
B. Wangler, L. Bergman (Eds.): CAiSE 2000, LNCS 1789, pp. 482-497, 2000
© Springer-Verlag Berlin Heidelberg 2000

Modelling and Optimisation Issues
for Multidimensional Databases1

Panos Vassiliadis and Spiros Skiadopoulos

National Technical University of Athens
Department of Electrical and Computer Engineering

Computer Science Division
Knowledge and Database Systems Laboratory

Zografou 15773, Athens, Greece
{pvassil,spiros}@dbnet.ece.ntua.gr

Abstract. It is commonly agreed that multidimensional data cubes form the
basic logical data model for OLAP applications. Still, there seems to be no
agreement on a common model for cubes. In this paper we propose a logical
model for cubes based on the key observation that a cube is not a self-existing
entity, but rather a view over an underlying data set. We accompany our model
with syntactic characterisations for the problem of cube usability. To this end,
we have developed algorithms to check whether (a) the marginal conditions of
two cubes are appropriate for a rewriting, in the presence of aggregation
hierarchies and (b) an implication exists between two selection conditions that
involve different levels of aggregation of the same dimension hierarchy.
Finally, we present a rewriting algorithm for the cube usability problem.

1 Introduction

On-Line Analytical Processing (OLAP) is a trend in database technology based on the
multidimensional view of data. Although multidimensional data cubes form the basic
logical data model for OLAP applications, up to now, no common agreement has
been obtained on the elements of a cube model. Several industrial standards already
exist [13,14,15,16], yet, apart for the last one, none of them seems to propose a well-
founded model for OLAP databases. In academia, several proposals on the modelling
of cubes also exist [1,2,9,10,11,21]. Despite all these efforts, we feel that several key
characteristics of a cube model have not been stressed, neither by the academia nor
the industry (see [19] for a complete discussion). To this end, we present a logical
model for cubes. This model extends the proposal of [21] in a more formal and
systematic way. It deals with all the commonly encountered entities of a
multidimensional model (dimension hierarchies, data cubes and cube operations)

1 This research is sponsored by the European Esprit Project "DWQ: Foundations of Data

Warehouse Quality", No. 22469. We also wish to thank Prof. Timos Sellis and Dr. Dimitri
Theodoratos for useful discussions on the topic.

Modelling and Optimisation Issues for Multidimensional Databases 483

without being restricted from their physical implementation (e.g., ROLAP or MOLAP
architectures). One of our key observations is that a cube is not a self-existing entity,
but rather a view (materialised or not) over an underlying data set. This property
allows us to develop complex operations, not dealt by other models so far (e.g., the
drill-down operation and the change of aggregation function).

To our knowledge, existing OLAP tools behave in an “extensional” fashion. Cubes
are treated simply as sets of tuples, ignoring the fact that they are produced as queries
over an underlying detailed data set (e.g., the fact table of a data warehouse). Our
framework, instead, suggests a different strategy: we keep the “history” of performed
selections and thus, we are able to compute a new cube taking into account its
“intentional” description. Therefore, we can define more complex operations (such as
drill-down) and sequences of operations, which are not covered by other models. Our
model is accompanied by an algebra powerful enough to capture the usual OLAP
operations such as (a) selection over a cube, (b) roll-up, which means aggregation
over a cube to coarser granularities of information and (c) drill-down, which involves
de-aggregation of a specific cube and presentation of more detailed information.
The contribution of this paper lies not only in terms of expressiveness, but also we
present results on optimisation issues for multidimensional databases. We investigate
the cube usability problem, a variant of the relational view usability problem, for
multidimensional cubes. We accompany our framework with optimisation techniques
for the cube usability problem that enable the exploitation of existing cubes in order
to compute new cubes. To handle the cube usability problem, we extend well-known
techniques already found in the relational context on the containment of selection
conditions [17]. We have observed that although quite a lot of work has been
performed in the field of query containment and view usability in the context of
relational databases [4,5,8], there exist no results to exploit the information about
dimension hierarchies in the context of multidimensional databases. We present
results on two major topics. First, we tackle the problem of containment of two
selections, taking into account their marginal conditions in the presence of dimension
hierarchies. Secondly, we come up with a set of axioms to characterise containment
for expressions involving functionally dependent attributes. Although several results
already exist to characterise query containment between expressions involving one
domain [17], to our knowledge, no results exist for expressions involving different
functionally dependent levels. For lack of space, all the proofs, as well as further
explanations, are found in [20].

This paper is organised as follows. In Section 2 we present the logical cube model.
Section 3 presents optimisation issues. Finally, in Section 4 we discuss our results and
present future work.

2 Cubes for Multidimensional Databases

In this section we present the basic entities and operations of our model. Entities
involve dimensions, data sets and cubes. Operations involve selections and change in
the granularity of data. This model extents previous proposals of [2,10,21].

484 P. Vassiliadis and S. Skiadopoulos

One of the main characteristics of OLAP applications is the multidimensional view
of data in the perception of the user, which considers that information is stored in a
multidimensional array, called Cube or HyperCube. Thus, a Cube is a group of data
cells. Each cell is uniquely defined by the corresponding values of the dimensions of
the cube. The contents of the cell are named measures and represent the measured
values of the real world. Measures are functionally dependent, in the relational sense,
on the dimensions of the cube.

A dimension is defined in [15] as “a structural attribute of a cube that is a list of
members, all of which are of a similar type in the user's perception of the data”.
Informally, a dimension models all the possible ways in which the user can group the
detailed information stored in the multidimensional database with respect to a specific
context. Each dimension has an associated hierarchy of levels of aggregated data i.e.,
it can be viewed from different levels of detail. Formally, a dimension D is a lattice

(L,≺): L=(L1,…,Ln,ALL). We require that the upper bound of the lattice is always

the level ALL, so that we can group all the values of the dimension into the single
value 'all'. The lower bound of the lattice is called the detailed level of the
dimension. For instance, let us consider the dimension Date of Fig. 2. Levels of
dimension Date are Day, Week, Month, Year and ALL. Day is the most detailed
level. Level ALL is the most coarse level for all the dimensions. Aggregating to the
level ALL of a dimension ignores the respective dimension in the grouping (i.e.,
practically groups the data with respect to all the other dimensions of the cube, except
for this particular one).

The relationship between the values of the dimension levels is achieved through
the use of the set of ancL2,L1 functions. A function ancL2,L1 assigns a value of the
domain of L2 to a value of the domain of L1. For instance ancYearMonth(Feb-97)=1997.

The major multidimensional operations are selection and navigation. Selection is
used whereby a criterion is evaluated against the data or levels of a dimension in
order to restrict the set of retrieved data. Navigation is a term used to describe the
processes employed by users to explore a cube interactively by changing the
granularity of the multidimensionally viewed data [15]. Possible navigation
operations, which can be applied to a cube, are: (a) Roll-up which corresponds to the
aggregation of data from a lower to a higher level of granularity within a dimension’s
hierarchy, (b) Drill-Down which is the inverse of roll-up and allows the de-
aggregation of information moving from higher to lower levels of granularity and (c)
Slice which corresponds to the grouping of data with respect to a subset of the
dimensions of a cube. For instance, let us consider the dimension Date; aggregating
from Month to Year is a roll-up operation and de-aggregating from Month to Day is
a drill-down operation. In our model, the slice operation is modelled as a roll-up to
level ALL.

We denote sets of tuples under a specific schema by the term data set. Moreover,
we assume the existence of a detailed data set, i.e., a data set that is defined at the
finest levels of granularity for all its dimensions. This detailed data set is the central
source of data, which will populate any cubes produced during an OLAP session
(e.g., a fact table in a data warehouse).

Modelling and Optimisation Issues for Multidimensional Databases 485

One of our key observations is that a cube is not a self-existing entity (as
commonly encountered in the literature), but rather a view over an underlying
detailed data set. As usual, a view (and thus a cube) can be either materialised or not.
Therefore, a cube can be seen either as a data set or simply a query. In our model, we
retain this dual nature formally; a cube is not only a set of tuples, but also has a
definition. This definition is a query that reduces the computation of the cube to a set
of operations over the initial materialised detailed data set.

Formally, a cube c over the schema [L1,…,Ln,M1,…,Mm], is an expression of the
form: c=(DS0,φ,[L1,…,Ln,M1,…,Mm],[agg1(M0,1),…,aggm(M0,m)]), where DS0 is
a detailed data set over the schema S=[L0,1,…,L0,n,M0,1,…,M0,k], m≤k, φ is a
detailed selection condition, M0,1,…,M0,m are detailed measures, M1,…,Mm are

aggregated measures, L0,i and Li are levels such that L0,i≺Li, 1≤i≤n and aggi,

1≤i≤m are aggregated functions from the set {sum,min,max,count}.
Intuitively, to compute a cube, first we apply the selection condition to the detailed

data set. Then, we replace the values of the levels for the tuples of the result, with
their respective ancestor values at the levels of the schema of the cube and group
them into a single value for each measure, through the application of the appropriate
aggregate function. Note that a detailed data set can be trivially expressed as a cube,
having a true selection condition and an arbitrary aggregation function. For instance,
the cube of the detailed data set DS0 of Fig. 1 is expressed as: c0=(DS0,true,
[day,day,item,salesman,city,sales],sum(sales)).

This approach introduces a powerful expression mechanism, able to directly
capture operations like drill-down and change of aggregate function and thus, aimed
towards the modelling of sequences of operations, as normally encountered in OLAP
systems. To our knowledge, no other model can capture these operations directly. The
reduction of a cube’s definition to a normalised form seems to be the only alternative
that directly achieves this kind of functionality.

Formally, the model consists of the following elements:
− Each dimension D is a lattice (L,≺) such that: L=(L1,…,Ln,ALL) is a finite subset

of levels and ≺ is a partial order defined among the levels of L, such that

L1≺Li≺ALL for every 1≤i≤n.

− A family of functions ancL2,L1 satisfying the following conditions (extending [2]):

1. For each pair of levels L1 and L2 such that L1≺L2 the function ancL2,L1 maps

each element of dom(L1) to an element of dom(L2).

2. Given levels L1, L2 and L3 such that L1≺L2≺L3, the function ancL3,L1 equals to

the composition ancL2,L1°ancL3,L2.

3. For each pair of levels L1 and L2 such that L1≺L2 the function ancL2,L1 is

monotone, i.e., ∀ x,y∈ dom(L1),L1≺L2: x<y ⇒ ancL2,L1(x)≤ancL2,L1(y).

4. For each pair of levels L1 and L2 the ancL2,L1 function determines a set of finite

equivalence classes Xi such that: ∀ x,y∈ dom(L1),L1≺L2: ancL2,L1

(x)=ancL2,L1(y)⇒ x,y belongs to the same Xi.

486 P. Vassiliadis and S. Skiadopoulos

5. The relationship descL2,L1 is the inverse of the ancL2,L1 function -i.e., descL2,L1

(l)= {x∈ dom(L):ancL2,L1(x)=l}.
− Each data set DS over a schema S=[L1,…,Ln,M1,…,Mm] is a finite set of tuples

over S such that the set [L1,…,Ln] comprises a primary key (in the usual sense).
− Each selection condition φ is a formula in disjunctive normal form. An atom of a

selection condition is true, false or an expression of the form x θ y, where θ is
an operator from the set (>, <, =, ≥, ≤, ≠) and each of x and y can be one of the
following: (a) a level L, (b) a value l, (c) an expression of the form ancL2,L1(L1)

where L1≺L2 and (d) an expression of the form ancL2,L1(l) where L1≺L2 and

l∈ dom(L1). The detailed equivalent of φ, denoted by φ0, is a selection condition
obtained through the following procedure: for each occurrence of a level name L in
φ, we substitute it with the equivalent expression ancLL0(L

0), where L0 is the

detailed level of the dimension to which L belongs. Note that the detailed
equivalent of a selection condition is directly applicable to a detailed data set.

− Each cube c over the schema [L1,…,Ln,M1,…,Mm], is an expression of the form:
c=(DS0,φ,[L1,…,Ln,M1,…,Mm],[agg1(M0,1),…,aggm(M0,m)]), where DS0 is a
detailed data set over the schema S=[L0,1,…,L0,n,M0,1,…,M0,k], m≤k, φ is a
detailed selection condition, M0,1,…,M0,m are detailed measures, M1,…,Mm are

aggregated measures, L0,i and Li are levels such that L0,i≺Li, 1≤i≤n and aggi,

1≤i≤m are aggregated functions from the set {sum,min,max,count}. The
expression characterising a cube has the following formal semantics:
c={x∈ Tup(L1,…,Ln,M1,…,Mm)| ∃ y∈ φ(DS0),x[Li]=ancLiL0,i(y[L0,i]),1≤i≤n,
x[Mj]=aggj({q|∃ z∈ φ(DS0),x[Li]=ancLiL0,i(z[L0,i]),
1≤i≤n,q=z[M0,j]}),1≤j≤m}.

− The Cube Algebra (CA) is composed of three operations (consider a cube
ca=(DS0,φa,[La,1,…,La,n,Ma,1,…,Ma,m],[agga,1(M0,1),…,agga,m(M0,m)]) over
which the operations are applied):

1. Navigate: Let S=[L1,…,Ln,M1,…,Mm] be a schema and agg1,…,aggm be
aggregate functions. If La,i and Li belong to the same dimension Di and
aggi∈ {sum,min,max,count} then, navigation is defined as follows:
 nav(ca,S,agg1,…,aggm)=(DS0,φa,S,[agg1(M0,1),…,aggm(M0,m)]).

2. Selection: Let φ be a selection condition applicable to ca. Then, we define the
selection operation as:
σφ(ca)=(DS0,φa∧ φ0,[La,1,…,La,n,Ma,1,…,Ma,m],[agga,1(M0,1),…,agga,m
(M0,m)])

where φ0 is the detailed equivalent of the selection condition φ.
3. Split measure: Let M be a measure of the schema of the cube c. Without loss of

generality, let us assume that M is Mm. Then split measure is defined as follows:

π Mm(c
a)=(DS0,φa,[La,1,…,La,n,Ma,1,…,Mam-1],[agga,1(M0,1),…,aggam-1

(M0m-1)]).

Modelling and Optimisation Issues for Multidimensional Databases 487

Day Title Salesman Store Sales
6-Feb-97 Symposium Netz Paris 7

18-Feb-97 Karamazof brothers Netz Seattle 5

11-May-97 Ace of Spades Netz Los Angeles 20

3-Sep-97 Zarathustra Netz Nagasaki 50

3-Sep-97 Report to El Greco Netz Nagasaki 30

1-Jul-97 Ace of Spades Venk Athens 13

1-Jul-97 Piece of Mind Venk Athens 34

Fig. 1. Detailed Data Set DS0 .

Theorem 1. The Cube Algebra CA is sound (i.e., the result of all the operations is
always a cube) and complete (i.e., any valid cube can be computed as the combination
of a finite set of CA operations). ■
Example 1. To motivate the discussion we customise the example presented in [14]
to an international publishing company with travelling salesmen selling books and
CD's to stores all over the world. The database (Fig. 1) stores information about the
sales of a title that a salesman achieved on a particular date and city. The dimensions
of our example are Person, Location, Product and Date (Fig. 2). Measure Sales
is functionally dependent on dimensions Date, Product, Person and Location. ■

all
ALL

Salesman
Venk,
Netz

all

1997

Feb-97
2w-97

ALL

Year

May-97 Sep-97

Day

Month
Jul-97

6-Feb-97

2w-97

18-Feb-97

19w-97

11-May-97

27w-97

1-Jul-97

36w-97

3-Sep-97

Week

all

Category MusicBooks

Philosophy Heavy MetalLiterature

Report to El Greco,
Karamazof Brothers

Zarathustra,
Symposium

Piece of Mind,
Ace of Spades

Title

Type

ALL

(a) D imens ion Location (b) D i m e n s i o n Product

(c) D imens ion Person (d) D i m e n s i o n Date

allALL

Continent AsiaEurope

France JapanHellas

Athens Paris NagasakiStore

Country

America

U.S.A

Seattle,
Los Angeles

Fig. 2. Dimensions

The organisation of information in different levels of aggregation (i.e.,
dimensions) is in hand because OLAP users are unlikely to directly ask questions
about the detailed data that are stored in the database. Instead, they are more
interested in aggregated information according to the categorisation groupings.

Following, we present three queries and the respective algebraic representation that
could have been a typical sequence of operations during an OLAP session.
Query 1. Find the maximum sales by month, category of item, salesman and country.
c1=nav(DS0,[Month,Category,Salesman,Country,Max_val],max(sales))
=(DS0,true,[Month,Category,Salesman,Country,Max_val],max(sales))

488 P. Vassiliadis and S. Skiadopoulos

Query 2. Find the maximum sales outside the American continent by month,
category of item, salesman and country.

c2=σ anccontinentcountry (country)≠‘America’(c
1)=(DS0,anccontinentcity (City)≠'America',

[Month,Category,Salesman,Country,Max_val],max(sales)).
Query 3. Find the summary of sales outside the continent of America by month, type
of title and country of store.

c3=nav(c2,[Month,Type,All,Country,Sum_val],sum(Sales))=
(DS0,anccontinentcity (City)≠'America',[Month,Type,All,Country,Sum_val],

sum(sales)).
During this particular OLAP session the user has performed (a) a roll-up from the

detailed data set, (b) a selection and (c) a slicing (of dimension Person), a drill down
(from Category to Type level) and a change in the aggregation function (from max
to sum).

In the first operation, one can notice that the semantics of the navigation operation
allow us to use an arbitrary name (e.g., Max_val) for the measure that computes the
maximum value per group of aggregation. In the second operation, notice that the
expression anccontinentcountry (Country) which is directly applicable to the schema (and

data) of the cube c1 is transformed to its equivalent anccontinentcity (City), that directly

applies to the detailed data set DS0, through the use of the definition of the detailed
selection condition.

The presented model stresses the fact that a cube we can treated both as a query
and as a set of tuples. We believe that this aspect of OLAP was neglected in the
previous approaches. In this example, the contribution of treating cubes as views over
the detailed data set is eminent. Actually, the fact that we have retained the history of
selections permits us to be able to drill-down and change the aggregation function.
Otherwise, to perform the drill-down operations we should employ a join operation of
c2 with DS0. The same also holds for the change in the aggregation function. Using
the history of selections we can (a) avoid to perform a costly join operation and (b)
possibly further optimise the execution of the operation through the use of already
computed cubes. The second possibility will be investigated in Section 3.

As we have already stressed, this is a logical model for cubes. We do not advocate
that the physical computation of the results of an operation should actually be
computed all the way back from the detailed data set. Actually, although drill-down
and change of aggregation function can be performed directly, only through the use
of the semantics of our model, can the selection and roll-up operations be performed
over the original cube, without referring to the detailed data set. In the case of
selection, it suffices to simply pass all the tuples of the cube from the filter of the
applied selection condition. In the case of roll-up to coarser levels of granularity, it
also suffices to group the tuples of the cube and apply the appropriate aggregate
function. These simple optimisation strategies are generalised in Section 3 with a
more powerful approach, capable of detecting whether any cube can be computed
from the data of another cube, simply by comparing their definitions.

Modelling and Optimisation Issues for Multidimensional Databases 489

3 The Cube Usability Problem

Problem description. There are several cases where there is the need to decide
whether a view can be recomputed from another view. In the case of OLAP, the
problem can be stated as follows: the OLAP user selects some data and performs an
operation over them. The result of the new query can be computed, of course, from
the detailed data. Nevertheless, it is possible that previously computed and cached
results, or existing materialised views, could also allow the computation of the
requested information. As a general statement, we could say that the problem lies in
whether the computation of a new cube can be performed from an intermediate level
of aggregation, than from the detailed data set.

Formally, let DS0 be a detailed data set. Let also cold and cnew be two cubes defined
over DS0. By definition, cubes cold and cnew can be calculated from DS0. The cube
usability problem lies on determining whether the tuples of cold can be used to
compute cube cnew. It is clear that the cube usability problem is a variant of the view
subsumption problem, already investigated in the field of relational databases [18].
Shortcomings of current approaches. Too much effort has been spent, in the past,
to tackle the problem of view subsumption and query rewriting in the presence of
views [4,5,8,22]. Nevertheless, the previous approaches are relational-oriented and
lack to deal with specific characteristics of the multidimensional modelling. We will
use two examples to demonstrate these shortcomings.
Example 2. Intuitively, someone would expect, that in order to solve the cube
usability problem, the new cube cnew should:
1. be defined over the same dimensions with cold and at a higher or equal level;
2. be defined over the same measure of DS0. Moreover, the aggregation functions

aggnew and aggold should be the same;
3. have a more restrictive selection condition than cold, i.e., φnew is contained in φold

in the usual relational sense.
Checking conditions 1 and 2 is an easy task. To perform the comparison of

Condition 3, we need to transform the selection conditions of the two cubes in order
to treat them as conjunctive queries [17]. One could argue that existing relational
techniques are adequate to handle this problem. Unfortunately, as we will show, there
are cases where those techniques are not sufficient.

Cube c
1

Cube c
2

Cube c
3

Month Sales Month Sales Month Sales
Feb 5 Feb 12 Feb 5
May 20 May 20 May 20
Sep 80 Sep 80

φ1=18-Feb-97≤day≤3-Sep-97 ∧ Salesman=Netz
φ2=6-Feb-97≤day≤3-Sep-97∧ Salesman=Netz
φ3=18-Feb-97≤day≤31-May-97∧ Salesman=Netz

Feb 97 May 97 Sep 97

c1

c2

c3

(a) (b)

Fig. 3. Cube usability problems with marginal conditions.

490 P. Vassiliadis and S. Skiadopoulos

Let us consider the detailed data set DS0 of Fig. 1. Let ci, 1≤i≤3 be cubes defined
as ci=[DS0, φi, [Month,ALL,ALL,ALL,ALL,ALL,ALL,Sales], sum(sales)].
Fig. 3a presents the Month level, the Sales measure and the selection conditions for
each of the cubes. The problem is whether a new cube c3 can be computed using the
tuples of one of the existing cubes c1 and c2. Since Conditions 1, 2 and 3 hold, one
could argue that this is feasible. Yet, as we can see in Fig. 3a, only c1 can be used to
compute c3. The intuitive explanation of the problem is depicted in Fig. 3b. There are
three horizontal axes defined at the day level, each for one of the cubes c1, c2 and c3.
Each bold line denotes the set of days participating in the computation of the
respective cube. All cubes are defined at the month level; consequently, we partition
the three axes with respect to the function ancmonthday . As we can see, we have three

partitions: Feb’97, May’97 and Sep’97. Cube c3 can be computed from c1 because
for all the partitions of c3 (i.e., Feb’97, May’97), cubes c1 and c3 cover exactly the
same days. This does not hold for c1 and c2. ■
Example 3. Suppose the case, where a cube c1 has a selection condition
φ1=arr.year<dep.year (where arr denotes dimension arrival date and dep
denotes the dimension departure date). Suppose also that a cube c2 is defined at
the month level and has a selection condition φ2=arr.month<dep.month. We can
see that cube c1 can be computed from c2. This means that if c2 is materialised we
can use its tuples to compute c1. We are able to perform this kind of reasoning
because we take advantage of the relationship between months and years, expressed
through the dimension hierarchies, and the family of anc functions. To our
knowledge, there is no effort in the view subsumption literature that uses this kind of
knowledge. ■
Contribution. In this section, we will show that the cube usability problem is reduced
to simple tests and operations. Different tests apply for different classes of queries.
We explore the selection conditions of two categories: (a) selection conditions with
atoms involving values (i.e., of the form Lθl,LθancL2,L1(l), etc.) and (b) selection
conditions with atoms involving only levels (i.e., of the form L1θL2, LθancL2,L1(L1),
etc.). We will examine the optimisation issues for the former in Section 3.1 and for
the latter in Section 3.2. Finally, Section 3.3 presents a theorem with sufficient criteria
and the corresponding rewriting algorithm for both cases of the cube usability
problem under consideration.

In the rest of the paper, for reasons of simplicity, we will deal with cubes having
only one measure. All our results can be easily extended to cubes having an arbitrary
number of measures [5]. Let cnew=(DS0,φnew,[Lnew,Mnew],aggnew(M)) be the new
cube and cold=(DS0,φold,[Lold,Mold],aggold(M)) be the candidate cube, where
Lnew and Lold are sets of levels coming from dimension sets Dnew and Dold respectively,
Mnew and Mold are measures, and finally, aggnew and aggold are aggregate functions.

Modelling and Optimisation Issues for Multidimensional Databases 491

3.1 Equivalent Transformations for Atoms Involving Values

Suppose two levels Lold and Lnew, such that Lold≺Lnew. Function ancLnew,Lold defines a

partition over the values of Lold with respect to the values of Lnew (e.g., the partition of
year to month). Suppose now, two atoms a1 and a2 over Lold, as in the case of Fig.
3. To perform an aggregation to Lnew, the two atoms must hold the same ranges of
values for each and every partition that Lnew defines over Lold. Generalising this
observation, in the case where two selection conditions involve a larger conjunction
of atoms, we must:
1. transform the selection conditions to concrete ranges for each dimension;
2. reduce the atoms to the same level, using appropriate transformations (so that they

can be compared);
3. check whether the broader selection condition is defined identically for the

marginal constraints of the other selection condition.
The following auxiliary definition introduces the notion of dimension interval,

which is a concrete range over the domain of a certain dimension level.
Definition 1: A dimension interval (DI) is one of the following (a) true, (b) false
and (c) an expression of the form l1≤L≤l2, where L is a variable ranging over the
level of a dimension and l1 and l2 are values. ■

Atom Dimension Interval
true True
false False
ancL’L (L)=l min(descL’L (l))≤L≤max(descL’L (l))
ancL’L (L)<l -∞<L≤max(descL’L (prev(l)))
l<ancL’L (L) min(descL’L (next(l)))≤L<+∞
ancL’L (L)≤l -∞<L≤max(descL’L (l))
l≤ancL’L (L) min(descL’L (l))≤L<+∞

Fig. 4. Transformation from atoms to dimension intervals

Fig. 4 shows how single atoms can be transformed to DI's. Values -∞ and +∞ have
the obvious semantics. Moreover, functions prev and next result in the previous and
the following value of l in the domain of L respectively.

In general, to determine whether a cube cold can be used for the computation of
cnew, we need to partition the detailed level of each dimension according to the
respective level of cnew. If for each partition of cnew, there exists an identical partition
of cold, then cold can be used to compute cnew. We formalise this relationship between
two cubes, through Definition 2.
Definition 2. L-containment: Let D be a set of dimensions and φold, φnew be two
selection conditions involving levels only from D. Let L be a set of levels, each
belonging to a different dimension of D. Let also the two cubes cnew=(DS0,
φnew,[L,M],agg(M)) and cold=(DS0,φold,[L,M],agg(M)), defined over an
arbitrary detailed data set DS0. Selection condition φnew is L-contained in φold
(denoted by φnew⊆ Lφold) if cnew⊆ cold for any data set DS0. ■

492 P. Vassiliadis and S. Skiadopoulos

To tackle the problem of cube usability between cubes of different aggregation
granularities, we introduce Algorithm Check_Atoms_Usability that is checking
the containment of conjunctions of atoms that involve values. Notice that our analysis
does not include ≠. This case will be handled in Section 3.3.

Algorithm Check_Atoms_Usability.
Input: Two conjunctions of atoms a and b involving only values, and a set of levels L’.
Output: true if a⊆ L’b, false otherwise.

1. Write all atoms of a and b as DI's using the transformations of Fig. 4 (where the level L is
the detailed level of each dimension).

2. Group all DI's of a and b by dimension level and produce for every set a single DI'
having the most restrictive boundaries. Let a’ and b’ be the result, respectively.

3. If there exists a DI false in a’ Then Return true.
4. If there exists a DI false in b’ Then Return false.
5. For every DI a of a’
6. If a is defined over dimension level Di.L0 that does not exist in any DI of b’ Then
7. Introduce DI -∞≤Di.L0≤∞ to b’.
8. EndFor
9. If b’ has more DI’s than a’ Then Return false.
10. For every DI a=(As,Ae) of a’
11. Let the DI b=(Bs,Be) of b’ involving the same dimension with a. Let also L’ be

the respective level in L’.
12. Case As<Bs or Be<Ae or b=false
13. Return false
14. Case As≠min(descL',L0(ancL',L0(As))) and As≠Bs
15. Return false
16. Case Ae≠max(descL',L0(ancL',L0(Αe))) and Ae≠Be
17. Return false
18. EndFor
19. Return true

Fig. 5. Algorithm Check_Atoms_Usability

For Example 1, Algorithm Check_Atoms_Usability deduces that φ1 L-contains
φ3 (with respect to level Month), while φ2 does not. Moreover, it is interesting to see
that if one considers the year level, neither φ1 nor φ2 L-contains φ3.

3.2 Equivalent Transformations for Atoms Involving only Levels

Following [17], we assume the existence of two infinite, totally ordered domains, L
and L’ isomorphic to the integers. Let also f be a total, monotone function over L,
mapping the values of domain L to the values of domain L’. The family of anc
functions fulfils these requirements.

We assume that we are given a collection of inequalities of the form X<Y, X≤Y,
X≠Y, f(X)<f(Y), f(X)≤f(Y), f(X)≠f(Y) and equalities of the form f(X)=f(Y).
We do not allow equalities of the form X=Y. If such a subgoal is found in a query, we

Modelling and Optimisation Issues for Multidimensional Databases 493

substitute every occurrence of X with Y. We also eliminate any pair of inequalities
f(X)≤f(Y) and f(Y)≤f(X), where X,Y are distinct variables, with f(X)=f(Y).

We will use the following set of axioms for these inequalities:
Α1 X≤X Α8 X≤Z, Z≤Y, X≤W, W≤Y and W≠Z imply X≠Y
Α2 X<Y implies X≤Y Α9 X≤Y implies f(X)≤f(Y)
Α3 X<Y implies X≠Y Α10 f(X)<f(Y) implies X<Y
Α4 X≤Y and X≠Y imply X<Y Α11 f(X)≠f(Y) implies X≠Y
Α5 X≠Y implies Y≠X Α12 f(X)≤f(Y) and f(Y)≤f(X) implies f(X)=f(Y)
Α6 X<Y and Y<Z imply X<Z Α13 f(X)=f(Y) and f(Y)≤f(Z) implies f(X)≤f(Z)
Α7 X≤Y and Y≤Z imply X≤Z Α14 f(X)=f(Y) and f(Y)≠f(Z) implies f(X)≠f(Z)

Α15 f(X)=f(Y) implies f(X)≤f(Y)

Fig. 6. Axioms for L-containment checking.

We assume that our models are assignments of integers to variables. Expressions
of the form f(X) are also treated as variables. For variables of the form X we apply
axioms A1 to A9 and for variables of the form f(X) we apply axioms A1 to A15.
Theorem 2. The axioms A1-A15 are sound and complete. ■

In order to check whether one set of inequalities T follows from another set of
inequalities S we compute the closure S+ by applying the axioms A1-A15 until they no
longer generate any new inequalities. Then, we check whether T is a subset of S+.

3.3 Testing Cube Usability

In this section, we combine the results of Sections 3.1 and 3.2 to provide a test for
several cases of cube usability. One can transform any kind of formula using logical
transformations [6] to an equivalent formula consisting of disjunctions of
conjunctions which do not involve ≠ and ¬ . Theorem 3 provides sufficient criteria for
a cube cold to be used for the computation of another cube cnew. Algorithm
Cube_Usability describes the specific steps to be followed for this computation.
Theorem 3. Suppose a detailed data set DS0=[L0,1,…,L0,n,M0] and two cubes cold=
(DS0,φold,[Lold1 ,…,Loldn ,Mold],aggold(M

0)) and cnew=(DS0,φnew,[Lnew1 ,…,Lnewn ,

Mnew],aggnew(M
0)). If

1. aggold=aggnew,
2. Loldi ≺Lnewi , 1≤i≤n, and

3. one of the following two cases holds for φold and φnew:
• φold and φnew involve conjunctions of atoms only of the form LiθLj, all the

levels Li,Lj are higher from the respective levels of the schema of cold (i.e.

Lold,i;j≺Li,j) and φold belongs to the closure of φnew, or,

• φold and φnew involve conjunctions of atoms of the form Lθl and
 φnew⊆ [L

new

1
,…,L

new

n
]φold,

then Algorithm Cube_Usability correctly computes cnew from the tuples of cold.

494 P. Vassiliadis and S. Skiadopoulos

Theorem 3 tests for usability, pairs of cubes involving conjunctive selection
conditions which do not involve ≠ and ¬ . Cubes involving disjunctive selection
conditions can be treated in the usual way [17].

Example 4. Let cnew and cold be the cubes over DS0 of Fig. 1 defined as follows.
cold=(DS0,φold,[Month,Country,Type,Salesman,Sum_old],sum(Sales))

and
cnew=(DS0,φnew,[Month,Country,Category,Salesman,Sum_new],

sum(Sales))

where φold=18-Feb-97≤day ∧ day≤3-Sep-97 ∧ ancCategoryItem (Item)=”Books”

and φnew=1-Mar-97≤day ∧ day≤3-Sep-97 ∧ “Literature”≤ancType,Item

(Item) ∧ ancType,Item(Item)≤”Philosophy”.

Algorithm Cube_Usability.
Input: Α detailed data set DS0=[L0,1,…,L0,n,M0] and two cubes cold=(DS0,φold,[Lold

1

,…, Lold
n ,Mold],aggold(M

0)) and cnew=(DS0,φnew,[Lnew
1 ,…,Lnew

n

,Mnew],aggnew(M
0)) such that φold and φnew involve either (a) conjunctions of atoms

of the form Lθl or (b) conjunctions of atoms of the form LθL� where L and L’ are
levels and l is a value.

Output: A rewriting that calculates cube cnew from the tuples of cold.
1. If all atoms of φold and φnew involve conjunctions of atoms of the form Lθl Then
2. For every atom a=ancL

L0(L
0)θl in φnew (or equivalent to this form)

3. If Lold is the respective level in the schema of cold and Lold≺L Then

4. Transform a to ancL
Lold(L

old)θl
5. EndIf
6. ElseIf Lold is the respective level in the schema of cold and L≺Lold Then

7. Transform a to Loldθ�ancLold

L (l) where θ�=θ except for two cases:
(a) a=ancL

L0(L
0)<l and l≠min(descLold

L (ancLold

L (l))) where θ�= ≤,

(b) a=ancL
L0(L

0)>l and l≠max(descLold

L (ancLold

L (l))) where θ�= ≥
8. EndIf
9. EndFor
10. EndIf
11. If all atoms of φold and φnew involve conjunctions of atoms of the form a=ancL

L0

(L0)θancL’
L0’(L

0’) (or equivalent to this form), where both L and L’are higher than the
respective levels of cold Then

12. For every atom a=ancL
L0(L

0)θancL’
L0’(L

0’) in φnew
15. Transform a to ancL

Lold(L
old)θancL’

Lold’(L
old’)

16. EndFor
17. EndIf
18. Apply the transformed selection condition to cold and derive a new data set DS1.
19. Replace all the values of DS1 with their ancestor values at the levels of cnew, resulting in a

new data set DS2.
20. Aggregate (”group by” in the relational semantics) on the tuples of DS2, so that we

produce cnew.

Fig. 7. Algorithm Cube_Usability

Modelling and Optimisation Issues for Multidimensional Databases 495

Month Type Salesman Country Sum_old

Feb-97 Literature Netz USA 5

Sep-97 Philosophy Netz Japan 50

Sep-97 Literature Netz Japan 30

(a)

Month Type Salesman Country Sum_1

Sep-97 Philosophy Netz Japan 50

Sep-97 Literature Netz Japan 30

(b)

Month Category Salesman Country Sum_2

Sep-97 Book Netz Japan 50

Sep-97 Book Netz Japan 30

(c)

Month Category Salesman Country Sum_new

Sep-97 Book Netz Japan 80

(d)

Fig. 8. Calculating cnew from cold

To check whether cnew can be computed from cold we apply Theorem 3. The
schemata and aggregation functions of the two cubes are compatible (conditions (a),
(b) of Theorem 3). Moreover, φnew is L-contained from φold with respect to the levels
of cnew. Following, Lines 2-10 of Algorithm Cube_Usability, we transform φnew so
that it can be applied to the schema of cube cold. The transformations of Lines 3-8
result in

φn@o=Mar-97≤Month ∧ Month≤Sep-97 ∧ “Literature”≤Type ∧
Type≤”Philosophy”.

We apply the transformed selection condition to cold (depicted in Fig. 8a) and
derive a new data set DS1 (depicted in Fig. 8b). Then, we replace all the values of DS1

with their ancestor values at the levels of cnew (Line 19), resulting in a new data set
DS2 (depicted in Fig. 8c). Finally, we aggregate the tuples of DS2 and we produce cnew

(depicted in Fig. 8d). ■

4 Discussion and Future Work

We have presented a logical model for cubes based on the key observation that a cube
is not a self-existing entity, but rather a view over an underlying data set. The
proposed model is powerful enough to capture all the commonly encountered OLAP
operations such as selection, roll-up and drill-down, through a sound and complete
algebra. We have showed how this model can be used as the basis for processing cube
operations and have provided syntactic characterisations for the problems of cube
usability. Theorem 3, which provides these syntactic characterisations, is very
important for the usual operations of the model. Two of the most eminent cases are:
(a) navigation from a certain cube c to a cube having all its levels higher (or equal)
than the respective levels of c and (b) selection over a certain cube c where all the
levels acting as variables are higher (or equal) than the levels of c.

Of course, the applicability of Theorem 3 is not restricted in these two simple
cases. Normally, an OLAP screen contains more than one cubes [14]. Thus, an
interactive OLAP session produces many cubes which possibly overlap. Computing a
new set of cubes can possibly be achieved by using already computed and cached
cubes (provided that they fulfil the criteria of Theorem 3). Consequently, the results

496 P. Vassiliadis and S. Skiadopoulos

on the problem of cube usability can be used both for the query optimisation and the
caching processes. The cube usability results can also be applied in the problem of
data warehouse design, where the optimal set of views (with respect to query and
maintenance cost) has to be derived. Testing for cube usability can avoid redundancy
in the final data warehouse schema and improve the run-time of the design algorithm
[12].

As future work, we plan to incorporate our results in a system under construction
in NTUA. The modelling parts could be extended to take into account aspects of the
hierarchy structure (partial ancestor functions, hierarchies that are not well captured
as lattices, etc.). The theoretical results over query processing can be extended to
handle optimisation issues for a broader set of selection conditions, partial rewritings
and optimisation of the physical execution for cube operations. Finally, a challenging
issue is how to devise smarter algorithms for the cube usability problems.

References

1. R. Agrawal, A. Gupta, and S. Sarawagi. Modelling multidimensional databases.
Technical report, IBM Almaden Research Center, San Jose, California, 1995.

2. L. Cabbibo and R. Torlone. Querying Multidimesional Databases. 6th International
Workshop on Database Programming Languages (DBPL6), 1997.

3. S. Chaudhuri, K. Shim. Optimizing Queries with Aggregate Views. In Proceedings of
the 5th International Conference on Extending Database Technology (EDBT-96),
Avignon, France, March 25-29, 1996.

4. S. Chaudhuri, S. Krishnamurthy, S. Potamianos, and K. Shim. Optimizing queries
with materialized views. In Proceedings of the 11th International Conference on Data
Engineering (ICDE), IEEE Computer Society, pp. 190-200, Taipei, March 1995.

5. S. Cohen, W. Nutt, A. Serebrenik. Rewriting Aggregate Queries Using Views.
Proceedings of the 18th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems (PODS), Philadelphia, Pennsylvania. ACM Press, 1999.

6. H.B. Enderton, A Mathematical Introduction to Logic. Academic Press, 1972.
7. M. Gebhardt, M. Jarke and S. Jacobs. A toolkit for negotiation support on multi-

dimensional data. In Proceedings of ACM SIGMOD International Conference on
Management of Data. Tucson, Arizona, 1997.

8. A. Gupta, V. Harinarayan, and D. Quass. Aggregate query processing in data
warehouses. In Proceedings of the 21st International Conference on Very Large Data
Bases (VLDB), Zurich, Switzerland, Morgan Kaufmann Publishers, August 1995.

9. M. Gyssens, L.V.S. Lakshmanan. A Foundation for Multi-Dimensional Databases. In
Proceedings of the 23rd International Conference on Very Large Databases (VLDB),
Athens, August 1997.

10. W. Lehner. Modeling Large Scale OLAP Scenarios. In Proceedings of the 6th

International Conference of Extending Database Technology (EDBT-98), 1998.
11. C. Li, X. Sean Wang. A Data Model for Supporting On-Line Analytical Processing. In

Proceedings of the International Conference on Information and Knowledge
Management (CIKM), 1996.

Modelling and Optimisation Issues for Multidimensional Databases 497

12. S. Ligoudistianos, T. Sellis, D. Theodoratos, and Y. Vassiliou. Heuristic Algorithms
for Designing the Data Warehouse with SPJ Views. In Proceedings of the First
International Conference on Data Warehousing and Knowledge Discovery, (DaWaK),
Lecture Notes in Computer Science, Vol. 1676, Springer, 1999.

13. Metadata Coalition. Metadata Interchange Specification (MDIS v. 1.1).
http://www.metadata.org/standards/toc.html 1997.

14. Microsoft Corp. OLEDB for OLAP February 1998. Available at
http://www.microsoft.com/data/oledb/olap/

15. OLAP Council. The APB-1 Benchmark. 1997. Available at
http://www.olapcouncil.org/research/bmarkly.htm

16. TPC. TPC Benchmark H and TPC Benchmark R. Transaction Processing Council.
June 1999. Available at http://www.tpc.org/

17. J. Ullman. Principles of Database and Knowledge-Base Systems. Volume II: The New
Technologies. Computer Science Press. 1989.

18. J.D. Ullman. Information integration using logical views. Proceedings of the 6th
International Conference on Database Theory (ICDT-97), Lecture Notes in Computer
Science, pp. 19-40. Springer-Verlag, 1997.

19. P. Vassiliadis, T. Sellis. A Survey on Logical Models for OLAP Databases. SIGMOD
Record, vol. 28, no. 4, December 1999.

20. P. Vassiliadis, S. Skiadopoulos. (Not) Yet Another Model for Multidimensional
Databases (Extended version). Technical Report, KDBSL 1999. Available at
http://www.dblab.ece.ntua.gr/~pvassil/publications/cube99.ps.gz

21. P. Vassiliadis. Modeling Multidimensional Databases, Cubes and Cube Operations. In
Proceedings of 10th International Conference on Scientific and Statistical Database
Management (SSDBM), Capri, Italy, July 1998.

22. P. Larson, H. Z. Yang. Computing Queries from Derived Relations. In Proceedings of
the 11th International Conference on Very Large Data Bases (VLDB), Stockholm,
Sweden, Morgan Kaufmann Publishers, August 1985.

