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Modelling and smoothing parameter estimation
with multiple quadratic penalties

S.N.Wood†
University of St. Andrews, U.K.

J. R. Statist. Soc. B (2000)
62, Part 2, pp.413-428

Summary . Penalized likelihood methods provide a range of practical modelling tools, including
spline smoothing, generalized additive models and variants of ridge regression. Selecting the
correct weights for penalties is a critical part of using these methods and in the single penalty
case the analyst has several well founded techniques to choose from. However, many mod-
elling problems suggest a formulation employing multiple penalties, and here general method-
ology is lacking. A wide family of models with multiple penalties can be fitted to data by iter-
ative solution of the generalized ridge regression problem: minimise ‖W1/2(Xp− y)‖2ρ +
∑m

i=1 θip′Sip (p is a parameter vector, X a design matrix, Si a non-negative definite coeffi-
cient matrix defining the ith penalty with associated smoothing parameter θi, W a diagonal
weight matrix, y a vector of data or pseudodata and ρ an ‘overall’ smoothing parameter in-
cluded for reasons of computational efficiency). This paper shows how smoothing parameter
selection can be performed efficiently by applying generalized cross validation to this problem
and how this allows non-linear, generalized linear and linear models to be fitted using multiple
penalties, substantially increasing the scope of penalized modelling methods. Examples of
non-linear modelling, generalized additive modelling and anisotropic smoothing are given.

Keywords: Generalized additive models; Generalized cross-validation; Generalized ridge re-
gression; Model selection; Multiple smoothing Parameters; Non-linear modelling; Penalized
likelihood; Penalized regression splines

1. Introduction

Penalized likelihood methods provide important modelling tools in applied statistics, with the books
by Green and Silverman (1994), Hastie and Tibshirani (1990), and Wahba (1990) providing surveys
of various approaches. A well known example of a penalized regression problem is the fitting of a
cubic smoothing spline to data(yi, xi) by minimisation of:

n
∑

i=1

(yi − s(xi))2 + λ
∫

[s′′(x)]2dx.

The splines has one parameter per design point,xi, but the family of models that can be obtained
by solving the fitting problem ranges from a straight line (λ → ∞) to an interpolating cubic spline
(λ → 0): λ controls which of a family of models of differing complexity is actually fitted. Hence the
crucial step in the practical use of smoothing splines is the selection of the smoothing parameter,λ,
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controlling the trade-off between fidelity to the data and smoothness of the fitted spline. Generalized
cross validation (GCV, Craven and Wahba, 1979) is one method of smoothing parameter selection
that has proven effective and has good theoretical properties, although there are other similar meth-
ods (AIC/unbiased risk estimation, and generalized maximum likelihood, see Wahba 1990). The
availability of highly efficient implementations of GCV based smoothing parameter selection (e.g.
Hutchinson and deHoog, 1985) is in large part responsible for the popularity of smoothing splines.

Spline models have been generalized. ‘Thin plate’ splines provide a way of modelling a sin-
gle response to multiple covariates; data may be observations of linear functionals of the spline;
models that are a mixture of parametric and spline terms can be produced, and all these extensions
can be employed in a generalized linear modelling framework. Green and Silverman (1994) or
Wahba (1990) provide more or less accessible accounts of these developments, again using GCV
for smoothing parameter selection .

An obvious further generalization is to allow multiple smooth terms in a model, so that model
fitting must balance goodness of fit against multiple penalties. Examples are provided by Wahba
(1990), Wahbaet al. (1995), Gu and Wahba (1993) and Hastie and Tibshirani (1990). With this gen-
eralization automatic smoothing parameter selection becomes much more difficult computationally,
but also more important: with a single penalty it might be argued that an acceptable level of smooth-
ing can be obtained by informal methods (examination of residual autocorrelation, for example), but
this becomes difficult, time-consuming and ever less objective as the number of smoothing param-
eters to be chosen increases.

In principle, as in the single penalty case, multiple smoothing parameters can be chosen auto-
matically by GCV, but to date the only practical method for doing this (Gu and Wahba, 1991) applies
to reproducing kernel based spline models and not to other models with multiple penalties. Its oper-
ation count is of cubic order in the number of data to be fitted. In the context of generalized additive
models (Hastie and Tibshirani, 1990) various approaches to multiple smoothing parameter selection
have been taken which again use the special structure of the problem and do not generalize easily.
The most defensible of these is based on iteratively estimating one smoothing parameter at a time,
by minimising an approximation to the GCV objective function: but this approach is only effective
if there is little covariance between the covariates with which the different penalties are associated
and if the approximate objective can be minimised efficiently. In practice, efficient minimisation in
this context requires that models be constructed solely from functions of single covariates.

While existing modelling approaches might be improved by the existence of a good multiple
smoothing parameter selection method, substantial benefits should follow from a widening of the
range of models that can be employed with multiple penalties. For example, there are many cases
in which a non-linear model with multiple penalties is an obvious formulation, but an impractical
one in the absence of a method of smoothing parameter selection. Section 5 provides one example.
Other problems naturally produce linear or generalized linear models subject to multiple penal-
ties (section 7 provides a case in point), but again lack of practical smoothing parameter selection
methodology creates substantial practical difficulties.

By providing a fairly general multiple smoothing parameter selection method this paper aims to
widen the range of models that can be employed with multiple penalties. Specifically, an efficient
method is provided for models in which data,yi, are treated as observations of random variables,
Yi, from some exponential family distribution andE(Yi) = f(p), wheref is in general a non-linear
function of a parameter vectorp. Estimates of the model parameters are found by minimisation of:

−l(p,y)ρ +
1
2

m
∑

i=1

θip′Sip (1)
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(possibly subject to general linear equality constraintsCp = 0) wherel is the log likelihood of
p giveny and the matricesSi contain coefficients defining the penalties applied to the parameter
vector.θ andρ control the level of penalization. Attention will be restricted to the case in which the
matricesSi are non-negative definite (at least when projected into the null space of any constraints
on the problem) andf is sufficiently well behaved for the problem to be solved by iterative least
squares. Hence the methods are also applicable to penalized least squares problems which are not
interpretable in terms of likelihood.

The remainder of the paper is structured as follows: firstly methods for fitting penalized models
are reviewed to obtain a fitting framework helpful to smoothing parameter selection; then a GCV
method is developed for multiple smoothing parameter selection in generalized ridge regression
problems by building on Gu and Wahba’s (1991) approach. To illustrate the fairly wide ranging
utility of the results three brief examples are presented: non-linear modelling with multiple penal-
ties, generalized additive modelling with penalized regression splines and anisotropic smoothing.
The computer code implementing the method of section 4 can be obtained from:
http://www.blackwellpublishers.co.uk/rss/
or from
http://www.ruwpa.st-and.ac.uk/simon/mgcv.html .

2. Model fitting

It can be shown that a wide range of models with multiple penalties can be fitted to data by (possibly)
iterative solution of the generalized ridge regression problem:

minimise ‖W1/2(Xp− y)‖2ρ +
m

∑

i=1

θip′Sip (2)

subject to the linear constraints:

Cp = 0. (3)

‖.‖ is the euclidean norm,X is ann × q design matrix,p the model parameter vector,y a vector
of (pseudo)data to be fitted, andW a vector of weights (which may be iteratively re-calculated in
practice). TheSi’s are non-negative definite coefficient matrices defining the penalties, each with
associated smoothing parameterθi. ρ is an overall smoothing parameter introduced for reasons of
computational efficiency that will become clear later.C is a matrix of known coefficients defining
the constraints.

The fitting objective is self evidently appropriate for generalized ridge regression problems, but
slightly less obvious in other contexts. First, consider fitting a generalized linear model by penalized
likelihood maximisation. Specifically, assume that theyi’s are observations of independent random
variables from some exponential family distribution and thatµi ≡ E{Yi} is related to the model
parameters byg(µi) = Xip, whereXi is theith row of a design matrix andg() a monotonic ‘link’
function. Further suppose thatm quadratic penalties are to be applied to the parameter vector. The
model parameters are estimated by maximising the penalized log-likelihood:

lp = ρ
n

∑

i=1

li(yi,Xip)− 1
2

m
∑

i=1

θip′Sip.
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p[k] (thekth estimate ofp) can be updated by Fisher scoring:

p[k+1] = p[k] +
[

E
{

− ∂2lp
∂p[k]∂p[k]′

}]−1 ∂lp
∂p[k]

(where the notation∂l/∂p, refers to the vector whoseith element is∂l/∂pi). DefineW[k] to be the
diagonal matrix such thatW [k]

ii = [g′(µ[k]
i )2V [k]

i ]−1 whereV [k]
i is the variance ofYi according to

the estimates,µ[k]
i , implied byp[k], and letΓ[k] be the diagonal matrix such thatΓ[k]

ii = 1/g′(µ[k]
i ).

The Fisher scoring update equations become:

p[k+1] = p[k] +
[

X′W[k]Xρ +
∑

θiSi

]−1 [

X′W[k]Γ[k](y − µ[k])−
∑

θiSip[k]
]

.

This is equivalent to findingp[k+1] by solving the weighted penalized least squares problem:

minimise ρ‖W1/2(z[k] −Xp)‖2 +
∑

θip′Sip

wherez[k] = Xp[k] + Γ[k](y−µ[k]) (and I’ve dropped the superscripts onW for no good reason).
This kind of approach can be found in O’Sullivanet al. (1986), or Green and Silverman (1994).

Constraints are incorporated into such a scheme (Gillet al., 1981) by finding a column basis,
Z, for the null space of the constraint matrixC (QR or QT factorisation will provide this). Solution
proceeds as outlined above, but withX replaced byXZ andSi replaced byZ′SiZ: the working
parameter vector will bepz wherep = Zpz. Constraints are often required in the event of parameter
aliasing (i.e. column rank deficiency inX) when it is necessary to impose equality constraints on
some of the parameters.

In the more general non-linear case it is often possible to maximise the penalized likelihood
using a slightly modified Gauss-Newton method which results in an iterative least squares scheme
similar to the one employed for generalized linear models. The JacobianJ[k] takes the place of the
design matrixX, whereJ [k]

ij = ∂µ[k]
i /∂p[k]

j . The ‘pseudodata’ at thekth iteration is now given by:

z[k] = y − µ[k] + J[k]p[k] (assuming an identity link). Constraints are applied in the same manner
as described above.

In all cases it is possible to impose inequality constraints on the model by treating the generalized
ridge regression problem as a quadratic programming problem (see e.g. Gillet al., 1981).

So, the generalized ridge regression problem (2, 3) is not only the basis for fitting penalized
linear models, but also allows GLMs and non linear models to be fitted by penalized likelihood
maximisation.

3. Multiple smoothing parameter selection

The methods of the last section are of little practical use unless the smoothing parameters,θi/ρ, can
also be estimated. In principle this can be achieved for the problem (2) using GCV by minimising:

V =
‖W1/2{y −A(ρ, θ)y}‖2/n

[1− tr{A(ρ,θ)}/n]2
(4)

with respect to theθi/ρ’s. A(ρ,θ) is the influence (hat) matrix for the model: i.e.µ̂ = Ay. When
solving (2,3) iteratively, as part of a penalized likelihood maximisation, the smoothing parameters
can be estimated at each iteration using the pseudodata and iterative weights in place ofy andW.
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This is the standard approach taken by Wahbaet al. (1995) or Gu and Wahba (1993), for example,
although O’Sullivanet al. (1986) adopt a slightly different method.

GCV is appealing both from a theoretical perspective (e.g. Craven and Wahba, 1979, Utreras
1981) and because of its successful use in a range of practical applications, although Generalized
Maximum Likelihood (GML), Akaike’s Information Criterion (AIC) or equivalent Unbiased Risk
Estimators (UBRE) are well founded alternatives (see, e.g. Wahba 1990 and Akaike 1973). The
practical difficulty in using GCV lies in minimisation of (4), which has the potential to be pro-
hibitively expensive, numerically. The troublesome term istr(A), which would takeO(nq2) op-
erations to evaluate directly, for each trial set of smoothing parameters (q is the dimension ofp;
AIC/UBRE and GML have similar problems). A simple grid search form smoothing parameters
usingk gridpoints per parameter would require of ordernq2km floating point operations: an effec-
tive barrier to use of general models with multiple penalties, particularly if model fitting must be
repeated as part of a computer intensive analysis. So, in order to allow practical use of models with
multiple penalties, the next section reports an efficient method for multiple smoothing parameter
selection that requires only a few timesq3 operations.

4. Minimisation of the GCV score

This section builds on Gu and Wahba’s (1991) method for reproducing kernel models to produce a
smoothing parameter selection method that applies to all model fitting problems of the form (2,3).
The approach is to alternate highly efficient, one dimensional, direct searches forρ with Newton
updates oflog(θ), so that the ‘overall’ level of smoothing is optimized at each step while the relative
weight given to each penalty is adjusted iteratively.

The problem (2,3) has the following influence matrix:

A = ρXZ

(

Z′X′WXZρ +
m

∑

i=1

θiZ′SiZ

)−1

Z′X′W

(whereZ is a column basis for the null space ofC). A is not in a convenient form, so letQ′R̃ =
W1/2XZ, whereQ is an orthogonal matrix made up of Householder transformations,R̃′ = (R′,0)
andR is full rank (q) upper triangular with inverseL (note thatQ, R andL need be obtained only
once, before iteration). Defining̃A = W1/2AW−1/2 gives:

Ã = ρQ′
(

I
0

)

(

Iρ +
m

∑

i=1

θiL′Z′SiZL

)−1

(I,0)Q,

I being the rankq identity matrix. Now form the decomposition:

m
∑

i=1

θiL′Z′SiZL = UTU′

whereU is orthogonal (again a product of Householder transformations) andT is tridiagonal. Given
theL′Z′SiZL’s, which are formed before iteration begins, this step isO(q3). It is clear that:

Ã = ρQ′
(

I
0

)

U(Iρ + T)−1U′(I,0)Q.

Sotr(A) = tr(Ã) = ρtr(Iρ+T)−1, which can be evaluated inO(q) operations by Elden’s method
(Elden, 1984, or see Wahba, 1990, p.139). To get the GCV score we also need the residual sum of
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squares. By definingz = U′[I,0]QW1/2y andx to be the vector containing the lastn− q rows of
QW1/2y, it is straightforward to show that:

‖W1/2(y −Ay)‖2 = ‖{I− ρ(Iρ + T)−1}z‖2 + ‖x‖2.

So the GCV score for the problem is:

V =
‖{I− ρ(Iρ + T)−1}z‖2/n + ‖x‖2/n

{1− ρtr(Iρ + T)−1/n}2
.

Of course, any productB = (Iρ + T)−1D can be obtained efficiently by solving(Iρ + T)B = D,
after obtaining the bidiagonal Choleski factors of(Iρ + T) in O(q) operations. Hence, onceT has
been obtained (and‖x‖2 evaluated),V can by evaluated inO(q) operations for anyρ, allowing the
optimalρ to be found economically by direct search. Note that the estimated parameter vector is
given by:

p̂ = ρZLU(Iρ + T)−1z.

Updating the parametersθi is less straightforward. I will again follow Gu and Wahba (1991)
and update the variablesηi = log θi by Newton’s method (see Gillet al. 1981). This requires the
derivatives ofÃ w.r.t. η. First defineG = U(Iρ + T)U′ (= Iρ +

∑m
i=1 θiL′Z′SiZL), so that

Ã = ρQ′(I,0)′G−1(I,0)Q. Clearly,

∂G
∂ηi

= θiL′Z′SiZL and
∂2G

∂ηi∂ηj
=

{

0 i 6= j
θiL′Z′SiZL i = j .

So, using∂G−1/∂ηi = −G−1∂G/∂ηiG−1 gives,

∂Ã
∂ηi

= −ρθiQ′
(

I
0

)

U(Iρ + T)−1U′L′Z′SiZLU(Iρ + T)−1U′(I,0)Q

and

∂2Ã
∂ηi∂ηj

= ρθiθj ×
[

Q′
(

I
0

)

U(Iρ + T)−1U′L′Z′SiZLU(Iρ + T)−1U′L′Z′SjZLU(Iρ + T)−1U′(I,0)Q
]‡

−ρθiQ′
(

I
0

)

U(Iρ + T)−1U′L′Z′SiZLU(Iρ + T)−1U′(I,0)Qδij

whereδij = 0 if i 6= j, δii = 1 and I have usedM‡ to meanM + M′.
The gradient vector and Hessian ofV w.r.t. theηi’s are needed. For notational compactness let

V = α/β (by definition ofα andβ) so that the gradients are given by∂V/∂ηi = ∂α/∂ηi/β −
∂β/∂ηiα/β2, for example. To obtain the gradient and Hessian requires the following:

α =
1
n

(

y′Wy − 2y′W1/2ÃW
1/2

y + y′W1/2Ã′ÃW
1/2

y
)

so,
∂α
∂ηi

=
2
n

(

−y′W1/2 ∂Ã
∂ηi

W1/2y + y′W1/2 ∂Ã′

∂ηi
ÃW

1/2
y

)
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and

∂2α
∂ηi∂ηj

=
2
n

(

−y′W1/2 ∂2Ã
∂ηi∂ηj

W1/2y + y′W1/2 ∂2Ã′

∂ηi∂ηj
ÃW

1/2
y + y′W1/2 ∂Ã′

∂ηi

∂Ã
∂ηj

W1/2y

)

.

Turning toβ:

β =
{

1− 1
n

tr(Ã)
}2

from whence:
∂β
∂ηi

=
2
n

{

1
n

tr(Ã)− 1
}

tr

(

∂Ã
∂ηi

)

and
∂2β

∂ηi∂ηj
=

2
n2 tr

(

∂Ã
∂ηj

)

tr

(

∂Ã
∂ηi

)

− 2
n

{

1− 1
n

tr(Ã)
}

tr

(

∂2Ã
∂ηi∂ηj

)

.

Given(I,0)QW1/2y, evaluation of the various derivatives ofα requires onlyO(q2) operations, but
the derivatives ofβ are less straightforward, because of the termstr(∂Ã/∂ηi) andtr(∂2Ã/∂ηi∂ηj).
The following approach minimises the computational burden. In many circumstances each penalty
term only applies to a subset of the model parameters, so that the penalty matricesSi only contain
a relatively small block of non-zero elements. For this reason it is worth finding square roots of the
Si’s each having as few columns as possible (see below). The matricesL′Z′S1/2

i are then obtained

once only. For each newη, the matricesU′L′Z′S1/2
i are formed (in the common situation that the

penalties apply to non-overlapping subsets of the parameters, this step has a total operation count
of q3/2). If K is a (bidiagonal) Choleski factor ofIρ + T then the next step is to solveKK′Fi =
U′L′Z′S1/2

i for Fi (operation countO(q2)) before evaluatingtr(∂Ã/∂ηi) = ρθitr(FiF′i) in ≤ q2

operations.
The second derivatives require formation of the matricesU′L′Z′SiZLU: since square roots

of these are already available, this is usually achieved in a total ofq3 operations (for the non-
overlapping penalty case). It’s then a matter of solving them equationsKK′DiK′ = U′L′Z′SiZLU
for Di (againO(q2)). The first term intr(∂2Ã/∂ηi∂ηj) is now given inq2 operations by2ρθiθjtr(DiD′

j)
(sincetr(M) = tr(M′), in general) and the second term is already available, when needed.

Now consider forming theS1/2
i ’s efficiently. Let S̃i be the smallest sub-matrix containing all

the non-zero elements ofSi. I obtainedHi’s such thatS̃i = HiH′
i as follows: (i) Perform a

Householder tridiagonalisation:̃Si = PNP′ (whereP is orthogonal andN is tri-diagonal). (ii)
Obtain the Choleski decomposition of the non-zero part ofN, so thatN = BB′. (iii) Set Hi =
PB. Now typically: S1/2

i = (0,H′
i,0)′ . (It might be considered more straightforward to use an

algorithm based on truncated singular value decomposition, although this would be less efficient.)
Minimisation ofV with respect to theθi/ρ’s is done iteratively. Exact searches forρ givenη

are alternated with Newton updates ofη givenρ (with η normalised to avoid overflow or underflow,
which is legitimate since only the relative sizes of theηi’s matter). Under some circumstances the
Hessian may not be positive definite, and some regularization will be required.

Reasonable starting values (see Wahba 1990) are:

θ(0)
i =

1
n
{tr(L′Z′SiZL)}−1 θ(1)

i = n(θ(0)
i )2p′ZL′Z′SiZLZ′p.

The operation count for the algorithm falls into two parts: start up costs and costs per itera-
tion. Start up operations consist of an initial QR decomposition and the formation of matrices of
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the formL′Z′S1/2
i andL′Z′SiZL: clearly theO(nq2) QR decomposition dominates these costs in

the usual case in whichn is substantially greater thanq. The operation count per iteration depends
on the nature of the quadratic penalties. The most costly steps are the formation of the2m matri-
cesL′Z′S1/2

i andL′Z′SiZL: the total operation count for these steps varies betweenO(q3) and
O(mq3), depending on the extent to which penalties overlap in the parameters which they penalize.

Clearly GCV is not the only sensible criterion for choosing multiple smoothing parameters, but
the method given is easily modified to employ other criteria where the awkward term is the trace of
the influence matrix .

5. Example: a non-linear model

The first example concerns a non-linear model with multiple penalties, where the non- linearity
arises from attempting to incorporate basic biology into the model to be fitted. Marine copepods are
crustacea that form an important link in many marine food chains. Typically they eat phytoplankton
and are eaten by fish larvae. Mortality rates can be high for such organisms, but are impossible to
observe directly: there is a sizeable literature devoted to methods for estimating these rates from
time series of population data (see Askneset al. 1997). As copepods age they pass through a series
of clearly identifiable stages of fixed duration separated by moults. There are typically 11 stages
before adulthood, but the major physiological changes are between the6th and7th. From the7th

stage the animals swim much more strongly and are better able to avoid predators. A reasonable
model of a stage structured copepod population can be constructed using standard delay differential
equation methodology (see Gurney and Nisbet, 1998, for the basic model structure). The equation
for the population in stagei is:

dni

dt
= Ri(t)−Mi(t)− µi(t)ni(t)

where the maturation rateMi can be expressed in terms of the recruitment rate,Ri, the mortality

rate,µi, and the stage duration,τi, usingMi = Ri(t − τi)exp
(

−
∫ t

t−τi
µi(x)dx

)

. For all but the

first stageRi+1(t) = Mi(t). The model neglects demographic stochasticity, which is reasonable for
large populations over short timescales, particularly when sampling error is large. Given the known
biology, it is reasonable to setµ1 to µ6 to the same unknown function of time and similarly to set
µ7 to µ11 equal to another unknown function of time.R1(t) is also an unknown function of time
and the initial conditions att = 0 were set to be consistent withµi(t) = µi(0) andRi(t) = Ri(0)
for all t < 0.

To fit this model in practice the three unknown functions were each represented using a cu-
bic spline basis, each was penalized with a standard cubic spline wiggliness penalty, and each had
natural end conditions (see section 2.2 of Green and Silverman, 1994, for example). The parame-
terization was set up so that the free parameters for each spline were the values of the spline at a
set of design points (knots) in its domain: 15 evenly spaced knots were employed per spline. Given
the values of the free parameters of the splines the model can be integrated numerically to give
predicted populations in any stage at any relevant time: adaptive time-stepping with an embedded
Runge-Kutta 2(3) scheme was used, along with cubic Hermite interpolation of lagged variables (see
Highman, 1993, for a description of how to integrate delay differential equations accurately). The
model was fitted by penalized least squares using the iterative least squares method for penalized
non-linear models given in Section 2, with smoothing parameters estimated by the method of sec-
tions 3 and 4 (andWii = 1, ∀i). The Jacobian matrices,J[k], required for this, were estimated by
finite differencing (although it is possible to derive a system of delay differential equations to be
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Fig. 1. Model predictions (joined by solid line) of data (squares), for a non-linear population dynamic
model fitted to marine copepod data. The model has three unknown functions: birth rate, mortality
rate in first 6 stages and mortality rate in remaining stages. These functions were modelled us-
ing penalized regression splines. The model was fitted by iterative least squares, with smoothing
parameters chosen as described in the text.

solved for the elements ofJ[k]): differences must be selected carefully (see e.g. Gillet al., 1981,
section 8.6) and the same integration mesh should be used for both model integrations used for each
finite difference estimate (different meshes can lead to severe loss of accuracy and precision).

The model was fitted to data for a mesocosm population ofPseudocalanustaken from Hayet al.
(1988, 1991). The sampling protocol is not straightforward, but the data are counts of individuals in
each life history stage caught in net hauls multiplied by the volume of the mesocosm divided by the
volume of water filtered by a net haul. Figure 1 shows the model fit and data, stage by stage, while
figure 2 shows best fit functions and approximate ‘95% confidence bands’ calculated using the ap-
proximating linear model at convergence. There are a number of ways of calculating such bands.
The ones shown are similar to the Bayesian intervals developed by Wahba (1983), and can be justi-
fied by making the large sample approximation thatz|p ∼ N(Jp, Iσ2) and assuming a multivariate
normal prior onp with mean0 and covariance matrix proportional to an appropriate pseudoinverse
of

∑

i θiSi: see Hastie and Tibshirani, (1990) section 3.6, based on Silverman (1985) (they assume
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Fig. 2. Estimated birth (recruitment) and mortality rate functions for the marine copepod population.
Thick line is estimate, thin lines are upper and lower 95% ‘confidence limits’.

squareJ, but this is not necessary). Neglecting constraints and assuming uniform weights, the es-
timated posterior covariance matrix for the parameters is given byσ̂2(J′J +

∑

i θ̂iSi/ρ̂)−1, where
σ̂2 = ‖y−µ̂‖2/[tr(I−A)] and all quantities are estimated at convergence. The approximate poste-
rior distribution ofp̂ is multivariate normal, so approximate confidence intervals for the parameters
are easily obtained. Since the splines have been parameterised in terms of function values at discrete
times, it is straightforward to use approximate confidence intervals for these parameters to construct
confidence intervals for the splines: for figure 2 I plotted the upper 95% confidence limit for each
parameter at the appropriate time and interpolated these points with a cubic spline to get a smooth
curve; the same procedure was used for the lower limit. Other approximations can be used to obtain
confidence intervals (e.g. next section) and there are also strong arguments for obtaining intervals
by bootstrapping (Wang and Wahba, 1995).

This example is fairly specialised, but the general approach is not and should be widely appli-
cable.

6. Example: Generalized additive models with penalized regression splines

As a second example, consider the problem of findingf(x) in the model:

g(E[Yi]) = f(xi) Yi ∼ Distribution from exponential family

given a vector of observationsy on the random variablesY and for eachyi a vector of covariatesxi.
g is a monotonicC2 link function. Generalized additive modelling (Hastie and Tibshirani, 1990)
consists of simplifying this problem with a decomposition something like:

f(x) = a + f1(x1) + f2(x2) + f3(x3, x4) + . . .
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i.e. into the sum of a parameter and low dimensional smooth functions of the covariates (often
functions of only one covariate are used, and strictly parametric terms can be included without
difficulty). This decomposition is sometimes justified by prior knowledge. As written the model is
underdetermined in general: constraints are needed on all functions to avoid degeneracy. Suitable
constraints are that the functions should integrate to zero (which can easily be written as linear
equality constraints as required).

It is straightforward to represent the functions in this decomposition using penalized polynomial
regression splines in the one dimensional case (e.g. Eilers and Marx, 1996) and, for functions of
more than one covariate, to use penalized regression splines based on the basis functions for thin
plate splines or tensor product splines (e.g. Green and Silverman, 1994). Model fitting is then
done by penalized maximum likelihood, using the iterative least squares scheme given in Section
2, with smoothing parameters re-estimated at each iteration by the method of section 4 (using the
pseudodata in place of original data, and the iteratively calculated weights forW).

It is frequently desirable to remove spurious covariates, and some means are needed of se-
lecting terms for removal. In the identity link casêp = By whereB = ρZ (Z′X′WXZρ
+

∑m
i=1 θiZ′SiZ)−1 Z′X′W, so if pi is the subset of parameters relating to theith covariate,

then a submatrix ofB, Bi givesp̂i = Biy. An approximate covariance matrixVi for p̂i is easily
obtained:Vi = σ̂2BiW−1B′

i, whereσ̂2 = ‖W1/2(y −Ay)‖2/tr(I−A) (For some error mod-
els, if overdispersion is not a problem,σ̂2 can be set to one). If the covariate has no explanatory
power then a high smoothing parameter is appropriate and its covariance matrix should be close to
rankd, whered is the minimum possible degrees of freedom of the model term. In this circumstance
it is expected that approximately:̂p′iV

d+
i p̂i ∼ χ2

d, whereVd+
i is the rankd pseudoinverse ofVi

(calculated by truncating all but the largestd singular values when inverting the matrix using its
singular value decomposition).

Model selection can now proceed by deletion of the least significant of any covariates havingp
values greater than some predetermined level. Limited Monte-Carlo experimentation with models
having 3 real and 3 nuisance covariates suggests that the approach is effective. If large numbers of
covariates are being ‘screened’, then it may be efficient to tolerate increased bias in the early stages
of model selection, by using few knots per spline, increasing the knots per spline as the model
becomes more parsimonious.

In some circumstances interest may focus on testing for interaction terms. This requires some
care. Consider an interaction betweenx1 andx2. An appropriate model structure might be:

f(x) = α + f1(x1) + f2(x2) + f3(x1, x2) + . . .

clearly the space spanned by two univariate functions is a subspace of the space of bivariate func-
tions, so that this model is not identifiable in general, but this is not necessarily a property of the
approximating spaces defined by any particular representation in terms of basis functions. For prac-
tical modelling it may be possible to avoid these difficulties by setting the model up in possibly
degenerate form, and then applying appropriate equality constraints to parameters that are aliased
as a result.

As an example I fitted a simple additive model to the mackerel egg abundance data discussed in
much greater detail in Augustinet al. (1998) and Borcherset al. (1997). The data result from a fish
egg survey in which survey vessels sampled fish eggs by net tows over a large but irregular grid in
the Eastern Atlantic. At each of 1165 sampling stations there are a number of covariates available:
date, latitude, longitude, time of day, sea-bed depth, temperature at 20 metres depth, surface temper-
ature, sampling depth and distance from the 200m sea-bed depth contour. Samples were modelled
with an overdispersed Poisson error structure, and a parametric covariate proportional to effective
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Fig. 3. The selected fitted smooths for the mackerel egg example of section 6. The thick lines are
the final selected regression splines, with smoothing parameter chosen by GCV. The thin lines show
corresponding 95% confidence intervals.

sea surface area sampled. Response to the 9 other covariates was modelled using penalized cubic
regression splines with 10 knots each (i.e. a maximum of 10 degrees of freedom each): the splines
were parameterised in terms of the function values at the knots. A log link function was employed
so that the covariates were combined multiplicitively. For justification of this model structure and
the initial set of covariates, see Borcherset al. (1997) and Augustinet al. (1998). Since the primary
purpose of this paper is not the analysis of these data, I ignored interaction terms.

Model selection proceeded sequentially in the manner suggested above, with the final model
containing date, sample depth and latitude. All removed terms would have been rejected using
p values up to 0.5, except for the last term removed, sea bed depth, for whichp was just below
0.1. Figure 3 shows plots of the selected model terms. Approximate 95% confidence limits on
the parameters were obtained as follows: conditional on the estimates of theθi/ρ’s, the parameter
estimators for theith spline are approximately distributed asN(pi,Vi), so confidence intervals for
each parameter can be obtained; the parameters give the values of the spline at a set of covariate
values, so it is possible to plot the upper and lower confidence limits for each parameter at the
appropriate covariate value and interpolate to obtain approximate continuous pointwise confidence
intervals. This was the approach used for figure 3.

7. Example: Anisotropic smoothing

Consider the problem of estimating a functiong of two covariates,x andt, say, given noisy obser-
vations:

yi = g(xi, ti) + εi,
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Fig. 4. Attempt to reconstruct the bivariate test function, f(x, t) = e−(x−0.5)2 [0.6e−(t−0.3+0.2x)2+
e−(t−0.7+0.2x)2 ] (a) by rescaling method described in the text (b) and by conventional thin plate spline
smoothing with smoothing parameter selected by GCV (c). The reconstructions are from datasets
created from 100 evaluations with x and t co-ordinates each randomly selected from a uniform
distribution on [0, 1]. Independent guassian noise (σ = 0.2) was added to each evaluation. In 100
replicate reconstructions the mean square deviation of the rescaled surface from the true surface
was on average 0.6 of the equivalent deviation for the thin plate spline without rescaling.

where theεi’s are observations on independent zero mean random variables. A common example
of this sort of problem is the estimation of interaction terms in generalized additive models. In the
absence of a parametric modelg can be estimated by smoothing. Whatever smoothing method is
chosen, it is not possible to avoid choosing both the bandwidth of the smoother and the relative
scaling ofx andt, although it is common practice to pretend that the latter issue can be avoided
by ignoring it (but see e.g. Hutchinson and Bischof, 1983, for a counter example). In some cases
both covariates represent quantities with identical physical interpretation (for examplex andt may
be position data) and there may be strong arguments for setting the scaling to unity. In cases in
which the covariates are not even measured in the same units their relative scaling should usually
be estimated.

This problem is quite straightforward to address with the multiple smoothing parameter method-
ology developed above by using a thin plate spline smoother. In the two dimensional case the thin
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plate splinef is fitted by minimisation of:

‖y − f(x, t)‖2 + λ
∫ ∫

Ω

(

∂2f
∂x2

)2

+ 2
(

∂2f
∂x∂t

)2

+
(

∂2f
∂t2

)2

dxdt

whereΩ is the region of thex− t plane that is of interest (see Wahba 1990 or Green and Silverman
1994 for full details). The magnitude of the penalty in this case is dependent on the relative scaling
of x andt. For example if theti co-ordinate of each observationyi is replaced with new co-ordinate
t′i = ti/k thenf(x, t′k) will give the same fit to the data asf(x, t) gave under the old co-ordinates,
but the co-ordinate change will alter the penalty to:

λ
∫ ∫

Ω

(

∂2f
∂x2

)2

+ 2k
(

∂2f
∂x∂t

)2

+ k3
(

∂2f
∂t2

)2

dxdt.

Clearlyk could be selected along withλ and this is facilitated by splitting the single penalty into 3
penalty terms with associated smoothing parametersλ, λk andλk3. Given a suitable basis, these
penalties can each be written in the formp′Sip so that the thin plate spline problem with scaling
becomes a generalized ridge regression problem similar to (2). In the work reported here I used the
thin plate spline basis given, for example, in section 7.4 of Green and Silverman (1994) and theSi’s
were obtained numerically using this basis. The additional twist in this case is that the smoothing
parametersk andλ enter the ridge regression problem in a non-linear way. However the strategy
of section 4 can be applied unaltered provided that the gradient vector and Hessian matrix of the
GCV score,V , w.r.t. log(λ) andlog(k) can be obtained: this is routine, since the method of section
4 already yields the gradient and Hessian ofV w.r.t. log(λ), log(λk) andlog(λk3) so that simple
transformations yield the required vector and matrix.

Figure 4 shows the results of reconstructing a test surface using a conventional single smoothing
parameter thin plate spline fitted by GCV and using the scaling method suggested above.k andλ
were estimated using a single application of the method and then the re-scaling oft implied by the
estimate ofk was applied to theti’s before re-fitting a conventional thin plate spline: this last step
is advantageous since it allows the shape of the basis functions to change withk. It should be clear
that the approach is easy to generalize beyond two dimensional smoothing.

8. Discussion

The aim of the work reported here was to develop general methodology which would enable the use
of models with multiple penalties. This was driven by the applied needs to work with non-linear
models with multiple penalties and to find a defensible way of dealing with interaction terms in
models with a GAM structure, as well as a desire to find a less heuristic approach to GAM model
selection. As the examples show, multiple smoothing parameter selection is the key to solving
these modelling problems. The method presented makes the use of non-linear models with multiple
penalties feasible (and in many cases straightforward) for the first time. Similarly, the same method-
ology suggests a significant advance in non-parametric modelling with multidimensional smoothers.
GAMs (Hastie and Tibshirani, 1990) should benefit from the removal of the computationally driven
need to approximate GCV for model selection, an efficient means for choosing the complexity of
multidimensional terms and an objective method for modelling interactions by explicit estimation of
the appropriate relative scaling of variables. Similarly the modelling approach based on formulating
models as inhabitants of reproducing kernel Hilbert spaces (e.g. Wahba 1990) is improved by the
availability of a smoothing parameter selection method that is applicable when there is no choice
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but to use an approximating basis function representation for the model: for example when a closed
form expression for the reproducing kernel can not be found, or when there are too many data to
consider modelling with one parameter per datapoint.

Techno- optimists, brazenly extrapolating a physics free exponential growth model for computer
speed, might argue that, given a decade or so, direct evaluation of model selection criteria, like
GCV and AIC, will be perfectly feasible without the need for the methodology presented here.
While superficially appealing this argument seems less compelling after consideration of a simple
example: imagine a dataset of 1000 observations modelled using 100 parameters and 4 penalties. A
gridsearch for the smoothing parameters allowing each to take one of 10 values yields an operation
count of order1011, whereas the method presented here would have operation count of order107.
As the number of penalties increases this difference becomes even more extreme. The corollary
is that, for any level of computer technology, the methods presented here will always allow the
practical use of more sophisticated models and analyses than can be achieved by the brute force
approach (and in any case are a good deal more elegant).

In terms of applications, the most interesting uses of models with multiple penalties probably
relate to models which combine the non-parametric with the mechanistic in the manner of the zoo-
plankton example given above. Scientific models are frequently a combination of rather well known
mechanisms acting on processes about which there is much less information: in the zooplankton ex-
ample the basic demography can be described quite precisely by some non-linear balance equations,
but the essential demographic processes of birth and death are almost impossible to measure directly,
and are certainly not sufficiently well known for simple parameter sparse description. In that ex-
ample the model is a fair reflection of the knowledge of the workings of the population. Hence the
precision of estimates of the unobserved population process rates benefits from the model, while
model mis-specification bias is minimised. Such models should be useful in both physical and bi-
ological sciences: especially so in environmental disciplines where data are sparse and expensive
and knowledge of mechanism is rarely so complete as to completely specify the structure of a fully
parametric model.
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