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Abstract This study introduces a student model and control algorithm, optimizing
mathematics learning in children. The adaptive system is integrated into a computer-
based training system for enhancing numerical cognition aimed at children with
developmental dyscalculia or difficulties in learning mathematics. The student model
consists of a dynamic Bayesian network which incorporates domain knowledge and
enables the operation of an online system of automatic control. The system identifies
appropriate tasks and exercise interventions on the basis of estimated levels of accu-
mulated knowledge. Student actions are evaluated and monitored to extract statistical
patterns which are useful for predictive control. The training system is adaptive and
personalizes the learning experience, which improves both success and motivation.
Comprehensive testing of input data validates the quality of the obtained results and
confirms the advantage of the optimized training. Pilot results of training effects are
included and discussed.
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Introduction

Arithmetic skills are important in modern society, as numerical cognition and cal-
culations are omnipresent in everyday life. However, many children suffer from
difficulties in learning mathematics. Developmental dyscalculia (DD) is a specific
learning disability affecting the acquisition of arithmetic skills (von Aster and Shalev
2007). Genetic, neurobiological, and epidemiological evidence indicates that DD is
a brain-based disorder, although poor teaching and environmental deprivation might
also be relevant (Shalev 2004). Children with DD show a deficit in basic numeri-
cal skills such as number comparison (Butterworth 2005a, b; Landerl et al. 2004;
Rubinsten and Henik 2005) and exhibit fundamental problems in number process-
ing (Cohen Kadosh et al. 2007; Kucian et al. 2006; Mussolin et al. 2010; Price
et al. 2007). Furthermore, they tend to experience difficulties in acquiring arith-
metic procedures and show a deficit in fact retrieval (Geary et al. 1992; Ostad 1997,
1999). DD has an estimated prevalence of 3–6 % in English- and German-speaking
countries (Badian 1983; Lewis et al. 1994; Shalev and von Aster 2008).

The relatively high prevalence of DD suggests that it is important to investigate
intervention approaches to prevent or remediate learning difficulties in mathemat-
ics. The range of existing interventions includes remedial programs for elementary
school children (Dowker 2001; Kaufmann et al. 2003; Kucian et al. 2011; Lenhard
et al. 2011; Wilson et al. 2006) as well as preventive programs for pre-school chil-
dren at risk of developing mathematical difficulties (Griffin et al. 1994; Van De
Rijt and Van Luit 1998; Wright 2003). However, only a few of these programs are
computer-based (and have been scientifically evaluated). ‘Number Race’ (Wilson
et al. 2006) focuses on the training of basic numerical skills, while ‘Rescue Calcu-
laris’ (Kucian et al. 2011) combines the training of basic-numerical abilities with the
training of arithmetic skills. ‘Elfe and Mathis’ (Lenhard et al. 2011) aligns the train-
ing to the German scholar curriculum. All of these approaches are carefully designed
for children with difficulties in learning mathematics, however, they lack user
adaptation.

Yet, adaptability is very important for children suffering from learning disabilities
as these children are highly heterogeneous and thus a high grade of individu-
alization is necessary. Intelligent tutoring systems can contribute to this need.
Current systems use approaches such as knowledge tracing (Corbett and Anderson
1994), performance factors analysis (Pavlik et al. 2009a, b) and Bayesian networks
(Mislevy et al. 1999) to estimate, assess and predict the knowledge of the user. In
the domain of mathematics, existing systems mainly focus on specific aspects of
the domain (Koedinger et al. 1997; Mislevy et al. 1999; Rau et al. 2009). Previous
work exists not only for student models, but also for control mechanisms. A plethora
of advanced control approaches aimed at optimization of complex mechanisms
was proposed (Garcia et al. 1989). Controllers can be based upon explicit models
obtained through intervention-driven identification (Busetto and Buhmann 2009).
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Related predictive models aimed at treating learning disabilities have been introduced
for spelling learning (Baschera et al. 2011; Baschera and Gross 2010).

The present study is based on the intelligent tutoring system ’Calcularis’ (Käser
et al. 2012). In this system, we model the cognitive processes of mathematical devel-
opment using a dynamic Bayesian network. Our student model represents different
mathematical skills and their dependencies. An automatic control mechanism aimed
at optimizing learning and acting on the skill net is introduced. The design of the skill
net allows for a non-linear control mechanism. In contrast to previous approaches,
we allow movements along all edges of the skill net (particularly also backward
movements), which enables us to implicitly model forgetting and knowledge gaps.
The model’s predictive control enables a significant level of cognitive stimulation
which is user- and context-adaptive. We assess the efficiency and adaptability of the
introduced student model and control mechanism based on input logs from two user
studies in Germany and Switzerland. Furthermore, we analyse properties of users and
skills used in the model. Finally, we also include first pilot results of the obtained
training effects.

Training Environment

Current neuropsychological models postulate the existence of task-specific rep-
resentational modules located in different areas of the brain. The functions of
these modules are relevant to both adult cognitive number processing and calcula-
tion (Dehaene 2011). Dehaene’s triple-code model (Dehaene 1995) presumes three
representational modules (verbal, symbolic, and analogue magnitude) related to num-
ber processing. These modules develop hierarchically over time (von Aster and
Shalev 2007) and the overlap of the number representations increases with grow-
ing mathematical understanding (Kucian and Kaufmann 2009). The development of
numerical abilities follows a subject-dependent speed which is influenced by the
development of other cognitive as well as domain general abilities and biographical
aspects (von Aster and Shalev 2007). Hence, when teaching mathematics, a substan-
tial degree of individualization may not only be beneficial, but even necessary. The
introduced computer-based training addresses these challenges by

1. structuring the curriculum on the basis of the natural development of mathemat-
ical understanding (hierarchical development of number processing).

2. introducing a highly specific design for numerical stimuli enhancing the different
representations and facilitating understanding. The different number representa-
tions and their interrelationships form the basis of number understanding and are
often perturbed in dyscalculic children (von Aster and Shalev 2007).

3. training operations and procedures with numbers. Dyscalculic children tend to
have difficulties in acquiring simple arithmetic procedures and show a deficit in
fact retrieval (Geary et al. 1992; Ostad 1997, 1999).

4. providing a fully adaptive learning environment. Student model and controlling
algorithm optimize the learning process by providing an ideal level of cognitive
stimulation.
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The training program is composed of multiple games in a hierarchical structure.
Games are structured according to number ranges and further grouped into two areas.
The first area (Part A) focuses on “number representations and understanding”. It
trains the transcoding between alternative representations and introduces the three
principles of number understanding: cardinality, ordinality, and relativity. Games in
this area are structured according to current neuropsychological models (von Aster
and Shalev 2007; Dehaene 1995). The first area is exemplified by the LANDING

game (Fig. 1a). In this game, children need to indicate the position of a given num-
ber on a number line. To do so, a falling cone has to be steered using a joystick.
The second area (Part B) is that of “cognitive operations and procedures with num-
bers”, which aims at training concepts and automation of arithmetical operations.
This is illustrated by the PLUS-MINUS game (Fig. 1b). Children solve addition and
subtraction tasks using blocks of tens and ones to model them. The different games
are categorized according to their complexity and relative importance. Main games
require a combination of abilities to solve them, while support games train specific
skills and serve as basic prerequisites. Difficulty estimation and hierarchy result from
the development of mathematical abilities.

Fig. 1 In the LANDING game (a), the position of the displayed number (29) needs to be indicated on the
number line. In the PLUS-MINUS game (b), the task displayed needs to be modelled with the blocks of
tens and ones
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Selection of Actions

A fundamental component of the intelligent tutoring system is its pedagogical mod-
ule: the subsystem making the teaching decisions. It selects the skills for training
and determines the actions for the selected skill. To adaptively assess user inputs and
dynamically optimize decisions, the system consists of mechanisms of model predic-
tive control (Garcia et al. 1989). The state of the learner is estimated by the system
and thus identified according to its internal representation: the student model. An
attached bug library enables recognition of error patterns.

Student Model

The mathematical knowledge of the learner is modelled using a dynamic Bayesian
network (Friedman et al. 1998). The network consists of a directed acyclic graphical
model representing different mathematical skills and their dependencies. Two skills
sA and sB have a (directed) connection if mastering skill sA is a prerequisite for
skill sB . The belief of a skill sAi (probability that the skill is in the learnt state) is
conditioned over its parents πi (see Charniak (1991) for an introduction to Bayesian
networks):

p(sA1, ..., sAn) =
∏

i

psAi where psAi := p(sAi |πi) (1)

As the skills cannot be directly observed, the system infers them by posing tasks
and evaluating user actions. Such observations (E) indicate the presence of a skill
probabilistically. The posteriors psAi |Ek of the net are updated after each solved task
k using the sum-product algorithm (libDAI Mooij 2010).

We initalize all probabilities to 0.5 as we do not have any knowledge about the
mathematical proficiency of a learner at the beginning of the training (the students
are of different age and have different mathematical skill levels).

This initalization is in accordance with the principle of maximum entropy. The
dynamic Bayesian net has a memory of 5, i.e. posteriors are calculated over the last
five time steps.

The skill net representation is ideal for modelling mathematical knowledge as the
learning domain exhibits a distinctively hierarchical structure. The structure of the net
was designed using experts’ advice and incorporates domain knowledge. The design
of the net was inspired by work from Falmagne et al. (1990). Like in knowledge space
theory, we order skills hierarchically and assume that some skills can be surmised
by others. If a child for example can compute additions involving a ten crossing, we
assume that the child also knows addition without ten crossing. The basic assump-
tion is that to know skill sA, the child needs to know all the precursor skills of sA.
However, in our case, each skill is assigned to exactly one task. Our work can also
be related to partial order knowledge structures (Desmarais et al. 1995) which also
model dependencies between skills as conditional probabilities. Our resulting stu-
dent model contains 100 different skills as illustrated in Fig. 2. Table 1 explains the
different skills of the skill net and their notation used in Fig. 2.

The skills in Part A are ordered and colour-coded according to the different
number ranges 0–10, 0–100, and 0–1000. Within each number range, the hierarchy
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follows the four-step developmental model (von Aster and Shalev 2007): The linguis-
tic symbolization (step 2), arabic symbolization (step 3), and analogue magnitude
representation (step 4) develop based on a (probably) inherited representation of car-
dinal magnitude of numbers (step 1). Following this model, the transcoding between
the linguistic and arabic symbolization (V erbal → Arabic) is trained before giving
the position of a written number on a number line (Arabic → Numberline).

Skills in Part B can also be divided into the number ranges 0–10, 0–100 and
0–1000 (colour-coded in Fig. 2). Furthermore, they are ordered according to their dif-
ficulties. The difficulty of a task depends not only on the magnitude of the numbers
included in the task and the complexity of the task, but also on the representation of
the task and the means allowed to solve it. A task such as ‘65 + 22 = 87’ (Addition
2,2) is considered more difficult than computing ‘13 + 5 = 18’ (Addition 2,1). On
the other hand, modelling ‘65 + 22 = 87’ with one, ten and hundred blocks (Support
Addition 2,2) is easier than calculating it mentally. And finally, tasks including ten
(or hundred) crossings such as ‘65 + 27 = 92’ (Addition 2,2 TC) are more complex
to solve than tasks without crossings.

In general, each skill of the hierarchical network is associated with a task, i.e.,
there exists a game type for each skill in the network. The PLUS-MINUS game
(section “Training Effects”) is for example associated with all addition and subtrac-
tion skills allowing the use of material (for example Support Addition 2,2). On the
other hand, the LANDING game (section “Training Effects”) is assigned to all skills
involving the positioning of a number on a number line (for example Arabic →
Numberline).

Controller

The selection of actions is rule-based and non-linear. Rather than following a spec-
ified sequence to the goal, learning paths are adapted individually. Therefore, each
child trains different skills and hence plays different games during training (Fig. 4).
This increases the set of possible actions (due to multiple precursors and successors).
After each solved task, the controller selects one of the following options based on
the current state:

1. Stay: Continue the training of the current skill;
2. Go back: Train a precursor skill;
3. Go forward: Train a successor skill;

The decision is based on the posterior probabilities delivered by the student model.
After each solved task, the controller fetches the posterior probability ps|E(t) of the
skill s being trained at time t. Then, ps|E(t) is compared against a lower and an
upper threshold, denoted by pl

s(t) and pu
s (t). The resulting interval defines the opti-

mal training level: if the probability lies between the thresholds, ‘Stay’ is selected.
In contrast, ‘Go Back’ and ‘Go forward’ are selected if ps|E(t) < pl

s(t) and if
ps|E(t) > pu

s (t), respectively. Thresholds are not fixed: they converge with more
played samples (nc):

pl
s(t) = pl0

s (t) · lc
nc and pu

s (t) = pu0
s (t) · uc

nc (2)
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Table 1 Explanation of skills and notations used in the skill net

Area Notation Definition

Part A

Number Concrete Number represented as a set of objects.

representations Verbal Spoken number.

Arabic Written number.

Numberline Number represented as a position on a number line.

Transcoding r1→r2 Translation of number from number representation r1 to r2.

Ordinality Ordinal 1 Predecessor and successor of a number need to be given.

Relative Calculate indirect (+/-2, +/-3) predecessors and successors

of a given number.

Ordinal 2 Judge, if the given numbers are sorted in ascending order.

Ordinal 3 Guess a secret number.

Other Subitizing Simultaneous perception of numbers from 1-4.

Estimation Which of three displayed point sets corresponds to the

given number?

Counting Forwards (and backwards) counting in the according

number range.

Part B

Mental calculation Addition a1,a2 Addition of two numbers. a1 and a2 denote the number

of digits of the addends. TC denotes a ten crossing

and HC a hundred crossing.

Subtraction s1,s2 Subtraction of two numbers. s1 and s2 denote the number

of digits of the minuend and the subtrahend. TC denotes

a ten crossing and HC a hundred crossing.

Addition TC Addition with bridging to ten in the range from 0–20.

Subtraction TC Subtraction with bridging to ten in the range from 0–20.

Operation o1,o2 Addition or subtraction of two numbers used as a repetition

of the whole number range. o1 and o2 denote the number

of digits of the operation. Operation 2,2 for example

denotes any addition or subtraction skill in the number

range 0–100.

Calculation concepts Support Addition Addition of two numbers. The task can be solved using

one, ten and hundred blocks.

Support Subtraction Subtraction of two numbers. The task can be solved using

one, ten and hundred blocks.

Sets Understanding of operations on sets.



Int J Artif Intell Educ (2013) 23:115–135 123

Initial values of the upper
(
pl0

s (t)
)

and lower
(
pu0

s (t)
)

thresholds as well as the
change rates (lc, uc) are heuristically determined. The convergence of the thresholds
ensures a sufficiently large number of solved tasks per skill and prevents training the
same skill for too long without passing it.

When ‘Stay’ is selected, a new appropriate task is built. Otherwise, a precursor (or
successor) skill is selected by fetching all precursor (successor) skills of the current
skill and feeding them into a decision tree. Figure 3 shows the simplified decision
trees for ‘Go Back’ and ‘Go Forward’. The nodes of the trees encode selection rules
that were designed using experts’ advice.

For the ‘Go Back’ option, remediation skills are preferred: If error matching pat-
terns of the bug library are detected, the relevant remediation skill is trained. A typical
mistake in addition involving two digit numbers would be to sum up all the digits,
i.e. ‘23 + 12 = 8’ (skill Addition 2,2 in Fig. 2). This mistake indicates that the child
has not yet understood the Arabic notation system in the number range from 0–100.
A remediation skill for this error is the training of the Arabic notation system in this
range, i.e. decomposing numbers between 0 and 100 into tens and units and thus
learning the meaning of the digit position of a number (skill Arabic− > Concrete

in Fig. 2). If the child did not commit any of the typical errors, the controller prefers
unplayed precursor skills. The hierarchical skill model assumes that the precursor
skills of a skill s are a prerequisite for knowing s. If the child fails that skill s, the
controller tries to find the particular precursor skill that might cause the problem.
For the played precursor skills, the controller assumes that the child already knows
them (since they have been played and passed) and hence an unplayed precursor skill
is selected. Finally, main skills are preferred over support skills. Main skills require
a combination of abilities to solve them, while support skills train specific abilities
and serve as basic prerequisites. In arithmetic operations, main skills involve mental
calculation, while support skills involve the use of material (unit, ten and hundred
blocks) to solve the task. Therefore, if a child fails in solving addition problems with
two-digit numbers (for example ‘23 + 12 =?’) the controller first checks if the child
can do mental calculation (= main skill) of simpler addition problems (for example
‘23+2 =?’). If this is the case, the support skill modelling the operation with material
can be picked. If however the child also fails in solving the simpler addition problem,
this easier skill needs to be trained first. Hence, the main skills are always checked
first. If there is more than one candidate precursor skill after crossing the decision
tree (i.e. going through all the rules), the candidate skill with the lowest posterior
probability is selected. Therefore, the controller selects the skill where the child has
the lowest proficiency.

#remediation
skills?

# unplayed
precursors?

# main
skills?

0 0 0

nn
support

skill

B unplayed
precursors

allpre-
cursors

n

Recursion
skill sr set?

# main skills?no 0

select sr

yes n

support
skill

F

Fig. 3 Decision trees for ‘Go Back’ (left) and ‘Go Forward’ (right) options. At the end nodes (triangles),
the candidate skill with lowest posterior probability (‘Go Back’ option)/with posterior probability closest
to 0.5 (‘Go Forward’ option) is selected
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Addition 1,1
3+5=8

Addition 1,1 TC

8+5=13

Support Addition 2,1
21+3=24

Addition 2,1
21+3=24

Support Addition 2,2
21+15=36

Addition 2,2
21+15=36

Addition 2,1 TC
28+5=33

Addition 2,2 TC
28+15=43

Fig. 4 Skill sequences of three children in addition. The notation is consistent with Fig. 2. User 2 and 3
passed all skills in the range, while user 1 did not pass this range within the training period. The length of
the rectangles indicates the number of samples

For the ‘Go Forward’ option, recursion skills are preferred. If a user fails to master
skill sA and goes back to sB , sA is set as a recursion skill. After passing sB , the
controller will return to sA. If a child for example fails solving addition problems with
two-digit numbers (for example ‘23 + 12 = ?’) and goes back to train an easier skill
(for example ‘23 + 2 = ?’), the child will go back to the addition problems with two-
digit numbers after passing that easier skill. If no recursion skill is set, the controller
again prefers main skills over support skills. If the child masters solving addition
problems with two-digits (for example ‘23 + 12 = ?’) the controller will go further
to ask addition problems involving a ten crossing (for example ‘23 + 18 = ?’). This
rule ensures that children having a good mathematical knowledge take the fastest way
through the skill net. The support skill modelling the task ‘23+18 = ?’ using material
will only be played if the child does not master the mental calculation. If there is
more than one candidate successor skill at the end of the decision tree, the candidate
skill with posterior probability closest to 0.5 (maximization of entropy) is selected.
This final rule ensures that the gain of knowledge about the child is maximized.

To consolidate less sophisticated skills and to increase variability, the controller
uses selective recalls. This control design exhibits the following advantages:

1. Adaptability: the network path targets the needs of the individual user (Fig. 4).
2. Memory modelling: forgetting and knowledge gaps are addressed by going back.
3. Locality: the controller acts upon current nodes and neighbours, avoiding

unreliable estimates of far nodes.
4. Generality: the controller is domain model-independent: it can be used on

arbitrary discrete structures.

Experimental Setup

To measure the quality of the controller and the student model, the training program
was assessed in two user studies. All the analyses performed are based on external
effectiveness tests and input data from participants of these two studies.
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Study Design and Participants

Experimental data stem from 63 participants (45 females, 18 males) of two on-
going large-scale studies (Germany and Switzerland). Participants were divided into
a training group (n = 33, 66.6̄ % females) completing a 6-weeks training and
a waiting group (n = 30, 76.6̄ % females) starting with a 6-weeks rest period,
followed by a 6-weeks training. The groups were matched according to age (train-
ing group: M = 9.26 years (SD 0.94), waiting group: M = 9.39 years (SD
1.09), t (61) = −0.49, p = .63) and intelligence (training group CFT/BUEGA-
score: 101.09 (SD 11.38), waiting group CFT/BUEGA-score: 100.13 (SD 10.74),
t (61) = 0.34, p = .73) (Cattell et al. 1997; Esser et al. 2008). All participants
attended the 2.–5. grade of public elementary schools and were German-speaking.
Mathematical performance of the participants was evaluated at the beginning of the
study (t1), after 6 weeks (t2) and after 12 weeks (t3). The children exhibited dif-
ficulties in learning mathematics indicated by a below-average performance in the
standardized arithmetic test HRT (addition T-score: 34.14 (SD 6.71), subtraction T-
score 33.76 (SD 7.36)) (Haffner et al. 2005). At the beginning of the study (t1),
there was no significant difference in arithmetic performance between the training
and waiting group (addition: t (61) = −0.25, p = .80, subtraction: t (61) = −1.30,
p = .20). The participants were required to train with the program for a period of
6 weeks with a frequency of five times per week, during sessions of 20 min. For
the present analyses, only children with at least 24 complete training sessions were
included.

External Instruments

Training effects were measured using paper-pencil and computer-based mathematical
performance tests. On the one hand, arithmetic performance was assessed using the
addition and subtraction subtests of the HRT (re-test reliability: addition rtt = .82,
subtraction rtt = .86). In these subtests, children are provided with a list of addition
(subtraction) tasks ordered by difficulty. The goal of the test is to solve as many tasks
as possible within a time frame of 2 min. Thus, the HRT measures speed. On the
other hand, arithmetic performance was also measured with the AC (arithmetic test),
which exists in a paper-pencil and a computer-based version. In this test, children
solve a series of addition (and subtraction) tasks ordered by difficulty. Tasks were
presented serially in a time frame of 10 min. In contrast to the HRT, the AC also
contains more complex tasks in the number range from 0–100.

Input Data

Experimental data consisted of input logs recorded from 63 participants and contain-
ing six weeks of training (training group: t1 − t2, waiting group: t2 − t3). On average,
each user completed 29.77 (SD 2.43, min 24, max 36) sessions. The total number of
solved tasks was 1540 (SD 276, min 1011, max 2179), while the number of solved
tasks per session corresponded to 51.70 (SD 7.86, min 37.63, max 75.1).
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To facilitate the analysis of the log files, the concept of ‘key skills’ is introduced.
Key skills are defined in terms of subject-dependent difficulty, they are the hardest
skills for the user to pass. More formally,

Definition 1 A skill sA is a key skill for a user U, that is sA ∈ KU , if the user went
back to a precursor skill sB at least once before passing sA.

From this follows that the set of key skills KU may be different for each user U
(and it typically is). In the sequence in Fig. 4, user 2 has no key skills, while user 3
has one key skill (coloured in green) and user 1 has several key skills.

Results & Discussion

The analyses performed on the input data and the external effectiveness measures
assess the quality of the training program and in particular the quality of the student
model and the controller mechanism according to different criteria:

1. Efficacy of training program: We show that the participants improved over the
course of the training. This improvement is demonstrated by an increased math-
ematical performance within the system (section “System-internal Improvement
Analysis”). Furthermore, we also include first pilot results of external arithmetic
tests (section “Training Effects”).

2. Assessment of controller design: We show that the introduced control mecha-
nism significantly speeds up learning (section “Controller Design”).

3. Adaptability: We show that the program rapidly adapts to the knowledge level of
the user (section “Controller Adaptability”).

However, the analyses of the logfiles are not only useful to assess the quality of
the training program, but also to understand properties of the users and the skills
of the student model. We analyse the performance of the users in the program as
well as properties of skills (section “Key Skills”). Such analyses can lead to a better
understanding of the mathematical knowledge of the users.

Training Effects

A repeated measures general linear model (GLM) analysis was conducted to evaluate
training effects (t1 − t2) as a within-subject factor and group (Training/Waiting) as a
between-subject factor. Parametric t-tests were used to calculate differences between
measurement points (paired-sample t-test, t1 − t2, t2 − t3). Table 2 summarizes the
means and standard deviations of the mathematical performance measures for all
measurement points, including calculated statistical results. There were no between-
group performance differences prior to the intervention. The training induced a
significant improvement in subtraction, while no improvement was found after the
waiting period (HRT interaction: p < .001, AC interaction: p < .001). Children also
improved significantly in addition, however no significant difference between the
training and the waiting group was found (HRT interaction: p = .18, AC interaction:
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Table 2 Mathematical performance of training and waiting group over the course of the study: Mean
(SD) test scores (number of correctly solved tasks) for t1, t2 and t3. Interaction between training and group
(F-score) as well as differences between measurement points (t-score)

t1 t2 t-score F-score t3 t-score

(t1 − t2) (t1 − t2) (t2 − t3)

HRT Add.

TG 15.64 (5.22) 18.36 (5.31) 5.20∗∗∗ 1.82 – –

WG 16.53 (6.10) 18.23 (6.00) 3.08∗∗ 19.37 (5.74) 1.97

HRT Sub.

TG 12.06 (5.27) 16.15 (5.17) 8.36∗∗∗ 15.71∗∗∗ – –

WG 14.00 (6.65) 14.63 (6.25) 0.86 17.33 (6.04) 4.84∗∗∗

AC Add.

TG 68.58 (25.82) 77.22 (24.73) 3.15∗∗ 1.99 – –

WG 67.83 (29.79) 69.94 (27.83) 0.55 73.60 (20.92) 1.41

AC Sub.

TG 50.91 (26.12) 63.13 (26.98) 5.40∗∗∗ 14.39∗∗∗ – –

WG 53.54 (25.29) 53.21 (27.19) 0.14 65.38 (23.26) 4.22∗∗∗

∗p < .05, ∗∗p < .01, ∗∗∗p < .001

p = .16). Surprisingly, also the waiting group improved significantly in the HRT
addition test, this effect can however be attributed to outliers (one child probably not
understanding the test correctly at t1 and therefore solving only three tasks within the
two minutes). Removing the outlier leads to a significant interaction (p = .018).

The improvement in subtraction is supported by additional evidence: The percent-
age of training time children spent with subtraction tasks. In fact, 62.5 % (78.4 % if
considering key skills only) of arithmetical tasks consist of subtractions. As children
had especially difficulties in subtractions with ten crossings (section “Key Skills”)
the improvement might stem from a better understanding of subtracting with carry
or from higher automation and thus lower working memory load. However, sub-
traction is also considered the main indicator for numerical understanding (Dehaene
2011). Consistently with this, improved number line representation is directly mea-
surable from the recorded input data. Input data used in the analysis consists of all
landing tasks (denoted as samples with index i) solved by each child. Each sample
can be characterized by a variable xi which denotes the index of the sample, i.e. the
normalized measurement point of that sample (xi ∈ [0, 1]), and a dependent vari-
able yi denoting the deviance from the correct position. The analysis of the accuracy
was performed using a non-linear mixed effect model (NLME) (Pinheiro and Bates
1995):

yi ∼ Poisson(λi) with λi = eb0+b1·xi+ui and ui ∼ N (0, σ 2) (3)

where ui denotes the noise term. Fitting was performed using one group per user.
Over time, children achieved greater accuracy when giving the position of a number
on a number line (Fig. 5, top). The intercept (coefficient b0) was significant only for
the number range 0-100, indicating that children started at different accuracy levels
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Fig. 5 Landing accuracy in the number range 0–10 (left) and 0–100 (right) increases over time. The x-
axis denotes the normalized sample indices (Time[x]), while the y-axis displays the deviance from the
correct position. Exact coefficients of NLME along with standard deviation (in brackets) are plotted by
respective significance (sig.) and confidence intervals (ci)

in the number range 0-10. The significance of b1 in both number ranges demonstrates
the significant improvement in accuracy (Fig. 5, bottom).

The lines of points (at 10 %, 20 % and 30 % in Fig. 5 (left)) arise from the nature
of the LANDING game (Fig. 1a): The children need to indicate the position of a given
number by steering a falling cone with the joystick. If nothing is done, the cone will
always land at the position of the five (in the number range 0–10), which leads to
deviations of exactly 10 % (if the given number was 4 or 6), 20 % (if the given
number was 3 or 7) or 30 % (if the given number was 2 or 8).

The improvement measured in subtraction, number representation and partly
addition is promising and builds the basis for further extensions of the training
environment and control structure. One possible future feature could be the incor-
poration of answer times into the task assessment. In the number range from 0-10,
fact retrieval is very important and can only be tested by taking answer times into
account. Another addition could be to teach and assess the strategies used to perform
arithmetic operations.

System-internal Improvement Analysis

To quantify improvement, the learning rate over KU was measured from all available
samples (both if the participant mastered them during training or not). One sample
xi denotes exactly one task of one user. The variable yi denotes the result (correct or
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wrong solution) of that task. Therefore, the analysis includes all the tasks that the chil-
dren solved at their respective key skills. The improvement over time I ([tKU

, tend])
was computed using a NLME model employing one group per user and key skill:

yi ∼ Binomial(1, pi) with pi = 1

1 + e−(b0+b1·xi+ui )
and ui ∼ N (0, σ 2) (4)

where ui denotes the noise term. The sample indices xi have been normalized (xi ∈
[0, 1]).

The resulting model (Fig. 6) for all skills exhibits an estimated mean improve-
ment of 21.8 % (95 % confidence interval = [0.21 0.23]). Interestingly, subtraction
exhibits a lower improvement than addition. Given the external training effects
(section “Training Effects”), we would expect the opposite. However, children have a
lot more subtraction key skills than addition key skills (section “Key Skills”). There-
fore, despite the average improvement per skill being higher for addition, the total
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Fig. 6 The percentage of correctly solved tasks (of key skills) increases over the training period by 21.8 %
for all skills (top). The normalized sample indices xi (Time[x]) are displayed on the x-axis, while the y-
axis shows the ratio of correct solutions. Improvements for addition (add), subtraction (sub) and number
representation (numrep) are in the same range. Exact coefficients of NLME along with standard deviation
(in brackets) are plotted by respective significance (sig.) and confidence intervals (ci) (bottom)
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improvement is still higher for subtraction. Furthermore, the higher number of key
skills in subtraction leads to more practice in subtraction skills. The conducted anal-
ysis measures the learning progress within the system and demonstrates that children
managed to improve their abilities in areas that were difficult for them.

Key Skills

Although the key skills vary a lot over the children, some skills seem to be difficult for
most of the children and thus more likely to be key skills: Nine skills were key skills
for more than one third of the children. Of these skills, five were subtraction skills,
four number representation skills and one an addition skill. Even more than 50 %
of the children had problems with the top three key skills: Indicating the position
of a number on a number line from 0-100 (Arabic → Numberline in Fig. 2) was
difficult for 52 % of the children. This result is in line with previous work, which
observed deficits of mental number representation in children with DD (Kucian et al.
2006; Mussolin et al. 2010; Price et al. 2007). More than 50 % of the children also
had problems in subtraction in the number range from 0–100, when a ten crossing
was involved (Subtraction 2,1 TC and Subtraction 2,2 TC in Fig. 2). This result again
confirms the link between subtraction and spatial number representation (Dehaene
2011).

The mathematical performance of the users, i.e. their mathematical knowledge can
also be assessed by their number of key skills. The normalized number of key skills is
computed as the number of key skills divided by the number of totally played skills.
On average, the normalized number of key skills per user was 0.27 (SD 0.14). This
number can be interpreted as follows: On average, the children had difficulties with
27 % of the skills that they played. When breaking this number down into the differ-
ent categories (number representation, addition and subtraction) it can be seen that
most problems arose in subtraction. The normalized number of key skills was 0.26
(SD 0.19) in number representation, 0.17 (SD 0.2) in addition and 0.37 (SD 0.15)
in subtraction. The distribution over the normalized key skill numbers in the differ-
ent categories are displayed in Fig. 7. Interestingly, we observe that the normalized
key skill numbers in addition and number representation skills follow an exponen-
tial distribution. The long tail of the distribution demonstrates that most children did
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skills (center) and subtraction skills (right)
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not have difficulties in these categories. Rather, only few children had strong diffi-
culties in these categories. On the other hand, the normalized number of key skills
in subtraction is significantly higher than in the two other categories (indicated by a
two-sided t-test: p < .001 for both categories). The key skill analysis once more also
shows the heterogeneity of the children: The number of key skills as well as the key
skill set itself varied a lot over the children. Nevertheless, we can observe an accu-
mulation in subtraction. Having more input data available, a more detailed analysis
of key skills will be conducted in future work.

Controller Design

Further analysis demonstrates that the possibility to go back to easier (played or
unplayed) skills yields a significant beneficial effect. The user not only immediately
starts reducing the rate of mistakes, but also learns faster. The log files recorded 973
individual cases of going back. On average, 20.6 cases (SD 12.1) of going back are
recorded per user. From Fig. 8 it can be seen that the number of going back cases
varies a lot among the users, i.e. the users exhibit very different levels of mathe-
matical knowledge. All cases in which users play a certain skill (samples xb), go
back to one or several easier skills, and finally pass them to come back to the cur-
rent skill (samples xa) are incorporated in the analysis. The variable xb therefore
denotes all tasks before going back, while xa stands for the tasks solved after going
back. Per each case k the correct rate over time ca,k (cb,k) is estimated separately
for xa and xb. Fitting is performed via logistic regression using bootstrap aggrega-
tion (Breiman 1996) with resampling (B = 200). The direct improvement dk is the
difference between the initial correct rate ca,k (at xa = 0) and the achieved correct
rate cb,k (at xb = 1). The improvement in learning rate rk is the difference in learn-
ing rate over ca,k and cb,k . The distributions over d̄ (mean over dk) and r̄ (mean over
rk) are well approximated by a normal distribution (Fig. 9 top) with means greater
than 0. The rate of correct tasks d̄ is increased by 0.14 while the learning rate r̄ is
even increased by 0.36 after going back. Both measurements are positive on average
and a two-sided t-test indicates their statistically significant difference from 0 (Fig. 9
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bottom). To summarize, children reduce the rate of mistakes immediately after going
back (demonstrated by the significantly positive d̄) and exhibit a higher learning rate
(demonstrated by the significantly positive r̄).

Controller Adaptability

During the study, all participants started the training at the lowest (easiest) skill of
the net. The adaptation time [t0, tKU

] is defined as the period between the start t0
of the training and the first time the user hits one of his key skills tKU

. On average,
the participants reached their tKU

after solving 148.3 tasks (SD 122.6, min 17, max
534). The number of complete sessions played up to this point was 2.1 (SD 1.97,
min 0.2, max 10.92). These results show that the model rapidly adjusts to the state of
knowledge of the user. The fast adaptability is also confirmed by the fact that 52.4 %
of the children hit their first key skill already in the number range 0–10, 38.1 % of
children in the number range 0–100 and only 9.5 % of the children in the number
range 0–1000. The fast adaptation to the the child’s knowledge ensures that each
child trains at the optimal difficulty level already after a few days of training.

Conclusion

This study presents a model of the cognitive processes of mathematical development
and an automatic control algorithm acting on it. The student model is represented by
a dynamic Bayesian network which incorporates domain knowledge. The introduced
control algorithm is decision-based and enables the optimization of the learning



Int J Artif Intell Educ (2013) 23:115–135 133

process through targeted cognitive stimulation. The reported data demonstrate a sig-
nificant increase in mathematical performance, measured by external effectiveness
tests as well as from input logs. The large-scale input data analysis also proved the
efficiency and adaptability of the student model and the control algorithm. In par-
ticular, the possibility to go back to easier skills significantly (and rapidly) reduces
the error rate and yields an overall increased learning rate. The student model has
the potential to be further refined by incorporating additional available experimental
data.
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Käser, T., Busetto, A.G., Baschera, G.-M., Kohn, J., Kucian, K., von Aster, M., Gross, M. (2012).
Modelling and optimizing the process of learning mathematics. In Proceedings ITS (pp. 389–398).
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