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Abstract
One of the most important aspects of Computational Cell Biology is the understanding of the complicated
dynamical processes that take place on plasma membranes. These processes are often so complicated that purely
temporal models cannot always adequately capture the dynamics.On the other hand, spatial models can have large
computational overheads. In this article, we review some of these issues with respect to chemistry, membrane
microdomains and anomalous diffusion and discuss how to select appropriate modelling and simulation paradigms
based on some or all the following aspects: discrete, continuous, stochastic, delayed and complex spatial processes.
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INTRODUCTION
Crucial to the understanding of the mechanisms of

cellular function as a whole is the understanding of

biophysical and biochemical processes taking place

on the cell membrane. Recent progress in genetic

sequencing, microscopy and other experimental

methods has shed a great deal of light on membrane

structures and phenomena, including the discovery

that the membrane may possess significant lateral

structure (microdomains); with concomitant progress

in the understanding of transport phenomena on the

membrane, of ion channel function and of transport

across the membrane [1–3]. However, the integra-

tion of this information into comprehensive and

coherent models of the membrane has been

slower. To some extent, this is due to the sheer

complexity of the interactions taking place and

experimental limitations. For example, when visua-

lizing proteins on the membrane using Transmission

Electron Microscopy (TEM), only two species at a

time can (at present) typically be labelled, making the

determination of interactions among tens or hun-

dreds of species very difficult.

In order to produce a coherent picture of the cell

membrane, mathematical modelling and simulation

provide an indispensable tool. On the other hand,

the modelling of membrane processes poses math-

ematical challenges of its own because of the non-

classical nature of biophysical media. Cellular

processes take place in highly complex environ-

ments, characterised, inter alia, by very high local

densities of species (molecular crowding), spatial

segregation and organization and by the presence of

various structures whose character and functions are
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generally only partly (if at all) understood. As

a testament to this, diffusion on the cell membrane

is not only highly anomalous but the diffusion rate

of proteins on live cell membranes is between

one and two orders of magnitude slower than in

reconstituted artificial membranes with the same

composition. Furthermore, diffusion is dependent

on the dimensions of the medium so that diffusion

on the highly disordered cell membrane is not a

perfectly mixing process and therefore the assump-

tions underlying the classical theory of chemical

kinetics fail, requiring new approaches to modelling

chemistry on the membrane. Finally, in many cases,

key species are present in small or very small

numbers, so even the concept of concentration is

no longer meaningful.

In their essence, all of these challenges stem from

the complex spatial and non-homogenous character

of the cell membrane (and cellular media in general)

and so may be said to be ‘spatial challenges’. In order

to address them, we need methods that must

represent the membrane with a higher degree of

fidelity. This may mean either that we must directly

include the presence and/or function of the various

structures and functions in computer simulations, or

that their existence and effects must be taken into

account indirectly by the models.

SPATIALASPECTSOF THE CELL
MEMBRANE
The classical view of the plasma membrane lipid

bilayer as a two-dimensional fluid acting as a neutral

solvent for membrane proteins in which all particles

diffuse freely [4] has been substantially modified in

recent years. The plasma membrane is a highly

complex structure that is compartmentalised on

multiple length and time scales. This compartmen-

talization is driven by a variety of lipid–lipid, lipid

protein and actin cytoskeleton interactions [3, 5–7].

An example of membrane microdomains is the

lateral segregation of glycosphingolipids and choles-

terol into liquid-ordered domains. Phase separation

of cholesterol-enriched, liquid-ordered domains or

lipid rafts, has been demonstrated in both model and

biological membranes, although the length and time

scales on which this phase separation occurs are the

matter of debate [3, 6, 8]. Multiple estimates of the

diameter of lipid rafts have been provided using

diverse techniques, although photonic force micro-

scopy, homo-FRET and EM provide a convergence

of estimates to 6–50 nm, with the most recent studies

favouring the lower end of this range [1–3]. Similar

sizes, in the range of 12–32 nm have been reported

for the microdomains occupied by activated H-ras

and K-ras [1].

An important role that has been ascribed to all

plasma membrane microdomains is that of selectively

concentrating proteins to facilitate the assembly of

signalling complexes [9]. Many studies have been

qualitatively interpreted in terms of this type of

microdomain model. However, no quantitative

analysis has been attempted to explore the basic

mechanics of how microdomains might drive

protein–protein interactions as demanded of their

role in supporting the assembly of signalling plat-

forms. For example, if microdomains do aggregate

proteins, are there any constraints on size and

dynamics that need to be imposed for them to

achieve this function? If so, are these constraints

realistic and how do the predictions compare with

recent estimates of microdomain size and dynamics?

These are difficult but important questions that are

especially relevant in the context of the ongoing

discussions of plasma membrane structure and

function.

The Mitogen-activated protein kinase (MAPK)

cascade is perhaps one of the most studied of

biochemical reactions, as the pathway provides

molecular targets for novel anticancer therapies.

The cascade transmits signals from activated growth

factor receptors on the plasma membrane into the

cytosol of the cell. In its simplest form it consists

of three tiers in which Ras phosphorylates and

activates Raf, which phosphorylates MEK which

then phosphorylates ERK. There are three mayor

MAPK pathways: extracellular signal regulated

kinase (ERK), Jun N-terminal kinase (JNK) and p38.

A significant article in this area is that of Huang

and Ferrell [10] in which the MAPK cascade is

represented by a system of 25 ordinary differential

equations (ODEs). In a more recent paper, Schoeberl

et al. [11] elucidate the MAPK pathway activated by

the EGF receptor in which there are 94 species and

230 reactions on the plasma membrane and in the

cytosol. Yet, even this very complicated model

ignores spatial effects such as kinase translocation.

An important aspect of the MAPK pathway is the

nature of the signal transduction module that relates

the signal to the response (ERKpp). Based on the

amount if concentration of ERKpp, a cell can make

a decision either to proliferate or differentiate.
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Huang and Ferrell suggest from their ODE study

that there is a switch-like behaviour due to Ras

activation. On the other hand, Mackeigan et al. [12]
suggest that the output is graded in response to

growth factor simulation. Furthermore, recent

studies suggest that signal outputs of the MAPK

pathway depend strongly on spatial location [13].

In order to resolve these issues a greater focus

on spatial modelling and simulation will be needed.

It is already known that RasGTP form nanoclusters

on the plasma membrane. It has been suggested

that these nanoclusters (which have a short life time

of about 0.4 s and contain only a small number of

molecules) have a very significant effect on the

MAPK pathway. In fact in a very recent work [14],

a temporal compartment model linking the signal

transmission of each nanocluster, modelled by a

Markov process, with a system of ODEs for the

MAPK pathway in the cytosol has predicted graded

signal transduction.

Another set of related questions is concerned with

the nature of the random motions of proteins on the

plasma membrane. Biological media exhibit a large

degree of complexity and heterogeneity and often

exhibit substantial compartmentalization [15], and

diffusion is observed to be orders of magnitude

slower than predicted by theory [16]. As a result of

the non-classical nature of these random motions,

biological reactions are generally complex and

non-deterministic. Moreover, they are frequently

characterised by low numbers of molecules of some

reacting components [17]. Anomalous diffusion can

arise in many ways, such as through cytoskeletal

corralling whereby proteins are corralled due to the

interaction with the cytoskeleton beneath the

membrane [18]. Molecular crowding has been

estimated to be anywhere between 5% and 40%

of the total volume. It has been postulated that

anomalous diffusion may be a mechanism for cells

to localise receptors and control intramembrane

signalling [19]. The nature of anomalous diffusion

can be captured by the anomalous diffusion para-

meter �, which has the value �¼ 1 for pure

diffusion. At the percolation threshold, where

global mixing stops, the value for � in two and

three dimensions is 0.69, and 0.54, respectively.

Various techniques have been used to study such

processes, including Single Particle Tracking (SPT)

[20], Fluorescence Recovery after Photobleaching

(FRAP) [21] and Fluorescence Correlation

Spectroscopy [22]. Despite these investigations,

the quantification of the degree and nature of the

anomalous diffusion has proven difficult [19, 23] due

to experimental limitations. Nevertheless, some

estimates of the anomalous exponent and other

parameters have been reported. For example, Smith

and collaborators [20] estimated ��: 0.49� 0.16 for

diffusion of proteins on HeLa cell surfaces. Shav-Tal

et al. [24] can colour fluorescent proteins to track

both mRNA and translate proteins inside the nucleus

of a living cell. They observed purely diffusive

behaviour �58% of the time and corralled behaviour

�42% of the time. In different settings, Wachsmuth

et al. [25] measured the diffusion behaviour of

proteins in the nucleus and estimated a value for

the anomalous parameter �¼ 0.87, which is far from

the percolation threshold. On the other hand,

Schwille et al. [26] showed that diffusion on

membranes is anomalous with �¼ 0.74 and that

value is close to the percolation threshold in two

dimensions, so that anomalous effects are significant

on plasma membranes.

MODELLING OF CHEMICAL
KINETICS ONMEMBRANES
In order to address such important and difficult

issues, modelling and simulation tools should be used

hand-in-hand with experimental techniques. The

crucial point is what form these models should take:

deterministic versus stochastic, discrete versus

continuous, spatial versus temporal, delay versus

non-delay. If we are to develop realistic, experi-

mentally verified models and simulation techniques,

how should we proceed? There are essentially three

modelling approaches: temporal models, temporal

models that incorporate spatial information and

spatial-temporal models. We discuss these aspects

each in turn.

Temporal models
In a purely temporal setting and when there are large

numbers of molecules present, chemical reactions are

modelled by ODEs that are based on the laws of

Mass Action and that estimate reaction rates on the

basis of average values of the reactant density. Any set

of m chemical reactions can be characterised by two

sets of quantities: the stoichiometric vectors (update

rules for each reaction) �1, . . . ,�m and the propensity

functions a1(X(t )), . . . , am(X(t)). The propensity

functions represent the relative probabilities of each

of the m reactions occurring. Here X(t) is the vector
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of concentrations at time t of the N species involved

in the reactions. The ODE that describes this

chemical system is given by

X
0

ðtÞ ¼
Xm

j¼1

�jajðXðtÞÞ:

Very often the size of the ODE system can be

reduced by the use of the Quasi-Steady Sate

Assumption (QSSA). Under the QSSA it is assumed

that the fast reactions go to equilibrium much

more quickly that the slow reactions. Thus a system

of algebraic equations can be solved at the ‘fast

equilibrium’ and this solution substituted back into

the original system, thus reducing the dimension

and altering the propensity functions to include

non-linear Hill functions.

In the case of small numbers of molecules the

appropriate formulation is the Stochastic Simulation

Algorithm (SSA) [27], as ODEs can only describe a

mean behaviour. The SSA is essentially an exact

procedure that describes the evolution of a discrete

non-linear Markov process. It accounts for the

inherent stochasticity (internal noise) of the m
reacting channels and only assigns integer numbers

of molecules to the state vector. At each step, the

SSA simulates two random numbers from the

uniform distribution U[0,1] to evaluate an expo-

nential waiting time, �, for the next reaction to occur

and an integer j between 1 and m that indicates

which reaction occurs. The state vector is updated at

the new time point by the addition of the j-th
stoichiometric vector to the previous value of the

state vector, that is

Xðtþ �Þ ¼ XðtÞ þ �j:

The main limiting feature of SSA is that the time

step can become very small, especially if there are

large numbers of molecules or widely varying rate

constants. In order to overcome these limitations,

a number of different approaches (so-called �-leap
methods) have been suggested in which the sampling

of likely reactions is taken from either Poisson [28] or

Binomial [29] distributions. In these cases a much

larger time step can be used at the loss of a small

amount of accuracy. A different approach is to note

that the discrete non-linear Markov process

described by the SSA has a probability density

functions that is the solution of the so-called

Chemical Master Equation (CME). The CME is a

discrete parabolic partial differential equation in

which there is an equation for each configuration

of the State space. When the State space is

enumerated, the CME becomes a linear ODE and

the probability density function takes the form

pðtÞ ¼ eAtpð0Þ

where A is the state-space matrix. Even for relatively

small systems, the dimension of A can be in the

millions, so it would appear that this is not a

computationally feasible approach. But in fact a

proposed finite state projection algorithm [30]

reduces the size of the matrix A and this together

with the fact that not all the states are reachable, then

the use of Krylov subspace techniques [31, 32] to

efficiently compute the exponential of a matrix times

a vector means that the computation of the

probability density function directly is a very feasible

technique.

Finally, it is important to note that there is a

regime intermediate to the discrete stochastic regime

and the continuous deterministic ODE regime in

which the internal noise effects are still significant but

continuity arguments can apply. This leads to the

so-called Chemical Langevin Equation (CLE) that is

an Itô stochastic ordinary differential equation (SDE),

driven by a set of Wiener processes that describes the

fluctuation in the concentrations of the molecular

species. The CLE preserves the correct dynamics for

the first two moments of the SSA and takes the form

dX ¼
Xm

j¼1

�jajðXðtÞÞ þ BðXðtÞÞdWðtÞ:

Here W(t)¼ (W1(t), . . . ,WN(t)) is a vector of N
independent Wiener processes whose increments

�Wj¼Wj(tþ h)�Wj(t) are N(0,h) and where

BðxÞ ¼
ffiffiffiffiffi
C,

p
C ¼ ð�1, . . . ,�mÞ

Diagða1ðXÞ, . . . ,amðXÞÞð�1, . . . ,�mÞ
T :

Here h is the time discretization step. Effective

numerical methods designed for the numerical

solution of SDEs [33–35] can be used to simulate

the chemical kinetics in this intermediate regime.

Furthermore, adaptive multiscale methods have been

developed which attempt to move back and forth

between these three regimes as the numbers of

molecules change [36].

Temporal models that use spatial
information
In terms of understanding chemical dynamics in a

crowded environment, there may be some hope that
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temporal models can be used that captures some

of the spatial effects. For instance, Kopelman [37, 38]

observed that for crystalline alloys, macromolecular

crowding can affect the nature of chemical reactions

and postulated a time-dependent behaviour for k in

reactions of the type AþA S, of the form

kðtÞ ¼ k0t
��1, � 2 ½0,1�: ð1Þ

Here the value 1-� is a measure of the dimension-

ality of the system and is sometimes called the fractal

parameter. For the Michaelis-Menten reactions with

different obstacle densities, Monte Carlo simulations

can be used to estimate the rate constants [15, 17,

39], and it was shown that k behaved as in (1) for the

bimolecular reactions, but was always constant for

unimolecular reactions, even in crowded environ-

ments. The simulations also show pronounced

substrate-product segregation at obstacle densities

comparable with invivo conditions. This suggests that
complicated spatial kinetic effects can be captured by

simple temporal models by relating � to the obstacle

density in a crowded environment [40]. This is done

by using Monte Carlo simulations to capture a

relationship between h and �, the density of obstacles
on the membrane—see Figure 1 (left panel).

The general strategy is to replace all constant

rates by (1) in the case of bimolecular reactions

while for unimolecular reactions, no change is

needed since spatial structure has no impact. The

ensuing temporal algorithm ASSA (Anomalous

Stochastic Simulation Algorithm) captures the het-

erogeneous dynamics of, for example, the Michaelis-

Menten reactions in a crowded environment well

(Figure 1, right panel).

Another way in which temporal models can use

spatial information is through compartmental

models. In cellular models these compartments are

usually the plasma membrane, the cytosol and the

nucleus. It is very rare for all three compartments to

be represented and most compartment models either

use the first two or the last two compartments. For

example, in [41] a model is developed for the IKK-

IkB-NF-kB signalling module by distinguishing

between NF-kB, IkB-{�/b/e} and IkB-{�/b/e}-
NF-kB proteins in the cytosol and in the nucleus and

by taking translocations of corresponding proteins

between these two compartments into account. In a

more complex setting a discrete Markov model

(based on the SSA) for Ras nanoclusters on the

plasma membrane is coupled with an ODE model

Figure 1: Left: the dependence of h on obstacle density and step size. Note that even at �¼ 0, h 6¼ 0 as diffusion
is not completely classical due to competition for voxels. Right: comparison of pure SSA (dashed line), ASSA (with
appropriate hçsolid line) and Monte Carlo simulation (dotted line) for the Michaelis^Menten system in which four
molecular species react according to the equation:

E þ S,
k1

k�1

C!
k2

E þ P

where E is the enzyme, S is the substrate,C is a complex and P is the product.The initial conditions are [E(0)]¼ 500,
[S(0)]¼ 500, [C(0)]¼ 0, [P(0)]¼ 0 and �¼ 0.4.While SSA is inaccurate for this set-up, the ASSA predictions are very
close to the Michaelis^Menten Monte Carlo results.
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for the MAPK pathway in the cytosol [14].

This multiscaled compartment model, along with

some experimental investigations, suggest that Ras

microdomains function act as sensitive switches.

Delays are an essential feature in the modelling of

cellular pathways and regulatory networks. They are

intrinsic to slow biochemical processes that do not

occur instantaneously and are often affected by

spatial inhomogeneities. For instance, delays are

associated with transcription and translation, two

processes that imply other spatiotemporal processes

often not explicitly modelled, such as (in eukaryotes)

diffusion and translocation into and out of the

nucleus, RNA polymerase activation, splicing,

protein synthesis and protein folding. By incorporat-

ing delays into the temporal model we can expect

more accurate and reliable predictions of cellular

dynamics [42]. Delay Differential Equation (DDE)

models with delayed feedback have been studied

since the late 1960s [43–46]. Recently, transcrip-

tional and translational delays have been studied and

modelled in the continuous deterministic regime

described by DDEs for various genetic regulatory

systems [47–49]. In order to take proper account of

both time delays and intrinsic randomness, Barrio

et al. [50] developed a delay stochastic simulation

algorithm (DSSA) that generalises the SSA in the

delayed setting. Bratsun et al. [51] also developed a

delay SSA but they do not consider waiting times for

delayed reactions and only non-consuming reactions

can be delayed. The simulation proceeds by drawing

reactions and their waiting times (for delayed and

non-delayed reactions)—see Figure 2. Recent

research [52] suggests that spatial inhomogeneities

can be well captured and modelled by means of time

delayed processes with specific delay distributions

and, in some cases, can provide insights into

complicated cellular processes more reliably and in

a more reasonable time frame than many spatial

models.

It is not always easy to give a recipe as to which

simulation approach should be used in a given

setting. However, in the case of, for example, genetic

regulation when there are certain key regulatory

proteins that occur in small numbers then the

discrete, stochastic approach that takes into account

intrinsic noise is probably the most appropriate

approach. Similarly, if the accurate representation

of delayed processes, such as transcription and

translation, is important then the incorporation of

delay into the simulation will also lead to reliable

results. Otherwise, hybrid approaches that capture

the diverse elements of discrete, stochastic, contin-

uous and delayed aspects of a cellular environment

may well be necessary.

Spatial models
Many biological systems are characterised by com-

plex spatial structure, low diffusion rates and low

numbers of molecules. For example, biomacro-

molecular diffusion coefficients in the cytoplasm

are usually 5–20 times lower than their values in

saline [53] while the diffusion of lipids on cell

membranes are estimated to be between 1 and

2 orders of magnitude lower than predicted by

theory [54]. If we are to model accurately these

processes then spatial models are mandatory. We are

then faced with the problem of how to represent

these complex processes. A very traditional techni-

que is the Reaction-Diffusion Partial Differential

Equation (RDPDE). However, this approach is only

valid if we are dealing with large numbers of

molecules. On the other hand RDPDEs can deal

effectively with irregularly shaped regions through

computational techniques based on finite elements

and finite volumes. However, when the ultrastruc-

ture is changing dynamically or if we are dealing

with complex processes such as transport by lipid

rafts then this framework can become very

complicated indeed.

Ri−2
u Ri−1

u Ri+1
u Rk−1

u Rk
uRi

d,r Ri
d,p

ti−1 tk−1ti

θi−2 θi−1 θi+1 θk−1 θk+1θkθi

X

X

X

τi

...

Figure 2: Schematic representation of the DSSA
implementation.Here, �i refers to thewaiting time until
the next reaction Ri is scheduled and �i is the delay time
of reaction Ri. The dotted arrows point to the time line
indicating when a reaction is updated. The reaction is
specified below the arrow. Ru denotes a non-delayed,
Rd a delayed reaction. Non-delayed reactions are
updated when triggered. In case of a delayed consuming
reaction, its reactants and products are separately
updated. This is marked by Rd,r and Rd,p, respectively. If
time steps and reactions are drawn but then ignored
they are crossed out. Those steps are marked as grey
dashed lines and the steps replacing an ignored step are
marked as grey solid lines.
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In a subdiffusive setting the counterpart of the

RDPDE is the fractional equation

D�ðX,tÞ ¼ D1��
t r2�ðX,tÞ þ f ðX,tÞ

where D1��
t yðtÞ is the fractional Riemann-Louiville

derivative operator that reduces to the identity

operator when �¼ 1 (pure diffusion) [55].

A number of authors have studied this framework

in, for example, reaction fronts for bimolecular

reactions [56]. However, currently there are few

practical numerical methods for the solution of

fractional differential equations [57].

In the discrete stochastic spatial setting the SSA

and the CME have been generalised to describe

stochastic reaction-diffusion reactions for in vivo
biochemistry [58]. In the case of the reaction-

diffusion Master Equation the volume is divided into

subvolumes that are small enough to be considered

homogeneous by diffusion over the time scale of

the reaction. The state of the system is updated

by allowing the molecules to jump at random to

neighbouring subvolumes with diffusion being

modelled by a unimolecular reaction. There may

be many subvolumes and so this can be potentially

computationally expensive, thus a next subvolume

method that generalise the temporal SSA has been

developed [59, 60]. This method scales logarithmi-

cally with the number of subvolumes. A similar

spatial implementation is given in [61] based on

the direct implementation of the SSA, with similar

efficiencies. More sophisticated spatial Kinetic

Monte Carlo techniques attempt to adaptively

coarse grain the lattice in both time and space

using ideas from Multigrid techniques for the spatial

graining [62] and � leap methods for the temporal

graining [29, 63].

These remarks lead us to the very powerful

spatial modelling technique known as Monte Carlo

simulation, in which a two or three- dimensional

computational lattice is used to represent a mem-

brane or the interior of some part of a cell [15, 17,

64, 65]. This lattice can then be seeded with different

molecular species of differing numbers. These

molecules can move (diffuse) on the lattice and if

they interact, then the appropriate chemical reaction

takes place with a certain probability. A crowded

environment can be simulated by placing inert

molecules on a lattice with which the seeded

molecules cannot react. Further extensions of

this idea have led to simulation environments

that attempt to model the behaviour of lipid rafts

in which both proteins and rafts can diffuse on the

lattice [65].

The advantage of this approach is that very

detailed, complex systems can be simulated; the

disadvantages are the large amounts of computational

time and restrictions on the actual size of the domain

that can be represented and practically simulated.

This comes about because if we assume that a voxel

can be occupied by at most one molecule at any

given time and assuming an average molecular

diameter of 4 nm, then even a lattice of size

500� 750 voxels corresponds to a physical size of

2 mm� 3 mm [65]. Furthermore, since the Monte

Carlo technique is a stochastic method, a number of

independent simulations may need to be performed

in order to be able to compute statistics about mean

and variance behaviour, depending on the variables

of interest—in many cases the system self-averages if

many molecules are present. One way to circumvent

this computational bottleneck is to exploit the power

of grid computing [66] and divide the computational

membranes into subdomains and perform simula-

tions independently in each subdomain with

asynchronous communication (in terms of particle

movement) between the regions. This can reduce

the computational overheads significantly but comes

at considerable human intervention via program-

ming in parallel.

ACASE STUDY
In this case study we discuss how Monte-Carlo

simulations can be used to address very complicated

membranal processes involving chemistry, micro-

domains, cytoskeletal partitioning and FRAP

(Fluoresence Recovery after Photobleaching). This

work is based on [65] and [67]. In this work, a

two-dimensional lattice is used to represent a cell

membrane. Each element of this lattice is a voxel

that can be either occupied or unoccupied by a

molecule at each time step; in the former case,

a record is made of what molecule occupies the

voxel. Since a voxel can only be occupied by one

molecule at one time (volume exclusion), if we

assume an average molecular diameter of around

4 nm (an average globular protein) then a lattice of

dimensions 250� 378 voxels, corresponds to an area

of 1 mm� 1.5 mm. This computational membrane

is large enough to obtain meaningful results of

membranal dynamics—but the simulations can be

very slow, especially when run over long time
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intervals or if there are large numbers of molecules.

At each such step, a moleculeM1 is chosen at random

from the general population. Let the coordinates of

this molecule be (x, y). One of the voxels with

coordinates (xþ di,y), (x� di,y), (x,yþ di) or (x,y� di)
is also chosen at random, where di is the step size of

species i. This new voxel represents the location to

which the molecule is moved during the current time

step by Brownian motion alone. By using non-

unitary and non-integral step sizes, the behaviour of

systems with various degrees of stirring and/or

stochasticity can be investigated

Obstacles can be represented as a separate

chemical species that is inert with respect to all

other species and has step size identically 0. We will

denote the density of random obstacles on the

membrane as �, and note that on lattices with

immobile obstacle densities below the percolation

threshold (�T� 0.4073) accessible sites form a

percolation cluster [68, 69]. Another source of

anomalous diffusion is the interaction of mobile

proteins and lipids with a cytoskeletal ‘fence’ system

spanning the membrane [16]. This can be simply

modelled by assuming fence lines are at right angles

to each other and distributed evenly across both

dimensions, with spacing between lines (‘pitch’).

Each fence line is made up of immobile fence posts

(obstacles) and each voxel of the fence is either

occupied or unoccupied by a fence post [67]. In this

way, square domains are delimited by fence lines

on the membrane. The only qualitative difference

between fixed obstacles and fence posts is that the

former are uniformly distributed on the membrane

while the latter are randomly distributed only along

fence lines. Proteins attempting to cross from one

domain to another may be rejected (and thus

retained in their current domain) by collisions with

the fixed fence posts—‘hop diffusion’ [16].

The interaction of proteins with lipid micro-

domains (lipid rafts) can be investigated in this

framework [65, 67]. It is believed that proteins

diffuse more slowly inside rafts than outside [70] and

this has been postulated to be a possible source

of anomalous diffusion [71]. A raft can be modelled

as a two-dimensional, circular patch of radius gr:
and area Ar: ¼ p(gr)

2. Rafts can be either fixed or

diffuse in an analogous manner to proteins, with

diffusion rate relative to proteins given by the

Saffman-Delbruck equation [65]. A key method for

measuring protein dynamics is (FRAP). The method

‘bleaches’ fluorescent molecules by exposure to high

intensity laser radiation. As unbleached molecules

move into the bleached area, the fluorescence

recovers over time to its pre-bleaching state. The

recovery curve can be used to infer information

about the mobility of the macromolecule under

investigation [72]. Simulating FRAP experiments

is relatively straightforward, by giving each protein

a ‘tag’ property, that has value 1 if they are

fluorescent and 0 otherwise, and changing the tags

appropriately.

Simulation results show that the most powerful

constraining factor for small-scale molecular mobility

is the presence of many randomly distributed,

fixed (or almost fixed) obstacles. The presence of

lipid rafts with biophysically realistic characteristics

has a moderate effect on the anomalous exponent

if proteins partition into rafts, but has a large effect

if proteins are excluded from rafts. In contrast,

collisions with a rectangularly organised cytoskeletal

picket cannot, in this simulation framework, account

for a large degree of anomalous diffusion in the

absence of other interactions even if the fence lines

are completely impenetrable and close together

(as low as 10 protein diameters). Thus, obstacle

concentration, the distribution of obstacles and the

precise diffusion model (triangular versus rectangular

lattice) are important parameters in characterizing

the long-range diffusion of proteins. Further experi-

mental elucidation of the likely geometries of

impeding structures on cell membranes would help

to focus modelling efforts in this area. Finally it is

also important to note that there are other

membrane/protein interactions that can be explored.

For example, physical association (rather than simple

collision) with the cytoskeleton could also contribute

significantly to non-classical diffusion. Moreover,

recent work [65] shows that the mobility of rafts as

well as the ability of rafts to selectively capture and

exclude different proteins can change the character-

istics of the random walks executed by proteins on

a cell membrane.

It is clear that Monte Carlo techniques can be

used to investigate sources of anomalous diffusion

in two-dimensional biological membranes such as

randomly distributed fixed obstacles, lipid rafts (with

proteins either partitioning into or being excluded

from rafts) and a rectangularly organised cytoskeletal

fence system. Simulations suggest that of these, fixed

obstacles and exclusion from rafts are the mechanisms

most likely to cause anomalous diffusion, in the

absence of other interactions. The combination
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of the three mechanisms, at biologically relevant

levels, can account for experimentally reported

anomalous diffusion levels. This suggests that the

presence of impediments to motion in complex

biological media has important effects on biochem-

ical interactions and that in order to accurately take

into account the effects of complex spatial features

on dynamic (including chemical reacting) systems,

spatially explicit methods such as Monte Carlo

simulation are vital tools.

KEY POINTS
In order to provide insight into cellular processes,

modelling approaches must strike a balance. On the

one hand, it is clear that the spatial properties and

biological ‘objects’ populating the membrane are

crucial to its various functions, so taking these spatial

aspects into account is indispensable. On the other

hand, direct simulation approaches can be prohibi-

tively expensive, especially as biological relevance

can happen over scales of seconds or minutes rather

than micro-seconds. Thus we may attempt to

capture some of the features by applying ‘semi-

empirical’ modifications to the constitutive equations

of classical non-spatial models (‘smart’ temporal

models). This will be worthwhile if the new

models retain the computational tractability of the

classical ones but are considerably more accurate than

these. The new methods can then be used either on

their own, in conjunction with spatial methods to

improve computation times, or in conjunction with

non-spatial methods to improve accuracy of predic-

tion in cases where the former are found wanting.

Nevertheless as more and more data becomes

available and our knowledge base increases, the more

complex the simulations become in order to gain

further insights, thus compounding the problem.

This relationship, confirming the adage that ‘there

is no free lunch’, is illustrated in Figure 3. At the

same time biological intuition becomes more

significant, not less significant. For this reason, it

will be increasingly important not only to use

mathematical modelling to make sense of the flood
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"Smart" Stochastic Temporal Modelling

Pros:  Analytical insight
Cons: Generally not applicable 
in biological media
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analytical analysis
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homogenous medium &
classical diffusion

Pros: Realistic, accurate, general,
easy to implement
Cons: Computationally Expensive

Pros: Atomic-scale accuracy, based
on quantum physics
Cons: Restricted to hundreds of
atoms and nanoseconds of real time

Pros: Cheap and
potentially very accurate
Cons: Application-
dependent

Pros: Include spatial
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Figure 3: To provide insight into cellular processes, computational modelling approaches must balance the need
for spatial detail and physical realism with the available computational resources. As the latter improve, it becomes
possible to move further up on the scale.
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of experimental findings but also for applied

mathematicians and mathematical biologists to

work more closely with, rather than in isolation

from, experimentalists.
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