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SUMMARY 

A Lagrangian finite element model of orthogonal high-speed machining is developed. Continuous remesh
ing and adaptive meshing are the principal tools which we employ for sidestepping the difficulties associated 

with deformation-induced element distortion, and for resolving fine-scale features in the solution. The model 

accounts for dynamic effects, heat conduction, mesh-on-mesh contact with friction, and full thermo
mechanical coupling. In addition, a fracture model has been implemented which allows for arbitrary crack 

initiation and propagation in the regime of shear localized chips. The model correctly exhibits the observed 
transition from continuous to segmented chips with increasing tool speed. 
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1. INTRODUCTION 

The development of a new machining process requires considerable investment of time and 

resources. 1 Precise knowledge of the optimal range of the cutting parameters is essential for 

a timely startup. Process features such as tool geometry and cutting speed directly influence chip 

morphology, cutting forces, final product dimensionality and tool life. Computer simulation of 

the cutting process can potentially reduce the number of design iterations and result in a substan

tial cost savings. Considerable effort has therefore been devoted to the development of computa

tional models of high-speed machining. Of primary concern is the determination of the steady

state temperature distribution in the workpiece, tool and chip (e.g. References 2-4). Attempts to 

model the process of chip formation have for the most part been based on a predetermined line of 

separation between the workpiece and chip (e.g. References 5, and 6). Nodes on this line are 

separated-and the line 'unzipped'-when the tool tip is sufficiently close, or when a certain level 

of plastic strain is attained. Evidently, this simple approach is not capable of predicting surface 

roughness and chip morphology. Sekhon and Chenot,7 by contrast, have used mesh adaptivity to 

allow for an arbitrary surface of separation. However, elastic strains are not accounted for, which 

precludes the computation of residual stresses in the workpiece. In addition, the model of Sekhon 

and Chenot 7 does not account for fracture, which severely limits the types of chip morphologies 

which can be predicted. It should also be noted that the majority of simulations conducted in the 

past idealize the tool as rigid. The tool stiffness, is known to directly influence surface roughness 

and tool chatter. 8 

In this paper, we present a model of high-speed machining overcomes some of these limitations. 

High-speed machining invariably involves extremely high deformation rates and unconstrained 

plastic flow. Lagrangian codes based on a fixed mesh have difficulties dealing with this class of 
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problems owing to the large element distortions which, inevitably, are incurred. Considerable 

effort has been devoted to the development of elements which perform well when severely 

distorted. 9 -
15 A number of alternative formulations have also been proposed for the analysis of 

unconstrained flows, including arbitrary Lagrangian-Eulerian (ALE) methods 16
-

22 and pseudo

concentration methods. 23
-

25 

However, Lagrangian codes can be used to simulate large unconstrained plastic flows provided 

that the solid is continuously remeshed. This is the avenue which we have pursued here. 

Continuous remeshing and adaptive meshing are the principal tools which we employ for 

sidestepping the difficulties associated with deformation-induced element distortion, and for 

resolving fine-scale features in the solution. We also resort to mesh adaptivity as a means of 

following the propagation of cracks along arbitrary paths through the chip. Simulations of 

high-speed machining of a structural steel are presented in Section 10. Extensive experimental 

data are available for this type of material. 26
-

29 The ability of the model to predict the transition 

between continuous and segmented chips with increasing tool speed is particularly noteworthy. 

2. EQUATIONS OF MOTION 

Consider a solid initially occupying a reference configuration B0 , and a process of incremental 

loading whereby the deformation mapping over B0 changes from <l>n, at time tn, to <l>n+ 1 = <l>n + u, 

at time tn + 1 = tn + At. Dynamic equilibrium is enforced at time tn + 1 weakly by recourse to the 

virtual work principle 

f Pn+1:VoridVo·-J (fn+1-poan+d·ridVo-f tn+1·ridSo=O (1) 
~ ~ a~, 

where P n + 1 denotes the first Piola-Kirchhoff stress field at time tn + 1, fn + 1, an+ 1 and tn + 1 are the 

corresponding body forces, accelerations and boundary tractions, respectively, p0 is the mass 

density on the reference configuration, 'I is an admissible virtual displacement field, and Vo de

notes the material gradient. Assume for now that a rule has been determined to update the stress 

field of the general form 

Pn+ 1 = P(Fn+ l; state attn, M) 

where the deformation gradients 

are assumed given. Inserting (2) and (3) into (1) one obtains 

(2) 

(3) 

f P(Vo<l>n+l; state attn, At): VoridVo -I (fn+l - Poan+d·ridVo -f tn+1°'1dSo = 0 
• • a~, 

(4) 

which can be solved for the updated deformation mapping <l>n + 1 . Upon discretization of (2) with 

finite elements the governing equations become 

M R ini a ext 
an + 1 + n + 1 = n + 1 (5) 

where 

(6) 
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is the mass matrix 

(7) 

is the external force array and 

(8) 

is the internal force array. In the above expressions, Na, a = 1, ... , numnp are the shape 

functions. 

The second-order accurate central difference scheme is used to discretize (5) in time, 30
-

32 with 

the result 

dn + 1 = dn + ~tv n + t At2 
an 

M - 1 (Rext Rini ) 
an+l = n+l - n+I 

(9) 

(10) 

( 11) 

where d, v and a denote the displacement, velocity and acceleration arrays, respectively. Although 

the minimum time step used in explicit dynamics is bounded by stability, 33 contact algorithms 

available for explicit dynamics are more robust and straightforward than their implicit counter

parts. Explicit algorithms are therefore more attractive for problems such as machining which 

involve complicated contact situations. Explicit integration is particularly attractive in three

dimensional calculations, where implicit schemes lead to system matrices which often exceed the 

available in-core storage capacity. Yet another advantage of explicit algorithms is that they are 

ideally suited for concurrent computing. 34 

Explicit schemes require the use of diagonal or lumped mass matrices. No tangent stiffness 

matrix is assembled and no momentum iterations performed. The bulk of the computational 

costs lies in the constitutive calculations at the integration points and in the contact search. For 

computational efficiency in slow processes, the rate of loading (e.g. cutting tool speed) can be 

increased, or the density of the material can be artificially increased, which raises the stability 

limit. 3 5 These techniques can be employed when inertia effects are not significant. 

3. SUBCYCLING 

Mesh refinement of the type described subsequently can lead to a broad distribution of element 

sizes. In explicit calculations, the critical time step ~tc for stability scales with the size of the 

smallest element, which can result in steps much smaller than required to integrate the coarse 

sections of the mesh. Under these circumstances, Belytschko's subcycling algorithm, 36
-

38 by 

permitting each element to be updated according to its own critical time step, can afford 

considerable speed-ups. In our implementation of the subcycling algorithm, element e in the mesh 

is assigned a time step ~te = me~tc, where me is the largest integer such that Ate does not exceed 

the stability limit of the element. Each node a is then assigned a time step Ata equal to the largest 

step ~te among all elements connected to it. Counters are kept for each element and node to 

determine when an update is necessary. When an element is updated, displacements at nodes on 

adjacent slower elements are advanced by a linear interpolation in time. This strategy has been 

shown to result in the least noise. 3 7 Details of the algorithm are given in Box 1. 
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Box I. Subcycling algorithm 

(i) Initialize counters: ne = me, na = 0 

(ii) Loop over nodes: 

do a= 1, numnp 

if na = 1 then 

Ua = f1taVa,n + ! f1t1aa,n 

na =ma 

else 

na = na - 1 

end if 

da,n+ 1 = da,n + Ua/ma 

end do 

(iii) Loop over elements: 

do e = 1, numel 

if ne = 1 then 

update element with L1t =Ate 

compute internal forces R=~~
1 

ne =me 

else 

R
e, int_ O 
n+ 1 -

ne = ne - 1 
end if 

end do 

(iv) Compute velocities and accelerations for cycled nodes: 

do a = 1, numnp 

if na = ma then 

R ex! Rini )/M 
aa,n+1=( a,n+l- a,n+l a 

Va,n+ 1 = Va,n + ! f1ta [aa,n + aa,n+ 1 J 
end if 

end do 

Subcycling is particularly effective for meshes containing elements of greatly disparate sizes. In 

the machining applications discussed subsequently, the cutting edge radius sets the scale for the 

element size near the tip of the tool, while the mesh size away from the tool typically scales with 

the depth of cut. In these applications we have found that subcycling speeds up the calculations 

by a factor in the range 2-3. 

4. CONTACT 

Machining involves contact between deformable bodies, e.g., the workpiece and the tool. Mesh

on-mesh contact can also occur between the faces of cracks propagating though the chip and 

between detached segments. Here we use the predictor-corrector method developed by Taylor 

and Flanagan39 for the PRONT02D explicit dynamics code. The bodies in contact can be 

deformable or rigid. Two contacting surfaces are designated as master and slave surfaces. The 

method starts by calculating the nodal accelerations from the out-of-balance forces and then 
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(a) (b) 

Figure l(a) Predictor configuration of surfaces and (b) kinematically compatible surfaces 

computing predictor nodal positions, velocities and accelerations x~':f ,. v~':f and a~':f, respec

tively, assuming that no contact has occurred. A resulting predictor configuration wherein 

penetration has occurred is shown in Figure l(a). 

In order to establish the contact conditions, an auxiliary consecutive numbering of the nodes 

on the contacting surfaces is introduced. The penetration distances bs,j for all nodes} on the slave 

surface are then determined on the predictor configuration. Here and henceforth, labels m and 

s are used to designate the master and slave surfaces, respectively. The contact forces required to 

prevent penetration, were the master surface to remain stationary at the predictor configuration, 

are given by 

M .(J . 
p • = S,j S,J 

S,J dt2 (12) 

where M •. i is the mass of node j on the slave surface. Next, normal acceleration corrections are 

introduced which eliminate the unwanted penetration, Figure l(b). The requisite accelerations are 

(13) 

corr " ( corr) Ps, j 
a.,j = L,, Wm-.s,kam,k - M 

k s,j 

(14) 

where w .... m.j and Wm ... s,k are weights dependent on position. A Coulomb friction model is also 
adopted from Taylor and Flanagan.40 Let t represent the tangent to the master segment. The 

tangential component of the relative predictor velocity between the slave node and the master 

segment is given by 

dv . = t. ( vpred - " pred) 
S,J s, 1 L,, Wm-.s,kVm,k 

k 

(15) 

The force that must be applied to the slave node to cancel its relative tangential velocity, i.e., to 

produce perfect stick, is 

(16) 
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The tangential force exerted by the master surface on a slave node cannot exceed the maximum 

frictional resistance 

p•tick 

F s,j . ( N I pstickl) ·=--mm · · 
s, J I p•ti.ck I µ S,J, s,J 

S,J 

(17) 

where N •. i is the normal contact force given by 

N M 
corr 

s,j = s,jas,j • n (18) 

where n is the surface normal. The tangential force generates the additional tangential acceler

ation corrections 

corr Fs, j 

a •. i = M . 
S,J 

(19) 

corr Lj Ws _,m,j Fs,j 

am,k = - M 
m,k 

(20) 

A balanced master-slave approach in which surfaces alternately act as master and slave is 

employed however, rigid surfaces are always treated as master surfaces. 

5. THERMAL EFFECTS 

In applications such as machining, substantial amounts of heat may be generated due to the 

plastic working of the solid and friction at the tool-chip interface. The temperatures attained can 

be quite high and have a considerable influence on the mechanical response. The relevant balance 

law, in this case, is the first law, which can be expressed in weak form as 

(21) 

where p is the current mass density, c the heat capacity, T the spatial temperature field, ri an 

admissible virtual temperature field, h the outward heat flux through the surface, q is the heat flux, 

sis the distributed heat source density, and B
1
q the current Neumann boundary. In machining 

applications, the main sources of heat are plastic deformation in the bulk and frictional sliding at 

the tool-workpiece interface. The rate of heat supply due to the first is estimated as 

s = f3WP (22) 

where WP is the plastic power per unit deformed volume and the Taylor-Quinney41 coefficient 

f3 if of the order of 0·9 (e.g. Reference 42). The rate at which heat is generated at the frictional 

contact, on the other hand is 

h = -t·[v] (23) 

where tis the contact traction and [ v] is the jump in velocity across the contact. This heat must be 

apportioned between the tool and chip. Using transient half-space solutions, the ratio of the heat 

supply to the chip, hi, and the tool, h2 , can be computed as (cf. Reference 7) 

hi JkiP1C1 

h2 = Jk2P2C2 
(24) 
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where ka., Pa. and ca., a = 1, 2, are the thermal conductivity, mass density and heat capacity of the 

workpiece and the tool, respectively. 

The solid is assumed to obey Fourier's law of heat conduction, however, due to the finite 

kinematics care must be exercised in formulating Fourier's law so as to satisfy material frame 

indiffernece. To this end, thermal conductivity is regarded as a property of the crystal lattice 

which, therefore, is unchanged by plastic deformation. On this basis, a constant conductivity 

tensor Dis introduced on the intermediate configuration B1 • The spatial conductivity tensor then 

follows as 

D = F•i)F•T 

and Fourier's law can be written in spatial form as 

q = -D·VT 

If the lattice conductivity is isotropic, then D = kl and (25) reduces to 

D =kB• 

where B• is the elastic left Cauchy-Green deformation tensor. 

(25) 

(26) 

(27) 

Inserting the finite element interpolation into (21) results in the semi-discrete system of 

equations32 

CT+KT=Q (28) 

where T is the array of nodal temperatures, 

Cab= f pcNaNbdV 
B, 

(29) 

is the heat capacity matrix, 

(30) 

is the conductivity matrix, and 

(31) 

is the heat source array with ha., a = 1, 2 having the appropriate value for the chip or tool as in 

(24). However, heat conduction between contacting bodies is not taken into account. In the 

. applications of interest here, the mechanical equations always set the critical time step for 

stability. It therefore suffices to inrtegrate the energy equation (28) by the forward Euler 
algorithm, 30

-
32 with the result 

Tn+l = Tn + ~tTn 

Ctn+ KnTn = Qn 

(32) 

(33) 

We use a lumped capacity matrix C, which eliminates the need for any equation solving. 

Sub-cycling techniques for parabolic equations, 36 are available which afford speed-ups compara

ble to those obtained for hyperbolic problems. 

6. THERMO-MECHANICAL COUPLING 

A staggered procedure43 is adopted for the purpose of coupling the thermal and mechanical 

equations. In our implementation, we allow for different meshes for the thermal and mechanical 
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models, which exchange information by the mesh-transfer operator described in Section 9. 

Mechanical and thermal computations are staggered assuming constant temperature during the 

mechanical step and constant heat generation during thermal step. Following Lemonds and 

Needleman,44 A mechanical step is taken first based on the current distribution of temperatures, 

and the heat generated is computed from (22) and (23). The heat thus computed is transferred to 

the thermal mesh and the temperatures are recomputed by recourse to the forward-Euler 

algorithm (32) and (33). The resulting temperatures are transferred to the mechanical mesh and 

are incorporated into the thermal-softening model described in Section 7, which completes one 

time-stepping cycle. A schematic flowchart of the staggered procedure is given in Box 2. 

Box 2. Staggered procedure for thermo-mechanical coupling 

(i) Initialize T 1 = T 0 + dtT0 , n = 0. 

(ii) Isothermal mechanical step: 

(iii) Heat generation (bulk +contact) 

(iv) Rigid conductor step: 

(v) n ~ n + 1, GOTO (ii) 

An alternative staggered procedure based on an 'adiabatic split' has been proposed by Armero 

and Simo with a view to ensuring unconditional stability in implicit calculations. 

7. CONSTITUTIVE MODEL AND STRESS-UPDATE ALGORITHM 

We adopt a standard formulation of finite deformation plasticity based on multiplicative 

kinematics. In addition, we effect the requisite constitutive updates by a fully implicit update 

algorithm proposed by Cuitiiio and Ortiz.47 The governing constitutive equations and their 

discretized counterparts are collected in Box 3. 

Box 3. Constitutive framework and state-update algol'ithm 

Constitutive: - Incremental: 

F=F•FP - Fn+i =F~+1F~+1 

FPFP- l = ePR(S, Q) - F~+ 1 = exp(dePRn+ i) F~ 

S = S (!log Ce) - Sn+ 1 = S (! logC:+ i) 

Q = f:PH(S, Q) - Qn+ 1 = Qn + dePHn+ 1 

1 - - - dt -
f:P=-</J(S,Q) - deP=-</Jn+l 

ry ry 

We assume that the deformation gradients F admit a multiplicative decomposition into elastic 

and plastic parts, F• and FP, respectively. The plastic part FP of the deformation gradient field 
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defines an additional (generally incompatible) configuration B,, or intermediate configuration. An 

overbar is used to identify fields defined over the intermediate configuration. The plastic flow rule, 

as stated here, determines FP fully. The manner in which the flow rule is discretized is an essential 

part of the method, and consists of taking the plastic flow direction R to be constant throughout 

the increment and equal to its final value Rn+ 1 . This reduces th flow rule to a system of linear 

equations for FP with initial conditions Fh, the exact solution of which is given by the exponential 

mapping. 
The elastic response is expressed in terms of logarithmic elastic strains (1/2) log Ce, where 

c• = FeTFe is the elastic right Cauchy-Green deformation tensor. The stress measure S is the 

second Piola-Kirchhoff stress tensor relative to the intermediate configuration. The symbol 

Q denotes some suitable set of internal variables referred to the intermediate configuration, with 

H the corresponding hardening moduli. Finally, (/) is an effective overstress and 17 a viscosity 

parameter. Note that, by expressing the flow rule, elastic response and hardening laws on the 

intermediate configuration, the formulation automatically statistics material frame indifference. 

The constitutive relations in Box 3 define a system of nonlinear equations which, for given 

F n + 1 , can be solved for the updated state variables Sn+ 1 , Qn + 1 , F h + 1 , as well as for ~eP. As noted 

by Cuitiiio and Ortiz, 26 it is possible to reduce the system to a single equation for ~eP, which can 

be solved by recourse to a local Newton-Raphson iteration. Cuitiiio and Ortiz47 have also noted 

that the update defined in the foregoing furnishes a material-independent extension of small

strain updates into the finite deformation range. The full finite deformation update comprises 

three steps: 

(i) Preprocessor step: Compute the predictor logarithmic elastic strains (1/2) log C:! 1 from 

the given updated deformation gradients F n + 1 . Set the predictor small-strain tensor 

.::! 1 equal to (1/2) log c:! 1 · Identify the small-strain stress tensor Gn and Sn and the 

small-strain internal variables qn with Qn· 
(ii) Small-strain update: Effect a small-strain update driven by .::! 1 with initial conditions 

<rn and qn, to compute Gn+ 1 , q.,+ 1 and ~eP. 

(iii) Postprocessorstep: IdentifySn+ 1 with<rn+ 1 andQn+l withqn+ 1 ,andcomputeF~+ 1 by the 

exponential mapping. 

It should be noted that the steps preceding and following the small-strain update are purely 

kinematic in nature, and, hence, material independent. Thus, when it applies, the above procedure 

provides a material-independent prescription for extending small-strain updates into the finite 

deformation range within the framework of multiplicative plasticity. 

The finite plasticity formulation just described has some points of contact with the work of 

Weber and Anand,48 such as the use of the exponential mapping for the implicit integration of the 

flow rule. Weber and Anand48 limit their discussion to the isotropic solid and provide a set of 

approximate tangents based on a Pade approximation of the logarithmic mapping. Eterovic and 

Bathe49 extended the work of Weber and Anand48 by considering the case of combined 

kinematic-isotropic hardening, but did not addressed the problem of calculating the consistent 

tangents, which were given by Cuitiiio and Ortiz47 in closed form. Finally, it bears emphasis that 

neither Weber and Anand48 nor Eterovic and Bathe49 discuss the connection between finite 

deformation and small-strain constitutive relations and update algorithms. 

In a typical high-speed machining event, very high strain rates in excess of 105 s- 1 may be 

attained within the primary shear zone, while the remainder of the workpiece deforms at 

moderate or low strain rates. Under these conditions, a power viscosity law with constant rate 

sensitivity m is not adequate. Indeed, the experimental stress-strain rate curves40
• so, 51 for 

structural steels exhibit a transition at strain rates of the order of 105-106 s- 1 from low to high 
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rate sensitivity. At low strain rates, a rate sensitivity exponent in the range 100-200 adequately fits 

the data, while in the high strain rate regime a much lower rate sensitivity exponent in the range 

5-20 applies. Modelling this type of behaviour is important, since a high rate sensitivity in the 

primary shear zone may lead to an elevation in stress which in turn can promote brittle fracture. 

A simple model which accounts for this behaviour consists of assuming a stepwise variation of the 

rate sensitivity exponent m while maintaining continuity of stress. This leads to the relation 

(i + ~;) = (g(~PJm1 (34) 

1+- 1+- = --( 
j;P) ( j;1 )m2/m1 -1 ( (j )m2 
eg eg g(sP) 

(35) 

where (j is the effective Mises stress, g the flow stress, sP the accumulated plastic strain, 

tg a reference plastic strain rate, m1 and m2 are low and high strain rate sensitivity exponents, 

respectively, and e1 is the threshold strain rate which separates the two regimes. In calculations, 

we begin by computing i;P according to (34), and switch to (35) if the result lies above 81 • 

Following Lemonds and Needleman,44 we also adopt a power hardening law with linear 

thermal softening. This gives 

g[l -a(T- T 0 )]rr0 ( 1 + ;;)11

" (36) 

where n is the hardening exponent, T the current temperature, T 0 a reference temperature, 

rt a softening coefficient, and rr0 is the yield stress at T 0 . It should be noted that, owing to the 

staggered integration of the coupled thermal-mechanical equations, the temperature T remains 

fixed during a mechanical step and, therefore, plays the role of a known parameter during a stress 

update. 

8. FRACTURE CRITERIA 

The process of segmented and discontinuous chip formation involves the propagation of fractures 

through the deforming chip. The simulation of these chip morphologies therefore requires the 

formulation of suitable fracture criteria, in conjunction with numerical procedures for nucleating 

and propagating a crack through the mesh. 

Structural steels can fracture in a brittle or ductile manner (see Reference 52 for a review). 

Brittle fracture, such as occurs below the transition temperature, proceeds by cleavage. It is 

generally recognized that, when slip-induced transgranular cleavage is the dominant mechanism, 

fracture of mild steels can be described in terms of a critical stress criterion. 53 In particular, 

Ritchie et al. 53 found the conditions for mode I brittle fracture to be consistent with the 

attainment of a critical opening stress O"r at a critical distance I, or RKR criterion. The critical 

stress O"r appears to be relatively independent of temperature and strain, rate, 54
' 
5 5 and can be 

inferred from the toughness K1c through the small-scale yielding relation 

Kie 
lTr =--

ffej 
(37) 

The critical distance l correlates with the spacing the grain boundary carbides, typically of the 

order of two grain diameters. 5 3 

Under mixed-mode conditions, such as may be expected in machining, the crack may kink or 

follow a curved path as it grows. In order to predict the crack trajectory under conditions of 
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brittle fracture, we adopt the maximum hoop stress criterion of Erdogan and Sib. 56 According to 
this theory, the crack propagates along the angle (J from the crack face at which the hoop stress 

cr1111 attains a relative maximum. The resulting trajectory of the crack is such that Kn ~ 0 at the 

crack tip. Combining the maximum hoop stress and RKR criteria, the condition for mixed-mode 

crack growth is taken to be 

max cr11o(l, 8) = ere 
Ii 

(38) 

with the understanding that the crack propagates at the angle 8 for which the criterion is met. 

Void growth and coalescence is known to be a principal mechanism of ductile fracture in 

structural steels. 57
-

60 Voids are nucleated as a result of fracture of decohesion of carbides and 

subsequently grow as the surrounding material strains plastically. The rate of growth of the voids 

is accelerated by the blunting of the crack tip, which has the effect of raising the level of 

hydrostatic stress at the location of the void. The final stages of coalescence may be aided by the 

development of sheets of smaller voids nucleated from precipitate particles or carbides. The 

experimental evidence shows that the fracture toughness of metals depends on the size and 

spacing of void nucleating second phase particles. 59
•
61

-
63 

An approximate analysis of the growth of a spherical void before a blunting crack was given by 

Rice and Johnson.64 The analysis was based on earlier results by Rice and Tracey65 pertaining to 

the growth of an isolated spherical void in an ideally plastic material. Rice and Johnson64 used 

the Rice and Tracey65 solution with the remote fields identified with the local stress and 

deformation fields computed from a slip line solution of a void-free blunting crack. Rice and 

Johnson64 were able to estimate values of the Crack Tip Opening Displacement (CTOD) for 

fracture initiation which were in good agreement with experiment Following Ritchie et al.,66 the 

critical CTOD criterion for mode I ductile fracture can be recast as the attainment of a critical 

value ef of the effective plastic strain at a distance l directly ahead of the crack tip. Proceeding as 

before, we express this criterion in the form 

max eP(l, 8) = ef 
Ii 

(39) 

with the understanding that the crack propagates at the angle 8 for which the criterion is met. 

Based on the Rice and Tracey solution,65 the critical effective plastic strain can be estimated as52 

(40) 

where p = (Jkk/3 is the hydrostatic pressure (p > 0 for hydrostatic tension). The strong depend

ence of the critical effective plastic strain ef on the triaxiality ratio p/ii is apparent from (40). 

9. ADAPTIVE MESHING 

One difficulty that arises in applying Lagrangian formulations to problems involving uncon

strained plastic flow, such as machining, is that the mesh may become severely distorted. One way 

of sidestepping this difficulty, thereby extending the range of applicability of Lagrangian methods, 

is to resort to continuous remeshing. In this approach, the connectivity of the finite element mesh 

is redefined at regular intervals by triangulating the nodes at their spatial locations. This process 

of continuous remeshing, by itself, is capable of eliminating the bulk of the deformation-induced 

element distortion. Further gains can be achieved through the use of simple mesh smoothing 

algorithms. Besides sidestepping the problem of mesh distortion, adaptive meshing furnishes 
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a means of simultaneously resolving multiple scales in the solution. Examples of fine features 

which drive mesh refinement in machining are the mechanical and thermal boundary layers 

which develop in the contact region and within localized shear bands. We also resort to 

a remeshing technique to propagate cracks through the mesh, as discussed in Section 10. 

The adaptive meshing methodology used here is taken from Ortiz and Quigley,67 with 

a number of modifications to suit the application addressed here. All meshes are constructed by 

Delaunay triangulation68 and are, therefore, constrained to consist of triangular elements. The 

most commonly employed elements of this type are the first- and second-order isoparametric 

elements. Mixed elements possessing additional pressure degrees of freedom were not considered 

in view of the difficulties their use presents in the context of explicit dynamics. It is well-known 

that the first-order simplex suffers from volumetric and shear locking which can result in gross 

inaccuracies. 35
"
69 The elements have to be meshed in a cross-triangle configuration to give 

acceptable results. However, this configuration is inappropriate for the unstructured meshes we 

consider here. By contrast, the second-order element, which is our element of choice, has higher 
accuracy and does not lock.30 

The connectivity of the mesh is determined from the set of corner nodes of the elements, with 

the mid-nodes added subsequently. For the applications discussed here, an adaptation criterion 

based on the equidistribution of plastic power has proved useful. In this approach, elements with 

plastic power contents exceeding a prescribed tolerance TOL, i.e., elements such that 

(41) 

are targetted for refinement. Here, Q~ denotes the domain of element e, and, for the Mises solid, 

the plastic power density is given by 

(42) 

Clearly, this criterion leads to refinement in regions of high rate of plastic deformation. The 

plastic power equidistribution criterion is amenable to an error minimization interpretation in 

some simple model problems. 70 

The mesh is adapted at regular intervals by adding new corner nodes at the mid-sides of 

elements targetted for refinement. The element connectivity is then completely redefined by 

a Delaunay triangulation based on the new set of corner nodes. In particular, no hierarchical 

compatibility between subsequent meshes is enforced. Triangulations are effected on the de

formed configuration, which contributes to eliminating much of the mesh distortion introduced 

by the flow of material. If, despite this continuous remeshing, elements arise with unacceptable 

aspect ratios, the mesh is subjected to laplacian smoothing. In addition, to prevent the deteriora

tion of the isoparametric mapping, an update of the reference configuration is effected at regular 

intervals. Along with adaptive refinement, a mesh-coarsening algorithm is used in areas of the 

solid which have become inactive. In machining applications, mesh coarsening contributes to 

keeping the size of the problem within manageable bounds. 

Finally, a transfer operator proposed by Ortiz and Quigley67 is used to transfer the state 

variables between meshes following an adaptation. As shown by Ortiz and Quigley,67 the 

Hu-Washizu variational principle provides a prescription for constructing state-transfer oper

ators once the interpolation of the state variables is defined. We have found it effective to 

interpolate the state variables using an auxiliary triangular mesh in which the Gauss points of the 

elements supply the nodes. This has the effect of smoothing out local spikes in the state fields, such 

as inevitably arise near the tip of the tool, which would otherwise corrupt the transferred fields. In 
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Figure 2. Procedure for advancing a crack tip: (a) initial configuration; (b) propagated configuration 
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order to preserve the deformationjacobian, logarithmic strains and rotation tensors are transfer

red instead of the deformation gradients themselves. Constraints are also applied to the data to 

render the deformation and stresses consistent. 

Mesh adaption is also our tool of choice for implementing the fracture mechanical aspects of 

the model discussed in Section 8. We surround the tip of a growing crack with a rosette of 

elements which provide the requisite angular resolution of the near-tip fields, Figure 2(a). The size 

of the elements in the rosette is chosen so that a row of gauss points is located at the critical 

sampling distance l from the tip. The fracture criteria (39) and (38) are then checked at each of the 

critical gauss points. When one of the criteria is met, a new crack segment is placed in the 

corresponding direction. This operation entails doubling the node at the previous crack tip, 

placing a new node at the new crack tip location, and surrounding the new crack tip with the 

corresponding rosette of elements, Figure 2(b). By a recursive application of these operations over 

successive time steps, brittle or ductile crack growth along arbitrary paths can be simulated. An 

alternative method of crack advance based on the introduction of a cohesive law at element 
interfaces has been developed by Xu and Needleman. 71 

10. APPLICATION 

The first application concerns the cutting of a rectangular block of high strength AISI 4340 steel 

at a velocity of 30 ms - 1
, with the tool modelled as rigid. The material and process parameters are 

collected in Tables I-III. The thermal properties of the tool are supposed to be matched to those 

of the workpiece, giving an equal proportion of frictional heat allotted to the tool and the chip. 

At positive rake angles, the deformation is largely confined to the primary shear zone and to 

a boundary layer adjacent to the tool, as expected, Figure 3. No shear localization occurs and 

a continuous chip morphology is predicted. As the chip curls around and contacts the workpiece 

a crack initiates on the free surface and propagates through the chip thickness, finally severing the 

Table I. Mechanical material constants 

200GPa 0·3 1090MPa 100 5 ls- 1 2xl05 s- 1 30MPaJm 0·25 O·OOlper°C 

Table II. Thermal material constants 

Density Conductivity Heat capacity 

7800 kgm- 3 43 wm- 1 per°C 600J/kg- 1 per'C 

Table III. Machining simulations 

Speed Rake angle Depth of cut Cutting edge 
Simulation (ms- 1) (deg) (µm) radius (µm) 

1 30 10 250 25 
2 10 -5 500 25 
3 20 5 500 25 
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chip. The extensive mesh refinement required to adequately resolve the solution is evident from 

Figure 3. The coarsening of the inactive parts of the mesh is also noteworthy. The maximum 

number of nodes in the mesh is near 2600 with about 1100 elements. Time steps were on the onler of 

3 x 10- 10 s which necessitated about 1 x 106 steps or 20 h or CPU time on a DEC 3000 workstation. 

Average steady-state temperatures along the tool-chip interface are near l000°C and drnp off 

rapidly into the interior, Figure 3. Due to the high cutting speed, heat conduction is of little 

consequence and conditions are nearly adiabatic. Frictional contact, as opposed to plastic 

dissipation in the bulk, accounts for most of the heat generated. The largest accumulated plastic 

strains occur within the boundary layer adjacent to the tool. In this region, the flow of material is 

facilitated by thermal softening and the plastic strains attain values of the order of 12. Strains in 

the chip interior remain within the 1-2 range upon exit from the primary shear zone, and within 

3-5 in the wake of the tool on the workpiece surface. 

An inspection of the machined surface reveals surface waviness on the scale of the cutting edge 

radius. The material which flows under the tool tip experiences large compressive stresses 
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followed by rapid elastic unloading. This unloading may account for some of the surface 

roughness. We remark that the Lagrangian character of the simulation and the elastic-plastic 

constitutive description adopted enable the computation of the state of residual stress on the cut 

surface. Surface roughness and the state ofresidual stress under the surface may have a significant 

effect of the fatigue life of the component and, consequently, are of engineering interest. 

Our second application concerns an AISI 4340 steel cut with a negative rake angle at a speed of 

10 m s- 1
. The parameters used in the simulation are collected in Tables I-III. Following an initial 

transient similar to that observed in the preceding simulation, shear localization occurs along the 

primary shear band as the material softens thermally, Figure 4. The shear band starts out straight 

but eventually bows out in a concave down fashion, a process which is accompanied by the 

initiation of a ductile crack at the surface of the chip. Fracture proceeds along the band and is 

promoted by rapid thermal softening. The crack propagates more than half the way through the 

chip thickness before arresting, thus completing the first segment of a shear-localized chip. 

Subequently, the primary shear band is swept downstream and its temperature profile diffuses 

out. This is followed by the formation of a new active shear band and the initiation of a ductile 
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crack at the surface, eventually leading to a second segment. The sequence of events repeats itself 

indefinitely a results in a 'shear localized' chip morphology, in agreement with observation.29 In 

other simulations performed the variation in mesh size, which directly affects the time step, had 

little influence on the location of initiated cracks. 

The effective plastic strain attains values of the range 2-3 within the localized zone and 6-12 

along the tool face. As in the preceding application, a high degree of mesh refinement is required 

to adequately resolve the fine features of the solution. It should be noted that the faces of the 

cracks which propagate along the primary shear zone often come in contact, which demonstrates 

the need for mesh-on-mesh contact capability even when the tool is idealized as rigid. The high 

plastic strains adjacent to the contact owe partly to the high temperatures which develop in that 

region, of the order of 990°C, which result in considerable thermal softening. Temperature 

profiles within the primary shear band show peaks of 500°C. 

The final example concerns a shear localized chip in which the segments become completely 

detached, Figure 5. The tool geometry is as in the preceding simulation and the cutting velocity is 

20 ms - 1
. The initial segment forms as before but is now followed by a crack propagates through 
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the entire thickness of the chip, causing the chip to become fully detached. Komanduri et al. 
29 

have shown that the transitional speed for the onset of segment detachment is near 15 ms- 1 for 

the material at hand, in agreement with our simulations. The strain rates in the primary shear 

band range between 3 x 105-4·5 x 105 s- 1
. By contrast, the strain rates which arise in the same 

region for a cutting speed of 10 ms - 1 are in the lower range of 1·5 x 105-2 x 105 s - 1
. The elevated 

stresses which cause a through-thickness crack at the higher speed are furnished by the variable 

rate sensitivity model with the threshold strain rate set at 2 x 105 s- 1
, which is in the ballpark of 

experimental observation.40
• so, 51 Evidently, this threshold separates the strain rate ranges for the 

cutting velocities of 10 and 20 ms- 1 considered, ensuring, that the transition to segmented chips 

takes place between those speeds. 

11. CONCLUSIONS 

We have assembled several numerical techniques which, in combination, enable the simulation of 

orthogonal high-speed machining. Finite deformation plasticity with thermal softening, explicit 

dynamics, mesh-on-mesh contact with friction, fully coupled heat conduction, continuous re

meshing and fracture are the main elements of the model. Our simulations demonstrate the ability 

of the model to predict chip morphologies consistent with obsevation, perhaps the most severe 

test of any machining model. Detailed parametric studies are presently being conducted and will 

be reported in a forthcoming publication. 
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