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Abstract
We propose a formalism to model and reason about reconfigurable multi-agent systems. In
our formalism, agents interact and communicate in different modes so that they can pursue
joint tasks; agents may dynamically synchronize, exchange data, adapt their behaviour, and
reconfigure their communication interfaces. Inspired by existing multi-robot systems, we
represent a system as a set of agents (each with local state), executing independently and
only influence each other by means of message exchange. Agents are able to sense their local
states and partially their surroundings. We extend ltl to be able to reason explicitly about
the intentions of agents in the interaction and their communication protocols. We also study
the complexity of satisfiability and model-checking of this extension.

Keywords Agent theories and models · Logics for agent reasoning · Verification of
multi-agent systems

1 Introduction

In recent years formal modelling of multi-agent systems (MAS) and their analysis through
model checking has received much attention [42,61]. Several mathematical formalisms have
been suggested to represent the behaviour of such systems and to reason about the strategies
that agents exhibit [9,42]. For instance, modelling languages, such as RM [8,33] and ISPL
[42], are used to enable efficient analysis by representing these systems through the usage
of BDDs. Temporal logics have been also extended and adapted (e.g., with knowledge and
epistemic operators [27,31]) specifically to support multi-agent modelling [32]. Similarly,
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logics that support reasoning about the intentions and strategic abilities of such agents have
been used and extended [22,50].

These works are heavily influenced by the formalisms used for verification (e.g., Reactive
Modules [6,8], concurrent game structures [9], and interpreted systems [42]). They rely on
shared memory to implicitly model interactions. It is generally agreed that explicit message
passing is more appropriate to model interactions among distributed agents because of its
scalability [13,37]. However, the mentioned formalisms trade the advantages of message
passing for abstraction, and abstract message exchange by controlling the visibility of state
variables of the different agents.

Furthermore, the compositionality of shared memory approaches is limited and the sup-
ported interaction interfaces are in general not very flexible [14]. Alternatively, message
passing formalisms [48] are very compositional and support flexible interaction interfaces.
However, unlike shared memory formalisms, they do not accurately support awareness capa-
bilities, where an agent may instantaneously inspect its local state and adapt its behaviour
while interacting. The reason is that they model agents as mathematical expressions over
interaction operators. Thus the state of an agent is implicit in the structure of the expression.

Based on an early result, where a translation from shared memory to message passing
was provided [11], it was believed that a shared memory model is a higher level abstraction
of distributed systems. However, this result holds only in specific cases and under assump-
tions that practically proved to be unrealistic. As discussed in [3], the translation was not
provided in a standard way where every feature of one formalism is efficiently translated
to a corresponding one in the other formalism, but rather based on emulation. That is, it
computationally shows if a problem has a solution in one formalism it also has one in the
other formalism. However, this is not surprising as most computational formalisms are Tur-
ing powerful. A good translation (See [2]) should also preserve the observable behaviour of
the translated process and its divergence tendencies. This is important in distributed settings
because the observable behaviour of a process defines its communication capabilities, which
can be influenced in open world settings. Thus the above mentioned translation only works
under closed world assumption and does not capture divergence. Namely, a timely process
in one formalism may diverge indefinitely while awaiting for other processes. Furthermore,
the translation cannot deal with failure or anonymous interaction, and thus requires that there
is a majority of correct processes and a pre-defined knowledge of each other’s identities and
the number of processes in the systems. Thus, there is no way to model the birth/death of
processes in the system.

To combine the benefits of both approaches recent developments [3,59] suggest adopt-
ing hybrids, that accurately represent actual distributed systems, e.g., [4,46]. We propose
a hybrid formalism to model and reason about distributed multi-agent systems. A system
is represented as a set of agents (each with local state), executing concurrently and only
interacting by message exchange. Inspired by multi-robot systems, e.g., Kilobot [52] and
Swarmanoid [23], agents are additionally able to sense their local states and partially their
surroundings. Interaction is driven by message passing following the interleaving seman-
tics of [48]; in that only one agent may send a message at a time while other agents may
react to it. To support meaningful interaction among agents [60], messages are not mere
synchronisations, but carry data that might be used to influence the behaviour of receivers.

Our message exchange is adaptable and reconfigurable. Thus, agents determine how to
communicate and with whom. Agents interact on links that change their utility based on the
needs of interaction at a given stage. Unlike existingmessage-passingmechanisms,which use
static notions of network connectivity to establish interactions, our mechanisms allow agents
to specify receivers using logical formulas. These formulas are interpreted over the evolving
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local states of the different agents and thus provide a natural way to establish reconfigurable
interaction interfaces (for example, limited range communication [46], messages destined
for particular agents [2], etc.).

The advantages of our formalism are threefold. We provide more realistic models that
are close to their distributed implementations, and how actual distributed MAS are devel-
oped, e.g., [36]. We provide a modelling convenience for high level interaction features of
MAS (e.g., coalition formation, collaboration, self-organisation, etc), that otherwise have to
be hard-coded tediously in existing formalisms. Furthermore, we decouple the individual
behaviour of agents from their interaction protocols to facilitate reasoning about either one
separately.

In addition, we extend ltl to characterise messages and their targets. This way we allow
reasoning about the intentions of agents in communication. Our logic can refer directly to
the interaction protocols. Thus the interpretation of a formula incorporates information about
the causes of assignments to variables and the flow of the interaction protocol. We also study
the complexity of satisfiability and Model-checking for our logic.

This article is an extended and revised version of the conference paper presented in [1].
The major extensions in this article consist of: (i) a compositional and enumerative semantic
definition of the proposed formalism, that coincideswith the early symbolic one. The newdef-
inition facilitates reasoning about the individual behaviour of agents and their compositions
with others. For this purpose, we defined a parallel composition operator with reconfigurable
broadcast and multicast semantics. Thus, the definition is not only intuitive, but can also be
used to reason about models under open-world assumption; (ii) a major improvement on
our early results [1] regarding satisfiability and model checking, that were computed in an
expspace upper bound. Here, we provide a novel automata construction that permits pspace
analysis, matching the lower bound. Thus, this part is majorly rewritten and improved. More-
over, we enhance the presentation of the different parts of the article and provide the proofs
of all results.

The structure of this article is as follows: In Sect. 2, we informally present our formalism
and motivate our design choices. In Sect. 3, we give the necessary background and in Sect. 4
we present the compositional semantic definition. In Sect. 5 we introduce the formalism
both in terms of enumerative and symbolic semantics, and we prove that they coincide. In
Sect. 6, we present a non-trivial case study to show the distinctive features of our formalism.
In Sect. 7 we discuss our extension to LTL and provide efficient decision procedures to check
both satisfiability and model checking in polynomial space. Finally, in Sect. 8 we report
closely related works and in Sect. 9 we discuss our concluding remarks.

2 An informal overview

We use a collaborative-robot scenario to informally illustrate the distinctive features of our
formalism and we later formalise it in Sect. 6. The scenario is based on Reconfigurable Man-
ufacturing Systems (RMS) [38,44], where assembly product lines coordinate autonomously
with different types of robots to produce products.

In our formalism, each agent has a local state consisting of a set of variables whose values
may change due to either contextual conditions or side-effects of interaction. The external
behaviour of an agent is only represented by the messages it exposes to other agents while
the local one is represented by changes to its state variables. These variables are initialised
by initial conditions and updated by send- and receive- transition relations. In our example,
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a product-line agent initiates different production procedures based on the assignment to its
product variable “prd", which is set by the operator, while it controls the progress of its status
variable “st" based on interactions with other robots. Furthermore, a product-line agent is
characterised: (1) externally only by the recruitment and assembly messages it sends to other
robots and (2) internally by a sequence of assignments to its local variables.

Before we explain the send- and receive- transition relations and show the dynamic recon-
figuration of communication interfaces we need to introduce a few additional features. We
assume that there is an agreed set of channels/links ch that includes a unique broadcast
channel �. Broadcasts have non-blocking send and blocking receive while multicasts have
blocking send and receive. In a broadcast, receivers (if exist) may anonymously receive a
message when they are interested in its values and when they satisfy the send guard. Oth-
erwise, the agent does not participate in the interaction either because they cannot (do not
satisfy the guard) or because they are not interested (make an idle transition). In multicast,
all agents connected to the multicast channel must participate to enable the interaction. For
instance, recruitment messages are broadcast because a line agent assumes that there exist
enough robots to join the team while assembly messages are multicast because they require
that the whole connected team is ready to assemble the product.

Agents dynamically decide (based on local state) whether they can use (i.e., connect-to)
multicast channels while the broadcast channel is always available. Thus, initially, agents
may not be connected to any channel, except for the broadcast one �. These channels may
be learned using broadcast messages and thus a structured communication interface can be
built at run-time, starting from a (possibly) flat one.

Agents use messages to send selected data and specify how and to whom. Namely, the
values in a message specify what is exposed to the others; the channel specifies how to
coordinate with others; and a send guard specifies the target. Accordingly, each message
carries an assignment to a set of agreed data variables d, i.e., the exposed data; a channel ch;
and a send guard gs . In order to write meaningful send guards, we assume a set of common
variable names cv (common variables, for short). Each agent has local variables that are
identified by these names. Agents assign their own individual information to these local
variables (e.g., the type of agent, its location, its readiness, etc.). Send guards are expressed
in terms of conditions on these names and are evaluated per agent based on their assigned
local values. Send guards are parametric to the local state of the sender and specify what
assignments to the common variables a potential receiver must have. For example, an agent
may send a dedicated link name to a selected set of agents by assigning a data variable in
the communicated message and this way a coalition can be built incrementally at run-time.
In our RMS, the send guard of the recruitment message specifies the types of the targeted
robots while the data values expose the number of required robots per type and a dedicated
multicast link to be used to coordinate the production.

Targeted agents may use incoming messages to update their states, reconfigure their inter-
faces, and/or adapt their behaviour. In order to do so, however, agents are equipped with
receive guards gr ; that might be parametrised to local variables and channels, and thus
dynamically determine if an agent is connected to a given channel. The interaction among
different agents is then derived based on send- and receive- transition relations. These rela-
tions are used to decide when to send/receive a message and what are the side-effects of
interaction. Technically, every agent has a send and a receive transition relation. Both rela-
tions are parameterised by the state variables of the agent, the data variables transmitted on
the message, and by the channel name. A sent message is interpreted as a joint transition
between the send transition relation of the sender and the receive transition relations of all
the receivers. For instance, a robot’s receive guard specifies that other than the broadcast link
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it is also connected to a multicast link that matches the current value of its local variable
“lnk". The robot then uses its receive transition relation to react to a recruitment message,
for instance, by assigning to its “lnk" the link’s data value from the message.

Furthermore, in order to send a message the following has to happen. The send transition
relation of the sender must hold on: a given state of the sender, a channel name, and an
assignment to data variables. If the message is broadcast, all agents whose assignments to
common variables satisfy the send guard jointly receive the message, the others discard
it. If the message is multicast, all connected agents must satisfy the send guard to enable
the transmission (as otherwise they block the message). In both cases, sender and receivers
execute their send- and receive-transition relations jointly. The local side-effect of themessage
takes into account the origin local state, the channel, and the data. In our example, a (broadcast)
recruitment message is received by all robots that are not assigned to other teams (assigned
ones discard it) and as a side effect they connect to a multicast channel that is specified in the
message. A (multicast) assembly message can only be sent when the whole recruited team
is ready to receive (otherwise the message is blocked) and as a side effect the team proceeds
to the next production stage.

Clearly, the dynamicity of our formalism stems from the fact that we base interactions
directly over the evolving states of the different agents rather than over static notions of
network connectivity as of existing approaches.

3 Transition systems and finite automata

We unify notations and give the necessary background. We introduce doubly-labeled tran-
sition systems and discrete systems and show how to translate the former to the latter. We
further introduce nondeterministic and alternating Büchi word automata.

3.1 Transition systems and discrete systems

A Doubly-Labeled Transition System (TS) is T = 〈Σ,Υ , S, S0, R, L〉, where Σ is a state
alphabet, Υ is a transition alphabet, S is a set of states, S0 ⊆ S is a set of initial states,
R ⊆ S × Υ × S is a transition relation, and L : S → Σ is a labeling function.

A path of a transition system T is a maximal sequence of states and transition labels
σ = s0, a0, s1, a1, . . . such that s0 ∈ S0 and for every j ≥ 0 we have (si , ai , si+1) ∈ R. We
assume that for every state s ∈ S there are a ∈ Υ and s′ ∈ S such that (s, a, s′) ∈ R. Thus, a
sequence σ is maximal if it is infinite. If |Υ | = 1 then T is a state-labeled transition system
and if |Σ | = 1 then T is a transition-labeled transition system.

We introduce Discrete Systems (DS) that represent state-labeled systems symbolically. A
DS is D = 〈V , θ, ρ〉, where the components of D are as follows:

• V = {v1, . . . , vn}: A finite set of typed variables. Variables range over discrete domains,
e.g., Boolean or Integer. A state s is an interpretation of V , i.e., if Dv is the domain of v,
then s is in

∏
vi∈V Dvi .

We assume some underlying first-order language over V that includes (i) expressions
constructed from the variables inV , (ii) atomic formulas that are either Boolean variables
or the application of different predicates to expressions, and (iii) assertions that are
first-order formulas constructed from atomic formulas using Boolean connectives or
quantification of variables. Assertions, also sometimes called state formulas, characterize
states through restriction of possible variable values in them.
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• θ : This is an assertion over V characterising all the initial states of the DS. A state is
called initial if it satisfies θ .

• ρ : A transition relation. This is an assertion ρ(V ∪ V ′), where V ′ is a primed copy of
variables in V . The transition relation ρ relates a state s ∈ Σ to itsD-successors s′ ∈ Σ ,
i.e., (s, s′) |
 ρ, where s is an interpretation to variables in V and s′ is for variables in
V ′.
The DS D gives rise to a state transition system TD = 〈Σ, {1}, T , T0, R〉, where Σ and

T are the set of states of TD , T0 is the set of initial states, and R is the set of triplets (s, 1, s′)
such that (s, s′) |
 ρ. Clearly, the paths of TD are exactly the paths of D , but the size of TD

is exponentially larger than the description of D .
A common way to translate a DLTS into a DS, which we adapt and extend below, would

be to include additional variables that encode the transition alphabet. Given such a set of
variables VΥ , an assertion ρ(V ∪ VΥ ∪ V ′) characterises the triplets (s, υ, s′) such that
(s, υ, s′) |
 ρ, where s supplies the interpretation to V , υ to VΥ and s′ to V ′.

3.2 Finite automata on infinite words

We use the automata-theoretic approach to linear temporal logic [58]. Thus, we translate
temporal logic formulas to automata. We give here the necessary background.

For an alphabet Σ , the set Σω is the set of infinite sequences of elements from Σ . Given
an alphabet Σ and a set D of directions, a Σ-labeled D-tree is a pair (T , τ ), where T ⊆ D∗
is a tree over D and τ : T → Σ maps each node of T to a letter in Σ . A path π of a tree T is
a set π ⊆ T such that ε ∈ π and for every x ∈ π either x is a leaf in T or there exists a unique
γ ∈ D such that x · γ ∈ π . For π = γ1 · γ2 · · · , we write τ(π) for τ(ε) · τ(γ1) · τ(γ1γ2) · · · .

For a finite set X , let B+(X) be the set of positive Boolean formulas over X (i.e., Boolean
formulas built from elements in X using ∧ and ∨), where we also allow the formulas true
and f alse. For a set Y ⊆ X and a formula θ ∈ B+(X), we say that Y satisfies θ iff assigning
true to elements in Y and assigning f alse to elements in X\Y makes θ true.

Definition 1 (Alternating Büchi Word Automata (ABW))An alternating Büchi word automa-
ton is of the form A = 〈Σ , Q, qin , δ, F〉, where Σ is the input alphabet, Q is a finite set of
states, δ : Q × Σ → B+(Q) is a transition function, qin ∈ Q is an initial state, and F ⊆ Q
specifies a Büchi acceptance condition.

A run of an ABW A onw = σ0σ1 . . . is a Q-labeled D-tree, (T , τ ), where τ(ε) = qin and,
for every x ∈ T , we have {τ(x ·γ1), . . . , τ (x ·γk)} |
 δ(τ (x), σ|x |) where {x ·γ1, . . . , x ·γk}
is the set of children of x . A run of A is accepting if all its infinite paths satisfy the acceptance
condition. For a path π , let in f (π) = {q | q appears infinitely often in τ(π)}. A path π is
accepting if in f (π)∩F �= ∅. Thus, every infinite path in the run treemust visit the acceptance
set F infinitely often. The ABW A acceptsw if there exists an accepting run onw. We denote
by Lω(A) the set of words accepted by A.

Definition 2 (Nondeterministic Büchi Word Automata (NBW)) A NBW is N = 〈Σ , Q, Qin ,
δ, F〉, whereΣ is an input alphabet, Q is a finite set of states, δ : Q×Σ → 2Q is a transition
function, Qin ⊆ Q is a set of initial state, and F ⊆ Q specifies a Büchi acceptance condition.

A run of a NBW N on w = σ0σ1 . . . ∈ Σω is a sequence r = q0q1 . . . ∈ Qω such that
q0 ∈ Qin , and for all i ≥ 0 we have qi+1 ∈ δ(qi , σi+1). A run is accepting if in f (r)∩F �= ∅.
The NBW N accepts w if there exists an accepting run of N on w. We denote by Lω(N ) the
set of words accepted by N .
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We state the following well known results about Linear Temporal Logic (LTL), NBW,
and ABW (omitting the definition of LTL).

Theorem 1 ([57,58]) For every LTL formula ϕ of length n there exist an ABW Aϕ with O(n)

states such that L(Aϕ) = L(ϕ).

Theorem 2 ([49]) For every ABW A with n states there is an NBW N such that Lω(N ) =
Lω(A). The number of states of N is in 2O (n).

4 Channelled transition systems

In this section, we propose Channelled Transition System (CTS) to facilitate compositional
modelling of interactive systems.Namely,we extend the format of transition labels ofDoubly-
Labelled Transition Systems to also specify the role of the transition (i.e., send- or receive-
message) and the used communication channels. We define a parallel composition operator
that considers both broadcast and multicast semantics and we study its properties. The tech-
niques to prove these results are rather standard. However, we are not familiar with a setup
that conveniently allows the existence of transitions to depend on subscription to channels
as we suggest below.

4.1 Channelled transition systems (CTS)

A Channelled Transition System (CTS) is T = 〈C,Σ, Υ , S, S0, R, L, ls〉, where C is a
set of channels, including the broadcast channel (�), Σ is a state alphabet, Υ is a transition
alphabet, S is a set of states, S0 ⊆ S is a set of initial states, R ⊆ S × Υ × S is a transition
relation, L : S → Σ is a labelling function, and ls : S → 2C is a channel-listening function
such that for every s ∈ S we have � ∈ ls(s). We assume that Υ = Υ + ×{!, ?}×C , for some
set Υ +. That is, every transition labelled with some υ ∈ Υ + is either a message send (!) or
a message receive (?) on some channel c ∈ C .

A path of a CTS T is a maximal sequence of states and transition labels σ =
s0, a0, s1, a1, . . . such that s0 ∈ S0 and for every i ≥ 0 we have (si , ai , si+1) ∈ R. As
before, we assume that for every state s ∈ S there exist a ∈ Υ and s′ ∈ S such that
(s, a, s′) ∈ R. Thus, a sequence σ is maximal if it is infinite.

Remark 1 Note that the transition labels ai of a CTS’s path σ = s0, a0, s1, a1, . . . range over
both send (!) and receive (?) transitions. Depending on the underlying semantics of the CTS,
send transitions may happen independently regardless of the existence of receivers, e.g., in
case of broadcast semantics. However, receive transitions may only happen jointly with some
send transition. By allowing CTS’s paths to also range over receive transitions, we can model
every system as a collection of (open) systems that interact through message exchange. That
is, a receive transition in a system is a hole that is closed/filled when composed with a send
transition from another system. A complete system (i.e., with filled holes) is called a closed
system.

The analysis in this article considers closed systems where a system path ranges over send
transitions only. In other words, we only consider the messages exchanged within the system
under consideration.

The parallel composition of systems is defined below.
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Definition 3 (Parallel Composition) Given two CTS Ti = 〈Ci ,Σi , Υi , Si , Si0, Ri , Li , ls
i 〉,

where i ∈ {1, 2} their composition T1 ‖ T2 is the following CTS T = 〈C,Σ, Υ , S,

S0, R, L, ls〉, where the components of T are:

– C = C1 ∪ C2

– Σ = Σ1 × Σ2

– Υ = Υ 1 ∪ Υ 2

– S = S1 × S2
– S0 = S10 × S20
– R =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

((s1, s2), (υ, !, c), (s′
1, s

′
2))

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(s1, (υ, !, c), s′
1) ∈ R1, c ∈ ls2(s2) and

(s2, (υ, ?, c), s′
2) ∈ R2 or

(s1, (υ, ?, c), s′
1) ∈ R1, c ∈ ls1(s1), and

(s2, (υ, !, c), s′
2) ∈ R2 or

(s1, (υ, !, c), s′
1) ∈ R1, c /∈ ls2(s2), and

s2 = s′
2 or

c /∈ ls1(s1), s1 = s′
1, and (s2, (υ, !, c), s′

2) ∈ R2

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

∪

⎧
⎪⎪⎨

⎪⎪⎩
((s1, s2), (υ, ?, c), (s′

1, s
′
2))

∣
∣
∣
∣
∣
∣
∣
∣

c ∈ ls1(s1), (s1, (υ, ?, c), s′
1) ∈ R1, c ∈ ls2(s2)

and (s2, (υ, ?, c), s′
2) ∈ R2 or

(s1, (υ, ?, c), s′
1) ∈ R1, c /∈ ls2(s2), and s2 = s′

2 or
c /∈ ls1(s1), s1 = s′

1, and (s2, (υ, ?, c), s′
2) ∈ R2

⎫
⎪⎪⎬

⎪⎪⎭
∪

⎧
⎪⎨

⎪⎩
((s1, s2), (υ, γ, �), (s′

1, s
′
2))

∣
∣
∣
∣
∣
∣
∣

γ ∈ {!, ?}, (s1, (υ, γ, �), s′1) ∈ R1, s2 = s′2 and
∀s′′2 . (s2, (υ, ?, �), s′′2 ) /∈ R2 or
γ ∈ {!, ?}, s1 = s′1,∀s′′1 . (s1, (υ, ?, �), s′′1 ) /∈ R1 and
(s2, (υ, γ, �), s′2) ∈ R2,

⎫
⎪⎬

⎪⎭

– L(s1, s2) = (L1(s1), L2(s2))
– ls(s1, s2) = ls1(s1) ∪ ls2(s2)

The transition relation R of the composition defines two modes of interactions, namely
multicast and broadcast. In both interaction modes, the composition T sends a message
(υ, !, c) on channel c (i.e., ((s1, s2), (υ, !, c), (s′

1, s
′
2)) ∈ R) if either T1 or T2 is able to

generate this message, i.e, (s1, (υ, !, c), s′
1) ∈ R1 or (s2, (υ, !, c), s′

2) ∈ R2.
Consider the case of a multicast channel. A multicast is blocking. Thus, a multicast

message is sent if either it is received or the channel it is sent on is not listened to. Suppose
that a message originates from T1, i.e., (s1, (υ, !, c), s′

1) ∈ R1. Then, T2 must be able to
either receive the message or, in the case that T2 does not listen to the channel, discard it.
CTST2 receives if (s2, (υ, ?, c), s′

2) ∈ R2. It discards if c /∈ ls2(s2) and s2 = s′
2. The case of

T2 sending is dual. Note that T2 might be a composition of other CTS(s), say T2 = T3‖T4.
In this case, T2 listens to channel c if at least one of T3 or T4 is listening. That is, it could be
that either c ∈ (ls(s3)∩ls(s4)), c ∈ (ls(s2)\ls(s3)), or c ∈ (ls(s2)\ls(s4)). In the first case,
both must receive the message. In the latter cases, the listener receives and the non-listener
discards. Accordingly, when a message is sent by one system, it is propagated to all other
connected systems in a joint transition. A multicast is indeed blocking because a connected
system cannot discard an incoming message on a channel it is listening to. More precisely, a
joint transition ((s1, s2), (υ, !, c), (s′

1, s
′
2)) where c ∈ ls(s2) requires that (s2, (υ, ?, c), s′

2) is
supplied. In other words, message sending is blocked until all connected receivers are ready
to participate in the interaction.
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Consider nowabroadcast.Abroadcast is non-blocking.Thus, a broadcastmessage is either
received or discarded. Suppose that amessage originates fromT1, i.e., (s1, (υ, !, �), s′

1) ∈ R1.
If T2 is receiving, i.e., (s2, (υ, ?, �), s′

2) ∈ R2 the message is sent. However, by definition,
we have that � ∈ ls(s) for every s in a CTS. Namely, a system may not discon-
nect the broadcast channel �. For this reason, the last part of the transition relation R
defines a special case for handling (non-blocking) broadcast. Accordingly, a joint transi-
tion ((s1, s2), (υ, γ, �), (s′

1, s
′
2)) ∈ R where γ ∈ {!, ?} is always possible and may not be

blocked by any receiver. In fact, if (γ = !) and (s1, (υ, !, �), s′
1) ∈ R1 then the joint transition

is possible whether (s2, (υ, ?, �), s′
2) ∈ R2 or not. In other words, a broadcast can happen

even if there are no receivers. Furthermore, if (γ = ?) and (s1, (υ, ?, �), s′
1) ∈ R1 then also

the joint transition is possible regardless of the other participants. In other words, a broadcast
is received only by interested participants.

4.2 Properties of parallel composition

Our parallel composition is commutative and associative. Furthermore, it supports non-
blocking broadcast and blocking multicast semantics as stated in the following lemmas:

Lemma 1 (Commutativity and Associativity) Given two CTS T1 and T2 we have that:

– ‖ is commutative: T1‖T2 = T2‖T1;
– ‖ is associative: (T1‖T2)‖T3 = T1‖(T2‖T3).

Note that Lemma 1 is crucial to ensure that our parallel compostion operator is a commutative
monoid, as otherwise it would not represent the right behaviour of interacting programs.

Lemma 2 (Non-blocking Broadcast) Given a CTS T1 and for every other CTS T , we have
that for every reachable state (s1, s) of T1‖T the following holds.

(s1, (υ, !, �), s′
1) ∈ R1 implies ((s1, s), (υ, !, �), (s′

1, s
′)) ∈ RT1‖T

Lemma 3 (Blocking Multicast) Given a CTS T1 and a multicast channel c ∈ C\{�} such
that (s1, (υ, !, c), s′

1) ∈ R1, then for every other CTST we have that in every reachable state
(s1, s) of T1‖T the following holds.

((s1, s), (υ, !, c), (s′
1, s

′)) ∈ RT1‖T iff(
c ∈ ls(s) and (s, (υ, ?, c), s′) ∈ R
or c /∈ ls(s)

)

The proofs of these lemmas are omitted here and included in the Appendix.

5 RECIPE: reconfigurable communicating programs

We formally present the ReCiPe communication formalism and its main ingredients. We
start by specifying agents (or programs) and their local behaviours. We give semantics to
individual agents in terms of channelled transition systems (CTS). Therefore, we use the
parallel composition operator in Definition 3 to compose the individual behaviour of the
different agents to generate a global (or a system) one.

While the CTS semantics makes it clear what are the capabilities of individual agents and
their interaction, it may not be the most convenient in order to mechanically analyse large
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systems comprised of multiple agents. Thus, we provide a symbolic semantics at system
level using discrete systems. This second semantics enables efficient analysis by representing
closed systems through the usage of BDDs or representing computations through Boolean
formulas. We show that the two semantics (when restricted to closed systems) coincide.

The efficient analysis of open ReCiPe systems is left as future work.
We assume that a set of K agents agree on a set of common variables cv, a set of data

variables d, and a set of channels ch containing the broadcast channel �. As explained,
common variables are variables that are owned (separately) by all agents. The values of these
variables may be different in different agents. The common variables are used in order to
have a common language to express properties that are interpretable on all agents (as either
true or false).

Definition 4 (Agent) An agent is Ai = 〈Vi , fi , gsi , gri , T
s
i , T r

i , θi 〉, where:
• Vi is a finite set of typed local variables, each ranging over a finite domain. A state

si is an interpretation of Vi , i.e., if Dom(v) is the domain of v, then si is an element in∏
v∈Vi Dom(v). We use V ′ to denote the primed copy of V and Idi to denote the assertion∧
v∈Vi v = v′.

• fi : cv → Vi is a renaming function, associating common variables to local variables.
We freely use the notation fi for the assertion

∧
cv∈cv cv = fi (cv).

• gsi (Vi , ch,d, cv) is a send guard specifying a condition on receivers. That is, the pred-
icate, obtained from gsi after assigning si , ch, and d (an assignment to d) , which is
checked against every receiver j after applying f j .

• gri (Vi , ch) is a receive guard describing the connection of an agent to channel ch. We
let gri (Vi , �) = true, i.e., every agent is always connected to the broadcast channel. We
note, however, that receiving a broadcast message could have no effect on an agent.

• T s
i (Vi , V ′

i ,d, ch) is an assertion describing the send transition relation.
• T r

i (Vi , V ′
i ,d, ch) is an assertion describing the receive transition relation. We assume

that agents are broadcast input-enabled, i.e., ∀v,d ∃v′ s.t. T r
i (v, v′,d, �).

In examples,we usekeep(X) to denote that the variables X are not changed by a transition
(either send or receive). More precisely, keep(X) is equivalent to the following assertion∧

x∈X x = x ′.
• θi is an assertion on Vi describing the initial states, i.e., a state is initial if it satisfies θi .

Agents exchange messages. A message (that we shall call an observation) is defined by
the channel it is sent on (ch), the data it carries (d), the sender identity (i), and the assertion
describing the possible local assignments to common variables of receivers (π). Formally:

Definition 5 (Observation) An observation is a tuple m = (ch,d, i, π), where ch is a chan-
nel, d is an assignment to d, i is an identity, and π is a predicate over cv.

In Definition 5 we interpret π as a set of possible assignments to common variables cv. In
practice, π is obtained from gsi (s

i , ch,d, cv) for an agent i , where si ∈ ∏
v∈Vi Dom(v) and

ch and d are the channel and assignment in the observation.We freely use π to denote either a
predicate over cv or its interpretation, i.e., the set of variable assignments c such that c |
 π .
We also use π( f −1

i (si )) to denote the assignment of v ∈ cv by si ( fi (v)) in π .
The semantics of an agent Ai is the CTS T (Ai ) defined as follows.

Definition 6 (Agent Semantics) Given an agent Ai we define T (Ai ) = 〈C,Σ, Υ , S, S0, R,

L, ls〉, where the components of T (Ai ) are as follows.

– C = ch
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– Σ = ∏
v∈Vi Dom(v), i.e., the set of states of Ai

– Υ = Υ + × {!, ?} × ch and Υ + = 2d × K × 22
cv
, where the set K ranges over the

identities of the senders.
– S = Σ

– S0 = {s ∈ S | θi (s)}
– R =

{(s, (d, i, π, !, c), s′) | T s
i (s, s′,d, c) and π = gsi (s, c,d)} ∪

{(s, (d, i ′, π, ?, c), s′) | T r
i (s, s′,d, c), i ′ �= i, c ∈ ls(s), and π( f −1

i (si ))}
– L(s) = s
– ls(s) = {c ∈ C | gri (s, c)}
Generally, the semantics of an agent is defined as an open CTS T (Ai ). The transition

alphabetΥ ofT (Ai ) is the set of observations (as inDefinition 5) that are additionally labelled
with either send (!) or receive (?) symbols, corresponding to send and receive transitions.
Furthermore, in every state s, an agent is listening to the set of channels in ls(s). Namely,
all channels that satisfy the agent’s receive guard gri in state s. We give further intuition for
the definition of the transition relation R.

A triplet (s, υ, s′) ∈ R, where υ = (d, i, π, γ, ch), if the following holds:

• Case (γ =!): Agent i is a sender and we have that π = gsi (si , ch,d), i.e., π is obtained
from gsi by assigning the state of i , the data variables assignment d and the channel ch,
and T s

i (si , s′
i ,d, ch) evaluates to true.

• Case (γ =?): Agent i is a receiver (potentially) accepting a message from another agent
i ′ on channel c and data d with a send guard π such that c ∈ ls(s), π( f −1

i (si )), and
T r
i (si , s′

i ,d, ch). Note that the condition i ′ �= i is required to ensure that the message is
sent by another agent.

Intuitively, if the agent i is the sender, it determines the predicate π (by assigning si , d,
and ch in gsi ) and i’s send transition T s

i is satisfied by assigning si , s′
i , d, and ch to it. That

is, upon sending the message with d on channel ch the sender changes the state from si to s′
i .

If the agent i is the receiver, it must satisfy the condition on receivers π (when translated to
its local copies of the common variables), it must be connected to ch (according to gri ), and
it must have a valid receive transition T r

i when reading the data sent in d on channel ch.
Note that the semantics of an individual agent is totally decoupled from the semantics of

how agents interact. Thus, different interactionmodes (or parallel composition operators) can
be adopted without affecting the semantics of individual agents. In our case, we have chosen
to implement broadcast as a non-blocking send and non-blocking receive and a multicast as
a blocking send and receive. However, if one chooses to do so, other composition operators
could be defined. For example, a point-to-point composition would allow only two agents to
communicate over a channel and would not allow send without receive.

A set of agents agreeing on the common variables cv, data variables d, and channels ch
define a system. We define a CTS capturing the interaction and then give a DS-like symbolic
representation of the same system.

Let Si = Πv∈ViDom(v) be the set of states of agent i and S = Πi Si be the set of states
of the whole system. Given an assignment s ∈ S we denote by si the projection of s on Si .

Definition 7 (ReCiPeSystem as a CTS) Given a set {Ai }i of agents, a system is defined as
the parallel composition of the CTS representations of all Ai , i.e., a system is a CTS of the
form T = ‖i∈IT (Ai ).
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A triplet (s, υ, s′), where υ = (d, i, π, !, c) is in the transition relation of the composed
system T (according to Definition 3), if the following conditions hold:

• There exists a sender i such that (si , (d, i, π, !, c), s′
i ) ∈ Ri . ByDefinition 6,we know that

(si , (d, i, π, !, c), s′
i ) ∈ Ri iff π = gsi (si , ch,d), i.e., π is obtained from gsi by assigning

the state of i , the data variables assignment d and the channel ch, and T s
i (si , s′

i ,d, ch)

evaluates to true.
• For every other agent i ′ we have that either:

1. c ∈ lsi
′
(si ′) and (si ′ , (d, i, π, ?, c), s′

i ′) ∈ Ri ′ . By Definition 6, we know that

c ∈ lsi
′
(si ′) and (si ′ , (d, i, π, ?, c), s′

i ′) ∈ Ri ′ iff gri ′(si ′ , c), π( f −1
i ′ (si ′)), and

T r
i ′ (si ′ , s

′
i ′ ,d, ch), all evaluate to true;

2. c /∈ lsi
′
(si ′) and si ′ = s′

i ′ . By Definition 6 this is equivalent to ¬gri ′(si ′ , ch); or

3. ch = � and si ′ = s′
i ′ . By Definition 6 this is equivalent to ¬π( f −1

i ′ (si ′)).

Intuitively, a message (d, i, π, !, c) labels a transition from s to s′ if the sender i determines
the predicate (by assigning si , d, and ch in gsi ) and the send transition of i is satisfied by
assigning si , s′

i , d, and ch to it, i.e., the sender changes the state from si to s′
i and sets the

data variables in the observation to d. All the other agents either (a) satisfy this condition on
receivers (when translated to their local copies of the common variables), are connected to
ch (according to gri ′ ), and perform a valid transition when reading the data sent in d on ch,
(b) are not connected to ch (according to gri ′ ) and all their variables do not change, or (c) the
channel is a broadcast channel, the agent does not satisfy the condition on receivers, and all
their variables do not change.

In order to facilitate symbolic analysis, we now define a symbolic version of ‖k∈KT (Ak),
under closed world assumption. That is, we only focus on messages that originate from
the system under consideration. In fact, from an external observer point of view, only mes-
sage sending is observable while reception cannot be observed. This notion of observability
is the norm in existing theories on group communication [26,51]. Thus, we consider the
paths of ‖k∈KT (Ak) that are of the form σ = s0, a0, s1, a1, . . . such that a j is of the form
(d, i, π, !, c), s0 ∈ S0 and for every j ≥ 0 we have (s j , a j , s j+1) ∈ R. Note that (d, i, π, !, c)
coincides with our definition of an observation m.

Thus, let Υ be the set of possible observations in ‖k∈KT (Ak). That is, let ch be the set of
channels, D the product of the domains of variables in d, K the set of agent identities, and
Π(cv) the set of predicates over cv then Υ ⊆ ch×D × K ×Π(cv). In practice, we restrict
attention to predicates in Π(cv) that are obtained from gsi (Vi , ch,d, cv) by assigning Vi (a
state of the agent with identity i), ch, and d.

Furthermore, we extend the format of the allowed transitions in the classical definition of
a discrete system from assertions over an extended set of variables to assertions that allow
quantification.

Definition 8 (Discrete System) Given a set {Ai }i of agents, a system is defined as follows:
S = 〈V , ρ, θ〉, where V = ⊎

i
Vi , a state of the system is in

∏
i
∏

v∈Vi Dom(v) and the
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initial assertion θ = ∧

i
θi . The transition relation of the system is characterised as follows:

ρ : ∃ch ∃d ∨

k
T s
k (Vk, V ′

k ,d, ch)∧

∧

j �=k

⎛

⎝∃cv. f j ∧
⎛

⎝
grj (Vj , ch) ∧ T r

j (Vj , V ′
j ,d, ch) ∧ gsk(Vk, ch,d, cv)

∨ ¬grj (Vj , ch) ∧ Id j

∨ ch = � ∧ ¬gsk(Vk, ch,d, cv) ∧ Id j

⎞

⎠

⎞

⎠

The transition relation ρ relates a system state s to its successors s′ given an observation
m = (ch,d, k, π). Namely, there exists an agent k that sends a message with data d (an
assignment to d) with assertion π (an assignment to gsk) on channel ch and all other agents
are either (a) connected, satisfy the send predicate, and participate in the interaction, (b) not
connected and idle, or (c) do not satisfy the send predicate of a broadcast and idle. That is, the
agents satisfying π (translated to their local state by the conjunct ∃cv. f j ) and connected to
channel ch (i.e., grj (s

j , ch)) get the message and perform a receive transition. As a result of
interaction, the state variables of the sender and these receivers might be updated. The agents
that are not connected to the channel (i.e., ¬grj (s

j , ch)) do not participate in the interaction
and stay still. In case of broadcast, namely when sending on �, agents are always connected
and the set of receivers not satisfying π (translated again as above) stay still. Thus, a blocking
multicast ariseswhen a sender is blocked until all connected agents satisfyπ∧ f j . The relation
ensures that, when sending on a channel that is different from the broadcast channel �, the
set of receivers is the full set of connected agents. On the broadcast channel agents who do
not satisfy the send predicate do not block the sender.

The translation above to a transition system leads to a natural definition of a trace, where
the information about channels, data, senders, and predicates is lost.We extend this definition
to include this information as follows:

Definition 9 (System trace) A system trace is an infinite sequence ρ = s0m0, s1m1, . . . of
system states and observations such that ∀t ≥ 0: mt = (cht ,dt , k, πt ), πt = gsk(s

k
t ,dt , cht ),

and:

(st , st+1) |
 T s
k (skt , s

k
t+1,dt , cht )∧

∧

j �=k

⎛

⎜
⎝∃cv. f j ∧

⎛

⎜
⎝

grj (s
j
t , cht ) ∧ T r

j (s jt , s jt+1,dt , cht ) ∧ πt

∨ ¬grj (s
j
t , cht ) ∧ s jt = s jt+1

∨ cht = � ∧ ¬πt ∧ s jt = s jt+1

⎞

⎟
⎠

⎞

⎟
⎠

That is, we use the information in the observation to localize the sender k and to specify
the channel, data values, and the send predicate.

The following theorem states a full abstraction property [47], namely that the CTS seman-
tics of systems and their discrete counterpart define the same transition relation, under closed
world assumption. That is, by considering the messages originating from the system under
consideration as the only observations.

Theorem 3 (Full abstraction)Given a set ofReCiPe agents {Ai }i , their discrete system repre-
sentation, defined as S = 〈V , ρ, θ〉, is semantically equivalent to the parallel composition
of their CTS representation, defined asT = ‖iT (Ai ), under closed world assumption. More
precisely,

– for every assignment s to system variables V , it follows that: θ(s) iff s ∈ S0;
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– for all assignments s and s′ to variables in V and respectively in V ′ it follows that:
ρ(s, s′) iff there exist assignment to data variables d, a communication channel ch, and
an agent i such that (s, (d, i, π, !, ch), s′) ∈ RT .

Proof We prove each statement separately.

– For k agents in the symbolic representation, θ characterises the set of system states
S′ ⊆ Πi Si that satisfy the initial conditions of all agents, i.e., {s | s = (s0, s1, . . . , sk)

ands |
 ∧

i
θi }. Note that (s0, s1, . . . , sk) |
 ∧

i
θi iff s0 |
 θ0 ∧ s1 |
 θ1 ∧ · · · ∧ sk |
 θk .

By Definitions 3 and 6 this is exactly the set of initial states S0 in T = ‖iT (Ai );
– By Definition 8, we have that ρ(s, s′) evaluates to true if there exists a valuation d to d

and a channel ch in ch such that both of the following hold:

– There exists an agent i such that the send transition T s
i is satisfied by assigning to

current local state si , next local state s′
i (i.e., the projection of the system states s

and s′ on agent i), the valuation d, and the communication channel ch. According to
the enumerative semantics in Definition 6, agent i has an individual send transition
given the current local state si , next local state s′

i , valuation d to data variables, and
channel ch. Namely, agent i has a send transition (si , (d, i, π, !, ch), s′

i ) ∈ Ri such
that π = gsi (si , ch,d), i.e., π is obtained from gsi by assigning the state of i , the data
variables assignment d and the channel ch, and T s

i (si , s′
i ,d, ch) evaluates to true.

– For every other agent i ′ we have that either:
1. it is connected to channel ch (i.e., gri ′(si ′ , ch) holds), satisfies the send

predicate (i.e., π( f −1
i ′ (si ′)) holds), and participates in the interaction (i.e.,

T r
i ′ (si ′ , s

′
i ′ ,d, ch) holds). By Definition 6, we know that agent i ′ has an indi-

vidual receive transition (si ′ , (d, i, π, ?, ch), s′
i ′) ∈ Ri ′ where ch ∈ lsi

′
(si ′);

2. it is not connected to channel ch (i.e.,¬gri ′(si ′ , ch) ) and si ′ = s′
i ′ . ByDefinition6,

agent i ′ does not have a receive transition for this message. In other words, since

ch /∈ lsi
′
(si ′) then agent i ′ cannot observe this transmission ;

3. or the message is sent on a broadcast channel (ch = �), where agent i ′ does not
satisfy the sender predicate (i.e.,¬π( f −1

i ′ (si ′))) and si ′ = s′
i ′ . ByDefinition 6 this

is equivalent to ignoring this message by not implementing a receive transition.
So far, we have shown that every individual (send/receive transition) in the symbolic
model has a corresponding one in the enumerative semantics of individual agents.
We need to show that the composition of these individual transitions according to
ρ in the symbolic model has exactly the same semantics of the parallel composi-
tion in Definition 3. That is, ρ(s, s′) iff for the identified d, i , ch and π we have
(s, (d, i, π, !, ch), s′) ∈ RT , given the assignments s and s′ to variables in V and
respectively in V ′.
The existential quantification on sender transitions in ρ (i.e.,

∨

k
T s
k (Vk, V ′

k ,d, ch))

implies that the order of the composition is immaterial, namely any two systems
states (s0, s1, . . . , sk) and (s1, s0, . . . , sk) that only differ in the order of individual
agent’ states are semantically equivalent. By Lemma 1, we have that parallel compo-
sition is commutative, and thus the order is immaterial under the enumerative system
semantics as well. If ρ(s, s′) is due to a message exchange on the broadcast channel
� then the non-blocking semantics of the broadcast is preserved by the transition
relation of the CTS composition as stated in Lemma 2. Moreover, if ρ(s, s′) is due
to a message exchange on a multicast channel c then the blocking semantics of the
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multicast is preserved by the transition relation of the CTS composition as stated in
Lemma 3. Lastly, the universal quantification on all possible receivers in ρ (i.e.,

∧

j �=k
)

follows by the CTS semantics of parallel composition in Definition 3, where a receive
transition can be received jointly by different agents, and by the commutativity and
associativity of parallel composition (Lemma 1), where the scope of a send transition
can be extended to cover all possible receivers.
The other direction of the proof follows in similar manners.

��
The following is a corollary of Theorem 3 to relate the traces arising from Definition 9 to

that of Definition 7.

Corollary 1 (Trace equivalence) The traces of a symbolic system composed of a set of agents
{Ai }i are the paths of the induced CTS.

6 Reconfigurable manufacturing scenario

We complete the details of the RMS example, informally described in Sect. 2. Many aspects
of the example are kept simple on purpose to aid the presentation.

The system, in our scenario, consists of an assembly product line agent (line) and several
types of task-driven robots. We describe the behaviour of the product line and only robots of
type-1 (t1) as these are sufficient for exposing all features of ReCiPe.

A product line is responsible for assembling themain parts and delivering the final product.
Different types of robots are responsible for sub-tasks, e.g., retrieving and/or assembling
individual parts. The product line is generic and can be used to produce different products
and thus it has to determine the set of resources, to recruit a team of robots, to split tasks, and
to coordinate the final stage of production.

Every agent has copies of the common variables: @type indicating its type (e.g., line,
t1, t2, t3), @asgn indicating whether a robot is assigned, and @rdy indicating what stage of
production the robot is in. The set of channels includes the broadcast channel � and multicast
channels {A, . . .}. For simplicity, we only use the multicast channel A and fix it to the line
agent. The set of data variables includesmsg,no, and lnk, indicating the type of themessage,
a number (of robots per type), and a name of a channel respectively.

We note that when a data variable is not important for some message it is omitted from
the description of the message.

We start with the description of the line agent line. We give a high-level overview of
the protocol applied by the line agent using the state machine in Fig. 1. The states capture a
partial evaluation of the state variables of the agent. In this case, the value of the state variable
st. Transitions labels represent guarded commands. We use the format “〈Φ〉 d !/? ch[v′

1 =
a1; . . . v′

n = an]” to denote a guarded command cmd. Namely, the predicateΦ is a condition
on the current assignment to local variables of an agent (and for receive transitions also
on data variables that appear in the message). We freely use d to refer to an assignment
to data variables. Usually, we write directly only the value of the msg variable to avoid
cluttering. Sometimes,we add the values of additional data variables. Each guarded command
is labelled with a role (! for send and ? for receive transitions); also with a channel name ch
and a new assignment to local variables [v′

1 = a1; . . . v′
n = an] to represent the side effects

of the interaction. For the line agent, the protocol consists of starting from the pending
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Fig. 1 Product line agent

state and sending a team formation broadcast. This is followed by sending of an assembly
multicast on the channel stored in local variable lnk and updating the stage to 2. Finally,
an additional assembly multicast on the same channel resets the process. We include below
the full description with the guards and predicates. Each transition in the state machine
corresponds to a disjunct in either the send or the receive transition predicate below. Variables
that are not assigned in a transition are kept unchanged in the predicate. The send and receive
guards of the agent are only partially captured in the state machine.

We now turn to the formal description of the line agent, starting with its set of variables.
In addition to copies of common variables (e.g., fl(@type) = ltype), the line agent has the
following state variables: st is a state ranging over {pnd, strt} (pending and start), lnk is the
link of the product line, prd is the id of the active product, and stage is used to range over
the different stages of production.

The initial condition θl of a line agent is defined as follows:

θl : st = pnd ∧ stage = 0 ∧ lnk = A ∧ (prd = 1 ∨ prd = 2)

Thus, starting from the pending state, the line agent has a task of assembling one of two
products, and uses amulticast channelA to coordinate the assembly team. If there aremultiple
product lines, then each is initialised with a dedicated channel.

The send guard of the Line agent is of the following form:

gsl : ch=� ∧ ¬@asgn ∧ (prd=1→(@type=t1 ∨ @type=t2))∧
(prd=2→(@type=t1 ∨ @type=t3)) ∨ ch=lnk ∧ @rdy = stage

Namely, broadcasts are sent to robots whose @asgn is false (i.e., free to join a team). If
the identity of the product to be assembled is 1, then the required agents are of types t1 and
t2 and if the identity of the product is 2, then the required agents are of types t1 and t3.
Messages on channel A (the value of lnk) are sent to connected agents when they reach a
matching stage of production, i.e., @rdy = stage. The receive guard of Line is ch = �, i.e.,
it is only connected to channel �.

We may now proceed by explaining ReCiPe’s send and receive transition relations of the
line agent in light of the state machine in Fig. 1. The send transition relation of Line is of the
following form:

T s
l : keep(lnk,prd, ltype, lasgn, lrdy)∧

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

st = pnd ∧ d(msg �→ team;no �→ 2; lnk �→ lnk)
∧ stage′ = 1 ∧ st′ = strt ∧ ch = �

∨ st = strt ∧ d(msg �→ asmbl) ∧ stage = 1∧
∧ st′ = strt ∧ stage′ = 2 ∧ ch = lnk

∨ st = strt ∧ d(msg �→ asmbl) ∧ st′ = pnd

∧ stage = 2 ∧ stage′ = 0 ∧ ch = lnk

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠
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The Line agent starts in the pending state (see θl ). It broadcasts a request (d(msg �→ team))
for two robots (d(no �→ 2)) per required type asking them to join the team on the multicast
channel stored in its lnk variable (d(lnk �→ lnk)). According to the send guard, described
before, if the identity of the product to assemble is 1 (prd = 1) the broadcast goes to type 1
and type 2 robots and if the identity is 2 then it goes to type 1 and type 3 robots. Thanks to
channel mobility (i.e., d(lnk)=lnk) a team on a dedicated link can be formed incrementally at
run-time. As a side effects of broadcasting the teammessage, the line agent moves to the start
state (st′ = strt) where the first stage of production begins (stage′ = 1). In the start state,
the line agent attempts an assemble (blocking) multicast on A. The multicast can be sent
only when the entire team completed the work on the production stage (when their common
variable @rdy agrees with stage as specified in the send guard). One multicast increases the
value of stage and keeps Line in the start state. A second multicast finalises the production
and Line becomes free again.

We set T r
l : keep(all) as Line’s receive transition relation. That is, Line is not influenced

by incoming messages.
We now specify the behaviour of t1-robots and show how an autonomous and incremental

one-by-one team formation is done anonymously at run-time. As before, we give a high-level
overview of the protocol using the state machine in Fig. 2. The team formation starts when
unassigned robots are in pending states (pnd). From this state they may only receive a team
message from a line agent. The message contains the number of required robots d(no) and a
team link d(lnk). The robots copy these values to their local variables (i.e., lnk′ = d(lnk)

etc.) and move to the start state (strt). From the start state there are three possible transitions:

• Join - move to state end - a robot joins the team by broadcasting a form message to t1-
robots forwarding the number of still required robots (d(no) = (no − 1)) and the team
link (d(lnk)=lnk). This message is sent only if no ≥ 1, i.e, at least one robot is needed.
From state (end) the robot starts its mission.

• Wait - stay in state strt - a robot receives a form message from a robot, updating the
number of still required robots (i.e., if d(no) > 0).

• Step back - return to state pnd - a robot receives a form message from a robot, informing
that no more robots are needed, i.e., d(no) = 0. The robot disconnects from the team
link, i.e., lnk′ = ⊥. Thus it may not block interaction on the team link.

After joining the team, a robot in state end (i.e., with step = 1) starts itsmission independently
until it finishes (step′ = n ∧ brdy′ = 1). We have used (. . . ) to abstract the individual
behaviour of the robot in state (end). In fact, each local step corresponds to a broadcast
message (local) that is hidden from other agents. This will be clarified later in the send guard
of the robot which evaluates to false when (local) is enabled.

When all team robots finish their individual tasks (i.e., circled in the self-loop on state end

while brdy = 1 until step = n), they become ready to receive an asmbl message on A, to
start the next stage of production (i.e, brdy′ = 2) while still staying in end state.

From this final stage (i.e., brdy = 2) the robots are ready to receive the final asmblmessage
to finalise the product and subsequently they reset to their initial conditions.

As before, each transition corresponds to a disjunct in the send and receive transition
relations, which are fully specified later in this section.

We now turn to the formal description of the robot, starting with its set of variables. In
addition to copies of common variables a t1-robot has the following variables: st ranges over
{pnd, strt, end}, step is used to control the progress of individual behaviour, no (resp. lnk) is
a placeholder to a number (resp. link) learned at run-time, and fb relabels common variables
as follows: fb(@type) = btype, fb(@asgn) = basgn and fb(@rdy) = brdy.
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Fig. 2 The agent of t1-robot

Initially, a robot is in the pending state and is available for recruitment:

θb : (st = pnd) ∧ (btype = t1) ∧ ¬basgn ∧ (lnk = ⊥)∧
(step = brdy = no = 0)

The send guard of the robot is of the following form:

gsb : (ch = �) ∧ d(msg �= local) ∧ (@type = btype) ∧ ¬@asgn ∨
(ch = �) ∧ d(msg = local) ∧ (@asgn ∧ ¬@asgn)

Interestingly, the send guard delimits the scope of the broadcast, depending on the assign-
ment to data variables. Namely, it specifies that a robot either broadcasts to unassigned
robots of the same type if the message is not a local one (d(msg �= local) or otherwise hides
the message from all other agents by broadcasting on a false predicate (i.e., the predicate
@asgn ∧ ¬@asgn). Note that such message cannot be received by any agent, and it can be
regarded as a local computation. Thus, it becomes very easy to distinguish the individual
behaviour of an agent from its interactions with the rest of the system.

The receive guard specifies that a t1-robot is connected either to a broadcast � or to a
channel matching the value of its link variable:

grb : ch = � ∨ ch = lnk.
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Finally, we report the send T s
b and receive T r

b transition predicates below.

T s
b : keep(lnk,btype)∧

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

st = strt ∧ d(msg �→ form; lnk �→ lnk;no �→ no − 1)

∧ (no ≥ 1) ∧ step = 0 ∧ step′ = 1 ∧ st′ = end

∧keep(brdy) ∧ basgn′ ∧ (no′ = 0) ∧ ch = �

∨ st = st′ = end ∧ d(msg �→ local) ∧ ch = �∧
step = 1 ∧ step′ = 2 ∧ keep(basgn,no,brdy)

... [individual behavior]
∨ st = st′ = end ∧ d(msg �→ local) ∧ ch = � ∧ step = n-1

∧step′ = n ∧ brdy′ = 1 ∧ keep(basgn,no)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

T r
b : keep(btype)∧⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

st = pnd ∧ d(msg �→ team) ∧ st′ = strt ∧ ch = �∧
∧ lnk′ = d(lnk) ∧ no′ = d(no) ∧ keep(basgn,brdy, step)

∨ st = st′ = strt ∧ d(msg �→ form) ∧ d(no) > 0 ∧ ch = �∧
keep(basgn,brdy, step) ∧ lnk′ = d(lnk) ∧ no′ = d(no)

∨ st = strt ∧ d(msg �→ form;no �→ 0) ∧ ch = � ∧ st′ = pnd∧
∧keep(basgn,brdy, step) ∧ lnk′ = ⊥ ∧ no′ = 0

∨ st = end ∧ d(msg �→ asmbl) ∧ brdy = 1 ∧ ch = lnk ∧ step = n∧
∧ keep(basgn, lnk) ∧ st′ = end ∧ brdy′ = 2 ∧ step′ = 0

∨ st = end ∧ d(msg �→ asmbl) ∧ brdy = 2 ∧ ch = lnk
∧ st′ = pnd ∧ brdy′ = 0 ∧ lnk′ = ⊥ ∧ ¬basgn′

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

7 LTOL: an extension of LTL

We introduce ltol, an extension of ltl with the ability to refer and therefore reason about
agents interactions. We replace the next operator of ltl with the observation descriptors:
possible 〈O〉 and necessary [O], to refer to messages and the intended set of receivers. The
syntax of formulas φ and observation descriptors O is as follows:

φ ::= v | ¬v | φ ∨ φ | φ ∧ φ | φ U φ | φ Rφ | 〈O〉φ | [O]φ
O ::= cv | ¬cv | ch | ¬ch | k | ¬k | d | ¬d | •∃O | •∀O | O ∨ O | O ∧ O

We use the classic abbreviations →,↔ and the usual definitions for true and f alse.
We also introduce the temporal abbreviations Fφ ≡ true U φ (eventually), Gφ ≡ ¬F¬φ

(globally) and ϕW ψ ≡ ψ R(ψ ∨ϕ) (weak until). Furthermore we assume that all variables
are Boolean because every finite domain can be encoded by multiple Boolean variables.
For convenience we will, however, use non-Boolean variables when relating to our RMS
example.

The syntax of ltol is presented in positive normal form to facilitate translation into
alternating Büchi automata (ABW) as shown later. That is, we push the negation down to
atomic propositions. We, therefore, use Θ to denote the dual of formula Θ where Θ ranges
over either φ or O . Intuitively, Θ is obtained from Θ by switching ∨ and ∧ and by applying
dual to sub formulas, e.g., φ1 U φ2 = φ1 R φ2, φ1 ∧ φ2 = φ1 ∨ φ2, cv = ¬cv, and
•∃O = •∀O .

Observation descriptors are built from referring to the different parts of the observations
and their Boolean combinations. Thus, they refer to the channel in ch, the data variables in d,
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the sender k, and the predicate over common variables in cv. These predicates are interpreted
as sets of possible assignments to common variables, and therefore we include existential
•∃O and universal •∀O quantifiers over these assignments.

The semantics of an observation descriptor O is defined for an observation m =
(ch, d, k, π) as follows:

m |
 ch′ iff ch = ch′ m |
 ¬ch′ iff ch �= ch′

m |
 d ′ iff d(d ′) m |
 ¬d ′ iff ¬d(d ′)
m |
 k′ iff k = k′ m |
 ¬k′ iff k �= k′

m |
 cv iff for every assignment c |
 π we have c |
 cv

m |
 ¬cv iff there is an assignment c |
 π such that c �|
 cv

m |
 •∃O iff there is an assignment c |
 π such that (ch, d, k, {c}) |
 O

m |
 •∀O iff for every assignment c |
 π it holds that (ch, d, k, {c}) |
 O

m |
 O1 ∨ O2 iff either m |
 O1 or m |
 O2

m |
 O1 ∧ O2 iff m |
 O1 and m |
 O2

We only comment on the semantics of the descriptors •∃O and •∀O as the rest are
standard propositional formulas. The descriptor •∃O requires that at least one assignment
c to the common variables in the sender predicate π satisfies O . Dually •∀O requires that
all assignments in π satisfy O . Using the former, we express properties where we require
that the sender predicate has a possibility to satisfy O while using the latter we express
properties where the sender predicate can only satisfy O . For instance, both observations
(ch,d, k, cv1 ∨ ¬cv2) and (ch,d, k, cv1) satisfy •∃cv1 while only the latter satisfies •∀cv1.
Furthermore, the observation descriptor •∀ f alse∧ ch = � says that a message is sent on the
broadcast channel with a false predicate. That is, the message cannot be received by other
agents. In our RMS example in Sect. 6, the descriptor •∃(@type = t1) ∧ •∀(@type = t1) says
that the message is intended exactly for robots of type-1.

Note that the semantics of •∃O and •∀O (when nested) ensures that the outermost can-
cels the inner ones, e.g., •∃(O1 ∨ (•∀(•∃O2))) is equivalent to •∃(O1 ∨ O2). Furthermore,
when cv and respectively ¬cv appear outside the scope of a quantifier (•∀ or •∃), they are
semantically equivalent to the descriptors •∀cv and respectively •∃¬cv. Thus, we assume
that they are written in the latter normal form.

We interpret ltol formulas over system computations:

Definition 10 (System computation) A system computation ρ is a function from natural
numbers N to 2V × M where V is the set of state variable propositions and M = ch× 2d ×
K × 22

cv
is the set of possible observations. That is, ρ includes values for the variables in

2V and an observation in M at each time instant.

We denote by si the system state at the i th time point of the system computation.Moreover,
we denote the suffix of ρ starting with the i th state by ρ≥i and we use mi to denote the
observation (ch,d, k, π) in ρ at time point i .
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The semantics of an ltol formula ϕ is defined for a computation ρ at a time point i as
follows:

ρ≥i |
 v iff si |
 v and ρ≥i |
 ¬v iff si �|
 v;
ρ≥i |
 φ2 ∨ φ2 iff ρ≥i |
 φ1 or ρ≥i |
 φ2;
ρ≥i |
 φ2 ∧ φ2 iff ρ≥i |
 φ1 and ρ≥i |
 φ2;
ρ≥i |
 φ1 U φ2 iff there exists j ≥ i s.t. ρ≥ j |
 φ2 and,

for every i ≤ k < j, ρ≥k |
 φ1;
ρ≥i |
 φ1 Rφ2 iff for every j ≥ i either ρ≥ j |
 φ2 or,

there exists i ≤ k < j, ρ≥k |
 φ1;
ρ≥i |
 〈O〉φ iff mi |
 O and ρ≥i+1 |
 φ;
ρ≥i |
 [O]φ iff mi |
 O implies ρ≥i+1 |
 φ.

Intuitively, the temporal formula 〈O〉φ is satisfied on the computation ρ at point i if the
observation mi satisfies O and φ is satisfied on the suffix computation ρ≥i+1. On the other
hand, the formula [O]φ is satisfied on the computation ρ at point i ifmi satisfying O implies
that φ is satisfied on the suffix computation ρ≥i+1. Other formulas are interpreted exactly as
in ltl.

With observation descriptors we can refer to the intention of agents in the interaction. For
example, the following descriptor

O := •∃(@type = t1) ∧ •∃(@type = t2) ∧ •∀(@type = t1 ∨ @type = t2)

specifies that the target of the message is “exactly and only" type-1 and type-2 robots. This
descriptor can be used later to specify that whenever the line agent “l" recruits for a product
with identity 1, it notifies both type-1 and type-2 robots as follows:

G((prd = 1 ∧ st = pnd ∧ 〈l ∧ ch = �〉true) → 〈O〉true)
Namely, whenever the line agent is in the pending state and tasked with product 1 it notifies
both type-1 and type-2 robots by a broadcast.

The pattern “After q have exactly two p until r” [24,45] can be easily expressed in ltl
and can be used to check the formation protocol. Consider the following formulas:

ϕ1 := 〈msg = team ∧ no = 2 ∧ •∃(@type = t1)〉true
specifying that a team message is sent to type-1 robots and requires two robots,

ϕ2 := 〈msg = form ∧ •∃(@type = t1)〉true
specifying that a formation message is sent to type-1 robots, and

ϕ3 := 〈ch = A〉true
specifying that a message is sent on channel A.

Now, the template “After ϕ1 have exactly two ϕ2 until ϕ3” specifies that whenever a team
message is sent to robots of type-1 requiring two robots, then two form messages destined
for type-1 robots will follow before using the multicast channel. That is, two type-1 robots
join the team before a (blocking) multicast on channel A may become possible.

We can also reason at a local rather than a global level. For instance, we can specify that
robots follow a “correct” utilisation of channel A. Formally,

O1(t) := msg=team ∧ •∃(@type=t)
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specifies that a team message is sent to robots of type t;

O2(k, t) := msg=form ∧ ¬k ∧ no=0 ∧ •∃(¬@asgn ∧ @type=t)

specifies that a robot different from k sends a form message specifying that no more robots
are needed and this message is sent to unassigned type t robots;

O3(t) := msg=asmbl ∧ ch = A ∧ @rdy=2 ∧ •∃(@type=t)

specifies that an assembly message is sent on channel A to robots of type twho reached stage
2 of the production. Thus, for robot k of type t, the formulas

(i) ϕ1(t) := (lnk �=A) W 〈O1(t)〉true
(ii) ϕ2(k, t) := G([O2(k, t) ∨ O3(t)]ϕ1(t))

(1)

state that: (i) robots are not connected to channel A until they get a team message, inviting
them to join a team; (ii) if either they are not selected (O2(k, t)) or they finished production
after selection (O3(t)) then they disconnect again until the next team message. This reduces
to checking the “correct” utilisation of channel A to individual level, by verifying these
properties on all types of robots independently. By allowing the logic to relate to the set of
targeted robots, verifying all targeted robots separately entails the correct “group usage" of
channel A.

7.1 The satisfiability and themodel checking problems of LTOL

In this section, we improve our early results on satisfiability and model checking of ltol,
presented in the aamas version [1] of this article. In that version, we computed an expspace
upper bound for both problems with respect to the set of common variables cv that appear
in the observation descriptors and pspace upper bound with respect to the rest of the input.
This result was not surprising as the semantics of observations requires quantification on the
assignments to commonvariablescv appearing inO . Indeed, the number of assignments tocv
is doubly exponential in the size of cv, i.e, the number of assignments is 22

|cv|
. Both problems

require translation to Nondeterministic Büchi Automata (NBW), and a direct translation
would incur a double exponential blowup in the size of the automaton with respect to |cv|.
Thus, a membership in expspace with respect to |cv| follows from the membership in
nlogspace of the nonemptiness problem for NBW.

In this article, we improved the latter results to pspace, matching the lower bound. This
is achieved by a novel automaton construction. Namely, we introduce a further dependency
between the formula and the alphabet that is read by the automaton. Thus, the automaton
does not read concrete messages but it rather partitions messages into sets, according to their
effects on the truth values of subformulas of the formula.

Before we proceed with the automaton construction, we fix the sets of system variables
V , the communication channels ch, the data variables d, the identities of agents K , and the
common variables cv.

Our direct construction in [1] considers a state-alphabet Σ = 2V and amessage-alphabet
M = ch × d × K × 22

cv
. Clearly, the message-alphabet is doubly-exponential in cv and

implies that the decision procedures based on M would be in expspace (with respect to cv).
However,M is “too large” for the automaton (c.f., [62]). Thus, we consider a smaller alphabet
that is derived from the observation descriptors appearing in the formula. This alphabet is at
most exponential in the size of the formula (allowing for pspace analysis). To achieve pspace
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analysis, we have to extend the decision procedures to further consider observation-alphabet
satisfiability and observation-alphabet model-checking, as we will see below.

Recall the alphabets Σ and M above and fix an ltol formula ϕ. Let obs(ϕ) be the set of
observations appearing “top-level” in the operators 〈·〉 and [·] in ϕ. More precisely, obs(ϕ)

is closed under the subformula relation of ϕ, but is not closed under the subformula relation
of O . Consider ϕ2(k, t) in Eq. 1:

obs(ϕ2(k, t)) = {O2(k, t) ∨ O3(t), O1(t)}
We denote by |obs(ϕ)| the size of the set obs(ϕ). We denote by |O| the length of the
observation O and by |obs(ϕ)| the sum of lengths of observations in ϕ. Note that |obs(ϕ)| is
bounded by the size of ϕ. Thus, we may now define an observation-alphabet O = 2obs(ϕ),
that is atmost exponential in the size ofϕ.Wewill use this alphabet to enable pspace analysis.

In our construction, the automaton reads words from the alphabet (Σ ×O)ω while system
computations are derived from the alphabet (Σ × M)ω.

Intuitively, an automaton word w ∈ (Σ ×O)ω and a system computation ρ ∈ (Σ × M)ω

agree on the state-alphabet Σ and only differ in their treatment to messages. Formally, given
a word w = (σ0, O0), (σ1, O1), . . . , and a system computation ρ = (σ ′

0,m0), (σ
′
1,m1), . . . .

We say that ρ satisfies w if for every i ≥ 0 we have that σ ′
i = σi and for every O ∈ obs(ϕ)

we have mi |
 O iff O ∈ Oi . Note that mi |
 O follows the semantics of observation
descriptors. Thus, a word w defines a language over system computations.

More precisely, for a word w ∈ (Σ × O)ω we denote by Lω(w) the set of system
computations satisfying w. We say that w is non empty if there is some system computation
satisfying it, i.e., if Lω(w) �= ∅. Furthermore, for a letter O ∈ O, we denote by M (O) =
{m ∈ M | ∀O ∈ obs(ϕ) . O ∈ O ⇐⇒ m |
 O} the set of models of O. That is, all the
messages that satisfy all the observations in O and do not satisfy all the observations that are
not in O. We say that O is non empty if M (O) �= ∅.

Clearly, a word w = (σ0, O0), (σ1, O1), . . . is non empty if and only if for every i ≥ 0
we have that Oi is non empty.

We show that satisfiability of ltol can be reduced to finding a word w such that the set
of system computations satisfying w is not empty. Similarly, model checking is reduced to
building an automaton for ¬ϕ and identifying a word w satisfying ¬ϕ and a computation ρ

of the system under study such that ρ satisfies w.
The following theorem states that the set of computations satisfying a given formula are

exactly the ones satisfying words accepted by some finite automaton on infinite words.

Theorem 4 For every ltol formula ϕ, there is an Alternating Büchi Automaton (ABW) Aϕ =
〈Q,Σ,O, δφ, q0, F ⊆ Q〉 such that

⋃
w∈Lω(Aϕ) Lω(w) is exactly the set of computations

satisfying the formula ϕ.

Notice that for a given word w, either all the computations that satisfy w satisfy ϕ or all
the computations that satisfyw do not satisfy ϕ (i.e., satisfy ϕ). In the first casew is accepted
by Aϕ and in the second it is not accepted by Aϕ . Thus, the definition ofO is such that words
partition the computations to equivalence sets that are uniformwith respect to the satisfaction
of ϕ.

Proof The set of states Q is the set of all sub formulas of ϕ with ϕ being the initial state q0.
The automaton has two alphabets, namely the state-alphabet Σ = 2V and the observation
alphabet O = 2obs(ϕ). The set F of accepting states consists of all sub formulas of the form
φ1 Rφ2. The transition relation δφ : Q × Σ × O → B+(Q) is defined inductively on the
structure of ϕ, as follows:
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• δφ(v, σ, O) = true if v ∈ σ and f alse otherwise;
• δφ(¬v, σ, O) = true if v /∈ σ and f alse otherwise;
• δφ(φ1 ∨ φ2, σ, O) = δφ(φ1, σ, O) ∨ δφ(φ2, σ, O);
• δφ(φ1 ∧ φ2, σ, O) = δφ(φ1, σ, O) ∧ δφ(φ2, σ, O);
• δφ(φ1 U φ2, σ, O) = δφ(φ1, σ, O) ∧ φ1 U φ2 ∨ δφ(φ2, σ, O);
• δφ(φ1 Rφ2, σ, O) = (δφ(φ1, σ, O) ∨ φ1 Rφ2) ∧ δφ(φ2, σ, O);

• δφ(〈O〉φ1, σ, O) =
{

φ1 O ∈ O
f alse O /∈ O

;

• δφ([O]φ1, σ, O) =
{

φ1 O ∈ O
true O /∈ O

.

The proof of correctness of this construction proceeds by induction on the structure of ϕ.
We prove that when Aϕ is in state φ1, it accepts exactly all computations that satisfy φ1.

The base cases (i.e., state variable propositions) follow from the definition of δφ while other
cases follow from the semantics of ϕ and the induction hypothesis. The construction ensures
that a computation can only satisfy φ1 U φ2, if it has a suffix satisfying φ2; otherwise Aφ will
have an infinite path stuck in φ1 U φ2 which is not accepting. ��

Note that, from Theorem 4, the number of states in Aϕ is linear in the size of ϕ, i.e.,
|Q| is in O(|ϕ|). The size of the transition relation |δφ | is in O(|Q|2.|Σ |.|O|), i.e., it is in
|ϕ|2.2O (|ϕ|). Finally, the size of the alternating automaton |Aϕ | is in O(|Q|.|δφ |), i.e., |Aϕ | is
in |ϕ|3.2O (|ϕ|).

By Theorem 4 and Proposition 2, we have that:

Corollary 2 For every formula ϕ there is an NBW Nϕ with a state-alphabet Σ = 2V and an
observation-alphabetO = 2obs(ϕ) where Nϕ = 〈Q,Σ,O, S0, δ, F〉 and ⋃

w∈Lω(Nϕ) Lω(w)

is exactly the set of computations satisfying ϕ such that:

• |Q| is in 2O (|ϕ|) and |δ| is in O(|Q|2.|Σ |.|O|), i.e., |δ| is in 2O (|ϕ|).
• The required space for building the automaton is nlog(|Q|.|δ|), i.e., it is in O(|ϕ|)
• The size of the Büchi automaton is |Q|.|δ|, i.e., |N | is in 2O (|ϕ|).

Theorem 5 The satisfiability problem of ltol is pspace-complete with respect to |ϕ|.
Proof By Corollary 2, given a formula ϕ, we can construct an NBW Nϕ of size |Qn |.|δn | that
accepts precisely the computations that satisfy ϕ. Thus, ϕ is satisfiable iff Nϕ is nonempty.
In order to prove that the formula is satisfiable we have to show that Nϕ accepts a word w

such that some computation ρ satisfies w. However, a word w is non empty iff every letter
O ∈ O appearing in w is non empty. It follows that while testing the non emptiness of Nϕ we
have to follow only transitions using non empty letters in O. The nonemptiness of an NBW
is tested in nondeterministic logarithmic space. However, as Nϕ is exponential in |ϕ| we get
an algorithm working in space polynomial in |ϕ|. The algorithm constructs Nϕ on-the-fly.
We have to show that the emptiness of letters in O can be tested in space polynomial in |ϕ|.
This follows from Proposition 1 below.

The hardness argument can be proved by a reduction from ltl satisfiability [53]. ��
Theorem 6 The model-checking problem of ltol is pspace-completewith respect to |Sys|
and |ϕ|.

Note that the stated bounds in terms of |Sys| refer to the symbolic representation of the
system. The complexity is logspace in the size of the corresponding CTS T (Sys), which
is anyway exponentially larger.
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Proof Given a finite state system Sys = 〈V , ρ, θ〉 and a set of assertions on state variables
V , on ch, d, K , and on cv1, . . . cvn . We assume ρ to be total and then we can construct
a CTS representation of Sys as follows: T (Sys) = 〈ch,Σ, M, S, S0, R, L, ls〉, where the
components of T (Sys) are as follows. S = Σ (L is the identity function), and thus S is the
set of possible interpretations of the variables in V , i.e., S = 2V . The set of initial states S0
is the set of states s such that s |
 θ , i.e., S0 = {s |
 θ}, and M = ch × 2d × K × 22

cv
.

We have that R(s,m) = {s′ : (
s,m, s′) |
 ρ} and ∅ otherwise. Furthermore, we consider

all states in T (Sys) to be accepting. The number of states in the transition system T (Sys)
may be exponentially larger than the description of Sys. Notice that although M is doubly
exponential in cv the labels of transitions of T (Sys) are those obtained from T s

k for some
k. Thus, the number of distinct labels appearing on transitions of T (Sys) is bounded by
|S| · |ch| · 2|d| · |K |.

The system Sys satisfies ϕ iff all the computations of Sys satisfy ϕ, thus for every compu-
tation ρ ∈ Lω(T (Sys)) there exists a wordw ∈ Lω(Nϕ) such that ρ |
 w. Dually, Sys does
not satisfy ϕ iff for some computation ρ ∈ Lω(T (Sys)) and for some word w ∈ Lω(N¬ϕ)

we have ρ |
 w. This is equivalent to check Lω(T (Sys)) ∩ ⋃
w∈Lω(N¬ϕ) Lω(w) = ∅. Since

our formulas are in positive normal form,¬ϕ can be obtained from ϕ by ϕ. ByCorollary 2, we
have that N¬ϕ has 2O (|ϕ|) states and |N¬ϕ | is in 2O (|ϕ|). Note, however, that the words of N¬ϕ

are in (Σ ×O)ω while the computations of T (Sys) are in (Σ × M)ω. The model-checking
problem can be reduced to finding awordw accepted by A¬ϕ and a computation ρ ofT (Sys)
such that ρ |
 w. Recall that ρ |
 w if for every i ≥ 0 we have that σρ

i = σw
i and for every

O ∈ obs(ϕ)we havemρ
i |
 O iff O ∈ Ow

i . This amounts to check the nonemptiness problem
of a (modified) intersection of T (Sys) and N¬ϕ , where the transition (s,m, s′) of T (Sys)
can match transitions of N¬ϕ that read letters (s, O) for m |
 O. Note that for every m ∈ M
there is a unique O ∈ O such that m |
 O. Thus, we check letter by letter that the word w

accepted by N¬ϕ and the computation ρ produced by T (Sys) are such that ρ |
 w. Thus,
we only need to show that checkingm |
 O can be tested in space polynomial in |ϕ|. Indeed,
This follows from Proposition 2. Since all states in T (Sys) are accepting, the construction
of NT (Sys),¬ϕ is the product of T (Sys) with N¬ϕ with transitions composed as explained.
We have that NT (Sys),¬ϕ has 2O (|Sys|+|ϕ|) states. Hence, |NT (Sys),¬ϕ | is in 2O (|Sys|+|ϕ|) .
We have that NT (Sys),¬ϕ can be constructed on-the-fly and a membership in pspace with
respect to |Sys| and |ϕ|, follows from the membership in nlogspace of the nonemptiness
problem for NBW. Checking that Sys |
 ϕ is in O(|ϕ| + |Sys|).

The hardness follows from the same hardness results for discrete systems and ltl [53]. ��
The following proposition states that given a letter O ∈ O we can check whether there

exists a message m that satisfies O in np with respect to |obs(ϕ)|. Notice that, in particular,
|obs(ϕ)| should be larger than the number of variables in cv and d that appear in ϕ, the
number of agents in K that are mentioned in ϕ and the number of channels in ch appearing
in ϕ. Those that do not appear in ϕ can be removed from the message alphabet M .

Proposition 1 (Observation satisfiability) Consider a letter O ∈ O. Emptiness of O is
np- complete in |obs(ϕ)|.
Proof Given a letter O ∈ O let O⇑ be the set of observations in O and the negations of the
observationsnot appearing inO. That is,O⇑ = O∪{O | O ∈ obs(ϕ)\O}. LetO⇑

∧ = ∧
O∈O⇑ O

be the conjunction of all observations in O⇑. Clearly, the Emptiness of a letter O ∈ O is
equivalent to the satisfiability of O⇑

∧. Thus, we can restrict our attention to the satisfaction of
an observation. Given an observation O let atom(O) denote the set of subformulas of O of
the form •∃O ′ and ∀O ′.
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We show that satisfaction of O can be solved in NP as follows:

– select a subset S of atom(O);
– select an assignment to d, a channel ch and an agent k;
– for each •∃O ′ ∈ S guess one assignment to cv.

Verify that the choice of S, the assignment to d, the channel ch and the agent k satisfy O .
Notice, that the elements of atom(O) are treated as Boolean values in this check: O ′′ ∈ S
is evaluted as true and O ′′ /∈ S is evaluated as false. For each •∃O ′ ∈ S check that the
assignment to cv guessed for •∃O ′ fulfills two conditions:

– the assignment to cv together with the assignment to d, the channel ch and the agent k
satisfy O ′.

– For every •∀O ′′ ∈ S check that the assignment to cv together with the assignment to d,
the channel ch and the agent k satisfy O ′′.
Notice that the sum of sizes of the guessed elements is polynomal in the size of O and the

verification can be completed in polynomial time.
Hardness in np follows from the hardness of Boolean satisfiability. ��
The following proposition states that checking if amessagem ∈ M satisfies an observation

letter O ∈ O can be tested in pnp in |obs(ϕ)|. We consider the case that π is represented as
a Boolean formula over cv. This is reasonable as when considering a transition (s,m, s′),
where m = (ch,d, i, π), then π can be obtained as such a formula from gsi by using the
values in s, ch, and d.

Proposition 2 (Observation model-checking) Consider a letter O ∈ O and an observation
m ∈ M. Whether m |
 O can be tested in pnp in |obs(ϕ)|.
Proof As in the case of Proposition 1 give a letter O ∈ O we consider O⇑

∧. Thus, we restrict
our attention to the case of whether m satisfies an observation O .

Let m = (ch,d, i, π). We simplify O by converting every reference to ch, d or i to the
constants appearing in m. It follows that we are left with a Boolean combination of •∃· and
•∀· subformulas, where only variables from cv appear.

For a subformula •∃O ′ we can check whether m |
 •∃O ′ by checking whether π ∧ O ′ is
satisfiable. For a subformula •∀O ′ we can check whether m |
 •∀O ′ by checking whether
π → O ′ is valid. Both checks can be accomplished by an np oracle.

The problem is np-hard in |cv| as m |
 •∃true holds iff π is satisfiable. The problem
is co-np-hard in |cv| as m |
 •∀ f alse iff π is unsatisfiable. We do not know whether the
problem is pnp-complete. ��

We note that in the case thatm is represented as a set of assignments to cv, we can modify
the Boolean value problem [43] to show that m |
 O can be evaluated in logspace.

8 Related works

In this section, we present closely related works with respect to (i) traditional formal mod-
elling of Multi-Agent Systems; (ii) distributed and concurrent computation models; (iii)
knowledge and strategic formalisms; (iv) business process modelling; and (v) logics for
temporal reasoning.

Traditional formal modelling of MAS As mentioned before, formal modelling is highly
influenced by traditional formalisms used for verification, see [8,27]. These formalisms are,
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however, very abstract in that their models representations are very close to their mathe-
matical interpretations (i.e., the underlying transition systems). Although this may make it
easy to conduct some logical analysis [9,22,50] on models, it does imply that most of the
high-level MAS features may only be hard-coded, and thus leading to very detailed models
that may not be tractable or efficiently implementable. This concern has been already recog-
nised and thus more formalisms have been proposed, e.g., Interpreted Systems Programming
Language (ISPL) [42] and MOCHA [7] are proposed as implementation languages of Inter-
preted Systems (IS) [27] andReactiveModules (RM) [8] respectively. They are still either fully
synchronous or shared-memory based and thus do not support flexible coordination and/or
interaction interfaces. A recent attempt to add dynamicity in this sense has been adopted by
visibly CGS (vCGS) [14]: an extension of Concurrent-Game Structures (CGS) [9] to enable
agents to dynamically hide/reveal their internal states to selected agents. However, vCGS
relies on an assumption of [11] which requires that agents know the identities of each other.
This, however, only works for closed systems with a fixed number of agents.

Other attempts to add dynamicity and reconfiguration include dynamic I/O automata
[10], Dynamic reactive modules of Alur and Grosu [6], Dynamic reactive modules of Fisher
et al. [30], and open MAS [39]. However, their main interest was in supporting dynamic
creation of agents. Thus, the reconfiguration of communication was not their main interest.
While ReCiPe may be easily extended to support dynamic creation of agents, none of these
formalisms may easily be used to control the targets of communication and dissemination of
information.

Distributed and concurrent computation models. There are a plenty of formalisms that
were specifically designed to model concurrent computations and distributed systems, (cf.
π-calculus [48], Psi-calculus [18,21], AbC calculus [2,5], Channel Systems [12], etc). These
formalisms rely heavily on message-passing and synchronisation, and except for AbC and
the broadcast version of Psi-calculus [21] they mostly rely on point-to-point communication
mechanisms to establish interaction. Clearly, point-to-point communication is not appropriate
to model interaction in MAS settings, and a group-based communication is more appropriate
(See [2,5] for a detailed comparison).

Furthermore, these formalisms also differ in their degree of support to reconfiguration.
On one hand, Channel Systems cannot deal with reconfiguration and only support fixed
communication structures. On the other hand, while π and Psi-calculi can support 1-by-1
expansion of the scope of interaction, AbC supports a general group communication with
sophisticated scoping mechanisms. In ReCiPe, we extend these ideas to support awareness
capabilities, interaction beyond broadcast, and dynamic construction of groups and private
group coalitions. It is worth mentioning that although there is a separation result [25] stating
that point-to-point and broadcast communication are incomparable, we can still mimic point-
to-point communication in ReCiPe under closed world assumption. For instance, the team
formation protocol in Sect. 6 is such example where robots are recruited one-by-one with
a non-deterministic selection. This, of course, works because we assume a closed world
settings where no other agents may intervene and disturb such protocol. We conjecture that
if ReCiPe is extended with mechanisms to allow communicating secret messages, we would
be able to encode point-to-point in general.

Knowledge and Strategic formalisms. There is a rich literature on modelling and reasoning
about knowledge and strategic behaviour in multi-agent systems. They employ techniques
to study knowledge dissemination in distributed settings [54,56] and respectively analysing
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strategic behaviour [17,20] to study concepts like Nash equilibria, Pareto optimality and
evolutionary strategies.

Reasoning in these settings is known to be hard, and restrictions on the structure of the
systems and their communication mechanisms are imposed to mitigate such difficulty. For
instance, hierarchical environments [56] , broadcast environments [41], public actions [17],
public announcements [54] or gossip spread mechanisms [55]. Most of these approaches rely
on an assumption of perfect recall to guarantee the decidability of the verification problem,
i.e., all agents of the system are aware of all events that have happened so far. In fact, they
keep a complete record of all events they have observed so far and they base their judgement
on such complete record.

This assumption can be appropriate in specific distributed applications like Blockchains,
supply chains where there is a powerful infrastructure that mediates the interaction and
makes global information available to everyone easily. However, this is a strong assumption
to be made in general distributed settings. For instance, in applications where a group of
robots with limited resources communicate in ad-hocwireless networks. Also, in applications
where security is of concern and only specific agents are allowed to have access to a specific
information.

To the best of our knowledge, all proposed broadcast settings in the context of knowledge
and strategic reasoning imply more than a broadcast in actual communication. That is, in
broadcast environments [41] and public actions [17] the communication is totally determinis-
tic and all agents have access to all events that have happened so far and their respective order.
This, of course, simplifies the verification problem because it removes all possible sources
of information forks (the source of undecidability for some verification tasks). That is, an
agent who is not targeted by the communication still knows the events that have happened.
In normal broadcast like in ReCiPe, non-targeted agents are unaware of the communication
and cannot have access to communications that they did not participate in. In fact, using
a perfect recall gives the power to agents to even count how many communication steps
have happened so far. This is, clearly, unreasonable in distributed settings because one agent
might participate for a finite time in the communication protocol and stays idle most of the
time. Allowing agents to have access to that much of information does not come without a
cost, it requires memory and, although decidable, it is not surprising that the complexity of
verification in such settings is very high.

Other than the fact that all of the mentioned approaches rely on flat or static communica-
tion structure, the main difference with respect to our way of dissemination of information in
ReCiPe is due to the fact that we are handling a different problem, i.e., a coordination prob-
lem. In fact, a coordination problem is a subproblem of general knowledge dissemination.
The classic examples of the latter assume a very powerful communication infrastructure and
usually ask whether a group of uninformed agents can become totally informed about the
state of the whole system after a number of communication rounds. In that settings, an event
is made publicly accessible to all agents after being executed, and thus each agent is able to
keep track of the state of the system during execution. Although that agent may not know
the exact exchange of information, it can still make deductions based on the history of com-
munications. The logic of gossiping [55] gives an excellent characterisation of the different
cases of communications in point-to-point settings. From our perspective, we consider the
asynchronous case to be the more representative case to coordination in distributed settings
as agents only observe the communication they participate in. In a coordination problem, the
objective is different as agents can be arbitrarily informed about the state of the system. Some
agents might be totally uninformed and stay so because they do not interact with the rest of
the systems while other agents might need to know some more information at some point
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during execution and then forget about it later. Thus, we believe that in a dynamic and recon-
figurable communication structure a perfect recall is not required, given that communication
can be introduced on need-basis to resolve information forks.

Business processmodelling Some approaches from the realm of busniess process modelling
such as Artifact-centric systems [16] have some similarities with respect to ReCiPe. An
artifact system consists of twomain components: datawhichmodels the local state alongside
the view of the agent on the environment; and lifecyclewhich models the behaviour of agents
working on the data. Artifact-centric systems define agents’ local states as evolving database
instances and can be considered as a specialisation of interpreted systemswere local states are
structured in form of databases. Agents interact among themselves and with an environment
comprising all artifacts in the system. That is, all local states of agents are considered as
partial views of a holistic environment database. Thus, the environment can be represented
as a special agent holding the combined knowledge of all agents in the system. There are
two main differences with respect to ReCiPe: (1) there is no notion of reconfiguration of
interaction interfaces in artifact systems and all agents have to participate in every interaction
even to just stay idle; (2) considering the environment as a special agent composed with the
rest of the system restricts its capabilities. That is, the environment can no longer be able to
simultaneously trigger multiple events with respect to different agents local views. In other
words, this restriction reduces the power of the environment and forces it to interleave and
alternate behaviour with respect to other agents. In ReCiPe, the environment can be more
powerful because some local variables of agents may abstract incomparable local views of
the environment. Changes in the assignments to these variables cannot be restricted, and thus
the environment can change them simultaneously resulting in triggering multiple events for
the different agents which have to coordinate their executions.

Logics for temporal reasoning As for logics we differ from traditional languages like ltl
and ctl in that our formula may refer to messages and their constraints. This is, however,
different from the atomic labels of pdl [29] and modal μ-calculus [40] in that ltol mounts
complex and structured observations on which designers may predicate on. Thus the inter-
pretation of a formula includes information about the causes of variable assignments and the
interaction protocols among agents. Such extra information may prove useful in developing
compositional verification techniques.

9 Concluding remarks

We introduced a formalism that combines message-passing and shared-memory to facilitate
realistic modelling of distributed multi agent systems. A system is defined as a set of dis-
tributed agents that execute concurrently and only interact by message-passing. Each agent
controls its local behaviour as in Reactive Modules [8,30] while interacting externally by
message passing as in π -calculus-like formalisms [2,5,48]. Thus, we decouple the individual
behaviour of an agent from its external interactions to facilitate reasoning about either one
separately. We also make it easy to model interaction features of MAS, that may only be
tediously hard-coded in existing formalisms.

We introduced an extension to ltl, named ltol, that characterises messages and their
targets. This way we may not only be able to reason about the intentions of agents in commu-
nication, but also we may explicitly specify their interaction protocols. Finally, we provided
a novel automata construction that permits satisfiability and model-checking in space poly-
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nomial with respect to the size of the formula and the size of the system. This is a major
improvement on the early results in [1] that were in expspace with respect to the number of
common variables and pspace-complete with respect to the rest of the input.

Future works We plan to provide tool support for ReCiPe, but with a more user-friendly
syntax.Wewould like to provide a light-weight programming-language-like syntax to further
simplify modelling.

We want to exploit the interaction mechanisms in ReCiPe and the extra information in
ltol formulas to conduct verification compositionally.Asmentioned,we believe that relating
to sender intentions will facilitate that.

We intend to study the relation with respect to temporal epistemic logic [35]. Although
we do not provide explicit knowledge operators, the combination of data exchange, receivers
selection, and enabling/disabling of synchronisation based on the evolving states of the dif-
ferent agents, allow them to dynamically deduce information about each other. Furthermore
we want to study ReCiPe under dynamic creation of agents while reconfiguring communi-
cation. Thanks to the new compositional semantics in terms of CTS, the dynamic creation
of agents can now be easily linked to the execution of some blocking transitions. To give an
intuition about a (possible) extension consider the following semantic rule:

A1
(υ,?,c)−−−−→ A′

1‖A1 (2)

Here, we use A
m−→ A′ to denote that in state s agent A may receive a message m and

evolves to A′ with state s′, i.e., (s,m, s′) ∈ RA. Clearly, the semantic rule 2 indicates that the
agent replicates itself once a multicast message on c is received as a side-effect of interaction.

Thus, if we compose A1 with some other agent, say A2, such that A2
(υ,!,c)−−−→ A′

2, the following
transition is derivable by the semantics of parallel composition in Definition 3:

if A1
(υ,?,c)−−−−→ A′

1‖A1 and A2
(υ,!,c)−−−→ A′

2

A1‖A2
(υ,!,c)−−−→ A′

1‖A1‖A2

(3)

Namely, a new replica of A1 is dynamically created when agents exchanged a specific
message. Agent A1 can be thought of as a server that spawn a new thread to handle concurrent
requests from clients.

Finally, we want to target the distributed synthesis problem [28]. Several fragments of the
problem have been proven to be decidable, e.g., when the information of agents is arranged
hierarchically [19], the number of agents is limited [34], or the actions are made public [15].
We conjecture that the ability to disseminate information and reason about it might prove
useful in this setting.
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A Proofs for Section 4 (Channelled Transition Systems)

Lemma 1 (Commutativity and Associativity) Given two CTS T1 and T2 we have that:

– ‖ is commutative: T1‖T2 = T2‖T1;
– ‖ is associative: (T1‖T2)‖T3 = T1‖(T2‖T3).

Note that Lemma 1 is crucial to ensure that our parallel compostion operator is a commutative
monoid, as otherwise it would not represent the right behaviour of interacting programs.

Proof We prove each statement separately. In both statement, the proof proceeds by case
analysis on the joint transition.

(‖ is commutative): we consider all possible joint transitions from T1‖T2 and we show
that they have corresponding transitions in T2‖T1 and vice versa. We only show one
direction and the other direction follows in a similar way.

– Case (υ, !, c): By Definition 3, we have that ((s1, s2), (υ, !, c) , (s′
1, s

′
2)) ∈ R12 (R12

is the transition relation of T1‖T2) in the following cases:
1. (s1, (υ, !, c) , s′

1) ∈ R1 and (s2, (υ, ?, c) , s′
2) ∈ R2: It follows that ((s2, s1),

(υ, !, c) , (s′
2, s

′
1)) ∈ R21 (R21 is the relation of T2‖T1) is derivable because

(s2, (υ, ?, c) , s′
2) ∈ R2 and (s1, (υ, !, c) , s′

1) ∈ R1;

2. (s1, (υ, !, c) , s′
1) ∈ R1 and c /∈ ls2(s2) and (s2 = s′

2): It follows that

((s2, s1), (υ, !, c) , (s′
2, s

′
1)) ∈ R21 is derivable because c /∈ ls2(s2) and

(s2 = s′
2) and (s1, (υ, !, c) , s′

1) ∈ R1;
3. (s1, (υ, !, �) , s′

1) ∈ R1 and (s2 = s′
2) and ∀s′′

2 .(s2, (υ, ?, c) , s′′
2 ) /∈ R2: It fol-

lows that ((s2, s1), (υ, !, �) , (s′
2, s

′
1)) ∈ R21 is derivable because (s2 = s′

2) and∀s′′
2 .(s2, (υ, ?, c) , s′

2) /∈ R2 and (s1, (υ, !, c) , s′
1) ∈ R1;

4. (s2, (υ, !, c) , s′
2) ∈ R2 and (s1, (υ, ?, c) , s′

1) ∈ R1: This is the symmetric case
of case (1);

5. (s2, (υ, !, c) , s′
2) ∈ R2 and c /∈ ls1(s1) and (s1 = s′

1): This is the symmetric
case of case (2);

6. (s2, (υ, !, �) , s′
2) ∈ R2 and (s1 = s′

1) and ∀s′′
1 .(s1, (υ, ?, c) , s′′

1 ) /∈ R1: This is
the symmetric case of case (3).

– Case (υ, ?, c): By Definition 3, we have that ((s1, s2), (υ, ?, c) , (s′
1, s

′
2)) ∈ R12 in

the following cases:
1. (s1, (υ, ?, c) , s′

1) ∈ R1 and (s2, (υ, ?, c) , s′
2) ∈ R2: It follows that ((s2, s1),

(υ, ?, c) , (s′
2, s

′
1)) ∈ R21 is derivable for the same reason;

2. (s1, (υ, ?, c) , s′
1) ∈ R1 and c /∈ ls2(s2) and (s2 = s′

2): It follows that

((s2, s1), (υ, ?, c) , (s′
2, s

′
1)) ∈ R21 is derivable because c /∈ ls2(s2) and

(s2 = s′
2) and (s1, (υ, ?, c) , s′

1) ∈ R1;

3. (s2, (υ, ?, c) , s′
2) ∈ R2 and c /∈ ls1(s1) and (s1 = s′

1): This is the symmetric
case of case (2);

4. (s1, (υ, ?, �) , s′
1) ∈ R1 and (s2 = s′

2) and ∀s′′
2 .(s2, (υ, ?, c) , s′′

2 ) /∈ R2: It fol-
lows that ((s2, s1), (υ, ?, �) , (s′

2, s
′
1)) ∈ R21 is derivable because (s2 = s′

2) and∀s′′
2 .(s2, (υ, ?, c) , s′′

2 ) /∈ R2 and (s1, (υ, ?, c) , s′
1) ∈ R1;

5. (s2, (υ, ?, �) , s′
2) ∈ R2 and (s1 = s′

1) and ∀s′′
1 .(s1, (υ, ?, c) , s′′

1 ) /∈ R1: This is
the symmetric case of case (3).

(‖ is associative): we consider all possible joint transitions from (T1‖T2)‖T3 and we
show that they have corresponding transitions in T1‖(T2‖T3) and vice versa. We only
show one direction and the other direction follows in a similar way.

123



47 Page 32 of 36 Autonomous Agents and Multi-Agent Systems (2021) 35 :47

– Case (υ, !, c): By Definition 3, we have (((s1, s2), s3), (υ, !, c) , ((s′
1, s

′
2), s

′
3)) ∈

R(12)3 in the following cases:
1. ((s1, s2), (υ, !, c) , (s′

1, s
′
2)) ∈ R12 and (s3, (υ, ?, c) , s′

3) ∈ R3: As before, there
are six cases for ((s1, s2), (υ, !, c) , (s′

1, s
′
2)) ∈ R12, we only consider the case

((s1, (υ, !, c) , s′
1) ∈ R1 and (s2, (υ, ?, c) , s′

2) ∈ R2); and other cases follow
similarly. It follows that ((s1, (s2, s3)), (υ, !, c) , (s′

1, (s
′
2, s

′
3)) ∈ R1(23) where

(s1, (υ, !, c) , s′
1) ∈ R1 and

((s2, s3), (υ, ?, c) , (s′
2, s

′
3)) ∈ R23 such that (s2, (υ, ?, c) , s′

2) ∈ R2 and
(s3, (υ, ?, c) , s′

3) ∈ R3 as required;

2. ((s1, s2), (υ, !, c) , (s′
1, s

′
2)) ∈ R12 and c /∈ ls3(s3) and (s3 = s′

3): It follows that
((s1, (s2, s3)), (υ, !, c) , (s′

1, (s
′
2, s

′
3)) ∈ R1(23) where (s1, (υ, !, c) , s′

1) ∈ R1

and ((s2, s3), (υ, ?, c) , (s′
2, s

′
3)) ∈ R23 such that (s2, (υ, ?, c) , s′

2) ∈ R2 and

c /∈ ls3(s3) and (s3 = s′
3);

3. ((s1, s2), (υ, !, �) , (s′
1, s

′
2)) ∈ R12 and (s3 = s′

3) and ∀s′′
3 .(s3, (υ, ?, �) ,

s′
3) /∈ R3: It follows that ((s1, (s2, s3)), (υ, !, �) , (s′

1, (s
′
2, s

′
3)) ∈ R1(23) where

(s1, (υ, !, �) , s′
1) ∈ R1 and ((s2, s3), (υ, ?, �) , (s′

2, s
′
3)) ∈ R23 such that

(s2, (υ, ?, �) , s′
2) ∈ R2 and (s3 = s′

3) and ∀s′′
3 .(s3, (υ, ?, �) , s′

3) /∈ R3;
4. ((s1, s2), (υ, ?, c) , (s′

1, s
′
2)) ∈ R12 and (s3, (υ, !, c) , s′

3) ∈ R3: This is the sym-
metric case of case (1);

5. (s3, (υ, !, c) , s′
3) ∈ R3 and c /∈ ls12(s1, s2) and ((s1, s2) = (s′

1, s
′
2)): This is the

symmetric case of case (2);
6. (s3, (υ, !, �) , s′

3) ∈ R3 and (s1, s2) = (s′
1, s

′
2) and ∀(s′′

1 , s′′
2 ).

((s1, s2), (υ, ?, c) , (s′′
1 , s′′

2 )) /∈ R1: This is symmetric to case (3).
– Case (υ, ?, c): it follows similarly by case analysis on Definition 3.

��
Lemma 2 (Non-blocking Broadcast) Given a CTS T1 and for every other CTS T , we have
that for every reachable state (s1, s) of T1‖T the following holds.

(s1, (υ, !, �), s′
1) ∈ R1 implies ((s1, s), (υ, !, �), (s′

1, s
′)) ∈ RT1‖T

Proof By Definition 3, we have only two cases to derive ((s1, s), (υ, !, �), (s′
1, s

′)) ∈ RT1‖T
given that (s1, (υ, !, �), s′

1) ∈ R1. Note that, by definition, the condition � ∈ lsk(s) always
holds for any agent k and in any state s. We show that when the channel is a broadcast �, the
receiver does not play any role in enabling the transmission on the channel. In other words,
it is only sufficient to have a sender to enable a broadcast at system level. More precisely, if
(s1, (υ, !, �), s′

1) ∈ R1 then we have the following:

– ((s1, s), (υ, !, �), (s′
1, s

′)) ∈ RT1‖T because (s, (υ, ?, �), s′) ∈ R; or
– ((s1, s), (υ, !, �), (s′

1, s
′)) ∈ RT1‖T because (s = s′) and ∀s′′.(s, (υ, ?, �) , s′) /∈ R3.

Namely, whether there exists a receiver or not, a broadcast can always happen (cannot be
blocked). ��
Lemma 3 (Blocking Multicast) Given a CTS T1 and a multicast channel c ∈ C\{�} such
that (s1, (υ, !, c), s′

1) ∈ R1, then for every other CTST we have that in every reachable state
(s1, s) of T1‖T the following holds.

((s1, s), (υ, !, c), (s′
1, s

′)) ∈ RT1‖T iff(
c ∈ ls(s) and (s, (υ, ?, c), s′) ∈ R
or c /∈ ls(s)

)
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Proof We show that it is not sufficient to only have a sender on a multicast channel c to
enable a send transition at system level. We require that all listening/connected agents to that
channel being able to jointly receive the transmitted message. This also implies that if no
one is listening then the transition can happen. By Definition 3, there exist only two cases
where ((s1, s), (υ, !, c), (s′

1, s
′)) ∈ RT1‖T given that (s1, (υ, !, c), s′

1) ∈ R1. More precisely,
if (s1, (υ, !, c), s′

1) ∈ R1 then we have the following:

– ((s1, s), (υ, !, c), (s′
1, s

′)) ∈ RT1‖T because (s, (υ, ?, c), s′) ∈ R. This implies that
c ∈ ls(s); or

– ((s1, s), (υ, !, c), (s′
1, s

′)) ∈ RT1‖T because (s = s′) and c /∈ ls(s).

Namely, either all receivers jointly participate or no one is listening, as otherwise themulticast
on c is blocked. The other direction of the proof follows similarly. ��
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