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Summary. Over the last few years there has been a growing interest in using

financial trading networks to understand the microstructure of financial markets.

Most of the methodologies developed so far for this purpose have been based

on the study of descriptive summaries of the networks such as the average node

degree and the clustering coefficient. In contrast, this paper develops novel statis-

tical methods for modeling sequences of financial trading networks. Our approach

uses a stochastic blockmodel to describe the structure of the network during each

period, and then links multiple time periods using a hidden Markov model. This

structure allows us to identify events that affect the structure of the market and

make accurate short-term prediction of future transactions. The methodology is

illustrated using data from the NYMEX natural gas futures market from January

2005 to December 2008.
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1. Introduction

Financial trading networks are directed graphs in which nodes correspond to
traders participating in a financial market, and edges represent pairwise buy-sell
transactions among them that occur within a period of time. Financial trading
networks contain important information about patterns of order execution in
order-driven markets; hence, they provide insights into aspects of market mi-
crostructure such as market frictions, trading strategies, and systemic risks.

Consider first the role of financial trading networks in understanding the
effect of market frictions on market microstructure. In the absence of market
frictions, we could expect orders from different traders to be matched randomly.
However, real trading networks often exhibit features such as elevated transitiv-
ity or preferential attachment among certain groups of actors (Adamic et al.,
2010; Boyd et al., 2013), which are inconsistent with random matching. In the



case of open-outcry markets, these features can be partially explained by socio-
logical factors (for example, see Zaloom, 2004). Alternative explanations include
the effect of different market roles (e.g., liquidity providers/takers) or trading
strategies (e.g., long vs. short strategies), see Ozsoylev et al., 2010 or Hatfield
et al., 2012.

Financial trading networks also provide information that is key in the assess-
ment of systemic risks. Analysis of the evolution of financial trading networks
can aid in tests of financial market stability (or fragility as it may be) by fi-
nancial regulators to ensure that events such as a large trader failures do not
serve to destabilize financial markets. In the event of a large trader failure, an
understanding of their network will help guide regulators through the process of
unwinding their positions and may dictate whether those positions are unwound
in the open market or through a transfer to a suitable counterparty (Boyd et al.,
2011). Financial trading networks can also be used to identify important traders
that play a critical role in the market (for example, by acting as de facto market
makers or liquidity providers). In addition, they can also help us identify fre-
quent counterparties of specific traders which may aid in regulatory oversight by
federal agencies and market exchanges alike; price distortion and manipulation
may be more likely between frequent counterparties than by one agent acting in
isolation (Harris et al., 1994).

The literature on the mathematical modeling of financial trading networks is
limited. Theoretical approaches that explain the structure of a financial network
as the outcome of a game have recently been developed (e.g., see Ozsoylev et al.,
2010 and Hatfield et al., 2012), but they are of limited practical applicability.
Most of the empirical work on trading networks has focused on the use of sum-
mary statistics such as degree distributions, average betweenness and clustering
coefficients (Newman, 2003; Adamic et al., 2010; Boyd et al., 2013). These type
of approaches provide some interesting insights into market microstructure, but
suffer from two main drawbacks. First, the summary statistics to be monitored
need to be carefully chosen to ensure that relevant features of the market are
captured. Although some of the game-theoretic work mentioned before might
provide some insights into which network summaries should be monitored, the
choice is typically difficult and the selection is often incomplete. Second, and
more importantly, approaches of this type are not helpful in predicting future
interactions among traders.

In this paper we move beyond descriptive network summaries to focus on
stochastic models for array-valued data that place a probability distribution on
the full network. The statistical literature on stochastic models for individual
networks is well developed. The simplest such model is the class Erdös-Rényi
model (Erdös and Rényi, 1959), which assumes that interactions among any two
traders occur independently and with constant probability that is independent
of the identity of the traders. This class of models, although well studied from a
theoretical perspective, is too simplistic to accommodate most realistic networks.
As an alternative, Frank and Strauss (1986) proposed the class of exponentially
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weighted random graphs, also called p∗ models. These models formalize the use
of summary measures by including them as sufficient statistics in exponential-
family models. On the other hand, Holland and Leinhardt (1981) proposed
the class of p1 models, which extend generalized linear models to array-valued
data. A related approach was introduced in Hoff et al. (2002) using the concept
of latent social space models in which the probability of a link between nodes
increases as they occupy closer positions in latent social space.

The model discussed in this paper extends the class of stochastic blockmodels
first introduced in Wang and Wong (1987) to account for time dependence.
Stochastic blockmodels rely on the concept of structural equivalence to identify
groups of traders (which we shall refer to as trading communities in the context
of this application) with similar interaction patterns. Indeed, the partitions
induced by stochastic blockmodels are driven not only by the internal relations
within a particular group of traders, but also by the interactions among these
groups (Wasserman and Faust, 1994). Model-based stochastic blockmodels have
been developed as array-valued extensions of traditional mixture models. For
example, Nowicki and Snijders (2001) proposed a simple Bayesian model that
uses a finite mixture model and a Dirichlet prior for the probabilities of the
latent classes. An extension of this model that relies on infinite mixture models
based on the Dirichlet process have been proposed by Kemp et al. (2006) and Xu
et al. (2006). More recently Airoldi et al. (2008) introduced the idea of mixed
membership stochastic blockmodels for binary networks wherein the actors can
belong to more than one latent class to explore subjects with multiple roles in
the network.

In this paper we propose modeling the dynamics of financial trading networks
using an extension of the Bayesian infinite-dimensional model of Kemp et al.
(2006). The model we propose accounts for dependence of the network structure
over time and incorporates more general hierarchical priors on the interaction
probabilities as well as the partition structure. To account for changes in market
microstructure over time, the blockmodels associated with different time periods
are linked through a hidden Markov model. In finance, regime switching models
have been used in many contexts such as applications to model stock returns
(Guidolin and Timmermann, 2005; Kim et al., 2001; Perez-Quiroz and Tim-
mermann, 2000), in asset allocation (Ang and Bekaert, 2002a), business cycles
(Filardo, 1994), and interest rates (Ang and Bekaert, 2002b). As we show in our
illustration, by developing a dynamic, fully probabilistic model for array-valued
data we are able to monitor structural changes in market microstructure while
at the same time making more accurate short-term predictions of future trading
patterns. The resulting model is similar in spirit to the one described in Ro-
driguez (2011), but allows for additional flexibility and enhanced interpretability.

To motivate the structure of our model, consider a time series of weekly bi-
nary trading networks generated from proprietary transactions among 71 traders
in the NYMEX natural gas futures market between January 2005 and Decem-
ber 2008 (for more details about this dataset, see Section 4). Figure 1 presents
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time series plots of the corresponding clustering coefficients (which measure the
tendency of traders to establish transitive relationships) and assortativity coef-
ficients (which measures the tendency of traders to interact with other traders
that are similar to themselves). From these plots it is clear that there is a change
in market microstructure on September 2006 (which corresponds the date of in-
troduction of an electronic trading system in this market). In addition, there
is evidence of two additional structural changes around January 2007 and June
2008. This suggests that a Markov switching model in which the state of the sys-
tem is assumed to be constant over short periods of time could be a reasonable
model for this type of data.

Figure 2 presents a matrix representation for the trading network associated
with the week of February 22, 2005 (traders have been reordered to make the
graph easier to read). The graph suggests the existence of groups of traders
that are structurally equivalent, including a large group of inactive traders that
do not participate on transactions during this particular week, as well as small
group of traders with a high number of intra-group and a relatively low number
of inter-group transactions. This suggests that a stochastic block model might
be a reasonable model for individual trading networks.

The rest of the paper is organized as follows: Section 2 provides a detailed
description of our modeling approach and discusses its main properties. Sec-
tion 3 describes the associated computational algorithm. Section 4 presents the
analysis of the NYMEX natural gas futures market data. Finally, Section 5 dis-
cusses some limitations of the model and possibilities for further extensions and
applications.

2. Modeling Approach

2.1. Stochastic blockmodels for financial trading networks

We encode a financial trading network among n traders using an n × n binary
matrix Y = [yi,j ], where yi,j = 1 if trader i sold at least one contract to trader j,
and yi,j = 0 otherwise. Since we focus on proprietary trading (i.e., transactions
carried out by the traders with their own money, rather that their clients’), we
adopt the convention yi,i ≡ 0, as traders do not buy from themselves. Note
that treating the network as binary ignores information about the transactions
such as the number, maturities, and prices of the contracts. We proceed in this
way for two reasons. First, in some markets (i.e., black pools) the prices and
number of contracts might not be disclosed, making it impossible to apply more
general models. Second, even if available, this extra information provides limit
additional information about the identity of counterparties subject to contagion
risks. Nonetheless, the framework we describe here can be easily extended to
more general types of weighted networks.

A stochastic blockmodel for Y assumes that its entries are conditionally
independent given two sets of parameters: a vector of discrete indicators ξ =
(ξ1, . . . , ξn), where ξi = k if and only if trader i belongs to community k =
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Fig. 1. Clustering coefficients and assortativity coefficient for weekly trading networks

in the NYMEX natural gas futures market between January 2005 and December 2008.

The vertical dashed line indicates the date in which electronic trading was introduced in

this market.
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Fig. 2. Incidence matrix for the trading network associated with the week of February

22, 2005. The solid lines suggest one possible partition of the traders into groups of

structurally equivalent nodes.
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1, . . .K, and a K×K matrix Θ = [θk,l] such that θk,l represents the probability
that a member of community k sells a contract to a member of community l.
Therefore,

yi,j | ξ,Θ ∼ Ber(θξi,ξj ).

Note that K represents the maximum potential number of trading communities
allowed a priori. A posteriori, the effective number of trading communities K∗

present in the sample could potentially be smaller than K.
A Bayesian formulation for this model is completed by eliciting prior distri-

butions for K, ξ, and Θ. In the sequel we set K = ∞ and let the indicators be
independent a priori where

Pr(ξi = k | w) = wk, k = 1, 2, . . . ,

and the vector of weights w = (w1, w2, . . .) is constructed so that

wk = vk
∏

s<k

{1− vs}, vk ∼ Beta(1− α, β + αk), (1)

for 0 ≤ α < 1 and β > −α. Note that, by setting K = ∞, the model allows for
the effective number of components K∗ to be as large as the number of traders
n, for any n.

The formulation in (1) is equivalent to the constructive definition of the
Poisson-Dirichlet process (Pitman, 1995; Pitman and Yor, 1997), with α = 0
leading to the Dirichlet process. Hence, the implied prior on the effective number
of trading communities K∗ and the size of those communities, m1, . . . ,mK∗ , is
given by

Γ(β + 1)

(β + αK∗)Γ(β + n)

K∗

∏

k=1

(β + αk)
Γ(mk − α)

Γ(1− α)
.

Note that larger values of α or β favor a priori a larger effective number of
K∗. Setting α = 0 leads to the prior expected number of communities to grow
logarithmically with n, while for α > 0 the expected number components grows
as a power of the number of traders.

Consider now building a prior on the matrix of interaction probabilities Θ.
In this case we let

θk,l | aO, bO, aD, bD ∼

{

Beta(aO, bO) k 6= l

Beta(aD, bD) k = l.

This prior is more general than those typically used in stochastic blockmodels,
as it allows the distribution of the diagonal and off-diagonal elements of Θ to
have different hyperparameters. This ensures additional flexibility in terms of
the implied degree distribution of the network, while still ensures that both p(Y)
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and p(Θ) are jointly exchangeable, i.e., that the distributions are invariant to the
order in which traders or communities are labeled (Aldous, 1981). In addition,
it allows us to define an assortative index for the network as

Υ = log {E(θk,k | aD, bD)} − log {E(θk,l | aO, bO)}

= log

{

aD
aD + bD

}

− log

{

aO
aO + bO

}

,

and a cycle-type transitivity index

χ = Pr(yi,j = 1 | yj,k = 1, yk,i = 1, aO, bO, aD, bD, α, β) =
χN

χD
,

where

χN =
(1− α)(2− α)

(β + 1)(β + 2)

(aD + 2)(aD + 1)aD
(aD + bD + 2)(aD + bD + 1)(aD + bD)

+ 3
(1− α)(β + α)

(β + 1)(β + 2)

aD
(aD + bD)

(

aO
aO + bO

)2

+
(β + α)(β + 2α)

(β + 1)(β + 2)

(

aO
aO + bO

)3

,

and

χD =
(1− α)(2− α)

(β + 1)(β + 2)

(aD + 1)aD
(aD + bD + 1)(aD + bD)

+ 2
(1− α)(β + α)

(β + 1)(β + 2)

aD
(aD + bD)

aO
(aO + bO)

+
(β + α)(β + α+ 1)

(β + 1)(β + 2)

(

aO
aO + bO

)2

.

These two indexes are model-based alternatives to assortativity by degree and
the clustering coefficients discussed in Figure 1 (Rodriguez and Reyes, 2013).

2.2. Hidden Markov models for time series of financial trading networks

We are interested in extending the hierarchical blockmodel described in Section
2.1 to model a time series of financial trading networks Y1, . . .YT . The ex-
tension is built with two goals in mind. First, we are interested in identifying
events associated with structural changes in the network and, therefore, in the
microstructure of the market. Second, we aim at making short-term predictions
about the structure of the network in future periods. For these reasons, we fo-
cus our attention on the use of hidden Markov models for network data. Hidden
Markov models are widely used in financial (e.g., see Ryden et al., 1998 and
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references therein) and biological (e.g., Yau et al., 2011 and references therein)
applications where there is interest in identifying structural changes in the sys-
tem under study. Hence, they represent a natural alternative in this context.

More specifically, consider now a sequence Y1, . . . ,YT of binary trading net-
works observed over T consecutive time intervals, where all networks are associ-
ated with a common set of n traders. In addition, let ζ1, . . . , ζT be a sequence of
unobserved state variables such that ζt = s indicates that the market is in state
s ∈ {1, 2, . . . , S} during period t = {1, 2, . . . , T}. Each state has associated with
it a vector of community indicators ξs = (ξ1,s, . . . , ξn,s) with ξi,s ∈ {1, 2, . . . ,K}
and a matrix of interaction probabilities Θs = [θk,l,s] representing, respectively,
the grouping of traders into trading communities and the probabilities of trades
occurring between communities when the system is in state s. Analogously to
our previous discussion, S and K represent the maximum number of states and
the maximum number of trading communities allowed by the model a priori. A
posteriori, the effective number of states S∗ and the effective number of commu-
nities on each stateK∗

1 , . . . ,K
∗
S is potentially smaller than S andK, respectively.

Conditionally on the state parameters, observations are assumed to be inde-
pendent, i.e.,

yi,j,t | ζt, {ξs}, {Θs} ∼ Ber(yi,j,t | θξi,ζt ,ξj,ζt ,ζt).

Hence, the joint likelihood for the data can be written as

p ({Yt} | {ζt}, {ξs}, {Θs}) =

T
∏

t

n
∏

i=1

n
∏

j=1

j 6=i

θ
yi,j,t

ξi,ζt ,ξj,ζt ,ζt

(

1− θξi,ζt ,ξj,ζt ,ζt
)1−yi,j,t

=

S
∏

s=1

K
∏

k=1

K
∏

l=1

∏

(i,j,t)∈Ak,l,s

θ
yi,j,t

k,l,s (1− θk,l,s)
1−yi,j,t ,

where Ak,l,s = {(i, j, t) : i 6= j, ζt = s, ξi,ζt = k, ξj,ζt = l} is the set of observations
associated with the interactions between communities k and l in state s.

To account for the persistence in network structure illustrated in Figure 1, we
assume that the evolution of the system indicators follows a first-order Markov
process with transition probabilities

p(ζt = s | ζt−1 = r, {πr}) = πr,s,

where πr = (πr,1, . . . , πr,S), the r-th row of the transition matrix Π = [πr,s],

must satisfy
∑S

s=1 πr,s = 1. A natural prior for πr is a symmetric Dirichlet
distribution,

πr | γ ∼ Dir

( γ

S
,
γ

S
, . . . ,

γ

S

)

.

Note that, as S → ∞, the induced distribution of transitions over states is
equivalent to that generated by a Dirichlet process prior with concentration
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parameter γ (for example, see Green and Richardson, 2001). Therefore the model
is similar in spirit to the infinite hidden Markov model discussed in Rodriguez
(2011) (see also Teh et al., 2006). However our construction does not couple the
values of π1,π2, . . . through a common centering probability. This is in contrast
to the infinite hidden Markov model, where all transition probabilities into the
same state are assumed to be similar. Indeed, the structure of the infinite hidden
Markov model implies that if state s is highly persistent (i.e., πs,s is close to one),
then the probability of transitioning from any other states into state s will also
tend to be large, a property that is unappealing when modeling financial trading
networks. Since γ plays an important role in controlling the number of effective
states S∗, its value is estimated from the data by assigning an exponential prior
to it and carrying out a sensitivity analysis to evaluate the impact of our prior
choice on model performance.

The specification of the model is completed by eliciting hierarchical priors on
the state-specific parameters ξ1, . . . , ξS and Θ1, . . . ,ΘS . Following the discus-
sion in Section 2.1, we let

Pr(ξi,s = k | ws) = wk,s, k = 1, 2, ·,

where wk,s = vk,s
∏

h<k{1 − vh,s} are weights constructed from a sequence
v1,s, v2,s, . . . where vk,s ∼ Beta(1 − αs, βs + kαs). Again, since the hyperpa-
rameters αs and βs play a critical role in controlling the number of expected
trading communities, they are assigned independent hyperpriors αs ∼ p(αs) and
βs ∼ p(βs). A natural choice is to assign αs a uniform prior on the unit interval
and βs an exponential prior, while carrying out a sensitivity analysis that in-
volves priors that favor small values of αs as well as priors that favor both lower
and higher values for βs.

Similarly, the interaction probabilities are assigned priors

θk,l,s | as,O, bs,O, as,D, bs,D ∼

{

Beta(as,O, bs,O) k 6= l

Beta(as,D, bs,D) k = l.

where {as,O}, {bs,O}, {as,D}, and {bs,D} are independent and gamma distributed
with shape parameter c and unknown rates dO, eO, dD and eD, which are in
turn assigned exponential priors with means λd and λe.

3. Computation

The joint posterior distribution for the model is proportional to

p ({Yt} | {ζt}, {ξs}, {Θs}) p ({Θs} | {as,O}, {bs.O}, {as,D}, {bs.D})

p ({as,O} | dO) p ({bs,O} | eO) p ({as,D} | dD) p ({bs,D} | eD)

p(dO) p(eO) p(dD) p(eD) p ({ζt} | Π) p (Π | γ) p (γ)

p ({ξs} | {αs}, {βs}) p ({αs}) p ({βs}) . (2)
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This posterior distribution is not analytically tractable. Therefore, we imple-
mented a Markov chain Monte Carlo algorithm (Robert and Casella, 2005) that
simulates a dependent sequence of random draws from the target distribution.
Given initial values for the parameters, these are successively updated from their
full conditional distributions. Standard Markov chain theory ensures that, after
an appropriate burn-in, the values of the parameters generated by the algorithm
are approximately distributed according to (2).

To derive the algorithm, we rely on the fact that the joint posterior distribu-
tion in (2) can be factorized as

p ({Θs} | {ξs}, {ζt}, {as,O}, {bs,O}, {as,D}, {bs,D}, {Yt})×

p ({ξs}, {ζt}, {as,O}, {bs,O}, {as,D}, {bs,D},

dO, eO, dD, eD, {αs}, {βs}, γ | {Yt}) (3)

Since the values of θk,l,s are conditionally independent a posteriori given the
observations, the indicators {ζt} and {ξi,s}, and the prior parameters {as,O},
{bs,O}, {as,D} and {bs,D}, the first term in (3) is easy to sample from. Further-
more, conditionally on the other parameters in the model, the state indicators
ζ1, . . . , ζT are sampled jointly using a forward-backward algorithm (Rabiner,
1986), while the full conditional distribution for each collection of indicators
ξ1,s, . . . , ξn,s is sampled using a collapsed (marginal) Gibbs sampler (Neal, 2000).
Details of the algorithm are discussed in Appendix A.

3.1. Estimation and prediction

Given a sample from the previous Markov chain Monte Carlo algorithm,

(

{Θ(b)
s }, {ξ(b)s }, {ζ

(b)
t }, {a

(b)
s,O}, {b

(b)
s,O}, {a

(b)
s,D},

{b
(b)
s,D}, d

(b)
O , e

(b)
O , d

(b)
D , e

(b)
D , {α(b)

s }, {β(b)
s }, γ(b)

)

, b = 1, . . . , B,

obtained after an appropriate burn-in period, point and interval estimates for
model parameters can be easily obtained by computing the empirical mean
and/or the empirical quantiles of the posterior distribution. For example, pos-
terior co-clustering probabilities, ωt,t′ = Pr(ζt = ζt′ | {Yt}) can be estimated
as

ω̂t,t′ = Pr(ζt = ζt′ | {Yt}) ≈
1

B

B
∑

b=1

I(ζ
(b)
t = ζ

(b)
t′ ),

where I(·) denotes the indicator function. The estimates can be arranged into
a co-clustering matrix [ω̂t,t′ ], which can in turn be used to identify the state of
the system at each time period through a decision-theoretic approach (e.g., see
Lau and Green, 2007). A similar procedure can be used to identify communities
on each period.
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The samples from the posterior distribution can also be used as the basis for
prediction. For this purpose, note that the probability that trader i sells at least
one security to trader j in the unobserved period T + 1 can be estimated by

E (yi,j,T+1 | {Yt}) ≈
1

B

B
∑

b=1

π
(b)

ζ
(b)
T

,s
θ
ξ
(b)
i,s

,ξ
(b)
j,s

.

Using a simple 0/1 utility function, a future sell trade from trader i to trader j
is predicted as ŷi,j,T+1 = I(E{yi,j,T+1 | {Yt}} > f), for some threshold f that
reflects the relative cost associated false positive and false negative links.

4. An application to the NYMEX natural gas futures market

In this section we analyze the sequence of T = 201 weekly financial trading
networks constructed from proprietary trades in the natural gas futures market
on the New York Mercantile Exchange (NYMEX) between January 2005 and
December 2008 that were introduced in Section 1. As discussed in Section 2,
directed binary networks were constructed by setting yi,j,t = 1 if there was
at least one transaction in which trader i sold an option to trader j during
week t. One particularity of this market is that futures were traded on the
New York Mercantile Exchange (NYMEX) only through traditional open-outcry
trades until September 5, 2006, and as a hybrid market that included electronic
trading conducted via the CME Globex platform after that date.

A total of 970 unique traders participate in proprietary transactions at least
once over the four years to December 2008. However, this list includes traders
that either abandoned proprietary trading or went bankrupt during the period
under study, as well as traders that entered the market after January 2005.
Indeed, only between 240 and 340 traders participated in trades each week (see
Figure 3). Since we have limited information about the times at which different
traders entered or left the market, our analysis focuses on 71 traders we identified
as being present in the market (although not necessarily active) during the whole
period. Traders were anonymized and are identified in the plots using numbers.

The results presented in this section are based on 100,000 iterations collected
after a burn-in period of 10,000 iterations. Convergence of the algorithm was
diagnosed using the single-chain approach discussed in Geweke (1992) and by
a visual evaluation of trace plots. We monitored the log-likelihood function, as
well as the number of active states S∗ and the mean and variance over time of
the assortativity and transitivity indexes {Υt} and {χt}. In terms of hyperpa-
rameters, the maximum number of states is set to S = 30, the prior means for
γ and {βs} are assigned exponential priors with unit mean, and the priors for
dO, eO, dD and eD are exponential distributions with mean 2. This specification
implies that, a priori, E(Υt) = 0 for all t = 1, . . . , T , so that we favor neither
assortative nor dissasortive trading communities a priori.
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Fig. 3. Number of active traders each week in the NYMEX natural gas future market

between January 2005 and December 2008.
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Fig. 4. In the left panel, point estimate of the states for the 201 weeks observed for the

trading network with the vertical line indicating the introduction of the electronic platform

on week 85. On the right, mean posterior pairwise incidence matrix for the weekly

networks, illustrating the uncertainty associated with this point estimate.
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4.1. Identifying changes in market microstructure

Figure 4 presents the posterior estimate of the co-clustering matrix for the latent
states ζ1, . . . , ζT , along with a point estimator for the grouping of networks into
states (recall Section 3.1). This point estimator suggests that the structure of
the trading networks alternates between four highly persistent states. The first
state runs between early January 2005 and early September 2006, when the
electronic market is introduced. The presence of a change point at this date is
not surprising in light of the descriptive analysis presented in Section 1. The
second state runs between early September 2006 and early May 2007, when the
system transitions to a new state for a short period of 3 months. After that, the
system seems to transition to a fourth state in early August 2007 (interestingly,
the beginning of the recent financial crises), where it stays for 37 weeks before
returning to the third state in early June 2008 (which coincides with some of the
largest drops in the S&P500 energy sector index over the last 13 years). Also,
it is clear from the heatmap that, although there is some uncertainty associated
with this point estimate of the system states (mostly in time of the transitions
between states three and four), this uncertainty is relatively low.

Figure 5 shows estimates of the community structure associated with two
different weeks, that of October 11, 2005 (t = 40) and that of November 14, 2007
(t = 145). We selected these dates because they are representative of states 1
and 4. Note that, although there are some similarities, the overall structure of
the communities is quite different. State 1 is characterized by a large group of
25 mostly inactive traders, while all other traders tend to fall, for the most part,
into singleton clusters. On the other hand, while state 4 also exhibits a number
of singleton clusters, it also shows a number of small communities comprising
between 5 and 10 traders each.

Figure 6 shows time series plots for the estimates of the assortativity and
transitivity indexes Υ1, . . . ,ΥT and χ1, . . . , χT . Recall that these quantities
are model-based alternatives to the assortativity by degree and the clustering
coefficient presented in Figure 1. Both sets of plots share some common features,
revealing mild assortativity and higher transitivity before September 2006 and
highly disassortative networks with lower transitivity afterwards. This makes
sense because we would expect that the introduction of an electronic market
would limit the effect of social connections among traders (which tend to be
assortative and transitive) and favor connections based on differential trending
strategies (which tend to be disassortative).

Finally, Table 1 shows point estimates and credible intervals associated with
some hyperparameters in the model, both a priori and a posteriori. In all cases,
the posterior estimates appear to be more concentrated and be centered around
different values than the prior.
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Fig. 5. Mean posterior pairwise incidence matrices of traders for t = 40 from state 1 and

t = 145 from state 4.

Table 1. Prior and posterior point estimates and credibility intervals for

some model hyperparameters.

Parameter
Posterior Posterior 95% Prior Prior 95%
mean credible interval mean credible interval

α40 0.748 (0.198, 0.942) 0.500 (0.025, 0.975)
α100 0.524 (0.240, 0.851) 0.500 (0.025, 0.975)
α145 0.587 (0.264, 0.785) 0.500 (0.025, 0.975)

β40 1.225 (0.034, 4.526) 1.000 (0.025, 3.689)
β100 2.518 (0.107, 7.563) 1.000 (0.025, 3.689)
β145 1.223 (0.034, 4.510) 1.000 (0.025, 3.689)

γ 0.344 (0.090, 0.814) 1.000 (0.025, 3.689)
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Fig. 6. Time series plot for assortativity and transitivity indexes. The vertical line repre-

sents the transitions across states identified from Figure 4.
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4.2. Network prediction

As we discussed in the introduction, besides identifying points of change in
the microstructure of the market, one of our goals is to predict future trading
partnerships. To assess the predictive capabilities of the model we ran an out-
of-sample crossvalidation exercise where we held out the last ten weeks in the
dataset and made one-step-ahead predictions for the structure of the held-out
networks. More specifically, for each t = 191, 192, . . . , 200 we use the infor-
mation contained in Y1, . . . ,Yt to estimate the model parameters and obtain
predictions for Ŷt+1 for different values of the threshold f . Each of these predic-
tions is compared against the observed network Yt+1, the number of false and
true positives computed, and a receiver operating characteristic (ROC) curve is
constructed. For comparison purposes, the same exercise was repeated first by
fitting a single blockmodel (which corresponds to taking S = 1) and then by
fitting a single Erdös-Renyi model (which corresponds to S = 1 and K1 = 1) to
the whole collection of networks. Figure 7 shows the ten operating characteristic
curves associated with one-step-ahead out of sample predictions from our hid-
den Markov model, along with estimates of the area under the receiver operating
characteristic curves (AUC) for all three models. The proposed hidden Markov
model shows superior predictive capabilities, with AUCs between 0.85 and 0.9.
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4.3. Sensitivity analysis

To assess the effect of our prior choice on posterior inference we conducted a
sensitivity analysis where the model was fitted with somewhat different priors.
In particular, we used independent Beta priors with mean 1/10 and variance
9/1100 for each αs, as well as exponential priors with means 1/3 and 3 for
each βs. On the other hand, a exponential priors with mean 2 were also used
for dO, eO, dD and eD. Although inferences on the community structure were
somewhat affected by prior choices, inferences on the state parameters as well as
the assortativity and transitivity indexes and the predictive performance were
essentially unchanged.

5. Discussion

We have presented a class of hidden Markov models for financial trading net-
works that have clear potential for market regulatory oversight. Key application
of these models include identifying specific events (such as large trader failures
or specific changes in market rules) that affect market stability, as well as iden-
tifying frequent trading counterparties that might be likely collusion partners or
particularly at risk in case of bankruptcies.

In this paper we have focused on models for binary networks where only
the presence/absence of transactions over a week is recorded. However, when
information about volumes is available, the model can be easily extended to
incorporate this information.

Although the use of a hidden Markov model allows us to account for time de-
pendence and is useful for identifying structural changes in the system, a struc-
ture that assumes abrupt changes in the network might be too restrictive for
predictive purpose. In the future we plan to evaluate models based on fragmen-
tations and coagulations (e.g., see Bertoin, 2006) that allow for smooth evolution
in the community structure, as well as extensions of auto logistic models that
might allow for improved predictions.

18



A. Appendix A

Here, we provide the details of the MCMC algorithm discussed in 3. The al-
gorithm proceeds by updating the model parameters from the following full
conditional distributions:

(a) For each i = 1, . . . , n and occupied states s, ξi,s = k with probability

Pr(ξi,s = k | · · · ,Y)

=



































(m−i
k − αs)

K∗

s,−i
∏

l=1

p({yi,j,t:(i,j,t)∈Ai
k,l,s})

p({yi,j,t:(i,j,t)∈A−i

k,l,s
})

p({yj,i,t:(i,j,t)∈Ai
k,l,s})

p({yj,i,t:(i,j,t)∈A−i

k,l,s
})
, k ≤ K∗

s,−i

(βs + αsK
∗
s,−i)

K∗

s,−i
∏

l=1

p({yi,j,t : (i, j, t) ∈ A−i
l,s})

p({yj,i,t : (i, j, t)A
−i
l,s}), k = K∗

s,−i + 1,

where K∗
s,−i = maxj 6=i{ξj,s}, m

−i
k =

∑

j 6=i I(ξj,s=k),

A−i
k,l,s = {(i′, j′, t) : i′ 6= j′ 6= i, ζt = s, ξi′,ζt = k, ξj′,ζt = l},

Ai
k,l,s = {(i′, j′, t) : i′ = i, ζt = s, ξj′,ζt = l}

⋃

A−i
k,l,s,

A−i
l,s = {(j, t) : j 6= i, ζt = s, ξj,ζt = l},

and the marginal predictive distribution, p({yi,j,t : (i, j, t) ∈ A}) is given
by

Γ(
∑

A yi,j,t + as)Γ(|A|+ bs −
∑

A yi,j,t)

Γ(as + bs + |A|)

Γ(as + bs)

Γ(as)Γ(bs)
.

and |A| is the number of elements in A.

(b) Since the prior for θk,l,s is conditionally conjugate, we update these param-
eters for k, l ∈ {1, . . . ,K∗

s } by sampling from

θk,l,s | · · · ,Y ∼ Beta





∑

Ak,l,s

yi,j,t + as,mk,l,s + bs −
∑

Ak,l,s

yi,j,t





for Ak,l,s = {(i, j, t) : i 6= j, ζt = s, ξi,ζt = k, ξj,ζt = l} and mk,l,s = |Ak,l,s|.

(c) Since the prior for the transition probabilities is conditionally conjugate, the
posterior full conditional for πr, r = 1, . . . , S is the Dirichlet distribution

p(πr | · · · ,Y) =

S
∏

s=1

πγ/S+nrs−1
r,s

for nrs = |{t : ζt−1 = r, ζt = s}|.
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(d) The posterior full conditional of γ is

p(γ | · · · ,Y) ∝ p(γ)

S
∏

s=1

Γ(γ)

Γ(γ + ns)
γLs

where ns = |{t : ζt = s}| and Ls =
∑

r Ins,r>0 for ns,r = |{t : ζt−1 =
s, ζt = r}|. Since this distribution has no standard form, we update γ
using a random walk Metropolis-Hastings algorithm with symmetric log-
normal proposal,

log{γ(p)} | γ(c) ∼ Normal

(

log{γ(c)}, κ2
γ

)

where κ2
γ is a tuning parameter chosen to get an average acceptance rate

between 30% and 40% .

(e) The posterior full conditional of the pairs (as,O, bs,O) and (as,D, bs,D) has
the following general form:

p(as, bs | · · · ,Y) ∝ p(as | d)p(bs | e)

S
∏

k=1

S
∏

l=1

p(yi,j,t | Ak,l,s,mk,l,s)

for the marginal predictive p(yi,j,t | Ak,l,s,mk,l,s) as defined in step (b),
Ak,l,s = {(i, j, t) : i 6= j, ζt = s, ξi,ζt = k, ξj,ζt = l} and mk,l,s = |Ak,l,s|.
Since no direct sampler is available for this distribution, we update each
pair using a random walk Metropolis-Hastings algorithm with bivariate
log-normal proposals,

(

log{a(p)s }, log{b(p)s }
)t

|
(

a(c)s , b(c)s

)t

∼

Normal

[

(

log{a(c)s }, log{b(c)s }
)t

,Σab

]

where Σab is a tuning parameter matrix chosen independently for diagonal
and off-diagonal pairs of parameters.

(f) The parameters of the Poisson-Dirichlet process (αs, βs) can be jointly up-
dated using the algorithm described in Escobar and West (1995).

(g) The posterior full conditional distributions for the hyperparameters dO, eO, dD,
and eD correspond to gamma distributions with shape parameter (cS∗+1)
and rate parameters (

∑

S∗ as,O + λd), (
∑

S∗ bs,O + λe), (
∑

S∗ as,D + λd),
(
∑

S∗ bs,D + λe), respectively.
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