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Abstract. This paper reports on the modelling and anal-
ysis of a microgrid with wind, microturbines, and the
main grid as generation resources. The microgrid is mod-
elled as a parallel composition of various stochastic hy-
brid automata. Extensive simulation runs of the behaviour
of the main individual microgrid components give insight
into the complex dynamics of the system and provide
useful information to determine adequate parameter set-
tings. The analysis of the microgrid focuses on checking
linear temporal logic properties, expressed in the logic
LTL, using the statistical model checker Uppaal-SMC.

1 Introduction

Energy is of paramount importance for society. The im-
portance of alternative renewable energy sources like so-
lar and wind is rapidly increasing. The exploitation of
these different energy sources leads to a decentralization
of the energy production. This development, combined
with an increasing resilience on faults and difficulties to
upgrade the transmission infrastructure, have resulted
in the development of local autonomous energy grids –
(smart) microgrids [15]. A microgrid can be seen as a lo-
calized group of generation, storage and load units that
operates with more or less support from the maingrid by
buying/selling electricity from/to it when needed.

A microgrid is an independent unit autonomously
regulating the energy demands. It may have renewable
energy sources, e.g., wind turbines, microturbines, as
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well as conventional energy sources such as diesel genera-
tors. The main distribution grid remains its major source
of electricity. The main power consumers in a microgrid
are either household devices or independent units that
serve a specific purpose like heating, ventilation or air
conditioning (HVAC) units serving one or more build-
ings collectively. Apart from regulating the production
and consumption of energy, a microgrid may also store
electricity using batteries, water tanks, etc..

An important objective of a microgrid – in particular
when acting in islander mode – is to maintain a balance
between producing and consuming energy. Therefore, its
supply of energy should not only be stable, safe, and re-
liable, but also in proportion to its demand. There are
many ways to ensure this balance with varying levels of
associated cost. The optimal working of a microgrid es-
tablishes the supply-demand balance at a minimal pos-
sible cost. This raises the question of determining pa-
rameters/conditions that ensure power stability in a mi-
crogrid at minimal cost. This issue can be settled by a
rigorous analysis of a mathematical model of a micro-
grid.

What kind of model for a microgrid is the most ade-
quate? A microgrid is a real-world system exhibiting con-
tinuous behaviour (e.g., electricity is continuously main-
tained in a grid even at varying levels of consumption)
as well as discrete controls (e.g., a local diesel generator
can be on or off depending on the electricity demand).
Moreover, microgrid behaviour is subject to uncertain-
ties; e.g., a broadcast of an unexpected incident of na-
tional importance may result in more TV sets switched
on, leading to an increasing demand of electricity. There-
fore, we need a modelling formalism that captures prob-
abilistic state changes based on continuously varying
quantities – stochastic hybrid automata [6]. In the lit-
erature, distributed probabilistic-control hybrid automata

have also been studied for the modeling and analysis of
smart grids [22].
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Fig. 1. Configuration of the microgrid case study

Stochastic hybrid automata (SHA) are modeling forma-
lisms in which state spaces are divided into discrete, also
called modes of a system, and continuous parts. The be-
haviour of each mode is given by an ordinary differen-
tial equations; and a system can stay in a mode until
certain conditions are satisfied. The mode switches are
controlled by guards and the next mode (state) of a sys-
tem is determined by a continuous distribution function
over the state space. For details about SHA, we refer to
[10].

This paper considers the microgrid configuration de-
picted in Fig. 15; it extends the configuration in [22]
with thermal energy such as the chillers. This microgrid
is connected to the electricity and natural gas distribu-
tion grids and incorporates two local energy sources –
a wind turbine and a microturbine. The microturbine
represents a deterministic energy source which produces
electricity and heat. The heat can be utilized for satisfy-
ing the heating demand such as domestic hot water. The
wind turbine is of stochastic nature and its power output
depends on actual wind properties. The local power net-
work (LPN) stands for the junction point where the elec-
tricity supply meets the electricity demand e.g. chillers,
electrical load, etc. Chillers remove the heat from the
chilled water circuit (CHWC) which supplies the cooling
load with the chill. The demand of cooling load as well as
the performances of chillers can be affected by the out-
side temperature. Electrical energy storage is connected
to the LPN and enables the possibility to store/load elec-
tricity energy. This can be very useful for the optimiza-
tion of operational costs of the microgrid.

We model this system as a composition of stochas-

tic hybrid automata, and describe their continuous dy-
namics. For several components of the microgrid we have
adopted the dynamics from the literature [9,19,23]. Given

the diversity of the continuous phenomena and the strong
intertwining with discrete mode switching, we believe
that the system model in this paper can act as a bench-
mark case study for analysis techniques of stochastic hy-
brid systems. Extensive simulation runs of the behaviour
of the microgrid components give insight into the com-
plex dynamics of the system and provide useful infor-
mation to determine adequate parameter settings. The
parameter settings used in our verification models have
been obtained in this way and have been validated by
Honeywell. For some of the major parameters we show
their influence on the analysis results. For the analy-
sis of the microgrid, we resort to model checking. Re-
cent developments in model checking of stochastic hy-
brid systems show the possibility to check a rich variety
of properties such as probabilistic reachability and in-
variance [1], LTL [2]. As the stochastic dynamics and
complexity of the microgrid configuration go beyond the
scope and feasibility of the above techniques that typi-
cally rely on discretization and dynamic programming,
we resort here to statistical model checking [25,4]. This
technique is basically employing Monte Carlo simulation
in order to check the validity of temporal logic properties
within a given a priori-defined confidence interval. In or-
der to analyse probabilistic reachability and invariance
properties of the microgrid case study, we use Uppaal-

SMC, a recent extension to the model checker Uppaal
(www.uppaal.org). Uppaal-SMC originally focused on
(priced and probabilistic) timed automata; however, re-
cently it also covers networks of stochastic hybrid au-
tomata [7]. We report on the statistical model check-
ing of several (bounded) LTL formulas and investigate
the run-times for various confidence intervals and time
horizons. Microgrids have so far received scant attention
in the formal modelling and verification community. In
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Fig. 2. SHA model of the LPN.

order to analyse microgrid stability, dependability and
fairness, in [11], stochastic timed automata (STA) are
used as formal models to investigate runtime control al-
gorithms for photovoltaic microgenerators; and in [12]
different strategies have been analysed in order to re-
duce frequency oscillations in a grid. Similarly, in [8] the
requirement of the information system of the smart grid
is discussed. This system deals with the huge amount of
data collected from different parts of the grid in order to
maintain its stability.

2 Modelling The Microgrid Configuration

In this section, we explain the model of the microgrid
in more detail. We start by discussing the individual
components, putting an emphasis on their continuous
behaviour. Subsequently, we discuss how the individual
models are put together in a compositional manner so
as to obtain a model for the entire microgrid configura-
tion. The continuous dynamics of several components is
illustrated by some simulation results that were obtained
using Uppaal-SMC.

The Local Power Network (LPN) constitutes the
junction point that interconnects the main distribution
grid, local generators, electrical storage and power loads
(see Fig. 1). The power balance equation for the LPN is
given by:

PG(t)+PW (t)+PM (t)+PE(t)=

2
∑

i=1

PCh,i(t)+PD(t) (1)

where PG is the power load from the grid, PW is the
power generated by the wind turbine, PM stands for the
power generated by the microturbine, PE denotes the
power load/supply to/from electrical storage, PD is the
electrical load and PCh,i is the power demand of the i-th
chiller.

The stability of the LPN depends on the balance be-
tween power supply (left-hand side of Eq. (1)) and power
demand (right-hand side of Eq. (1)). The power imbal-
ance ∆P (t) denotes their difference. The frequency of

the AC current is typically used as the stability crite-
rion and can be considered as a function of power imbal-
ance f(∆P (t)). For a stable operation of the microgrid,
the frequency may vary only within a certain a priori-
defined interval ([−dfem, dfem]) else it goes to emergency
mode for a specified amount of time ([0, tcr]). Large
power imbalances may result in black-outs (if the fre-
quency deviation exceeds dfcr or more than tcr time is
spent in emergency mode). In the case of a failure, the
system is usually restored to operational within trt. In
this configuration, we assume the microgrid is connected
to the distribution electricity grid which has the capa-
bility to eliminate all imbalances in the microgrid, i.e.,
∆P (t) = 0. However, if the microgrid is disconnected
from the distribution grid (the so-called islander mode),
the stability of the LPN becomes important. The LPN
can operate in three discrete modes: Operational, Emer-

gency and Failure. Its discrete dynamics is driven by the
frequency deviation df1 and is naturally captured by hy-
brid automata (see Fig. 2).

For simplification, we assume that whenever the local
production exceeds the consumption, the storage devices
are charged. If the grid is operating in islander mode,
the discrepancy between production and consumption
is balanced by storage PE as long as it is not drained
out. As justified in [3], we do not consider inertia as grid
dynamics occur at a much smaller time scale than the
phenomena studied here, such as temperature develop-
ment in rooms and microturbines.

The wind turbine is oftenmodelled by a non-linear
equation known from the literature e.g., see [16]:

PW (t) =
π

2
· ρ ·R2 · u(t)3 · Cp(η, θ) (2)

where ρ is the air density, R is the blade radius, u(t) is
the wind speed, and Cp is an efficiency function depend-
ing on θ (the pitch angle) and η = ωR

u
is the tip speed

ratio, where ω is the rotor speed. (Both θ and η de-
pend on t.). In our studies, however, we utilize wind tur-
bine model based on polynomial approximation of power
curve [5] for capturing of wind turbine power production.

PW (t) = aWu3(t) + a′Wu2(t) + a′′Wu(t)

where aW , a′W , a′′W are coefficients. Use of polynomial ap-
proximation has two practical reasons (i) power curve
can be obtained from manufacturers datasheets, (ii) power
curve can be directly identified from common measured
data.

A hybrid automaton for the wind turbine has been
introduced in [24] and incorporates three discrete modes:

– Off - No power is generated by the turbine, e.g., when
the wind speed is insufficient to drive the blades.

1 Frequency deviation stands for deviation of actual frequency
from nominal frequency and can be modelled by df = Kf · ∆P
where Kf is a multiplicative constant.
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Symbols constant values

kout outside temperature coefficient 0.25 W/K
kcw chilled thermal coefficient 2250 W/K
CCW chilled water heat capacity 162280 KJ/W
CZA zone air heat capacity 6093 KJ/W
gain average rate of heat gain 75
kv viscous friction coefficient 0.000011 Nm.s
T wind speed turbulence factor 1600
κ geographical location constant 0.00004

a1,i, a2,i, a3,i constants of chiller i = 1, 2 0.005,22.22,9.53
0.021,22.22,3.17

a1,OA, a2,OA, a3,OA outside temperature parameters 0.05,0.001,0.2
a0,M , a1,M , a2,M electric torque constants (start) -0.002,0.15,0

a3,M , a4,M , a5,M , a6,M mechanical torque constants 167.906,132.348
-24.371,0

a10,M , a11,M , a12,M microturbine power curve constants 7.100,-0.0005
0.0000007

mmin
f minimum fuel flow 0.15

kmf ,P , kmf ,I PI controller const. of MT fuel flow 3,1
kPM ,P , kPM ,I PI controller const. of MT power 50,5
kCW,P , kCW,I PI controller const. of chilled water temperature 0.5
kXc,P , kXc,I PI controller conts. of thermostat 3,1

Table 1: Microgrid constants

– Power optimization - Power is generated by wind
speed according to polynomial approximation of the
Eq. (2).

– Power limitation - The turbine reached its maximum
production capability PW,max.

The wind turbine is considered as a deterministic sys-
tem given by Eq. (2), which is affected by stochastic in-
puts. These inputs depend on the pitch angle θ and the
wind speed u. There are several modelling approaches in
the literature encompassing these two inputs. For exam-
ple, modelling of wind variability via discrete Markov
chains is described in [18]. Alternative approaches are
based on time-series models [20]. We assume an optimal
placement of the wind turbine against the wind direction
θ. Therefore, the power of the wind turbine only de-
pends on the wind speed u. We adopt a one-dimensional
stochastic differential equation to model this:

du(t) = −
u(t)− ū(t)

T
· dt+ κ · ū(t) ·

√

2/T · dW (t) (3)

where ū denotes hourly averages of wind speed, κ is a
constant depending on the geographical location of the
wind turbine, dW is a Wiener process that models the
uncertainty in the actual and the forecasted wind speed,
and T = L/ū, where L is the turbulence length scale.
Fig. 3 and 4 depict two simulations for the wind speed
and the corresponding power PW generated by the wind
turbine. The similarity between the plots is apparent as
high wind speed results in high power generation.

The microturbine influences the electrical and ther-
mal power dynamics of the microgrid. The operation of

a microturbine can be divided into eight separate dis-
crete modes [23]. Mode transitions are guarded by the
turbine angular velocity ω whose evolution is defined as:

J · ω̇ = TM (t) + TE(t)− FV (t) ,

where J is the moment of inertia of the turbine, TE refers
to the electrical torque, TM is the mechanical torque, and
FV is the viscous friction defined by FV (t) = kV · ω(t).

The discrete modes are:

– Off – Device is turned off.
– Start up – Turbine accelerates to 25000 rpm (ωstart).

In this mode, the turbine generator acts as motor
and consumes electrical power. The electrical power
PM is the driving force of the turbine (TE is positive
and PM is negative) and yields:

TE(t) = a0,M + a1,M · PM (t) + a2,M · PM (t)2.

The power requirement is modelled by a feedback
loop in order to reach the desired angular velocity of
ωstart in the following way:

PM (t) = kPM ,P ·(ωstart−ω(t))+kPM ,I ·

∫ t

0

(ωstart−ω(τ))·dτ.

In the literature (e.g. [23]), different feedback con-
trollers are applied for microturbine speed control
(e.g. PID), however, we consider PI controller with
non-oscillating behaviour for sake of simplicity. Deriva-
tive part can be easily incorporated into the model
and consequently controllers’ constants can be prop-
erly designed, but this is out of scope of this article.

– Stabilization – Short period before gas ignition where
the angular speed of the turbine is constant ω =
25000 rpm.
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Fig. 3. Simulation of wind speed u(t). In both simulations k =
0.00004, ū(t) = 2km/h, T = 1600s

Fig. 4. Generated wind turbine power PW . Same parameters as
Fig.3.

– Acceleration – Electrical torque from the generator
drives the turbine speed to 45000 rpm. At the end
of the interval, it comes to the ignition. The minimal
fuel flow maintains the combustion process but does
not produce mechanical torque. Torque TM is zero.

– Warm up – The microturbine consumes only fuel,
whence PM = 0. The energy from the combustion
keeps the turbine at the desired speed of 45000 rpm.
TM provides the necessary mechanical torque, see
Fig. 4. The fuel flow and angular velocity oscillate
before attaining equilibrium (modeled by PI control
equation 4).

– Operational – The microturbine produces power and
the turbine is driven of the fuel combustion. TM is

Fig. 5. Turbine angular velocity ω

Fig. 6. Microturbine power PM

Fig. 7. Fuel mass flow during warm up mf
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Fig. 8. Electric load in the microgrid PD

the driving force for the rotation of turbine. Electrical
power is generated (PM is positive) and the emerged
electromagnetic field tends to slow down the turbine
rotation hence (TE is negative):

TM (t) = a3,M + a4,M ·mf (t) + a5,M ·mf (t)
2 − a6,M · ω(t),

TE(t) = a7,M + a8,M · ω(t) + a9,M · ω(t)2,
PM (t) = a10,M + a11,M · ω(t) + a12,M · ω(t)2.

The power at which the microturbine should eventu-
ally operate determines the desired speed (ωSP ) of
the turbine. The fuel flow mf is controlled by a PI
controller to keep the turbine at a ωSP according to:

flow(t) = kmf ,P · (ωSP − ω(t))+

kmf ,I ·

∫ t

0

(ωSP − ω(τ))dτ,

mf (t) = min{mmin
f , f low(t)}.

(4)

– Slow down – The generator is disconnected from the
LPN and the turbine is slowed down to ω = 25000
rpm.

– Cool down – Fuel supply is closed (mf = 0). Micro-
turbine slows to stop (ω = 0).

The heat produced from the combustion of fuel serves
the heating load (e.g., domestic hot water) by:

QM (t) = a13,M + a14,M ·mf (t) + a15,M ·mf (t)
2.

Fig. 5 shows the angular velocity of the turbine from
start to operational mode. Fig. 6 shows the power char-
acteristics of the microturbine where the value PM is
negative from start to acceleration mode. Only during
the operational mode (when the microturbine produces
energy), PM is positive. Fuel injection starts in the ac-
celeration mode. This component is not stochastic.

Electrical storage is the device that enables storing
electrical energy over time. We use the storage model

of [19] where the electrical storage evolves according to
the following differential equation:

dPS

dt
= −γ · PE(t)− PL(t) , (5)

where PS expresses the stored energy level in the storage,
γ denotes the power exchange efficiency, PE is the power
exchanged between the storage and the LPN, and PL

stands for power losses associated to the storage. Elec-
trical storage can operate in five discrete modes:

– Supply - The device drains energy PE > 0 with effi-
ciency γ = γs.

– Store - No exchange of electricity PE = 0; electrical
energy leaks at rate PL.

– Load - The device acts as a load PE < 0 and recharges
its energy level with efficiency γ = γl.

– Full - Storage reaches its maximum capacity PES =
PES,max.

– Drained - Stored energy level is on the minimal ca-
pacity PES = PES,min.

PE denotes an input variable quantifying the power sup-
plied (loaded) from (over) the storage device in connec-
tion with the LPN. We consider PE as the difference
between the local power production and load.

Chiller is an electrical device that converts electrical
energy into thermal energy (cooling energy). We use the
Gordon-Nq model of the chiller [9], where the power de-
mand PChi

of chiller i (i = 1, 2) is given by:

PChi
=

a3iQ
2

cool,i + (Qcool,i + a2i)(TOA − TCW ) + a1iTOA

TCW − a3iQcool,i

where Qcool,i(t) is the thermal energy removed by
the i-th chiller at time t. The power demand of a chiller
evolves continuously because of its dependency on other
continuous quantities such as outside temperature.Qcool,i

thus represents the (portion of the total cooling Qcool)
energy required by the system from chiller i. Its value
is decided based on a selected control policy. The total
energy demand Qcool is modelled by a PI (proportional,
integral) controller. Its value depends on two quantities:
the chilled water temperature TCW and its desired value
(setpoint) TCWSP . Our microgrid model has two chillers.
The energy requirement is hence distributed among them.
This distribution is controlled by an input parameter
αCh(t), i.e.,Qcool,1(t) = αCh(t)·Qcool(t) andQcool,2(t) =
(1− αCh(t)) ·Qcool(t).

The outside temperature is given by a modified Uhlenbeck-
Ornstein stochastic differential equation:

dTOA = a1,OA ·(T f
OA−TOA(t))dt+a2,OA ·dT f

OA(t)+a3,OA ·dW
(6)

where T f
OA is the forecasted outside temperature, and

dW is the Wiener process that models the uncertainty
in the actual and the forecasted temperature.

The cooling load is modelled by modified lumped ther-
mal model (e.g. [17]) which represents a building con-
sisting of n rooms (zones), denoted Zi for i = 1...n. The
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zone temperature TZA (at time t) evolves according to
the stochastic differential equation:

CZA

dTZA

dt
= XC(t) · kcw · (TCW (t)− TZA(t))+

kout · (TOA(t)− TZA(t)) + NP(t) · gain

where TCW (t) is the temperature of the coolant, Xcool(t)
the thermostat valve position, CZA is the thermal ca-
pacity of the zone, kcw is a heat transfer coefficient for
zone-chilled water, kout is a heat transfer coefficient for
zone-outside air and gain stands for the heat produced
by one person. The stochastic aspects here are the num-
ber of people NP(t) in a zone and the outside air tem-
perature TOA(t) which is given by Eq. (6). It is assumed
that each person increases the zone temperature by a
constant gain per time interval.

The function of the thermostat is to regulate the tem-
perature of the room TZA by changing the value of XC .
The thermostat is modelled by a PI controller and the
value of XC depends on two other quantities, the de-
sired temperature of the zone TZASP and the current
zone temperature TZA, along with proportional kXC ,P

and integral kXC ,I constants:

e(t) = TZA(t)− TZASP (t), and

temp(t) = kXC ,P · e(t) + kXC ,I ·

∫ t

0

e(t) dt

XC(t) = max{0,min{temp(t), 100}}.

(7)

Fig. 9 and Fig. 10 show the evolution of the room tem-
perature and thermostat value, respectively when the
set-point temperature TZASP is at 25oC (blue), 22oC
(green), and 20oC (red).

The Chilled Water Circuit (CHWC) captures the
behaviour of the coolant temperature TCW (t) which in-
teracts with zone temperature TZA(t) and with chillers.
The chilled water circuit temperature TCW is modelled
by a modified lumped thermal model and evolves ac-
cording to the following differential equation:

CCW ·
dTCW

dt
= XC(t) ·kcw ·(TZA(t)−TCW (t))−Qcool(t)

where CCW is the thermal capacity of the water circuit
and Qcool is the thermal energy removed by chillers2.

The chilled water temperature controller keeps the
chilled water temperature at the set point value TCWSP

(another control parameter). The energy requirement is
controlled by a feedback loop and hence designed as a
PI control scheme:

eC(t) = TCW (t)− TCWSP (t),

temp(t) = kCW,P · eC(t) + kCW,I ·

∫ t

0

eC(τ)dτ,

Qcool(t) = min{0,min{Qmax, temp(t)}},

2 Qcool(t) = Qcool,1(t) +Qcool,2(t).

Fig. 9. Room temperature TZA

Fig. 10. Thermostat value XC

where Qmax is the maximum energy requirement that
can be met by the chillers. Fig. 11 and 12 show the be-
haviour at set points 20oC, 15oC, and 100 C, respectively.

The electrical load is modelled according to Uhlenbeck-
Ornstein differential equation which captures its contin-
uous dynamics. It has two modes: Connected or Discon-

nected. When connected the stochastic differential equa-
tion reads:

dPD = a1,D · (m(t)− PD(t)) · dt+ σD · dW,

where m(t) is a given load profile3, a1,D represents a
tracking coefficient, σD is a variation coefficient, and dW
denotes the Wiener process. In the case of the Discon-
nected mode, the dynamics of electrical load is trivial as
PD = 0, dPD/dt = 0. A simulation is shown in Fig. 8.

3 A load profile captures typical pattern of the load which can
be expressed in a form of mean values for given time instances
(e.g. daily load pattern).
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Fig. 11. Coolant temperature TCW

Fig. 12. Energy requirement Qcool

The heating load represents a small demand for heat-
ing (i.e., domestic hot water) which is supplied by wasted
heat from the microturbine. This load depends on occu-
pants activity during the day and can be considered as
stochastic process which can be modelled in a similar
fashion as the electrical load above4.

Overall microgrid model. We have modelled all in-
dividual components as stochastic hybrid automata. Let
LPN, CHi, CHWC, Zj , MT,WT, ST,EL be the SHA
models of the local power network, the ith chiller, the
chilled-water circuit, the jth room (or zone), microtur-
bine, wind turbine, storage, and electrical load, respec-
tively. The composite SHA model of the microgrid is now
given as:

MG = (LPN ‖CHi ‖CHWC ‖Zj ‖MT ‖WT ‖ST ‖EL)

where i = 1 to 2, j = 1 to n and ‖ denotes a paral-
lel composition operator (for detials about ‖, we refer
to [10]). Note that our composite model is simple in a

4 I.e. Stochastic process based on Uhlenbeck-Ornstein model.

sense that there is no synchronization among different
components of the grid.

Resolution of non-determinism in composite model. In
the network of SHA, each SHA continuously race against
each other component, i.e., they independently and sto-
chastically decide about the duration of their stay in a
specific mode; and the winner is the one that decides for
a minimum duration. In Uppaal-SMC tool, the compo-
nents which can stay in a mode indefinitely, decide about
the duration of their stay using an exponential distribu-
tion; and those who cannot stay more than a specific
time period, decide their duration using an uniform dis-
tribution.

Controllers and scenarios. There are various input
parameters for the different components of the micro-
grid. Controllers are designed to modify these inputs
in order to satisfy some optimality criteria, usually to
minimize power consumption. Various controllers can be
modelled by automata. The effect of these controllers
can be studied by running the respective automaton in
parallel with the microgrid. For example, we can con-
sider an automaton that depending on the required cool-
ing power and ambient temperature, distributes the en-
ergy among the two chillers accordingly. It is possible
that some chillers work better at lower energy require-
ments than others. In one experiment we modified the
control parameter αch(t) which distribute the cooling
energy production between chillers from constant value
(static) to a more dynamic one which changes accord-
ing to the energy requirement. In Fig. 13, we can see
the total power consumed by the chillers under the two
different type of control parameter α. We know before
hand that the chiller 1 performs better at low load than
chiller 2. In this experiment we start with initial room
temperature of 36◦ and coolant temperature 25◦, we se-
lected a threshold 2000KJ above which the distribution
of the cooling energy production changes from (0.8 : 0.2)
to (0.5 : 0.5).

We are also interested in testing the behaviour of the
microgrid under special conditions, e.g., observing the
frequency deviation over time when the microgrid is dis-
connected from the main grid (islander mode). Fig. 14
shows the frequency deviation when the microgrid is run-
ning in islander mode with 2 wind turbines and one mi-
crotubine providing for two chillers and one electric load
along with a storage device. As the microgrid is cut off
from the main grid, the power generated by wind tur-
bines is insufficient (in this experiment) and hence the
batteries were catering for the power deficit. At the same
time the microturbine is powered up. We have seen from
the simulation runs of the microturbine, that in the ini-
tial phase it draws power. The load of the grid is kept
independent of the energy production. The temperature
set points for the cooling (TCWSP = 17◦, TZASP = 20◦)
and the power distribution for the chillers (α = (0.6 :



Chakraborty, Katoen, Sher and Strelec: Modelling and SMC of a Microgrid 9

Fig. 13. Cumulative electrical power consumed by the chillers

Fig. 14. Frequency deviation

0.4)) are kept constant. Thus, the batteries soon run
out and we have observe a negative frequency devia-
tion. When the microturbines is accelerated to opera-
tional speed it provide (more than) enough energy for
the demand, hence we see a positive deviation. Finally,
the batteries start to recharge themselves to use up the
excess power and the frequency stabilizes.

3 Model Checking the Microgrid

The properties of a microgrid that we are interested in,
are expressed as bounded linear time formulas. For in-
stance, how likely is it that the temperature of various
cooling devices reach a required set of values, or the en-
ergy requirement exceed some threshold with a given
outside behaviour, or a microgrid becomes unstable in
islander mode, etc.

Numerical methods to solve model-checking prob-
lems of stochastic hybrid systems against some tempo-
ral formulas (even reachability) are algorithmically in-
volved and suffer from the curse of dimensionality [1,
2,21]. Statistical model checking avoids these problems
by resorting to discrete-event simulation (using Monte-
Carlo techniques). In a nutshell, it generates and exam-
ines finitely many simulation runs of a model at hand,
and uses hypothesis testing to infer whether the obtained
simulation samples provide statistical evidence for the
satisfaction or violation of some (temporal logic) speci-
fication [25,4].

Statistical model checking in a nutshell. We briefly de-
scribe the main principles of statistical model checking
and refer to [26] for a more detailed explanation. Let X
be a stochastic process, which could be as simple as a
Markov chain or as complex as a closed (i.e., needs no
external decision) stochastic hybrid automaton. Let ϕ
be a property defined by some temporal bounded logic ,
say bounded LTL. A finite trajectory ρ of X, also called
an execution, satisfies (denoted |=) the property ϕ if and
only if the trace of ρ belongs to the language of ϕ. The
problem is to decide whether:

P : Pr[X |= ϕ] ≥ θ,

holds for θ ∈ [0, 1]. This is accomplished by inspecting
a limited number of finite executions of X, called test

samples. Obviously, we want the size of the test sample,
denoted n, to be as small as possible such that the prob-
ability of making an error is small. One can observe that
for bounded reachability properties it is possible to fig-
ure out traces in a test sample that are words of ϕ, which
is not the case with unbounded reachability properties.

The aim now is to test the hypothesis H : Pr[X |=
ϕ] ≥ θ against K : Pr[X |= ϕ] < θ. Let ζ be the
probability of accepting K when H holds (false neg-
ative) and β the probability of accepting H when K
holds (false positive). It is not possible to have n for
which both ζ and β are small. Hence, in practice one
checks the hypothesis H0 : Pr[X |= ϕ] ≥ θ+δ against
H1 : Pr[X |= ϕ] ≤ θ−δ, where δ(δ ≥ 0) is the indiffer-
ence region. This procedure is indifferent to the decision
whether |Pr[X |= ϕ]− θ| < δ.

Different ways of finding a test procedure with the
above mentioned characteristics exist, e.g., the fixed size

sample method. Other methods are, for example, the
sequential ratio test method. For an overview and em-
pirical comparison we refer to [14]. The fixed size sam-
ple method briefly works as follows. A sample of size n
contains the observations ρ1, . . . , ρn, with the associated
random variable x1, . . . , xn (i.e., xj = 1 iff ρj |= ϕ).
To test hypothesis H0 against H1, we specify a quan-
tity c (c ≤ n). H0 is accepted if

∑n

j=1
xj > c. Ob-

serve that the random variables {xi}i≤n are i.i.d. with
Pr[xi = 1] = Pr[X |= ϕ]. Let Pr[xi = 1] = p. The prob-
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Fig. 15. The figure a) shows the Uppaal model of the first four stages of microtubine, b) shows the local power network, c) shows the
chilled water controller (qcsp is the chiller energy demand Qcool).

ability of
∑n

j=1
xj being at most c is:

F (c, n, p) =
c

∑

i=0

(

n

i

)

pi · (1− p)n−i

Thus, the problem is to find a pair (n, c) which satisfies
F (c, n, p) ≤ ζ when p ≥ θ + δ, and 1 − F (c, n, p) ≤ β
when p ≤ θ−δ. Since F (c, n, p) is a non-increasing func-
tion in p ∈ [0, 1], this yields the following (non-linear)
optimization problem to minimize n:

F (c, n, θ + δ) ≤ ζ,
1− F (c, n, θ − δ) ≤ β.

This yields us the required n and test criterion c. The
details of dealing with nested formulas (see [26]) are not
relevant for our case study as all properties of interest
are un-nested formula.

The Uppaal-SMC tool.We analyse microgrid model us-
ing the Uppaal-SMC tool. Uppaal-SMC focus mainly
on networks of priced timed automata. These are timed
systems in which real variables may have different rates
(even potentially negative) in different modes. These vari-
ables are not used as guards. A recent extension of this
tool allows to handle stochastic hybrid automata, first
reported in [7]. Here, the change of continuous vari-
ables is governed by linear differential equations. Euler’s
method of first order approximation for ordinary differ-
ential equations is employed to restrict the change in real
variables to constant rates.

0 1,000 2,000 3,000 4,000 5,000
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Fig. 16. Simulation (blue •) and model checking (red �).

Uppaal-SMC relies on results from statistics such
as sequential hypothesis testing and Monte Carlo simu-
lation. Crucial statistical input parameters are the con-
fidence ξ which quantifies the error, given by the param-
eter ζ and β (as before), and the probability interval
defined by the indifference region δ. Apart from being
able to simulate various variables, we can carry out sta-
tistical model checking of temporal logic formulas ex-
pressed in bounded LTL. For example, we can check
whether the likelihood of reaching a specific set T of
target states within m time units is greater than p or
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Fig. 17. Indifference region vs runtime.

not (Pr(♦≤m T ) > p), or the probability to stay in a
given set T of states for the next m time units is less
than p (Pr(�≤m T ) < p).

Scalability. Simulation runs of a microgrid depict the
dependency of different parameters on each other. For
example, the cooling load (CL) of a microgrid — that is
dependent on outside ambient temperature, the number
of rooms, thermostat values, chilled water circuit and
chilled water temperature controller — varies with time
as given in Fig. 16 (we assume the number of people
entering or leaving the room are binomially distributed.).
We see that there is almost a linear relationship between
CL and time.
Fig. 16 also presents the runtime of model checking the
formula ϕ = ♦≤t(Qcool > 4000kJ) with TZASP = 20
and TCWSP = 17. Note that increasing the value of t in
ϕ has no significant effect on the runtime of the model
checking algorithm. This is because ϕ is satisfied within
300 sec (Table 2) with high likelihood.

We can also vary different statistical model checking
parameters and observe the effect on runtime. For exam-
ple, number of runs increases very rapidly (at least expo-
nential) when the indifference region δ is decreased. The
runtime of model checking formula ♦I(|TZA−TZASP | ≤
1) with TZASP = 20 and TCWSP = 17 on cooling load
for varying value of δ is shown in Fig. 17.

Temporal properties. For the microgrid case study we
are mainly interested in reachability properties. We do
hypothesis testing using Uppaal-SMC version 4.1.11.
The first property of interest is the high likelihood of
the room temperature being close to the desired set point
within some finite time interval. The initial value of the
room and water coolant temperature is 35◦ and 25◦, re-
spectively. We vary the value of the time interval and
the temperature set points in order to investigate its im-
pact on the runtime. The hypothesis testing results are

listed in Table 2. The first, second and third column de-
fines the property. The fourth and fifth column indicate
the values of the control inputs (temperate set points).
The sixth and seventh column indicate the confidence
and δ of the SMC algorithm (where confidence = 1 − ζ
or 1 − β and δ is the indifference interval) and the last
column presents the runtime of Uppaal-SMC.

The first property refers to the high likelihood of zone
temperature TZA differing at most one degree Celsius
from the desired room temperature TZASP in a given
time interval. The second property checks the high like-
lihood of the chilled water temperature TCW being close
to its set point TCWSP . Both these properties are found
to be true (conforming to the simulations). The third
property is a conditional property, where we check if
the room temperature is close to the set temperature
then the thermostat valve is not (fully) open. The last
property focuses on the cooling energy Qcool, as realized
by a PI controller, reaching a threshold of 400 kJ. Ob-
serve how the probability changes from very unlikely to
highly likely when we change the internal parameters of
the model. The effect is also reflected on the runtime.

As a next property, Table 3, we are interested in the
behaviour of the chillers. We have the cooling load (CL)
along with two chillers. The parameter we change is the
distribution parameter α, TCWSP and TZASP . The LTL-
property of interest is the likelihood that the chiller’s
power demand (of the first chiller, say) exceeds a certain
threshold (1 kWH, say) within interval I.

Table 4 presents the results of checking whether the
maximum generated power by the wind turbine exceeds
some threshold (Max). Unlike Qcool, PW shows more
random behaviour, so the run is not as predictable as in
the case of the cooling load. We apply statistical model-
checking to calculate the probabilities (range of the prob-
ability) in favour of the hypothesis testing. Note that, re-
laxing the probability interval has a greater effect on the
runtime than changing the confidence. The reason being
the number of runs for verification increase sharply by
lowering δ (see Fig. 17).

Lastly, we check whether the microgrid is stable or
not when it goes into the islander mode. We assume
the grid stability is characterized by the frequency de-
viation. We consider the following components: cooling
load (CL), one electrical load (EL), wind (W), wind tur-
bines (WT), storage (ST), microtubine (MT) and the lo-
cal power network (LPN). We consider various situation
where we vary availability of storages devices, number of
wind turbine at our disposal and whether microturbine
is already in warm-up stage or not. Some verification
results are listed in Table 5.

4 Conclusions

In this paper we have presented a model of a micro-
grid configuration as a composition of stochastic hybrid
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LTL formula I(sec) ≺ p TZASP TCWSP Confidence δ time (sec)

[0, 200] ≥ 0.98 20 17 0.95 0.05 1.874
[0, 3000] ≥ 0.98 20 17 0.95 0.05 1.968

♦I(|TZA − TZASP | ≤ 1) ≺ p [0, 3000] ≥ 0.98 25 20 0.95 0.05 1.307
[0, 3000] ≥ 0.98 25 20 0.995 0.005 1.647
[0, 3000] ≥ 0.998 25 20 0.9995 0.0005 2.011

[10, 200] ≥ 0.98 20 17 0.95 0.05 16,627
[10, 3000] ≥ 0.98 20 17 0.95 0.05 16.638

♦I(|TCW − TCWSP | ≤ 1) [10, 3000] ≥ 0.98 25 20 0.95 0.05 16.03
[10, 3000] ≥ 0.98 25 20 0.995 0.005 28.185
[10, 3000] ≥ 0.998 25 20 0.9995 0.0005 393.832

[0, 200] ≥ 0.98 20 17 0.95 0.05 13.085
[0, 3000] ≥ 0.98 20 17 0.95 0.05 13.069

♦I(|TZA − TZASP | ≤ 1 ∧Xc > 5) [0, 3000] ≥ 0.98 25 20 0.95 0.05 1.787
[0, 3000] ≥ 0.98 25 20 0.995 0.005 2.48
[0, 3000] ≥ 0.998 25 20 0.9995 0.0005 25.104

[0, 200] ≥ 0.98 20 17 0.95 0.05 5.08
[0, 1000] ≥ 0.98 20 17 0.95 0.05 5.162

♦I(Qcool ≥ 4000) [0, 1000] ≤ 0.02 20 15 0.95 0.05 16.048
[0, 1000] ≤ 0.02 20 15 0.995 0.005 28.151
[0, 1000] ≥ 0.002 20 15 0.9995 0.0005 394.371

Table 2: SMC results for temperature control

LTL formula I (sec) ≺ p αch,1 TZASP TCWSP Confidence δ time (sec)

[0,500] ≥ 0.98 0.65 20 17 0.95 0.05 43.712
[0,500] ≤ 0.02 0.65 25 20 0.95 0.05 38.65

♦I (PCh,1 ≥ 1) [0,500] ≤ 0.02 1 25 20 0.95 0.05 41.784
[0,500] ≤ 0.02 1 25 20 0.995 0.005 71.627
[0,500] ≤ 0.02 1 25 20 0.95 0.005 1025.492

Table 3: SMC results for cooling load.

LTL formula I (sec) Max kWH confidence δ # runs time (sec) Pr

[0, 500] 1.5 0.95 0.05 738 53.185 [0,0.05]
[0, 1000] 1.5 0.95 0.05 738 108.872 [0,0.0744]

♦I(Pw >= Max) [0, 3000] 1.5 0.95 0.05 738 259.849 [0.338,0.438]
[0, 3000] 2 0.95 0.05 738 258.456 [0.329,0.429]
[0, 3000] 2.5 0.95 0.05 738 259. 671 [0.314,0.414]
[0, 3000] 2 0.995 0.05 1199 424.564 [0.316,0.416]
[0, 3000] 2 0.95 0.005 73778 25824.784 [0.369,0.379]

Table 4: Maximum wind production.

LTL formula I(sec) ST WT MT confidence δ # runs time (in s) Pr

♦I (fr ≤ −0.1) [10,1000] No 2 No 0.95 0.05 738 320.793 [0.95,1]
[10,1000] No 4 No 0.95 0.05 738 320.582 [0.95,1]
[10,1000] No 2 Yes 0.95 0.05 738 306.094 [0,0.05]
[10,1000] Yes 2 Yes 0.995 0.05 1199 1215.123 [0,0.05]

♦I (fr ≥ 0.4) [10,500] No 2 No 0.95 0.05 738 330.797 [0.425,0525]

Table 5: SMC results for microgrid operating in islander mode
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automata. The main contribution is the simulation and
analysis of the combined behaviour of all these compo-
nents. We reported on various simulation experiments
and statistical model checking a number of bounded LTL
properties using Uppaal-SMC. In our case study we
were not confronted with rare events [13]. Our model is
more extensive than the piecewise deterministic Markov
process model recently reported in [22]; it copes with
more general and more detailed dynamics, and includes
thermal energy. This case study has shown that stochas-
tic hybrid automata are an adequate modeling formalism
for modeling microgrids in a faithful manner. Statistical
model checking seems an effective technique to evaluate
bounded temporal properties of interest. Substantial ef-
fort in the model checking process has been spent on
adopting the formal models to the syntactic restrictions
of the Uppaal-SMC.
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