Y. Crouzet, J. Karlsson et al., “Comparison of physical and software
implemented fault-injection techniques,” in IEEE Transactions on

Computers, Vol. 25, No. 2, pp. 247-252, 2003.

[Bar90] J. H. Barton, E. W. Czeck, Z. Z. Segall et al., “Fault-injection experiments

using FIAT,” in IEEE Transactions on Computers, Vol. 39, No. 4, pp. 575-

582, 1990.

[Ent12] L. Entrena, M. Garcia-Valderas, R. Fernandez-Cardenal et al., “Soft-error

sensitivity evaluation of microprocessors by multilevel emulation-based

fault-injection,” in IEEE Transactions on Computers, Vol. 61, No. 3, pp.

313-323, 2012.

[Iro12] iRoC-Technologies, www.iroctech.com/soft-error-tools/tfit-cell-level, 2012.

[Kan95] G. A. Kanawati, N. A. Kanawati, J. A. Abraham, “FERRARI: a flexible
software-based fault and error injection system,” in IEEE Transactions on

Computers, Vol. 44, No. 2, pp. 248-260, 1995.

[Lim12] D. B. Limbrick, W. H. Robinson, “Characterizing single event transient

pulse widths in an open-source cell library using SPICE,” in IEEE

Workshop on Silicon Errors in Logic System, pp. 6-10, 2012.

[Mil06] P. D. Miller, “Applied asymptotic analysis,” American Mathematical

Society, ISBN 978-0821840788, 2006.

[Muk08] S. Mukherjee, “Architecture design for soft-errors,” Elsevier, ISBN 978-0-

12-369529-1, 2008.

[Nas07] R. Naseer, Y. Boulghassoul, J. Draper et al., “Critical charge characterization

for soft-error rate modelling in 90nm SRAM,” in IEEE Symposium on

Circuits and Systems, pp. 1897-1882, 2007.

[Nic11] M. Nicolaidis, “Soft-errors in modern electronic systems,” Springer, ISBN

978-1-4419-6993-4, Cambridge, 2011.

[Rec10] Recore Systems, www.recoresystems.com, 2010.

[Rie94] G. L. Ries, G. S. Choi, R. K. Iyer, “Device-level transient fault modelling,” in

IEEE International Symposium on Fault-Tolerant Computing, pp. 86-94,

1994.

[She08] W. Sheng, L. Xiao, Z. Mao, “Versatile and efficient techniques for speeding-

up circuit level simulated fault-injection campaigns,” in IEEE Pacific Rim

International Symposium on Dependable Computing (PRDC), pp. 17-23,

2008.

http://www.recoresystems.com/

103

[Si212] Si2, www.si2.org/openeda.si2.org/projects/nangatelib, 2012.

[Wir07] G. I. Wirth, M. G. Vieira, F. G. Lima, “Accurate and computer efficient

modelling of single event transients in CMOS circuits,” in IET Journal of

Circuits Devices Systems, Vol. 1, No. 2, pp. 137142, 2007.

[Zia04] H. Ziade, R. Ayoubi, R. Velazco, “A survey on fault-injection techniques,” in

International Arab Journal of Information Technology, Vol. 1, No. 2, pp.

171-185, 2004.

104

This page intentionally left blank

105

CHAPTER 5

Soft-Error Mitigation

Techniques for DSP Functional

units 1

Parts of this chapter have been published as papers titled "An on-line soft-error mitigation

technique for control logic of VLIW processors” in the international symposium on Defect

and Fault Tolerance in VLSI and Nanotechnology Systems (DFTS 2013) in Austin, USA; and

“Two soft-error mitigation techniques for functional units of DSP processors” in the European
Test Symposium (ETS 2014) in Paderborn, Germany; and a European patent titled

“Functional unit for a DSP processor” filed in November 2013, under the number EP13191370.

106

ABSTRACT- This chapter presents two soft-error mitigation techniques for Digital Signal

Processing (DSP) processors. As explained in the previous chapters, each DSP processor consists of

several functional units, which are subsequently composed of sequential parts and pure combinational

logic. The sequential parts include a local control unit and input registers, while the combinational

logic is just a collection of combinatorial logic gates. Since the control unit of each functional unit is an

unstructured part, it is impossible to use Error-Detection-And-Correction (EDAC) codes to mitigate

the impact of soft-errors in these units. Moreover, because the combinatorial nature of combinational

logic, the effect of SETs will be destructive in the combinational parts of the functional unit. To develop

an effective method to mitigate the effect of soft-errors in the two before-mentioned parts, unique

characteristics of DSP workloads have been deployed to develop a masking mechanism for the local

control unit of each functional unit. At the same time the combinational logic of each functional unit

has been enhanced with a fast recovery mechanism to isolate the faulty unit from the other fault-free

functional units and re-execute the erroneous instruction. An assumption in all the proposed methods

is that the input registers inside of each functional unit are robust to soft-errors. This is a fair

assumption since there are straightforward solutions such as EDAC codes to mitigate soft-errors in

structured sequential parts of a design. The developed techniques have been implemented in the

Xentium DSP processor, in order to assess the achieved enhanced SET resilience versus the imposed

area and performance penalty. The experimental results show that the soft-error sensitivity will

decrease by a factor of eight in the local control units and by a factor of two in the combinational logic.

The penalty on area and clock-speed is less than 10%.

5.1 Introduction
Increasingly miniaturized CMOS processes along with the reduction

of operating voltage have made soft-errors a major source of threat for

today’s digital Integrated Circuits (ICs). As discussed in the previous

chapters, soft-errors can arise from different sources, including high-energy

particles from cosmic radiations or terrestrial phenomenon such as power-

supply sparks and high-energy particles emitting from inside the packaging

due to impurities [Mie12]. The impact of soft-errors on a digital IC can be

classified into two categories: Single Event Transient (SET) and Single Event

Upset (SEU). In the case of SET, a high-energy particle hits the

combinational logic of a circuit and consequently a momentary voltage pulse

will be generated at the output of the strike gate; this in turn might reach

either a storage element (flip-flop, register) or the output of the succeeding

logic gates. Chapter 4 of this dissertation showed a simulation model for this

kind of soft-errors. We have used that developed model to evoke the SETs in

the Xentium DSP processor.

Next to SETs, a SEU will be generated if a high-energy particle

directly hits the sequential parts of a processor, in which their stored value

107

might be toggled [Sch04]. Even-though SEU was the main concern in the

soft-error community in the past, it has been forecasted that increasing the

system frequency will cause the system errors to be dominated by the SETs

originating from the combinational logic rather than SEUs from the

sequential logic [Tou07]. In other words, the regular and structured elements

of a processor, such as SRAM memories and register-files were the major

point of concern with regard to soft-errors in the past; thus effective EDAC

codes have been developed in order to decrease the vulnerability of these

structures against soft-errors. In contrast, developing low-overhead

mitigation methods for unstructured and irregular parts of a processor such

as the control unit is still an open question [Gha08]. This problem is

escalating with advancements in processor structures as the amount of chip

area devoted to complex structures will grow with chip complexity. On the

other hand, traditional hardware redundancy-based approaches exploiting

m-way replication of complex structures of a processor are no longer viable

as they impose an unacceptable overhead on the entire system. The scope of

this chapter is about the impact of SETs in the unstructured parts of a

functional unit.

The next subsection quickly surveys some state-of-the-art mitigation

methods which are being used in high-performance processors. Having

mentioned the existing methods and their limitations, the contribution of

our developed mechanisms will be discussed in subsection 5.1.2. Section 5.2

describes the details of our masking mechanism in local control units while

section 5.3 deals with the recovery mechanism in combinatorial logic.

5.1.1 State-of-the-art
One of the most well-known approaches to eliminate the impact of

soft-errors in modern processors is the Checkpoint and Recovery (CR)

method [Akk03] in which the current state of the processor is saved in a

memory device at various points in the execution of the program code

(referred to as check-points). If a soft-error is detected, the processor status

will be re-loaded with the last check-point (this reloading process is referred

to as roll-back) . The program execution is resumed once the status of the

processor is restored from the latest check-point. Generally, CR-based

methods impose a heavy load on the system, as the whole status of the

108

processor needs to be stored and reloaded at specific intervals. Many

parameters are involved in when and how a roll-back needs to be triggered.

Thus, different versions of CR-based methods have been proposed in the

literature.

Wang et al. [Wan06] proposed the well-known ReStore architecture,

in which the activation of a rollback is triggered by some symptoms which

alert the presence of a soft-error, such as control flow miss-speculations or a

high number of cache misses within the normal flow of a program.

Ghasemzadeh-Mohammadi et al. [Gha08] presented a signature-based error

detection and rollback recovery technique for the control logic of MIPS

processors. As specific works on combinatorial logic, Chen et al. [Che06]

reconfigured the redundancy of functional units of a DSP processor as an M-

way replication architecture to mitigate soft-errors. Even though this method

could considerably diminish the impact of soft-errors, the execution time of

a program will increase significantly (up to three times). This is due to

assigning some functional units to the fault-mitigation mechanisms.

Recently, a hardware/software CR-based scheme, called Reli, has been

proposed in [Tli12] which is based on enhancing micro-instructions with

additional micro-operations to facilitate check-pointing. However, it suffers

from a common issue in all CR-based methods, which is a long recovery

time (16 clock cycles in the case of Reli).

Another category of recovery methods is based on employing

redundancy techniques to achieve fault-tolerance. In general, the detection

latency of these methods is negligible (less than one clock cycle) but the

imposed overhead on the area, or power might be significant.

Gaisler et al. [Gai02] employed EDAC codes along with Triple

Modular Redundancy (TMR) to provide a spatial redundancy in the

combinational logic of a Scalable Processor Architecture (SPARC) processor.

The main drawback of their methods is a high degradation in the

performance. Cota et al. [Cot01] explored the usage of a special finite-state

machine-based controller that uses the Hamming code to correct SEUs in the

control unit of MIPS processors. Kim et al. [Kim01] and Ganesh et al.

[Gan06] explored a signature-based caching scheme to mitigate soft-errors

109

during run-time. In their methods, all the control signals used in each

pipeline stage are integrated into a signature which is subsequently verified

before the commitment stage. A potential drawback of this method is that

data dependency can stall the pipeline stages for a very long time.

As a software mechanism, Bolchini [Bol03] has proposed a software

methodology for detecting hardware faults, while Chen et al. [Che10]

proposed a reliable data path using Duplication And Comparison (DAC)

along with the TMR method.

VOLTaiRE, is a low cost fault detection solution tailored for DSP

processors that has been proposed by Shyam et al. in [Shy06]. Their method

deals with detection of faults in the data path of DSP processors. Two soft-

error mitigation schemes, being Soft-Error Mitigation (SEM) and Soft and

Timing Error Mitigation (STEM), use the approach of multiple clocking of

data for protecting combinational logic from soft-errors; they have been

recently proposed in [Avi12]. While both of those methods can detect nearly

100 percent of soft-errors, they unfortunately impose a 100 percent

deterioration in the speed of the processor.

In this chapter, a mitigation method for the control logic and a

recovery method for the combinatorial logic of DSP processors will be

developed. It will be shown that by exploiting the characteristics of DSP

workloads and DSP architectures, our method can benefit from the

advantages of redundancy-based methods (very short detection latency) and

CR-based methods (low overhead in area/power/performance).

5.1.2 Our DSP mitigation techniques
This chapter proposes a new architecture for DSP processors by

developing two architectural mechanisms to mitigate SEUs and SETs in

functional units of a DSP processor. These mitigation mechanisms have been

developed based on exploiting the unique characteristics of DSP workloads

as well as DSP architectures. This section gives an overall view of these two

methods and following sections provide the details of each mechanism.

110

As depicted in Figure 5.1, a DSP processor is consisting of several

functional units that execute a Very-Long-Instruction-Word (VLIW)

instruction in parallel. Each functional unit is composed of several input

registers, a Local Control Unit (LCU) and combinational logic. Considering

the fact that input registers can be protected by readily available EDAC

codes, a soft-error masking method has been developed for the LCUs, and a

SET recovery mechanism has been designed for the combinatorial part of

each functional unit.

Central data

memory

Central data

memory

Central control

unit

Central control

unit

Local Control

Unit (LCU)

Input-RegisterInput-Register

Input

Registers

Input

Registers

Combinational

logic

Functional unit

1

Functional unit

1

Functional unit

2

Functional unit

2

Functional unit

3

Functional unit

3

Functional unit

n

Functional unit

n

A DSP processor

Bus

Figure 5.1. A typical architecture of a DSP processor. The grey parts

will be enhanced in this chapter.

111

LCUs are responsible for generating control signals based on the

fetched opcode. In order to protect the control-signals produced by each

LCU, the control signals have been classified into either opcode-dependent

or instruction-dependent control signals, based on their changeability over

time during the execution of an instruction. To avoid a momentary change

in the value of these opcode-dependent control signals during an execution

of an opcode, they have been replaced by a Read-Only Memory (ROM)

memory. This ROM memory acts as a Look-Up Table (LUT).

To protect instruction-dependent control signals, an inherent

characteristic of DSP workloads, the locality of references [Hen11], has been

employed. The details of these proposed architectures will be explained

later. Experimental results show that the percentage of failures drops from

40% to 5.4%, while they impose a 4% increase in silicon area and a 10%

deterioration in speed.

In the second approach, the combinational logic inside each

functional unit has been enriched with shadow registers which enables re-

execution of very fine grained part of an instruction while the rest of the

processor is waiting, the so-called freezing. Considering that the duration of

soft-errors in a modern digital ICs is less than one clock cycle [Ale11], this

freezing period can mitigate the impact of soft-errors. Experimental results

show that this recovery mechanism in the combinatorial logic part imposes a

10% increase in silicon-area and no degradation in speed, while the

percentage of induced failures drops from 30% to 15%.

The above mentioned recovery mechanism in the combinational logic

has several advantages, such as:

a. There is no need to store (checkpoint) or reload (rollback) the

whole status of the processor during a recovery, as the recovery

mechanism performs a very fine-grained local re-execution.

b. Freezing the healthy functional units of a DSP processor for only

one clock cycle while the erroneous part of the instruction is being re-

executed. This mechanism can employ the existence of the ‘wait’
signal in a processor to freeze the healthy parts of the processor;

112

therefore the central-control logic of the DSP processor does not need

to be modified.

c. Storing the minimum amount of information as back-up data in

each functional unit considerably decreases the reloading overhead

during the recovery time. As mentioned before, our recovery method

needs only one clock cycle to recover from soft-errors, while one of

the fast versions of the check-point and recovery technique [Wan06]

requires 16 clock cycles to recover from a soft-error.

d. This recovery mechanism imposes a negligible area overhead in

the processor and there is no penalty in the performance.

5.2 Our SET masking mechanism in LCUs
The mechanism of masking SETs in the LCUs is based on classifying

the control signals of each functional unit, generated by LCUs, to either

opcode-dependent or instruction-dependent control signals. Figure 5.2

shows the concept of opcode-dependent and instruction-dependent control

signals.

source 1

address

source 2

address
destination addressOpcodemode

Opcode-dependent signals

decoder

0781531 30 27 26 20

decoder

Instruction-dependent

signals

reserved bits

Figure 5.2. Opcode- and instruction-dependent control signals.

113

As can be seen in this figure, the value of opcode-dependent control

signals depends only on the opcode part of an instruction. For example as

long as the opcode part of an instruction is ‘add’, the value of the ‘add-

signal’ is 1, irrespective of the address part. In contrast, the value of

instruction-dependent control signals depends on the whole instruction and

not only on the opcode part. For example, the ‘write-address’ of a register

depends on the address part of an instruction as well as the opcode part.

The following subsections present two different masking mechanisms for

each category.

5.2.1 Opcode-dependent control signals
Since the value of an opcode-dependent control signal depends only

on the opcode part of an instruction, and the number of possible opcodes

per functional unit is limited, a distributed ROM memory has been used to

store the value of the opcode-dependent control signals for each opcode. The

term distributed implies that each execution unit can access this ROM unit.

A limited number of different opcodes per functional unit (32 different

opcodes per functional unit in our case study) along with a limited number

of opcode-dependent control signals (16 different signals in our case study)

make it feasible to store the value of these control signals for each opcode in

a ROM memory during the design phase and then retrieve them during run

time. The organization of this ROM memory is depicted in Figure 5.3 and

consists of several entries (equal to the number of different opcodes per

functional unit) and the expected value of their control signals as the

contents. In order to retrieve the value of a particular control signal during

the run-time, the opcode of a fetched instruction is converted into an input

address for the ROM memory in which the expected value of a particular

control signal has already been stored (e.g. ‘ALU-selection’).

114

Opcode-to-

address

convertor

Opcode-to-

address

convertor

ROM memory

00

01

10

11

ALU-selection shift

1

0

1

0

0

1

0

0

output

signals
Opcode

(2-bit)

add

shift

mult.

load

Figure 5.3. ROM structure to mask soft-errors in the opcode-

dependent control signals.

Suppose that a typical functional unit has four different opcodes

(add, shift, multiply and load). The opcodes are recognized by two-bit

binary numbers, add=00, shift=01, multiply=10, load=11. This functional unit

has also two control signals of which their value depends on the opcodes,

named ‘ALU-selection’ and ‘shift’ . The designer knows the value of these

two control signals for each opcode during the design phase of a processor,

so the value of these control signals per opcode can be stored during the

design phase. For example, ‘ALU-selection’ is 1 for the add and multiply

opcodes and 0 for the other two opcodes. The ‘shift’ signal is only 1 during

the execution of the shift operation. Consequently, the ROM structure has

four entries (associated with four opcodes) while each entry has a two-bit

width representing the contents. The content of this ROM memory is

constant and independent of the executed workload.

The probability that a SEU or SET can change the contents of a ROM

memory is very low (near 0%) as compared to the traditional unstructured

organization of local control units [Esa11]. Moreover, EDAC codes can be

readily used to protect this ROM memory [Wen96] since it is a regular

structure, i.e. there is at least one clock latency between when a value is

115

written and when it is being read. However, the input/output lines or the

opcode-to-address convertor are still vulnerable to SETs. In the experimental

results, the efficiency of this method will be assessed.

It is important to mention that the value of each opcode-dependent

control signal will be generated by this ROM-unit in a look-up table manner.

5.2.2 Instruction-dependent control signals
Another category of control signals is the instruction-dependent

control signal. Since the number of different instructions per functional unit

is infinite, the previously introduced look-up table is not feasible in this case.

In order to propose a novel soft-error masking mitigation method, a

common principle in computer architectures, the so-called locality of

reference [Hen11] has been employed. This concept implies that most of the

program execution time is spent on a small piece of code. Especially for DSP

workloads, about 90% of the computational time is spent in a very small

kernel [Smi07]. As a result, the variety of instructions per workload is

limited; however, the exact instructions are not known to the designer at

design-time.

Our idea that has been used here is to store a history of an

instruction-dependent control signal during the first and second execution

of an instruction and then subsequently compare the succeeding generated

run-time values with the ones stored as a history of the signal to detect any

momentary change. Considering that the values of an instruction-dependent

control signal are identical for all the executions of the same instruction,

unless an error occurred, this mechanism can detect any singular errors in

these signals.

In order to implement the previously mentioned idea, a cache

structure has been used. This cache architecture has several entries which

are associated with the number of different instructions within the kernel of

the DSP program. The higher number of entries in the cache, the more

different instructions can be tracked. To track each instruction, the unique

Program-Counter (PC) can be used.

116

The structure of this cache has been depicted in Figure 5.4. Suppose

that N different signals have been classified as instruction-dependent control

signals. The ‘PC-to-cache-address-decoder’ assigns a unique address in the

cache entries to each instruction. The values of the control signals, which

have been produced by the normal control unit during the run-time (Figure

5.1), are saved in the cache memory. This occurs during the first and second

execution of the kernel of the DSP program. From the third execution

onwards, the run-time value of a signal (which has been generated by the

conventional LCUs) will be compared with two previously stored instances.

The final output is the result of a majority vote of these three values.

Considering that the likelihood of an identical perturbation of two or three

instances of one signal is very small, this scheme can mask the effects of soft-

errors for the associated signals.

 cache memory

0000

0001

0010

1111

Signal 1 Signal 2

Output signal

(2N signals)

Signal N

PC-to-cache

address

decoder

PC-to-cache

address

decoder

PC

The first history

The second history

Figure 5.4. Cache structure to store a history of control signals.

117

The replacement mechanism of this cache structure plays an

important role in the efficiency of our mechanism. The random replacement

policy, which randomly selects a candidate for being discarded from the

cache, was used here to simplify the implementation. Moreover, the number

of entries of each cache memory has been limited to 16, i.e. 16 different

instructions can be tracked at any given point of time. A larger cache can

protect more signals, however as a trade-off, the complexity of the ‘PC-to-

cache-address-decoder’ and the area overhead of the cache structure need to

be considered as well. Another issue that needs to be addressed here is the

controller (or FSM) which is responsible for determining the status of an

instruction-dependent control signal with regard to its history. Figure 5.5

depicts the state diagram of this FSM.

The state diagram shown in Figure 5.5 takes the signal ‘active’ as
input. In this figure, the output signal of each label is indicated by

underlining (for example output) while the normal letters shows the label of

a status (for example no-history). This signal is unique for each instruction

and means that the program flow has reached this instruction. ‘Activej = 1’
means that the program flow for instruction ‘j’ has been executed for the first

time. The ‘output’ signal indicates whether three executions of instruction ‘j’
have occurred in the program flow or not. So ‘output = 0’ means less than
thee executions of a particular instruction occurred while ‘output = 1’
indicates three or more executions of an instruction have taken place. As can

be observed from the FSM machine, the third execution of instruction ‘j’
causes the FSM machine to reach the status ‘three-history’. In this state

(‘three-history’) the ‘output’ signal is always high because at least three
executions of instruction ‘j‘ have occurred before.

118

one-history

output=0

Reset

activej=0

activej= 1

activej= 0

activej= 1

activej= 0

activej= 0

activej= 1

activej= 0

activej= 1

no-history

output=0

intermediate-

state-1

output=0

two-history

output=0

intermediate-

state-2

output=0

three-history

output=1

activej= 1

Figure 5.5. The state diagram of the FSM in the cache structure.

 Figure 5.6 shows the complete scheme. This figure will be explained

by following a simple pseudo-code which has been depicted in Figure 5.7.

119

history-2 of

signal-1

active-1

si
g

n
a

l-
1

run-time value of signal-1

(coming from LCU)

mux

output

0

1

signal-1

votervoter
FSM

controller

FSM

controller

history-1 of

signal-1
 cache

memory

 cache

memory

from LCU

from LCU

coming from PC

signal-1

Figure 5.6. The complete scheme composed of a cache memory,

majority voter and the FSM controller.

Suppose that a control signal ‘i’ has come from the LCU and its value

depends on the whole instruction. This signal is also enhanced during the

execution of a particular instruction, named ‘instruction-1’ in the pseudo-

code of Figure 5.7.

PC Instruction

0XXXX beginning of the program

0X0011 Loop L1

0X0100 instruction-1 (the ‘active-1’ signal is 1)
0X0101 The remaining of the loop L1

0X0110 end loop

0XXXX rest of the program

Figure 5.7. A pseudo-code consisting of one loop.

120

Prior to the first iteration of the loop, there is no history of the ‘i’
signal. Therefore the FSM of Figure 5.5 will be in the status labelled by ‘no-

history’ in which the ‘output’ signal is zero. This means that the current

value of ‘i’ is written in the cache memory of Figure 5.6 and more

importantly it will be passed by the multiplexer to the rest of the system.

During the first iteration of the loop (first execution of ‘instruction-1’)
the activation signal named ‘active-1’ is made one via the PC which indicates

that ‘instruction-1’ has been reached the program flow. As a result the FSM

will move on to the status labelled ‘one-history’ which means one history of

signal ‘i’ resides in the cache. At this stage, the value of ‘output’ signal of
FSM machine is still zero and hence the value which is passed to the system

by the multiplexer of Figure 5.6 will not yet come from the cache.

During the second execution of ‘instruction-1’, the value of ‘signal-i’
signal will be stored as the second history of this signal in the cache. The

FSM machine will be in the status labelled ‘two-history’ and the value of the

‘i’ signal will be passed from the LCU to the system (as the ‘output’ signal is

still 0).

During the third iteration of the loop, the ‘active-1’ signal will
become one for the third time. Now the FSM machine will move to the status

labeled ‘three-history’ and the value of ‘output’ signal will be ‘1’. At this
point the multiplexer in Figure 5.6 will assign the value that results from the

majority voter to the control signal.

Even if one instance is corrupted in the above mentioned scenario,

being either one of the stored values of the cache or the value of the LCUs,

the faulty value will be masked by the majority voter and the fault-free

signal will traverse through the system.

It is important to note that the structure of Figure 5.6 is a redundant

module along with the conventional LCUs, i.e. this structure will not replace

the LCUs, but work as a redundant unit along with the LCUs to enhance

redundancy. It is also worth mentioning that many readily available

mechanisms to harden the cache memory with regard to soft-errors can be

121

used in the mentioned structure in order to make the cache structure of

Figure 5.6 more resilient [Zar03].

5.3 A recovery mechanism in combinational logic
Another concern in a functional unit of a DSP processor, apart from

the unstructured LCUs, is the combinatorial logic. This is because each

functional unit receives its associated opcode from the program memory and

the required data from the data memory. The opcode of the received

instruction is decoded by the LCU (or equivalent logic, such as a look-up

table, as indicated in section 5.2) and subsequently the decoded signals will

be stored in associated input registers. Similarly, the required operands from

the memory or register-file will be fetched and stored in their associated

input registers. As long as the data presented in the input registers are

identical at time instances T1 and T2, the output signal of the combinational

logic at time instances T1 and T2 will be identical.

The idea of our recovery method is based on accompanying every

input register with one shadow register in order to hold a copy of the

associated data during one consecutive clock cycle. Since every instruction

in a VLIW architecture is distributed over different functional units, it is

feasible to halt the fault-free functional units and re-execute the faulty

operating in that specific functional unit.

To achieve this goal, both the decoded signal received from the LCU

and the data received from the data memory need to be available for one

extra clock cycle. Upon error detection, the normal flow of the processor will

be halted, and the stored data will be sent to the combinational logic one

more time, resulting in a one clock cycle latency on the overall execution

time. The limitation of this method is that if two SETs occur at two

consecutive clock cycles, the proposed mechanism will fail to recover the

processor. Even though the probability of such an occurrence is very rare,

adding more shadow registers per input register can solve this problem.

However, only one shadow register per input register will be used here.

122

There are two possibilities to implement this mechanism:

The first is to store the value of an input register at the ‘ith’ clock

cycle, denoted at ’datai‘ in a shadow register; then upon error detection,

pass the ’datai‘ to the combinational logic at the ‘(i+1)th’ clock cycle and

simultaneously store the new arrived value ‘datai+1’ (which was supposed to

be applied to the combinational logic) in the input registers.

The second implementation is to re-fetch the ’datai‘ at the ‘(i+1)th’
clock cycle and store the ‘datai+1’ in the shadow register. The second

implementation has been selected in this work because the implementation

is simpler. This mechanism explained above is shown Figure 5.8.

data memorydata memory

LCULCU

functional unit

input registerinput register

combinational logiccombinational logic

detection signal

detection signal

wait signal

shadow

register

shadow

register

detection signal

Wait registerWait register

in
p

u
t

re
g

is
te

r
in

p
u

t
re

g
is

te
r

sh
a

d
o

w

re
g

is
te

r

sh
a

d
o

w

re
g

is
te

r

Mux 2

10

M
u

x
2

a

1
0

0 1

Mux 1

0
1

M
u

x
1

a

Figure 5.8. The recovery method in the combinational logic part.

123

Referring to this figure, a detection signal will be generated by the

combinational logic (shown with bold letters in Figure 5.8). This signal can

be generated by any mechanism, providing that it detects an error in less

than one clock cycle (a so-called zero latency), such as the Duplication With

Comparison (DWC) approach [Hen11]. This detection signal will set a wait

register that will raise the wait signal during the next consecutive clock cycle

(also indicated by bold letters) to halt the fault-free functional units.

The timing diagram of the error detection and correction scheme is

depicted in Figure 5.9.

clock

detection

signal

wait signal freezing

input register’s
input

Input register’s
output

shadow register’s
input

Shadow register’s
output

Combinational

logic’s inputs

i i+1 i+2 i+3 i+4 i+5 i+6

input-1 input-2 input-3 input-4 input-5 input-6

input-0 input-1 input-2 input-3 input-3 input-3 input-5

input-1 input-2 input-3 input-4 input-5 input-6

input-0 input-1 input-2 input-3 input-4 input-4 input-5

input-0 input-1 input-2 input-3 input-3 input-4 input-5

error

number of

clock-cycle

a

b

c

Figure 5.9. Timing diagram of the recovery mechanism in a

functional unit (the grey parts are invalid data).

124

As can be seen in this figure, after error detection during the ‘(i+3)th’
clock cycle (denoted by ‘error’), the input register will be loaded during the

next clock cycle (‘(i+4)th’ clock cycle) with previous data (labelled as input-3)

instead of a new data (this status is indicated by letter a in the timing

diagram). New data labelled as ‘input-4’ is temporary saved in the shadow
register (this status is indicated by letter b in the timing diagram). This will

be passed to the combinatorial logic during the ‘(i+5)th’ clock cycle (this

status is indicated by letter c in the timing diagram).

The multiplexers 1 and 1a in Figure 5.8 provide the possibility of

loading either a value from the data memory or the value of the last clock

cycle, depending on the value of the detection signal. The multiplexers 2 and

2a provide the possibility of loading the output of an input register or a

shadow register into the combinatorial logic, depending on the value of the

wait-signal.

Referring to Figure 5.9, during the ‘(i+3)th’ clock cycle, the detection-

signal becomes high, while at the beginning of the ‘(i+4)th’ clock cycle, the

detection-signal is still high and each input register will be loaded by its

previous value. During the ‘(i+4)th’ clock cycle, ‘input-3’ will be processed

again in the combinatorial logic. At the beginning of ‘(i+5)th’ clock cycle, the

wait-signal is still high and the combinational logic will be loaded by the

contents of the shadow registers.

It is worth mentioning that considering the experiments carried out

by iRoC-Technologies [Iro12] and [Ale11], the duration of a SET is

considerably less than one clock cycle. So, simultaneously re-executing the

faulty instruction after a clock cycle will stop the faulty results to propagate

through the rest of the processor.

The main novel feature of the presented recovery method is the

isolation of the faulty functional unit from the fault-free ones for one clock

cycle, referred to as freezing, and simultaneously re-executing the faulty part

of the instruction. Another novel feature is that a minimum amount of

information needs to be stored in each functional unit; this mechanism

decreases the recovery timing overhead to only one clock cycle, while a

125

typical recovery mechanism takes 16 clock cycles for the CR-based

mechanism [Tli12]. Moreover, the speed of the enriched processor is

identical to the performance of the original processor, as long as no SET is

present in the system. Furthermore, several clock cycles are required to store

a check-point in the conventional CR-based methods irrespective of the

occurrence rate of SETs. Our presented method stores the value of every

input register simultaneously in a shadow register; therefore as long as no

error has been detected by the detection mechanism, the total execution time

of a workload is identical in both cases of the original as well as the enriched

processor.

5.4 Experimental results
In this section, our results are presented based on the

implementation of the described methods in a DSP Xentium processor from

Recore System [Rec11]. The details of the Xentium processor have been

already discussed in chapter 2.

The RTL code of the Xentium processor has been modified in such a

way that the LCUs of functional units are enhanced by the method

presented in Section 5.2 and the combinatorial parts of the functional units

have been modified based on the mechanism presented in the section 5.3.

5.4.1 Area overhead and performance degradation
To assess the area overhead and performance degradation induced

by the presented methods, a fault-tolerant version of the DSP Xentium

processor was developed using the RTL VHDL code.

First, twenty different DSP workloads were executed on the

enhanced version of this processor to assure the correct functionality of the

modified processor. Subsequently, the synthesis tool Synopsys Design

Compiler was used to synthesize the RTL design using the UMC 90nm

technology node. The implementation data has been divided into two parts:

the area/timing overhead induced by the LCU-related methods (first

approach) and the overhead imposed by combinatorial logic–based methods

(second approach). By doing so we were able to compare the efficiency of

our method with its counter parts available in literature.

126

The achieved results are shown in Table 5.1. The ‘original Xentium’
label stands for the original implementation of the Xentium processor,

without any modification. The ‘FT LCU’ is a Xentium processor in which the

LCUs of all its functional units have been enhanced by the method of section

5.3, while the remainder of the hardware in the functional units is identical

to the original design. The next two rows (FT. combinational logic including

detection and excluding detection) show a Xentium processor in which the

combinational logic has been modified on the basis of the method presented

in section 5.3. Moreover, the reported area for the combinational logic has

been divided into two parts: including the detection mechanism and

disregarding the detection mechanism. As detection mechanism for

combinational logic, a DWC approach [Gos08] has been employed, as shown

in Figure 5.10. For example, for the 32*32-bit multipliers inside the M

functional unit [Figure 2.7 of Chapter 2], two 8-Least Significant Bits (LSB) of

each input are concurrently multiplied by a smaller redundant multiplier

and then the calculated result will be compared to the 8-LSB of the 32*32 bit

multiplier, in which any mismatch indicates an error. However, this partial

comparison suffers from an inability of discovering an error in the high

significant bits of an input. It is important to mention that this simple partial

comparison has been employed here just as an example of the detection of

soft-errors in a functional unit.

127

Table 5.1. The area overhead and performance deterioration for the

proposed approaches.

total cell

area (µ2)

area

overhead

(%)

critical-path

(ns)

speed

deterioration

(%)

original Xentium 293462 0 7.87 0

FT. LCU 304785 4 8.70 10

FT. combinational

logic (including

detection)

341316 16 7.87 0

FT. combinational

logic (excluding

detection)

325247 10 7.87 0

Figure 5.10. A possible detection mechanism (partial DWC).

redundant multiplier

128

5.4.2 SET sensitivity
A simulation-based fault study at gate-level implementation has

been conducted to assess the achieved fault tolerance of the enriched

processor. For the simulation model of SETs, the most recent model of SETs

presented in chapter four has been employed. During the fault-injection

process, a digital signal-processing program, the well-known Finite Impulse

Response (FIR) has been used as a workload. Using additional DSP

workloads would have been desirable, however, the computational time to

conduct FIR experiments was already more than several days and involving

more workloads was not feasible at this time.

The induced effect of a fault can be classified as wrong-results, which

means the injected fault has been propagated into the system while correct-

behaviour indicates the injected fault has been masked before propagating

into the system [Muk08]. The behaviour of the processor has been indicated

in terms of a percentage, for example if 10 out of 100 fault-injections produce

wrong-results, the sensitivity of the processor is 10%.

The number of fault-injections in each set of experiments has been

increased from an initial value (200 for LCU and 500 for the combinatorial

logic) until a clear convergence could be recognized in the obtained

sensitivity level of the processor. The mathematical details of calculating the

convergence point is exactly the same as discussed in chapter four.

Table 5.2 shows the results of the sensitivity analysis. It can be seen

that for the original processor, the percentage of propagated faults in the

LCUs is 40% while this number is 30% for the combinational logic (these two

numbers are indicated by underlining in Table 5.2). The sensitivity of the

enriched LCUs (the row labelled with FT LCU) has decreased to 5.4% with a

detection-latency of 0 clock cycles (indicated by bold letters in Table 5.2)

which means faults will be masked. Further investigation showed that

undetected faults have escaped from the detection mechanism as they

occurred in the ‘opcode-to-address-convertor’ in the look-up table scheme.

For fault-tolerant combinational logic (labelled as FT. combinational logic),

15% of injected faults could escape from the detection mechanism (is

indicated by bold letters in Table 5.2). However, as long as a fault is

129

detected, the recovery mechanism can stop the fault from propagating

through the rest of the processor and the processor is recovered within one

clock cycle.

Table 5.2. SET sensitivity in the enriched Xentium processor.

fault-injections # wrong answers sensitivity (%) detection

latency

(# clk.

cycles)

LCU comb. LCU comb. LCU comb.

original

Xentium
12800 32000 5120 9600 40 30 N.A

FT. LCU 12800 32000 700 9600 5.4 30 0

FT. comb.* 12800 32000 5120 5100 40 15 1

*comb. stands for combinational logic

5.4.3 Comparison of our methods with other available
methods

Table 5.3 shows the comparison of our proposed methods with some

available solutions of soft-error mitigation in either LCU or combinational

logic. A thorough comparison is not feasible as the imposed overhead

depends on many parameters such as the exact architecture of the case

study, the workloads, etc.

Starting with the mitigation methods in the control unit, our work

has been compared with [Gha08]. It can be seen that even though the area-

overhead of [Gha08] is similar to ours (3.4% as compared to 4%), our method

will cause less performance deterioration (10% as compared to 17%).

Comparing our combinational logic mitigation method with the one

presented in [Che06], our method is quite competitive in terms of area

overhead (10% as compared to 17%) while both methods cause no

performance deterioration.

130

Table 5.3. Comparison of our method versus other known methods

penalties

method

area overhead (%) speed deterioration (%)

LCU
combinational

logic
LCU

combinational

logic

our method 4 10 10 0

[Gha08] 3.4 N.A 17 N.A

[Che06] N.A 15 N.A 0

5.5 Conclusions
DSP processors are emerging more and more in in domains, such as

automotive applications, where low cost and dependability are primary

concerns. As traditional hardware redundancy methods are usually not

affordable for current-day applications, new solutions for modern

processors with regard to the ever-increasing threat of soft-errors have to be

developed. In this chapter, two novel solutions to mitigate soft-errors in DSP

processors were introduced.

The first methods use the limited number of opcode-dependent

control signals to construct a look-up table to retrieve the value of each

signal. Moreover, they have used the high degree of locality of reference in

DSP kernels to organize a cache memory structure to mitigate soft-errors in

the control unit of a DSP processor. These methods could decrease the

sensitivity of control unit of a Xentium processor from 40% to 5.4% with

regard to SETs while imposing 4% on silicon area and 10% deterioration on

the speed of the processor.

The second approach targets the combinatorial logic and benefits

from the inherent architecture of DSP processors to be able to isolate faulty

functional units from the fault-free ones in order to carry out a fast recovery.

Our simulation results showed that the proposed methods are able to reduce

the vulnerability of a DSP functional unit from 30% to 15% with regard to

soft-errors, while the area overhead and performance deterioration imposed

on the system are 16% and zero, respectively.

131

References

[Akk03] H. Akkary, R. Rajwar, S. T. Srinivasan, “Checkpoint processing and
recovery: towards scalable large instruction window processors,” in
International Symposium on Microarchitecture (MICRO), pp. 20-32, 2006.

[Ale11] D. Alexandrescu, E. Costenaro, M. Nicolaidis, “A practical approach to
single event transients analysis for highly complex designs,” in IEEE

Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology

Systems (DFTS), pp. 155 - 163, 2011.

[Avi12] N. D. P. Avirneni, A. K. Somani, “Low overhead soft-error mitigation

techniques for high-performance and aggressive designs,” in IEEE

Transactions on Computers, Vol. 61, No. 4, pp. 488 – 501, 2012.

[Bol03] C. Bolchini, “A software methodology for detecting hardware faults in
VLIW data paths,” in IEEE Transactions on Reliability, Vol. 52, No. 4, pp.

458 – 468, 2003.

[Che06] Y. Y. Chen, K. L. Leu, C. S. Yeh, “Fault-tolerant VLIW processor design and

error coverage analysis,” in International Conference of Embedded and

Ubiquitous Computing, pp. 754 - 765, 2006.

[Che10] Y. Y. Chen, K. L. Leu, “Reliable data path design of VLIW processor cores

with comprehensive error-coverage assessment,” in Journal of

Microprocessors and Microsystems, Vol. 34, No. 1, pp. 49 – 61, 2010.

[Cot01] E. F. Cota, F. Lima, S. Rezgui et al., “Synthesis of an 8051-like

microcontroller tolerant to transient faults,” in Journal of Electronic Testing:

Theory and Applications (JETTA), Vol. 17, No. 2, pp. 149 – 161, 2001.

[Esa11] Radiation Effects Mitigation handbook, European Space Agency (ESA)

handbook, 2011.

[Gai02] J. Gaisler, “A portable and fault-tolerant microprocessor based on the sparc

V8 architecture,” in International Conference on Dependable Systems and

Networks, pp. 409 – 415, 2002.

[Gan06] T. S. Ganesh, V. Subramanian, A. Somani, “SEU mitigation techniques for
microprocessor control logic,” in European Dependable Computing

Conference (EDCC), pp. 77 – 86, 2006.

[Gha08] H. Ghasemzadeh-Mohammadi, H. Tabkhi, S. G. Miremadi et al., “A cost-
effective error detection and roll-back recovery technique for embedded

microprocessor control logic,” in International Conference on

Microelectronics, pp. 470 – 473, 2008.

[Gos08] M. Gossel, V. Ocheretny, E. Sogomonyan et al., “New methods of
concurrent checking,” Springer, ISBN 978-1-4020-8420-1, 2008.

132

[Hen11] L. L. Hennessy, D. A. Patterson, “Computer architecture, fifth edition: a
quantitative approach,” the Morgan Kaufmann Series in Computer
Architecture and Design, ISBN 9780123838735, 2011.

[Iro12] iRoC Technologies, http://www.iroctech.com, 2012.

[Kim01] S. Kim, A. K. Somani, “On-line integrity monitoring of microprocessor

control logic,” in International Conference on Computer Design, pp. 314 –

319, 2001.

[Mie212] A. Miele, C. Sandionigi, M. Ottavi et al., “High-reliability fault-tolerant

digital systems in nanometric technologies: characterization and design

methodologies,” in IEEE International Symposium on Defect and Fault

Tolerance in VLSI and Nanotechnology Systems (DFTS), pp. 121 – 125, 2012.

[Muk08] S. Mukherjee, “Architecture design for soft-errors,” ISBN 978-0-12-369529-

1, Morgan Kaufmann Publishers, 2008.

[Rec11] Recore Systems, www.recoresystems.com, 2011.

[Sch04] L. Schiano, M. Ottavi, F. Lombardi, “Markov models of fault-tolerant

memory systems under SEU,” in International Workshop on Memory

Technology, Design and Testing, pp. 38 – 43, 2004.

[Shy06] S. Shyam, S. Phadke, B. Lui et al., “Voltaire: Low-cost fault detection

solutions for VLIW microprocessors,” in Workshop on Introspective

Architecture, pp. 20 – 27, 2006.

[Smi07] G. J. Smit, A. Kokkeler, P. T. Wolkotte et al., “The chameleon architecture for
streaming DSP applications,” in European Association for Signal Processing

Journal (EURASIP) on Embedded Systems, pp. 11, 2007.

[Tli12] T. Li, R. Ragel, A. Parameswaran, “Reli: Hardware/software checkpoint and
recovery scheme for embedded processors,” in Design, Automation and

Test in Europe (DATE), pp. 875 – 880, 2012.

[Tou07] E. Touloupis, J. A. Flint, V. A. Chouliaras et al., “Study of the effects of SEU

induced faults on a pipeline protected microprocessor,” in IEEE

Transactions on Computers, Vol. 56, No. 12, pp. 1585 – 1596, 2007.

[Wan06] N. J. Wang and S. J. Patel, “Restore: symptom based soft-error detection in

microprocessors,” in IEEE Transactions on Dependable and Secure

Computing, Vol. 3, pp. 188 – 201, 2006.

[Wen96] X. Wendling, R. Rochet, R. Leveugle, “ROM-Based synthesis of fault-

tolerant controllers,” in Workshop on Defect and Fault-Tolerance in VLSI

Systems, pp. 304 – 308, 1996.

[Zar03] H. Zarandi, S. G. Miremadi, A. Ejlali, “Dependability analysis using a fault-

injection tool based on synthesizability of HDL Models,” in Symposium on

Defect and Fault Tolerance in VLSI Systems (DFTS), pp. 485 – 492, 2003.

http://www.iroctech.com/
http://www.recoresystems.com/

133

CHAPTER 6

Using Multi-core Architectures to

Mitigate Soft-Errors1

Parts of this chapter have been submitted as a paper titled "A soft-error mitigation technique

in a multicore architecture composed of DSP cores" in 16th IEEE Latin-American Test

Symposium (LATS), 2015 in Mexico.

134

ABSTRACT- As the organization of modern computer systems is moving more and more

towards multi-core architectures, the investigation of the effect of soft-errors in multi-core architectures

is more important than ever before. Multi-core architectures have some unique features that can be

exploited for the purpose of soft-error mitigation. For example, existence of several identical cores in a

typical multi-core architecture can be very beneficiary to discover any mismatch between the internal

architecture of two identical cores. This chapter extends the soft-error mitigation mechanism presented

in the previous chapter (chapter 5, for single-core) to a multi-core processor environment. We will

exploit the existence of similar cores in a semi-homogenous multi-core architecture to enhance the fault

coverage of our mitigation method. The internal modification of each core is the same as the freezing

method which has been already explained in chapter 5. However, external units to control the internal

actions of each core after a soft-error detection are required. A zero-latency soft-error detection

mechanism has been implemented by comparing the internal status of each functional unit of two

identical cores, while both cores execute the same workloads. The status of internal functional units are

compared continuously and in case of a mismatch, which is an indication of the occurrence of soft-

errors, both cores re-execute the last instruction one more time to recover. Due to our zero-latency

detection mechanism, re-execution of the very last instruction can recover the correct status of

functional units. This internal re-execution eliminates the need of copying the entire status of one

processor core to another one, which is currently used in some state-of-the-art soft-error mitigation

solutions. As a result, the performance loss during the recovery time of our mechanism is much shorter

as compared to similar methods. A detailed RTL model of our architecture has been designed and an

excessive fault-injection campaign has been performed to evaluate the achieved soft-error coverage. The

fault-injection results show that 90% of the failures caused by soft-errors can be mitigated.

6.1 Introduction
Shrinking the technology to sub-100nm technology nodes has several

consequences with regard to the performance and soft-error sensitivity of

modern digital integrated systems. On one hand, complex processors can be

built with much faster performance; however, because there are very

irregular and complex structures in the architectures of these modern

designs, the soft-error sensitivity of these high-performance systems needs

to be investigated accurately. Because of Moor’s law, one is able to

implement Integrated Circuits (ICs) with an enormous number of

transistors; but since many of these transistors are packed tightly together, a

huge power density and low noise margin will make the advanced digital

systems very vulnerable to environmental failures. As a result, counter-

measures should be considered to enhance the reliability of such a system

which is manufactured in an advanced process technologies.

Another phenomenon that is pursued in implementing digital

systems is that Vth and VDD shrink in every new generation of transistors.

135

Since the transistors work with a very small Vth and VDD, even very low

energy particles from cosmic radiation are able to modify the behaviour of a

transistor. As a result, a large variety of radiation particles are able to toggle

the stored value of a flip-flop or latch or cause a glitch in the combinatorial

logic. Hence, soft-error sensitivity should be considered carefully for digital

systems which are implemented in sub-nanometer technologies.

Another trend is that the technology of computer systems

experiences the movement from single-core architectures towards multi-core

architectures. Multi-core architectures remain the main architecture of

computer systems for the upcoming years because they provide a solution to

continue enhancing the performance, while the increase in power

consumption is still manageable. As a result, multi-core architectures have

become very popular recently in the computer architecture community

[Jey11], e.g. the Intel core 2 duo, Intel core i7, AMD Opteron and IBM Cell

processor. However, these architectures host an enormous number of

transistors, while the resilience of these systems to soft-errors is still an open

question. As a result, the resilience of the whole architecture with regard to

soft-errors needs to be investigated carefully. In the next paragraph, a well-

documented effect of soft-errors in a multi-core architecture that has recently

happened will be discussed.

Soft-errors are a threat for causing temporary damage in complex

computer systems. For example in 2003, a multi-processor Sun server, called

SUN flagship, experienced a temporary crash. The crash lasted for a few

seconds but the server needed to be reset in order to recover again.

Investigation of the logged data showed that the failure was induced by

toggling the value of one of the flip-flops; it turned out it was most probably

caused by the strike of neutron particles originating from cosmic radiation

[Lyo00]. That crash happened only once in the life time of that Sun server;

however studies show that if the technology of implementation is less than

90nm, the soft-error rate at the end-point server can reach the rate of once

per 170 hours [Jey11]. With the trends of shrinking technology and

reduction of power supply, advanced digital systems can experience a

failure induced by soft-errors at a rate of once per 24 hours [Kay00]. This

failure rate will be critical if the end-point server will be used in mission-

136

critical applications. For example, modern electric cars use multi-core

processors [Tes14] to process data which can be related to navigation,

collision-avoidance and lane detection. The other obvious example is

airplane computers in which most computations are highly mission-critical.

Multi-core architectures are categorized into homogeneous and

heterogeneous architectures. In a homogeneous architecture, all cores (or at

least the majority of cores) are identical, with regard to the internal

architecture. Moreover the type of workload which is being executed in each

core falls in the same category (for example DSP workloads).

The architecture and type of the cores in a heterogeneous

architecture are diverse. Some architectures use a mixture of homogeneous

and heterogeneous architectures; so while there are different cores in the

design, some parts of the design (most frequently the majority of cores) are

identical. If the majority of cores are identical, the architecture is called semi-

homogeneous architecture. As will be shown later, the architecture of our

target multi-core system in this chapter falls into this category.

One similarity between homogeneous and heterogeneous

architectures is that they are both composed of redundant processor cores.

At some instances of time, some processor cores are idle and can be used for

other purposes, such as soft-error mitigation mechanisms. In this chapter,

the inherent redundancy of identical cores in a semi-homogeneous

architecture will be used for soft-error mitigation purposes. Our method

does not strongly depend on whether the architecture is fully homogeneous

or not. When two similar cores can be identified in a multi-core architecture,

the proposed method of this chapter can be implemented.

6.2. State-of-the-art methods
 Different methods to enhance the soft-error resilience of multi-core

systems with regard to soft-errors have been already proposed at all levels of

design hierarchy, including packaging level [Bau95], fabrication level

[Can04], circuit design [Roc92] as well as software level [Shr10].

In chapter 5, various architectural-level methods to decrease the

vulnerability for soft-errors in single-core architectures were discussed.

137

Generally speaking, all those single-core based methods are applicable to a

multi-core architecture. For instance, every core can be extended with error-

detection-and-correction codes so that it is able to handle a fault that

occurred by its own.

However, two issues have to be considered carefully if a single-core

based method is applied to a multi-core architecture. First, inherent

redundancy of multi-core architectures might be ignored if all the

mechanisms to mitigate soft-errors are implemented internally in each

single-core. Second, the overhead of each processor core will contribute to

the overall overhead of the entire multi-core system. As a result, recent

research has suggested that the problem of soft-error resilience in multi-core

systems needs to be approached from an orthogonal perspective [Jey11]; this

means the approach should consider redundancy of different resources

during the soft-error mitigation procedure.

An important issue with regard to the reliability of a multi-core

architecture which uses redundancy of similar cores is to maintain identical

instruction streams between redundant processor cores. In other words, the

internal status of two cores should be the same at any given point of time.

One of the most well-known methods to tightly synchronize two processors

is called lock-stepping which has been proposed in [Smo06]. As a result, the

first challenge of synchronizing two or more processor cores can be resolved

by using lock-stepping. It will be shown that most of the methods that work

based on comparing results of two identical processor cores rely on lock-

stepping as a way of synchronization. However, lock-stepping incurs some

drawbacks on the system. For example, if one processor core has to wait for

an external handler, the other core needs to halt its procedure as well, until

both processors will be timely aligned again.

A number of methods that take the advantage of inherent

replication of processor cores in a multi-core architecture for soft-error

detection or corrections can be found in [Agg07, Gom03]. These methods

work by pairing two or more cores to check their execution results. The two

above mentioned papers use lock-stepping in order to maintain the

synchronization between identical processor cores. However the amount of

138

information which is checked to detect a mismatch is different between the

different approaches. For example, while [Agg07] checks all the outputs of

two processors at every clock cycle, the Redundant-Multi-Threading (RMT)

[Rei00] is developed in such a way that only stored addresses and associated

values will be checked to detect soft-errors. Limiting the amount of data that

should be checked for soft-error detection is useful to develop a light and

fast soft-error detection mechanism; however, the error coverage of its error-

detection mechanism might be compromised.

The authors of [Gup08] proposed a method which connects the

internal pipeline stages of two processor cores via high-speed routers. Since

the intermediate results of a pipeline stage are earlier available in the

pipeline stage as compared to the main output of the processor, a faster soft-

error detection can be obtained. The drawback of this method lies in a more

complicated structure of the communication grid. Moreover, if the multi-

core architecture is highly homogeneous, the regular structure of the multi-

core architecture might be jeopardized. As a result, this architecture is more

suitable for designs which are composed of a combination of dedicated

cores, general-purpose cores, memories etc. (so-called semi-homogeneous

systems).

As mentioned before, the inherent redundancy of multi-core

architectures was an interesting framework to implement many readily

available redundancy-based soft-error mitigation methods. One can mention

the Dual Modular Redundancy (DMR) [Vad10], Triple Modular

Redundancy (TMR) [Tha08], and check pointing [Wan06] techniques. The

following paragraphs will discuss two redundancy-based soft-error

mitigation techniques, including their shortcomings.

An example of one of the promising redundancy-based methods is

Reunion [Smo06] which is based on check-point and recovery. It offers a low

overhead recovery mechanism. In this method, a set of instructions called

‘fingerprints’ are generated by identical cores at some specific time intervals.

Before committing each instruction, the ‘fingerprints’ should be compared
against the same redundant cores executing the same instructions. The

instructions are allowed to change the status of the processors only if the

139

compared ‘fingerprints’ match each other. In the case of a mismatch, the
status of both processors will be resumed from the last known status (check-

point). At that moment the stored status will be loaded again in both

processors and the execution will be continued from a previously known

status.

The Reunion architecture has the following drawbacks:

a) It is required to add a new pipeline stage to each processor core because

every instruction should be verified before the commit stage. This

requirement adds an extra complexity to this design and it incurs extra

power overhead.

b) Serializing instructions might cause problems. Since every instruction

should be halted for one extra clock cycle, this can decrease the performance

of the processor if the workload is serially oriented.

Another state-of-the-art method has been proposed in [Jey11]. It is a

promising method which is called Unsync. In this method each core will be

enriched with some hardware soft-error detection-and-correction

mechanisms (such as the parity or Hamming codes). Upon detection of soft-

errors in one of the cores, the status of the correct core will be transferred to

the status registers of the erroneous core. Figure 6.1 shows this mechanism.

The bold link between the two processors (indicated as link) is being used to

copy the required status, including memory and register contents, from the

correct core to the faulty core. Each processor signals the interrupt unit if an

error occurs in one of the processor cores (via the previous hardware-

detection mechanism). The interrupt handler halts both processors and then

transfers the status of the correct processor to the faulty processor.

140

Processor

core 1

Processor

core 2

interrupt unit

Link

Hardware-detection

mechanism

Hardware-detection

mechanism

interruptinterrupt

Figure 6.1. The basic set-up of the Unsync architecture.

The most important benefit of the Unsync architecture is that there is

no need to synchronize the internal status between the two processors; since

soft-error detection is carried out by internal error-detection-and-correction

codes rather than comparing the internal status of identical cores. However,

this architecture suffers from the following shortcomings:

a) Transferring the correct status of one processor to the other one

might be very costly. This is because the content of all registers and

memory needs to be transferred from one processor core to the other

one.

b) Performing soft-error detection by internal hardware mechanisms

might be a solution to eliminate the synchronization between two

cores; however, the coverages of those methods are very low. For

example, comparing the status of two processors clock-by-clock can

hamper the propagation of all single errors. However, the parity

code is only able to detect an error in the sequential parts. Moreover,

there should be one clock-cycle delay between reading and writing

141

data in that particular sequential unit so that the parity code can

detect an error.

6.3. The motivation to propose our technique
 Our motivation to develop a new soft-error recovery mechanism

was to eliminate the requirement of transferring the status of one processor

to another during the recovery process. Also, there was an interest to

integrate the soft-error mitigation mechanism that has been developed in

chapter 5 into a multi-core architecture.

With regard to the soft-error detection in our proposed architecture,

the output of each functional unit of each processor core will be connected

together for the purpose of soft-error detection. Therefore the complexity of

our communication grid is less than methods which connect pipeline units;

on the other hand it is more than those ones that connect the output of each

processor core for comparison.

It is also important to mention that the architecture of our multi-core

system is composed of DSP processor cores, a general purpose processor,

memories and peripherals. A scheme of this multi-core architecture is shown

in Figure 6.2. As can be seen, the architecture of our system is semi-

homogeneous; therefore introducing a new communication grid to connect

functional units does not jeopardize the regularity of this architecture.

142

DSP core 1

(Figure 2.7)

DSP core 2

(Figure 2.7)

DSP core 3

(Figure 2.7)

DSP core 4

(Figure 2.7)

general purpose

processor core

(LIEON 2)

memory 1 memory 2 peripherals bridge

peripherals

NoC grid

Figure 6.2 The organization of our multi-core system.

With regard to the soft-error correction method in our architecture,

each core resolves the impact of soft-errors internally and therefore there is

no need to copy the whole status of one processor core to the other one. This

mechanism works by re-execution of the last instruction locally in both

processor cores as it will be shown later, this mechanism provides 90% soft-

error detection coverage, while the recovery overhead to mitigate the impact

of soft-errors is very low.

6.4 Our approach for soft-error mitigation in multi-core
systems

The first subsection discusses the details of the soft-error detection

mechanism in our architecture and the second subsection provides our

recovery mechanism.

143

6.4.1. Soft-error detection approach
The soft-error detection mechanism in our architecture is based on

comparing the output of identical functional units of two processor cores

against each other. This is because our multi-core architecture is composed

of several DSP cores which in turn are VLIW architectures composed of

several functional units (as described in chapter 2 section 2.5). It is therefore

feasible to use a more fine-grained detection mechanism for each core as

compared to the Reunion architecture [Smo06]. Moreover, we require a fast

detection mechanism which can detect a failure in a processor as quickly as

one clock cycle after its occurrence. This latter criteria is required for the

correct operation of the ‘freezing’ mechanism, which was introduced in
chapter 5, in this multi-core architecture.

Having mentioned all required considerations, the immediate

output of each functional unit is compared to the counterparts functional

units in identical cores to detect an impact of soft-errors. Figure 6.3 shows

this mechanism; identical functional units will be compared with each other.

For example, the A0 unit of processor core 1 is compared to the A0 unit of

processor core 2, while processor core 1 and core 2 are executing the same

workload. By comparing the output of two functional units, it is feasible to

detect an error almost immediately before propagating to the higher

succeeding levels, such as Memory units. This quick soft-error detection

mechanism is essential in our architecture because we are interested to

employ the error-recovery mechanism which was proposed in Chapter 5

(was called ‘freezing’) in this multi-core environment. This is because the

‘freezing’ approach works by re-execution of the very last instruction and

hence a zero-latency detection mechanism is absolutely necessary for its

correct operation.

144

A0

A1

C0

M0

A0

A1

C0

M0

processor core 1 processor core 2

32 32

32

32

32

32

32

32

Error-status register

Compare M0 units

Compare C0 units

Compare A1 units

Compare A0 units

Error-detection signal

Figure 6.3. Comparison between identical functional units in identical

processor cores.

145

The error-status register in figure 6.3 (indicated with bold lines)

signals an error in at one of the functional units. The bits in this register

indicate which functional units are erroneous. For example, bit 0 for A0, bit 1

for A1 etc. All the bits of this error-status register go to an ‘OR’ gate which

its output is providing a soft-error detection signal. This signal indicates that

at least one of the functional units is erroneous. All the compare units, error-

status register and soft-error detection signal (indicated by a dotted line) are

hereafter referred to as the ‘comparator’.

Figure 6.4 depicts the overview of the entire architecture. It shows

two processor cores that are compared together to form a core pair. The

details of the comparator have already been shown in Figure 6.3. The

workloads that are executed in both processor cores are identical and

synchronized. Hence, the internal status of these two processor cores should

be the same; otherwise there is a failure in one of the cores. However, this

mechanism does not indicate which core is erroneous.

Each core in this architecture has been modified by employing the

mechanism of chapter 5; this means there are shadow registers in each

functional unit which make it feasible to re-execute the last instruction in

each core upon detection of a soft-error. The soft-error recovery unit is

responsible to initiate a re-execution in both processor cores. To be able to

re-execute the last instruction, the normal operation of a core must be halted

and then the very last inputs will be propagated again in the functional unit

one more time. The details of the re-execution mechanism will not be

discussed here since detailed explanations have already been discussed in

Chapter 5. In the remainder of this chapter the focus will be on how to

integrate that architecture into a multi-core environment.

146

Processor core 1 Processor core 2Comparator

(Figure 6.3)

recovery

handler

igure 6.4. The general architecture of our mechansim.

6.4.2 Soft-error recovery approach

As shown in Figure 6.4, a recovery handler has been added to the

architecture to be able to carry out the recovery mechanism. The

responsibility of the recovery handler is to start the recovery process in each

core. The recovery mechanism is based on halting the healthy functional

units in each core, and activating the re-execution of the last instruction in

the erroneous functional unit (or functional units, if more than one). As a

result, both cores will halt their normal flow after a soft-error detection, and

subsequently the last instruction will be re-executed in both cores. Providing

that the detection mechanism can detect a soft-error within at most one clock

cycle after its occurrence, this partial re-execution will eliminate the effect of

a soft-error in the erroneous core.

Figure 6.5 shows the timing of the described mechanism. At time T1,

a soft-error has occurred in core 1 (indicated by X), it has been detected in T2

by the comparison mechanism of the two processor cores 1 and 2. As a

result, a re-execution has started in both cores at time T3. For one clock cycle

(T3 - T4), both processor cores will re-execute the last instruction. After re-

147

execution, both processor cores can continue their normal execution

providing that the soft-error is eliminated (the detection-signal is turned low

in this case).

Processor

core 1

Processor

core 2

T1 T2 T4

Re-execution

T3

Normal flow

Normal flow

Clock signal

time

Re-execution

Error-

detection

Recovery

handler

Figure 6.5. Timing diagram of error-recovery of two processor cores

1 and 2.

However, there exist some situations where this re-execution is not

able to recover the correct status of the erroneous processor core. For

example, in some cases the fault has already occurred several clock cycles

prior to detection. In this case, re-execution of the last instruction is not

helpful to recover the correct status of the processor cores. In other words, if

a fault has occurred more than one clock cycle before the detection, rolling

back one clock cycle before will re-produce an erroneous status again, and

hence the recovery mechanism has failed.

Figure 6.6 shows an example of the mentioned scenario. Suppose

that a fault has occurred in register-1 of processor core 2 of Figure 6.6 during

clock cycle ‘I’. This change takes two clock cycles for being read and

148

propagated to the output of the functional unit. So detection can only take

place in clock cycle ‘I+2’. At this point, rolling back one clock cycle before, or

‘I+1’ and reading the status of the processor core is useless. This is because

the data which is present in clock cycle ‘I+1’ in register-1 is already faulty.

Register-1 Register-2
Output of

functional unit

A fault occurs in clock

cycle I

Fault propagates here

in clock cycle I+1

Register-1 Register-2
Output of

functional unit

Comparator

Processor core 1

Processor core 2

1 clock cyle 1 clock cyle

1 clock cyle 1 clock cyle

Detection takes place

at clock cycle I+2

Figure 6.6. Detection of an error more than one clock cycle after the

occurrence.

 The probability of the above mentioned scenario is rare, because

the execution time for most of the instructions in a DSP processor is one

clock cycle (DSP instructions are based on Reduced-Instruction-Set-

Computer, RISC architecture). However, in some cases a fault can be latent,

i.e. a fault can manifest itself in a register that is going to be used in several

(more than one) following clock cycles.

In the case of a detection of more than one clock cycle after

occurrence, two scenarios can be followed. The first approach suggests

loading a safe check-point from one clock cycle prior to the fault occurrence.

149

This scenario requires a heavy overhead for saving the intermediate status of

each processor core at several time intervals.

The second method is to reset both processors to the initial state, a

so called re-boot procedure to the beginning of the program code. This

method implies a large performance loss, because both processor cores have

to execute their entire workload one more time from the beginning. It is

important to note that the detection mechanism of our method does not have

the possibility of recognizing the erroneous processor core; so every action

including a re-boot should be applied to both processor cores.

6.4.3 Operational phases of our architecture
The operational mechanisms of the proposed architecture can be

best understood by observing its different phases of operation:

a) Error-free mode: the two identical cores execute the same

instructions in a synchronous mode. The memory provides the

same data for both cores and also the interrupts are received in

both cores at the same time. As long as the detection-signal is low it

implies that the internal statuses of the two cores are identical and

the normal behaviour of the system will be continued.

b) Detection mode: detection is carried out by the comparator

which was depicted in Figure 6.3. This comparator compares the

outputs of two identical functional units in two identical processor

cores (such as A0 in processor core 1 and A0 in processor core 2,

while processor core 1 and 2 are identical) in order to detect a

mismatch. Upon a mismatch detection, the comparator signals the

recovery handler of the core pair, as shown in Figure 6.4. The

recovery handler starts the recovery mode subsequently.

c) Recovery mode: in the case the recovery handler receives a signal

from the compare unit, a recovery process in both processor cores

150

of the core pair will be started. In this mode, the following

procedure will be carried out in both processor cores:

First, the normal execution flow in both processor cores of the core

pair will be halted temporarily. Then the correct functional units in

both cores will enter the ‘freezing’ state (which means the output

data of unaffected functional units will be held for one clock cycle),

while the erroneous functional units in both processor cores will re-

execute the last instruction to mitigate the error. One clock cycle

after this re-execution, two scenarios are likely to happen: the first

scenario is that the detection-signal is low which implies the

erroneous functional unit has recovered. In this case the normal

procedure of the core pair can be continued. The second scenario is

that there is still a mismatch between the two processor cores. As

discussed earlier, this can be due to the occurrence of a fault in an

earlier clock cycle than the clock cycle prior to its detection. As a

result, rolling back to one clock cycle before the detection cannot

recover the error. In this case, both processors cores will be re-

booted to the starting point of workloads (after IO initialization).

This scenario has been depicted in Figure 6.7. This shows two

processor cores, core 1 and 2. The second mismatch after the first

mismatch indicates that the re-execution could not recover the

processor core pair and hence a re-boot has been performed in both

processors.

time

Processor core 1

Processor core 2

first mismatch

Re-execution

second mismatch

T0 T1 T2

Re-boot

Re-boot

Figure 6.7. Timing diagram of our proposed architecture.

151

It is important to mention that even though the re-boot results in a

large performance loss, fault-injection experiments show that about 90% of

detected soft-errors can be mitigated within only one clock cycle via the re-

execution method and only 10% require a re-boot. For example, if one

considers the extreme rate of soft-errors of occurring once per day, our

mechanism induces a re-boot with a rate of only once per ten days.

6.5 Additional features of our architecture
The architecture we have proposed in this chapter has some benefits

as compared to other similar state-of-the-art methods. However, some

challenges should be resolved in order to implement this mechanism in a

multi-core environment. In the following paragraphs, the advantages and

disadvantages of the proposed architecture will be discussed.

The first advantage is that inter-core communication is not required.

Our proposed method recovers processor cores by re-execution of the last

instruction in each core separately, in the case the fault has occurred just one

clock cycle before its detection; or it re-boots both cores separately in the

scenario that a fault has manifested itself in the system and is appearing

several clock cycles after its occurrence. In any case, there is no need to

exchange the status between two processor cores. This feature is beneficiary

as compared to Unsync [Jey11] in which the correct status of a core should

be copied from the unaffected core to the erroneous one.

A second advantage is that there is no need to add any extra unit to

the internal pipeline units of processor cores. For example, in the Reunion

[Smo06] architecture, one extra check unit should be incorporated in the

pipeline units of each core to be able to check the correctness of fingerprints.

That modification incurs a performance degradation to each core even in the

situation that there is no error in the system. However, the only modification

which is required in our method is the insertion of shadow registers and

multiplexers which hardly interfere with the normal flow of the pipeline

units.

Last but not least, the performance of each individual processor core

will not be compromised. Every core in the modified multi-core architecture

152

has the same performance as the base-line core architecture. This factor is an

advantage over the Reunion architecture in which the fingerprints should be

generated (extra clock cycles) and then be compared together no matter of

the occurrence of a fault or net.

However, there are still some challenges that need to be resolved in

order to implement our method in a multi-core architecture. First, it is

required to have a reliable method of synchronization between two

processor cores. Since the fault detection is carried out by comparing the

partial results, these two processor cores should execute exactly the same

instruction at the exact same moment. This challenge also exists in other

methods [Smo06] which rely on comparison to detect an error. Unsync

[Jey11] claims that there is no need to synchronize cores (as the name

implies), because the detection mechanism is carried out by internal

hardware error-detection mechanisms, such as usage of the Hamming code.

However, the soft-error coverage of this method is about 33% which is much

lower as compared to comparison based methods. Moreover, input data

might be lost during a re-boot, however, all the other approaches have

similar problems. We use two cores for one workload, so the efficiency is

reduced, but other approaches have this problem as well.

The re-boot process is depicted in Figure 6.7; even though it might

seem simple, it requires a more detailed explanation.

The normal re-boot process, a so-called hard re-boot or reset, is

performed via the hardware. In this case, the Program-Counter (PC) is rolled

back to the start address of the program memory and all the data will be

lost. This address is normally 0 as it requires a hardware reset in the register

containing the PC.

However, another form of re-boot has been used in our mechanism

where the PC will be rolled back to an intermediate address which is not

necessarily the start of a program code. This concept is called a soft re-boot

and is depicted in Figure 6.8. As can be seen in this figure, the information

resides in the program memory which is divided into two parts; the

initialization part where information like the address of a NoC handler and

the memory address are stored (from address 0000 to 00FF) and the program

code in which the actual code of a workload is stored (address 0100 to FFFF).

153

This initial information is essential in a multicore environment for the

correct execution of the program code and this information needs to be

loaded again if any re-execution is performed.

Figure 6.8. Concept of soft re-boot.

Suppose that a soft-error has been occurred when the PC is at the

address 0FFF and a re-execution is performed to recover from this error. A

soft re-boot implies that the PC is set to the beginning of the program code

and after the initialization information (0100 in this example); hence the

initialization information will be intact. However, one is able to perform a

soft re-boot only in a simulation environment and not in the real hardware.

This issue needs to be investigated if the proposed mechanism is going to be

implemented in a chip. One solution could be storing the initial information

in a separate memory and then re-loading that information upon a hard re-

boot. However, the cost on performance needs to be studied first. This issue

has not been addressed in this thesis any further, since all the experiments

were performed in a simulation environment.

Table 6.1 summarizes the differences between our proposed method

as compared to the Reunion [Smo06] and UnSync approach [Jey11].

154

Table 6.1. Comparison of some features of our approach with

others.

feature

method

modification

of pipeline

units

requires

synchronization

soft-error

coverage

Inter-core

communication

Reunion

[Smo06]
Yes Yes

High (more

than 75%)
Yes

UnSync

[Jey11]
No No Low (33%) Yes

Our proposed

approach
No Yes High (90%) No

6.6 Experimental setup and evaluation of our approach
The first sub-section discusses the details of our evaluation method

and the second subsection provides the results of our analysis.

6.6.1 Experimental set-up
In order to evaluate the effectiveness of our proposed architecture, a

VHDL Register Transfer Level (RTL) set-up has been developed. The RTL

architecture is composed of four DSP Xentium cores (as was already shown

in Figure 6.2). These four Xentium processor cores have formed two core

pairs combinations. Moreover, each core pair has only one memory handler,

one interrupt receiver and one clock source. In this case, both Xentium

processors in a core pair will receive and observe the same actions and

remain synchronous with each other. In addition, one comparator and one

recovery handler are required for each core pair. These units have been

developed in VHDL as well. The internal architecture of each Xentium

processor is exactly identical as described in Chapter 5.

The workload which is executed in each processor core is a FIR filter

program. It is only required to have an identical workload in each core pair

as the results of two processor cores are compared with each other to detect

a mismatch. So, it is possible that one core pair executes a FIR program while

the other core pair executes a FFT program.

155

During execution of the workloads, a fault-injection process has been

carried out on all functional units of each Xentium processor to evaluate the

soft-error coverage of the modified multi-core architecture. The fault

injection process has been conducted by injection of SET fault models at

random times in random nets of each functional unit. The final outputs of

the processor cores have been monitored to trace the propagation path of

each injected fault. The model used to emulate SETs is the same model

which was described in Chapter 4. The simulation framework which has

been used to conduct soft-error injection is the one described in Chapter 3.

6.6.2. The soft-error coverage
As mentioned before, a simulation-based soft-error study at VHDL

level has been carried out to assess the achieved sensitivity of our multi-core

architecture with regard to soft-errors.

Each core pair executes a FIR workload and during the execution of

the workload, predefined soft-error fault models were injected into the

design. Soft-error faults have been injected in all functional units of each

Xentium core during our fault-injection process.

The classification of the impact of faults in the output of each core

pair are categorized as failure and not-effective ones. If an injected fault can

alter the output of the core pair, then that fault is classified as a cause of a

failure, otherwise it is counted as a not-effective fault that has no impact on

the system. The behaviour of each core pair with regard to injected faults has

been stated in terms of a percentage. For example, if 10 out of 100 injected

faults are able to modify the output of the core pair, then the sensitivity of

this core pair with regard to injected faults is 10%. Our goal is to decrease

the sensitivity of each core pair.

The number of fault-injections in each core has started from the

initial value of 1000 (a random value) and has been increased until a point of

convergence can be observed in terms of the sensitivity of a core pair. The

mathematical details of obtaining the convergence point are out of the scope

of this chapter and have been discussed in detail in Chapter 4.

156

Table 6.2 shows the number of fault-injections and the sensitivity of

each core pair for 20,000 fault-injection experiments. As can be seen in this

table, about 8,130 faults can change the correct output of a core pair in an

unprotected design, resulting in a SET sensitivity value of 41%. This value is

for an architecture without any error mitigation measure. As a result, 59% of

the injected faults could not modify the output of a core pair while 41% of

injected faults propagated from the internal functional units to the output

core level.

As Table 6.2 shows, our modified architecture can mitigate 94% of

failures in a core pair. In another words, only 1230 faults could escape the

detection mechanism and change the correct functionality of a processor

core; which implies the sensitivity of our architecture is 6%. The reason that

still 6% of SET faults can escape the detection mechanism is that our

detection mechanism only checks the output of the functional units. So,

some injected faults were unable to reveal themselves at the output of a

functional unit while they could propagate to the output of a core pair.

The last two columns of Table 6.2 (indicated by grey) show the

recovery latency of our proposed architecture. It can be seen that 90% of the

detected faults could be recovered with the re-execution approach, which

takes only one clock cycle. However 10% of the detected faults could not be

mitigated via the re-execution approach and hence a re-boot to the initial

status of both cores was required. If one considers the occurrence rate of

soft-errors in digital systems as once per 24 hours, our architecture incurs a

re-boot only once per 10 days.

157

Table 6.2. The parameters of our mitigation method.

Parameter

Design

Fault-

injections
Failures

Soft-error

Sensitivity

(%)

Recovery method (%)

With Re-

execution

With Re-

boot

Original design 20,000 8130 40.65 N.A N.A

Our enhanced

architecture
20,000 1230 6.15 90 10

Table 6.3 compares the achievements of our design as compared to

UnSync [Jey11] and Reunion [Smo06] architectures. As a comparison

between our method and UnSync, this latter approach has a low detection

coverage (indicated by underlining), since the detection-mechanism in

UnSync is based on error-detection-and-correction codes, for example the

parity code. It is important to mention that the parity code is able to discover

an error in sequential units only, while there should be at least one clock

cycle delay between writing information and reading in that particular

sequential unit. Moreover, the recovery latency in the Unsync architecture is

higher (indicated by underlining) as compared to ours since the mitigation

method in this architecture is based on transferring the status between two

processors.

As a comparison between our architecture and Reunion, Table 6.3

shows that the Reunion architecture has a long recovery latency. This is

because the recovery mechanism in the Reunion is based on checkpoints and

recovery. So, after a detection, both processor cores should load a correct

checkpoint (which includes an image of all the registers and memory files).

The recovery latency of our method results from the fact that 90% of the

detected faults can be mitigated within one clock cycle while the remaining

10% need a re-boot of the processor. Based on our fault-injection

experiments, the average latency of re-boot was 80 clock cycles which results

158

in a latency of our method to 8.9 (0.9 * 1 clk + 0.1*80 clk) clock cycles

(indicated by grey).

The outcome of Table 6.3 is that our architecture has the best

recovery latency among these three methods. So, if the performance is a

concern, our method is the best candidate to implement a soft-error reliable

multi-core architecture.

Table 6.3. The comparison between our architecture and two other

state-of-the-art methods.

Parameter

design

Detection

coverage

(%)

Recovery

Latency (clock

cycles)

UnSync 33 30

Reunion 100 18

Our architecture 94 8.9

6.7 Conclusions
Computer architectures are moving towards multi-processor core

approaches. Using increasing dense architectures in the new generation of

multi-cores along with shrinking the technology dimension to 14nm make

the introduction of lightweight soft-error resilient mechanisms a mandatory

feature for future architectures. We proposed in this chapter a soft-error

mitigation technique for multi-core architectures which is based on re-

execution of the last instruction of each core. This architecture does not

require transferring the whole status of one processor core to another. Hence

the recovery time is short, as compared to other state-of-the-art methods.

Fault-injection simulation results on the Xentium multi-core target system

show that 90% of the detected SET faults can be recovered within one clock

cycle while the remaining 10% will incur a re-boot of the system. As a result,

if the execution time of a workload is limited (a re-boot to the start of the

workload does not incur a huge performance loss) our proposed method

will be beneficiary.

159

References
[Agg07] N. Aggarwal, P. Ranganathan, N. P. Jouppi et al., “Configurable isolation:

building high availability systems with commodity multi-core processors,”
in Proceedings of the 34th Annual International Symposium on Computer

Architecture (ISCA), pp. 470-481, 2007.

[Bau95] R. Baumann, T. Hossain, S. Murata et al., “Boron compounds as a dominant

source of alpha particles in semiconductor devices,” in IEEE International

Symposium of Reliability on Physics (ISRP), pp. 297-302, 1995.

[Can04] E. Cannon, D. Reinhardt, M. Gordon et al., “SRAM SER in 90, 130 and 180
nm bulk and SOI technologies,” in IEEE International Symposium on

Reliability on Physics (ISRP), pp. 300-304, 2004.

[Gom03] M. Gomaa, C. Scarbrough, T. Vijaykumar et al., “Transient fault recovery
for chip multiprocessors,” in Proceedings of 30th Annual International

Symposium on Computer Architecture (ISCA), pp. 98-109, 2003.

[Gup08] S. Gupta, S. Feng, A. Ansari et al., “StageNet-Slice: a reconfigurable

microarchitecture building block for resilient CMP systems,” in

Proceedings of International Conference on Compilers, Architectures and

Synthesis for Embedded Systems, pp. 1-10, 2008.

[Jey11] R. Jeyapaul, F. Hong, A. Rhisheekesan et al, “UnSync: A soft-error resilient

redundant multi-core architecture,” in IEEE International Symposium on
Parallel and Distributed Processing, pp. 632-642, 2011.

[Kay00] S. Kayali, “Reliability considerations for advanced microelectronics,” in

Proceedings of Pacific Rim International Symposium on Dependable

Computing (PRDC), pp. 99-105, 2000.

[Lyo00] D. Lyons, “Sun screen: soft-error issue in Sun enterprise servers,”

www.members.forbes.com/global/2000/1113/0323026a.html, 2000.

[Rei00] S. K. Reinhardt, S. S. Mukherjee, “Transient fault detection via simultaneous
multithreading,” in Proceedings of International Symposium on Computer

Architecture (ISCA), pp. 25-36, 2000.

[Roc92] L. R. Rockett, “Simulated SEU hardened scaled CMOS SRAM cell design
using gated resistors,” in IEEE Transactions on Nuclear Science, Vol. 39,

No. 5, pp. 1532-1541, 1992.

[Shr10] A. Shrivastava, J. Lee, R. Jeyapaul, “Cache vulnerability equations for
protecting data in embedded processor caches from soft-errors,” in

Proceedings of Conference on Languages, Compilers, and Tools for

Embedded Systems, Vol. 45, pp. 143-152, 2010.

[Smo04] J. Smolens, B. Gold, J. Kim et al., “Fingerprinting: bounding soft-error-

detection latency and bandwidth,” in Proceedings of International

http://www.members.forbes.com/global/2000/1113/0323026a.html

160

Conference on Architectural Support for Programming Languages and

Operating Systems, Vol. 24, No. 6, pp. 22-29, 2004.

[Smo06] J. C. Smolens, B. T. Gold, B. Falsafi et al., “Reunion: complexity-effective

multi-core redundancy,” in Proceedings of the Annual IEEE/ACM

International Symposium on Microarchitecture, (MICRO), pp. 223-234,

2006.

[Tes14] www.teslamotors.com, 2014.

[Tha08] D. D. Thaker, F. Impens, I. L. Chuang et al, “On using recursive TMR as a
soft-error mitigation technique,” in Proceedings of International

Conference on Parallel Processing (ICPP), pp. 10-15, 2008.

[Vad10] R. Vadlamani, J. Zhao, W. Burleson et al., “Multi-core soft-error rate

stabilization using adaptive dual modular redundancy,” in Proceedings of

the Conference on Design, Automation and Test in Europe (DATE), pp. 27-

32, 2010.

[Wan06] N. J. Wang, S. J. Patel, “ReStore: symptom-based soft-error detection in

microprocessors,” in IEEE Transactions on Dependable and Secure
Computing, Vol. 3, No. 3, pp. 188-201, 2006.

http://www.teslamotors.com/

161

CHAPTER 7

Conclusions, Contributions and

Recommendations for Future

Work

162

7.1 Introduction
The topic of this thesis is soft-error mitigation techniques in digital

circuits. In order to be able to propose an efficient mitigation technique,

other prerequisites need to be investigated first. This includes investigation

of sources of soft-errors, a framework to study the impact of soft-errors in

digital circuits and also a realistic and practical simulation model for soft-

errors. Being able to study the impact of soft-errors in the early development

phases enables the designer to propose efficient soft-error mitigation

mechanisms.

7.2 Contributions
The contributions of this thesis can be listed as follows:

 In chapter 2 the sources and effects of soft-errors have been

investigated and related work in the field of soft-error

injection have been addressed.

• In chapter 3, a framework has been developed to assess soft-

error vulnerability of complex designs which are modelled in

an HDL language. Minimizing the required CPU time to

carry out soft-error analysis is one of the main challenges of

an HDL–based soft-error analysis framework. The developed

framework can invoke a conventional model of soft-errors in

a design, assess its vulnerability to soft-errors and also extract

the most vulnerable parts of an HDL design with regard to

soft-errors. Since this soft-error analysis is carried out during

the design development phase (before prototype

manufacturing), the vulnerability of components can be

investigated in detail and redesigned before the actual

component is ready for manufacturing. Fault-injection

experiments show that the elapsed CPU time to carry out a

soft-error assessment can be decreased by 10% as compared

to fast fault-injection methods and over 67% as compared to

normal simulation-based fault injection methods [Roh11a,

Roh11b, Roh13a].

163

• One of the current challenges regarding soft-error

vulnerability analysis lies in how realistic simulation SET

models are. In other words, there is still no consensus on the

accuracy of the degree of similarity between the conventional

discrete-pulse model of logic gate-level simulation as

compared to real physical soft-errors. In chapter 4 of this

thesis, a new logic gate-level fault model has been developed

that accurately imitates (less than 15% error) the real

behaviour of SETs for a 45nm CMOS technology node. This

SET model has been extracted using laser-based fault-

injections along with the asymptotic behaviour of SETs in a

SPICE model. These simulation fault models solve one of the

challenging aspects of the HDL-based soft-error simulation,

which is the lack of a realistic model of soft-errors to mimic

the impact of soft-errors in the development phase of a

product [Roh13b].

• In chapter 5 of this thesis, an efficient detection and correction

method for control logic of Very Large Instruction Word

(VLIW) processors is introduced. The characteristics of VLIW

processors along with features of DSP workloads have been

used to develop an efficient soft-error mitigation technique

for VLIW processors. This mitigation method imposes 4%

overhead on silicon area and causes a 10% performance

degradation, while the sensitivity of the DSP processor with

regard to soft-errors decreases from 40% to 5% [Roh12].

• Another mitigation method which has been proposed in

chapter 5 targets the data path of VLIW processors. The

developed method, called freezing, has the ability to limit the

penalty imposed on a design based on the soft-error

occurrence rate that a system is experiencing. This method

benefits from the architecture of DSP processors to halt the

correct functional units for one clock cycle while re-execute

the unit that was hit by a soft-error. Experiments show that

the proposed method can mitigate half of the occurred soft-

164

errors while the imposed overhead in terms of silicon area is

only 10% and the speed of the processor is similar to the

baseline design [Roh13c, Roh14a].

 Multi-core architectures have some unique features that can

be exploited for the purpose of mitigation of soft-errors, such

as the existence of several identical cores. One of our

contributions in chapter 6 of this thesis is to develop a soft-

error mitigation mechanism which exploits the existence of

similar cores in the homogenous parts of multi-core

architectures. In case of a soft-error detection, the two

processor cores re-execute an instruction. This internal re-

execution eliminates the requirement to transfer the entire

status between two processor cores. The fault injection results

show that 94% of detected soft-errors can be mitigated with

this mechanism. The average recovery time is 8.9 clock cycles

[Roh14b].

7.3 Conclusions
This thesis investigated different aspects of soft-errors in digital

systems. The issue of soft-errors in a digital system is normally started with

an evaluation phase to recognize the most sensitive parts of a system which

affect the most from soft-errors. The next step will be modifying those

sensitive parts to enhance the robustness of the entire system with regard to

soft-errors.

In this thesis, in particular we proposed a fast simulation-based soft-

error evaluation framework to analyse the behaviour of a system in presence

of soft-errors. An enormous CPU time is a common drawback in simulation-

based fault studies, so it was shown that it is possible to decrease the CPU

time required to conduct fault injections up to 67% as compared to

conventional methods. This achievement helps the designer to rapidly

evaluate a system during its development phase and recognize the weak

parts.

165

A realistic soft-error model which can be used in simulation-based

fault-injections in logic-gate level was also developed in this thesis. This

model helps to decrease the total time required to conduct fault-injections at

a gate-level even further while preserving the accuracy of experiments. This

model is only deviates 15% with real physical soft-errors and therefore can

predict a realistic behaviour of a system. Integration of this model in the

framework discussed in the previous paragraph can introduce an accurate

and fast fault-injection framework.

Furthermore, some efficient mitigation methods to diminish the

impact of soft-errors in DSP processors were introduced. These methods

impose low overhead on area and speed of the system while they mitigate a

large portion of soft-errors. These achievements show that using unique

characteristics of a design can potentially result in efficient and customized

solutions with regard to soft errors. Finally, a soft-error mitigation method

for a multicore system which is composed of DSP processors was researched

in this thesis. The results show that 94% of soft-errors can be mitigated in a

multicore environment while on average 9 extra clock-cycles are imposed on

the system. In the case of no soft-error, no performance loss is imposed on

the system.

The results of this thesis can be used to propose a complete flow to

investigate the impact of soft-errors during the development phase of a

digital system. The results of chapters 3 and 4 can be applied to build the

framework to study the impact of soft-errors on a system, while chapters 5

and 6 can be used as examples to employ the unique features of a system to

decrease its sensitivity with regard to soft-errors.

7.4 Future work
The results of this thesis can be used in different frameworks for

mitigating the impact of soft-errors. For example, the framework of chapter 3

which uses the logic gate-level model of soft-errors described in chapter 4

can be integrated with automatic insertion of saboteurs to build a fully

automated and fast fault-injection tool. This tool can be used in the soft-error

sensitivity phase in an ASIC digital design flow. This is shown in Figure 7.1

with a grey background. The input of the tool will be the synthesized gate-

166

level net list (the output of a logic synthesis tool) and the output will be the

sensitivity of the design with regard to soft-errors. The information can be

used to improve the designs to reduce their sensitivity to soft-errors.

Finally, applying and testing the developed approach in other DSP

processors will be interesting. Moreover, the investigation of soft-errors in a

multicore architecture when also inter-core communication, shared memory

access and I/O are taken into account, can be considered challenging topics

for future work.

167

RTL simulation

Logic synthesis

Soft-error analysis

Static timing analysis

Place and rout

Net list

specifications

Logic gate-level net list

Figure 7.1 Soft-error analyses in an ASIC digital design flow.

168

List of our publications
[Roh11a] A. Rohani, H. G. Kerkhoff, ”Study of the effects of SET induced faults on

submicron technologies,” in IEEE/IFIP International Conference on
Dependable Systems and Networks Workshops (DSN-W), pp. 41-46, 2011.

[Roh11b] A. Rohani, H. G. Kerkhoff, ”A Technique for Accelerating Injection of
Transient Faults in Complex SoCs,” in Euro-micro Conference on Digital

System Design (DSD), pp. 213-220, 2011.

[Roh12] A. Rohani, H. G. Kerkhoff, ”An online soft error mitigation technique for
control logic of VLIW processors,” in Proceedings of IEEE International
Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology

Systems (DFTS), pp. 85-91, 2012.

[Roh13a] A. Rohani, H. G. Kerkhoff, ”Rapid Transient Fault Insertion in Large
Digital Systems,” in Microprocessors and microsystems Journals, ISSN

0141-9331, Vol. 37, No. 2, pp. 147-154, , 2013.

[Roh13b] A. Rohani, H. G. Kerkhoff, ”Functional unit for a processor,” European
Patent, EP13191370.9, 2013.

[Roh13c] A. Rohani, H. G. Kerkhoff, E. Costenaro, D Alexandrescu, ”Pulse-length

determination techniques in the rectangular single event transient fault

model,” in International Conference on Embedded Computer Systems:
Architectures, Modelling, and Simulation (SAMOS), pp. 15-18, 2013.

[Roh14a] A. Rohani, H. G. Kerkhoff, “Two soft-error mitigation techniques for

functional units of DSP processors,” in IEEE European Test Symposium
(ETS), pp. 1-6, 2014.

[Roh14b] A. Rohani, H. G. Kerkhoff, “A soft-error mitigation technique in a

multicore architecture composed of DSP cores,” to be submitted for 16th

IEEE Latin-American Test Symposium (LATS), 2015.

169

BIOGRAPHY

Alireza Rohani obtained his B.Sc. degree in Computer Engineering from the

Shahed University, Tehran, Iran, in 2006. Later, he obtained his M.Sc. degree

in Computer Architecture from Amirkabir University of Technology, Tehran,

Iran, in 2010. In June of 2010, he joined the Computer Architecture for

Embedded System (CAES) group at the University of Twente to pursue his

Ph.D. degree in the field of Dependability of modern processors. During this

time, he worked on the TOETS research project and published several papers

on international conferences and scientific journals.

