
Modelling and Verification
of

Timed Interaction and Migration

Gabriel Ciobanu1 and Maciej Koutny2

1 Faculty of Computer Science
A.I.Cuza University of Iasi

700483 Iasi, Romania
gabriel@info.uaic.ro

2 School of Computing Science
Newcastle University

Newcastle upon Tyne, NE1 7RU, United Kingdom
maciej.koutny@newcastle.ac.uk

Abstract. We present a process algebra where timeouts of interactions
and adaptable migrations in a distributed environment with explicit loca-
tions can be defined. Timing constraints allow to control the interaction
(communication) between co-located mobile processes, and a migration
action with variable destination supports flexible movement from one
location to another. We define an operational semantics, and outline a
structural translation of the proposed process algebra into operationally
equivalent finite high level timed Petri nets. The purpose of such a trans-
lation is twofold. First, it yields a formal semantics for timed interaction
and migration which is both compositional and allows to deal directly
with concurrency and causality. Second, it should facilitate the use of
simulation and verification tools developed within the area of Petri nets.

Keywords: mobility, timers, process algebra, high-level Petri nets, com-
positional translation, behavioural consistency.

1 Introduction

The increasing complexity of mobile applications means that the need for their
effective analysis and verification is becoming critical. Our aim here is to explore
formal modelling of mobile distributed systems where one can also specify time-
related aspects of migrating processes. To this end, we first introduce the TiMo
(Timed Mobility) model which is a simple process algebra for mobile systems
where, in addition to process mobility and interaction, it is possible to add timers
to the basic actions. Processes are equipped with input and output capabilities
which are active up to pre-defined time deadline and, if not taken, another con-
tinuation for the process behaviour is chosen. Another timing constraint allows
to specify the earliest and latest time for moving a process from one location
to another. We provide the syntax and operational semantics of TiMo which is

J. Fiadeiro and P. Inverardi (Eds.): FASE 2008, LNCS 4961, pp. 215–229, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

216 G. Ciobanu and M. Koutny

a discrete time semantics incorporating maximally concurrent executions of the
basic actions.

The time model defined for TiMo is similar to that considered in the theory
of compositional timed Petri nets [21]. Therefore, in the second part of the paper
we outline a structural translation of process algebra terms into behaviourally
equivalent finite high-level timed Petri nets, similar to those considered in [12].

Such a dual development yields a formal semantics for explicit mobility and
time which is compositional, and at the same time, allows one to deal directly
with concurrency and causality which can easily be captured in the Petri net
domain. The Petri net representation should also be useful for automatically
verifying behavioural properties using suitable model-checking techniques and
tools.

To introduce the basic concepts of TiMo, we use the simple e-shops running
example (SES). In this scenario, we have a client process which initially resides
in the home location, and wants to find an address of an e-shop where different
kinds of electronic items (e-items) can be purchased. To find out the address of a
suitable e-shop, the client waits for a couple of time units and then, within 5 time
units, moves to the location info in order to acquire the relevant address. After
7 time units the e-item loses its importance and the client is no longer interested
in acquiring it. The location info contains a broker who knows all about the
availability of the e-shops stocking the desired e-item. In the first 5 time units
the right e-shop is the one at the location shopA, and after that for 7 time units
that at location shopB. It is important to point out that we assume that any
interaction between processes can only happen within the same location, and so
it is necessary for the client to move to the broker location in order to find out
about the i-item. The timers can define a coordination in time and space of the
client, and take care of the relative time of interaction of the processes residing
at the same location.

The paper is structured in the following way. We first describe the syntax and
semantics of TiMo. After that we outline the net algebra used in the translation
from TiMo expressions to Petri nets, and then describe the translation itself.
We also explain the nature of behavioural equivalence of the resulting Petri net
model and the original expression.

We assume that the reader is familiar with the basic concepts of process
algebras [19], high-level Petri nets [9,17], and timed Petri nets [22].

2 A Calculus for Timed Mobility

We start by giving the syntax and semantics of TiMo which uses timing con-
straints allowing, for example, to specify what is the time window for a mobile
process to move to another location. In TiMo, waiting for a communication on
a channel or a movement to new location is no longer indefinite. If an action
does not happen before a predefined deadline, the waiting process switches its
operation to an alternate mode. This approach leads to a method of sharing of
the channels over time. A timer (such as Δ7) of an output action aΔ7 ! makes it

Modelling and Verification of Timed Interaction and Migration 217

available for communication only for the period of 7 time units. We use timers
for both input and output actions. The reason for having the latter stems from
the fact that in a distributed system there are both multiple clients and multiple
servers, and so clients may decide to switch from one server to another depending
on the waiting time.

2.1 Syntax

We assume that Chan is a set of channels, Loc is a set of locations, V ar is a set
of location variables, and Ident is a finite set of process identifiers (each identifier
I ∈ Ident has a fixed arity mI ≥ 0). The syntax of TiMo is given below:

P, Q ::= aΔt ! 〈v〉 thenP else Q �

aΔt ? (u) thenP else Q �

gotΔt′
v thenP else Q �

0 � I(v1, . . . , vmI) �

P | Q � #P (processes)

M, N ::= l[[P]] � M | N (networks of located processes)

In the above description, it is assumed that:

– a ∈ Chan is a channel,
– t, t′ ∈ N are integers (t ≤ t′),
– v, v1, . . . , vmI ∈ Loc ∪ V ar are locations and/or location variables,
– l ∈ Loc is a location, and u is a variable.

Moreover, for each process identifier I ∈ Ident, there is a unique definition of
the form

I(u1, . . . , umI) = PI , (1)

where ui �= uj (for i �= j) are variables acting here as parameters. Given a
network of located processes of the form

. . . l[[. . . | P | . . .]] . . .

we call P a top-level expression if it does not contain any occurrences of the
special symbol #. To improve readability, we will often denote expressions like
α then0 else 0 and α thenP else 0 by α and α .P , respectively.

Note that since we allow v in the gotΔt′
v thenP else Q construct to be a

variable and so its value is assigned dynamically though communication with
other processes, migration actions support a flexible scheme for movement of
processes from one location to another.

Process aΔt ! 〈v〉 thenP else Q attempts to send the location given by v
over the channel a for t time units. If this happens, then it continues as pro-
cess P , and otherwise it continues as the alternate process Q. Similarly, process
aΔt ? (u) thenP else Q attempts for t time units to input a location and sub-
stitute it for the variable u within its body.

218 G. Ciobanu and M. Koutny

Table 1. Rules of the structural equivalence

(Eq1) M | N ≡ N | M

(Eq2) (M | N) | N ′ ≡ M | (N | N ′)

(Eq3) l[[P]] ≡ l[[P |0]]

(Eq4) l[[I(l1, . . . , lIA)]] ≡ l[[{l1/u1, . . . , lmI /umI }PI]]

(Eq5) l[[P |Q]] ≡ l[[P]] | l[[Q]]

Mobility is implemented using processes like gotΔt′
u thenP else Q . It first

waits for t time units doing nothing and after that it can move within t′ − t time
units to the location u and behave as process P . If the move is not carried out
in the allowed time window, the process continues as Q at its current location.

Processes are further constructed from the (terminated) process 0 and parallel
composition (P |Q). A located process l[[P]] is a process running at location l.
Finally, process expressions of the form #P represent a purely technical notation
which is used in our formalisation of structural operational semantics of TiMo;
intuitively, it specifies a process P which is temporarily blocked and so cannot
execute any action.

The construct aΔt ? (u) thenP else Q binds the location variable u within
P (but not within Q), and fv(P) are the free variables of a process P (and
similarly for networks of located processes). Processes are defined up to the
alpha-conversion, and {l/u, . . .}P is obtained from P by replacing all free occur-
rences of u by l, etc, possibly after alpha-converting P in order to avoid clashes.
For a process definition as in (1), we assume that fv (PI) ⊆ {u1, . . . , umI} and
so the free variables of PI are parameter bound.

A network of located processes is well-formed if no variable used in both
the network definition and process identifier definitions (1) is both free and
bound, no variable ever generates more than one binding, there are no free
variables in the network, and there are no occurrences of the special blocking
symbol #.

The specification of the running example which captures the essential features
of the scenario described in the introduction can then be written down in the
following way:

SES = home[[Client]] | info[[Broker]]

where

Client = go2Δ5 info . (aΔ2 ? (shop) thengo0Δ0 shop else go0Δ0 home)

Broker = aΔ5 ! 〈shopA〉 then0 else aΔ7 ! 〈shopB〉

Modelling and Verification of Timed Interaction and Migration 219

Table 2. Rules of the operational semantics, where β �= √

(Move) k[[go0Δt l thenP else Q]]
k:l

−−−−−→ l[[#P]]

(Wait) k[[go0Δt l thenP else Q]]
τ

−−−−−→ k[[#go0Δt l thenP else Q]]

(Com) k[[aΔt ! 〈l〉 thenP else Q | aΔt′
? (u) thenP ′ else Q′]]

k:a(l)
−−−−−→

l[[#P | #{l/u}P ′]]

(Par)
N

β
−−−−−→ N ′

N | M
β

−−−−−→ N ′ | M

(Struc)
N ≡ N ′ N

β
−−−−−→ M M ≡ M ′

N ′ β

−−−−−→ M ′

(Time)
N �→

N

√

−−−−−→ φ(N)

2.2 Operational Semantics

The first component of the operational semantics of TiMo is the structural
equivalence ≡ on networks, similar to that used in [7]. It is the smallest con-
gruence such that the equalities in Table 1 hold (note that {l1/u1, . . . , lmI /umI}
there denotes simultaneous substitution).

The action rules of the operational semantics are given in Table 2. They are
based on the structural equivalence defined in Table 1 and two kinds of transition
rules:

M
β

−−−−−→ N and M

√
−−−−−→ N

where the former is recording an execution of an action β, and the latter is a
time step. The action β can be k : l or k : a(l) or τ , where k is the location
where the action is executed and l is either the location a process has moved to,
or the location name communicated between two processes over the channel a.
Moreover, τ indicates that a process which could have moved to another location
decided to wait in the same location for another time unit.

220 G. Ciobanu and M. Koutny

In the rule (Time), N �→ denotes the fact that no other rule in Table 2 can be
applied. Moreover, φ(N) is obtained from N in the following consecutive stages:

– Each top-level expression I(l1, . . . , lIA) is replaced by the corresponding def-
inition {l1/u1, . . . , lmI /umI }PI .

– Each top-level expression of the form

aΔ0... thenP else Q or go0Δ0... thenP else Q

is replaced by #Q.
– Each top-level expression of the form aΔt ! 〈l〉 thenP else Q is replaced by

aΔ(t−1) ! 〈l〉 thenP else Q .
– Each top-level expressions of the form aΔt ? (u) thenP else Q is replaced

by aΔ(t−1) ? (u) thenP else Q .
– Each top-level expression of the form gotΔt′

thenP else Q is replaced by
got′′Δ(t′−1) thenP else Q where t′′ = max{0, t − 1}.

– All occurrences of the special symbol # are deleted.

Note that φ(N) is a well-formed network of located processes provided that we
started from a well-formed network in the first place (see below). For the running
example, a possible execution corresponding is given in Table 3.

The way networks of located processes evolve can be regarded as conforming
to the maximally concurrent paradigm. If we start with a well-formed network,
execution proceeds through alternating executions of time steps and contiguous
sequences of actions making up what can be regarded as a maximally concurrent

Table 3. An execution for the running example

SES

√

−−−−−→
√

−−−−−→
home:info

−−−−−→

info[[#P | aΔ3 ! 〈shopA〉 then 0 else aΔ7 ! 〈shopB〉]]
√

−−−−−→

info[[P | aΔ2 ! 〈shopA〉 then 0 else aΔ7 ! 〈shopB〉]]
info:a(shopA)

−−−−−→

info[[#go0Δ0 shopA | #0]]
√

−−−−−→

info[[go0Δ0 shopA | 0]]
info:shopA

−−−−−→

shopA[[#0]] | info[[0]]
√

−−−−−→

shopA[[0]] | info[[0]]

where P = aΔ2 ? (shop) then go0Δ0 shop else go0Δ0 home

Modelling and Verification of Timed Interaction and Migration 221

step (note the role of the special blocking symbols #). Now, if N is a well-formed
networks and we have

N
β1

−−−−−→ · · ·
βk

−−−−−→
√

−−−−−→ M

then M is also a well-formed network. Moreover, we write N
Γ

−−−−−→ M , where Γ
is the multiset comprising all βi’s different from τ , and call M directly reachable
from N . In other words, we capture the cumulative effect of execution.

Then the labelled transition system ts(N) of a well-formed network of located
processes N has as its states all well-formed networks directly and indirectly
reachable from N together with all possible arcs labelled by the multisets of
observed actions. The initial state is itself the network N .

We can define a barbed (observation) predicate N ↓l for networks of located
processes expressing that N has as component a (non-zero) process located at l.
For timed mobile ambients we have defined a barbed predicate ↓n@k and a global
predicate ↓n in [2]. However here we have only locations, and so we cannot define
a global predicate. Also, the definition of N ↓l is rather trivial; it only describes
something which can be immediately seen from the description of N .

3 An Algebra of Nets

We now outline an algebra of high-level timed Petri nets which we will then use
to render TiMo networks of located processes. We focus on nets modelling finite
networks, as this translation still includes all the essential novel features, and the
case of networks involving process identifiers (more precisely, recursive process
identifiers, as any non-recursive network specification can be transformed so
that no process identifier is used) can be treated similarly as in [12]. The current
development, resulting in tm-nets, has been inspired by the box algebra [5,6,13]
and timed box algebra [21].

We use coloured tokens and read-arcs allowing any number of transitions to
simultaneously check for the presence of a resource stored in a place [9]. The
latter feature is crucial as we aim at defining a step semantics for tm-nets based
on their maximally concurrent executions.

There are two kinds of places in tm-nets:

– Control flow places
These model control flow and are labelled by their status symbols: (i) the
internal places by i; (ii) the entry places by e; and (iii) the exit places by x
and x′. The status of a control flow place is used to specify its initial marking
and to determine its role in the net composition operations describe later
on. The tokens carried by control flow places are of the form l:t where l is
the current location of the thread represented by the token, and t is the age
of the token.

– Location places
Each such place is labelled by a location (or location variable) and is used as
a store for process locations which can then be accessed by process threads.

222 G. Ciobanu and M. Koutny

There are two kinds of arcs used in tm-nets, the standard directed arcs and
read arcs used for token testing, which can be labelled by one of the following an-
notations: L:T , L:T ′, L′, L:0, L′:0, where L, L′ are (Petri net) location variables
and T, T ′ are time variables.

An (unmarked) tm-net is a triple Σ = (Sflow Sloc, T r, ι), where: Sflow and
Sloc are finite disjoint sets of, respectively, control-flow and location places ; Tr is
a finite set of transitions disjoint from Sflow and Sloc; ι is an annotation function
defined for the places, transitions, and arcs between places and transitions. The
arcs may be either directed (transferring tokens) or undirected (checking for the
presence of tokens). We assume that:

– For every s in Sflow, ι(s) ∈ {e, i, x, x′} is a label giving the status of the
place, determining its role during the application of composition operators.
In what follows, ◦Σ is the set of all entry places of Σ (forming its entry
interface).

– For every s in Sloc, ι(s) is a location or location variable. At most one location
place with a given label is allowed to be present in Σ.

– For every tr in Tr, ι(tr) is a pair (λ(tr), γ(tr)) where λ(tr) is its label (a
term with variables representing what is visible from the outside when the
transition fires) and γ(tr) is a guard (giving a timing constraint for the
executability of the transition).

– For every arc a, either undirected (a = {s, tr}) or directed from a place to
a transition (a = (s, tr)) or from a transition to a place (a = (tr, s)), ι(a) is
an annotation which is a set of terms with variables.1

As usual, if V are the variables occurring in the annotation of a transition tr
and on the arcs adjacent to tr, we shall denote by � a binding assigning to each
variable in V a value in its domain. We shall only consider legal bindings, i.e.,
such that for each arc a between t and s, if � ∈ ι(a), the evaluation of � under
the binding � (denoted �(�)) delivers a value allowed in s. The observed label of
a transition fired under binding � is �(λ(tr)).

A marking M of a tm-net Σ is a function assigning to each place s a multiset
of tokens.2 Below we use ⊕ and � to denote respectively multiset sum and
difference. Moreover, if M and M′ are multisets over the same set of elements
Z then M ≥ M′ means that M(z) ≥ M′(z), for all z ∈ Z.

In what follows, a marked tm-net is a pair (Σ, M) where Σ is a tm-net and
M is its initial marking.

3.1 Firing Rule for tm-Nets

Let M be a marking of a tm-net Σ. As usual for Petri nets, we first need to say
what it means for a transition of Σ to be enabled at the marking M.

1 In the nets resulting from the translation, all such sets are either empty or singletons.
2 Even though all the markings in the nets resulting from translation have at most

one token on any place at all times, it is easier to treat them as multisets.

Modelling and Verification of Timed Interaction and Migration 223

Given a transition tr of Σ and a binding � for tr, we denote by M�
tr,in and

M�
tr,out two markings of Σ defined in such a way that, for every place s,

M�
tr,in(s) =

⊕

�∈ι((s,tr))

{�(�)} and M�
tr,out(s) =

⊕

�∈ι((tr,s))

{�(�)} .

Intuitively, M�
tr,in represents all the tokens which are consumed by the firing of

tr under the binding �, and M�
tr,out represents all the tokens which are produced

by the firing of tr under the same binding.
A transition tr is enabled under the binding � at marking M if the following

are satisfied:

– �(γ(tr)) evaluates to true,
– for every place s, M(s) ≥ M�

tr,in(s),
– for every place s and every � ∈ ι({s, tr}), �(�) ∈ M(s).

An enabled transition tr may then be fired, which transforms M into a new
marking M′ in such a way that, for each place s:

M′(s) = M(s) � M�
tr,in(s) ⊕ M�

tr,out(s) .

This is denoted by (Σ, M)
�(λ(tr))
−−−−−→ (Σ, M′). Actions of this type will be used in

the generation of the labelled transition system generated by a tm-net executed
from its initial marking.

To define the desired labelled transition system, we still need to incorporate
two aspects: maximally concurrent execution of actions, and the timing aspects.
The first one is captured using the step semantics of Petri nets. More precisely,
a computational step of (Σ, M) is derived in the following way:

– We select a set of transitions U such that they form a valid step of transitions
in the usual Petri net sense (i.e., each transition can be fired in isolation, and
there are enough resources for all of them to be executed simultaneously).
Moreover, none of the transitions is labelled by τ , and one cannot extend U
by adding a transition labelled by L:a(L′) and still have a valid step for the
marking M. The firing of U results in an intermediate marking M′′.

– We change M′′ by replacing each token of the form l:t by l:(t + 1) which
gives a new marking M′′′.

– We take the set U ′ of all enabled τ -labelled transitions (in the tm-nets re-
sulting from the translation described below, U ′ is always a valid step). The
firing of U ′ results in a marking M′.

We then denote (Σ, M)
Γ

−−−−−→ (Σ, M′) where Γ is the multiset comprising all
the labels generated by the transitions in U .

Note that the above definition treats some transitions as urgent, and the other
as non-urgent to reflect the fact that in the process algebra some of the actions
can be postponed while the others cannot.

We then can form the transition system ts(Σ, M) of a tm-net (Σ, M) in the
usual way, using the Γ -labelled executions based on the last definition.

224 G. Ciobanu and M. Koutny

3.2 Composing tm-Nets

Among the various operations which can be defined for the tm-nets, two are
needed for the translation of a relatively simple TiMo process algebra. The first
is a ternary action operation (Σ1 thenΣ2 else Σ3), and the other one a binary
parallel composition (Σ1|Σ2). We now assume that

Σi = (Sflow
i Sloc

i , T ri, ιi) (i = 1, 2, 3)

are unmarked tm-nets with disjoint sets of places and transitions (note that one
can always rename the identities of the nodes of different tm-nets to make sure
that this condition is satisfied).

action composition. The composition Σ1 thenΣ2 else Σ3 is defined if Σ1 has
a unique e-place, a unique x-place s1, and a unique x′-place r1. It is obtained in
the following:

– Σ1, Σ2 and Σ3 are put side by side.
– For every s2 ∈ ◦Σ2, we create a new place s′2 with the status i and such

that each arc a between si and tr ∈ Tri, for i ∈ {1, 2}, is replaced by an
arc of the same kind (directed to or from, or undirected) and with the same
annotation, between s′2 and tr. Then s1 and the e-places of Σ2 are deleted.
The same is then done for r1 and the e-places of Σ3.

– Location places with the same label are ‘merged’ into a location place with
the same label, and with all the arcs and annotations linking them to the
transitions in Σ1, Σ2 and Σ3 being inherited by the new location place.

parallel composition. The composition Σ1|Σ2 is obtained through the following
procedure:

– Σ1 and Σ2 are put side by side.
– Location places with the same label are merged as in the previous case.

4 From Networks of Located Processes to Nets

We translate the following well-formed network of located processes:

N = l1[[P1]] | . . . | ln[[Pn]]

The translation is carried out in the following three phases:

Phase I. For each i ≤ n, we first translate Pi compositionally into K(Pi), as-
suming that actions are translated as follows:

K(α thenP else Q) = K(α) thenK(P) else K(Q) .

where K(α) is given in Figure 1. Moreover, the translation for the terminated
process 0 consists of just two isolated control flow places, one e-place and one
x-place.

Modelling and Verification of Timed Interaction and Migration 225

e

L:L′t ≤ T ≤ t′ τ T > t′
v

x x′

L:T L:T

L′:0 L:0

L′

K(gotΔt′
v)

e

a !T ≤ t τ T > t

v

x x′

L:T L:T

L:0 L:0

L′

K(aΔt ! 〈v〉)
e

a ?T ′ ≤ t′ τ T ′ > t′
u

x x′

L:T ′ L:T ′

L:0 L:0

L′

K(aΔt′
? (u))

Fig. 1. Basic translations. Note that location places and read arcs are represented by
thicker lines.

Phase II. We take the parallel composition of all the K(Pi)’s, and then insert
the initial marking, in the following way:

– into each e-labelled place originating from K(Pi) we insert a single token li:0,
– into each l-labelled location place (where l is a location rather than a location

variable) we insert a single token l.

Phase III. For each pair of transitions, tr and tr′, respectively labelled by a ! and
a ? , we create a new synchronisation transition which inherits the connectivity
of the both tr and tr′. The guard of the new transition is the conjunction of the

226 G. Ciobanu and M. Koutny

guards of tr and tr′, and the label is L:a(L′). After that all transitions labelled
by a ! or a ? are deleted, yielding the result of the whole translation denoted
by PN(N).

h:0

e

L:L′ 2 ≤ T ≤ 5T > 5 i

i
L:TL:T

L′:0

L:0

L′

i:0

e

T ≤ 6 ∧ T ′ ≤ 2

L:a(L′)

T > 6 sA

sA
L:TL:T

L:0L:0

L′

e

T ′ > 2

shop

L:T ′ L:T ′

L:0 L:0
L′

L:L′ 0 ≤ T ≤ 0T > 0

L:TL:T

L′:0L:0

L′

Fig. 2. An example of translation from TiMo to tm-nets. To improve readability, the
exit places are not shown (they are all isolated and unmarked), and the labels of the
internal places as well as τ labels are omitted.

Figure 2 shows the result of the three-phrase translation for a slightly simpli-
fied version of the running example:

h[[go2Δ5 i . (aΔ2 ? (shop) thengo0Δ0 shop else 0)]] | i[[aΔ6 ! 〈sA〉]]

The soundness of the above translation is given by the following result.

Modelling and Verification of Timed Interaction and Migration 227

Theorem 1. The transition system of PN(N) is strongly bisimilar in the sense
of [18] to the transition system of N .

As a consequence, the evolutions of process expressions and the corresponding
tm-nets can simulate each other. It is therefore possible to conduct behavioural
analyses for each of the two representations, and their results are applicable
after suitable interpretations to the other representation as well. For example, by
analysing the control flow tokens in a given marking of the tm-net representation,
we can easily detect whether any process currently resides in a given network
location.

The proof of Theorem 1 has similarities with the proof of a result of [12].
The main idea is to observe that the way translation from process expressions to
Petri nets has been defined ensures that for every (individual or synchronised)
action in the former, one can find a corresponding transition in the latter. It
is then a matter of case by case analysis to conclude that two corresponding
specifications simulate each other very closely. A notable difference is the fact
that in the tm-net model the fact that the second branch of the action construct
has been taken is signified by a τ -transition, whereas in the process algebra a
rewriting is applied. Therefore, firing of such a τ -transition is not recorded in
the labelled transition system generated by the tm-net semantics.

5 Conclusions and Related Work

Process algebras have long been used to model and study distributed concurrent
systems in an algebraic framework. A number of highly successful models have
been formulated within this framework, including ACP [4], CCS [18], CSP [16],
distributed π-calculus [15], and mobile ambients [8]. However, none was able to
capture properties of timing in distributed systems in a natural way. Process al-
gebras with timing features were presented in [1,11,14,20], but without being able
to express process mobility. Mobility can be expressed by other formalisms, such
as the timed π-calculus [3], timed distributed π-calculus [10], and timed mobile
ambients [2]. Timed distributed π-calculus uses a relative time of interaction
given by timers, and a global clock which decrements the timers [10]. Timers
are used to restrict the interaction between components, and both typing and
timers are used to control the availability of resources. In the timed distributed
π-calculus, the notion of space is flat. A more realistic account of physical distri-
bution is obtained using a hierarchical representation of space, and this is given
in [2] by the timed mobile ambients.

In this paper we introduced a simple TiMo process algebra where we have
explicit mobility and can specify timers for the basic actions. We succeeded in
translating finite TiMo specifications into the class of tm-nets which are high
level Petri nets with time. In the future work, we plan to treat other salient
features of distributed systems, including general data transfer and typing of
channels.

228 G. Ciobanu and M. Koutny

Acknowledgement

We would like to thank the anonymous referees for their very helpful and con-
structive comments. This research was supported by the EC IST grant 511599
(Rodin), the NSFC project 60433010, and the CEEX grant Idei 402/2007.

References

1. Aceto, L., Murphy, D.: Timing and Causality in Process Algebra. Acta Informat-
ica 33, 317–350 (1996)

2. Aman, B., Ciobanu, G.: Mobile Ambients with Timers and Types. In: Jones, C.B.,
Liu, Z., Woodcock, J. (eds.) ICTAC 2007. LNCS, vol. 4711, pp. 50–63. Springer,
Heidelberg (2007)

3. Berger, M.: Basic Theory of Reduction Congruence forTwo Timed Asynchronous
π-Calculi. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170,
pp. 115–130. Springer, Heidelberg (2004)

4. Bergstra, J.A., Klop, J.W.: Process Theory based on Bisimulation Semantics. In:
de Bakker, J.W., de Roever, W.-P., Rozenberg, G. (eds.) Linear Time, Branching
Time and Partial Order in Logics and Models for Concurrency. LNCS, vol. 354,
pp. 50–122. Springer, Heidelberg (1989)

5. Best, E., Fraczak, W., Hopkins, R.P., Klaudel, H., Pelz, E.: M-nets: an Algebra
of High Level Petri Nets, with an Application to the Semantics of Concurrent
Programming Languages. Acta Informatica 35, 813–857 (1998)

6. Best, E., Devillers, R., Koutny, M.: Petri Net Algebra. In: EATCS Monographs on
TCS, Springer, Heidelberg (2001)

7. Bettini, L., et al.: The KLAIM Project: Theory and Practice. In: Priami, C. (ed.)
GC 2003. LNCS, vol. 2874, Springer, Heidelberg (2003)

8. Cardelli, L., Gordon, A.: Mobile Ambients. Teoretical Computer Science 240, 170–
213 (2000)

9. Christensen, S., Hansen, N.D.: Coloured Petri Nets Extended with Place Capac-
ities, Test Arcs and Inhibitor Arcs. In: Ajmone Marsan, M. (ed.) ICATPN 1993.
LNCS, vol. 691, Springer, Heidelberg (1993)

10. Ciobanu, G., Prisacariu, C.: Timers for Distributed Systems. Electronic Notes in
Theoretical Computer Science 164, 81–99 (2006)

11. Corradini, F.: Absolute Versus Relative Time in Process Algebras. Information and
Computation 156, 122–172 (2000)

12. Devillers, R., Klaudel, H., Koutny, M.: A Petri Net Semantics of a Simple Process
Algebra for Mobility. Electronic Notes in Theoretical Computer Science 154, 71–94
(2006)

13. Devillers, R., Klaudel, H., Koutny, M., Pommereau, F.: Asynchronous Box Calcu-
lus. Fundamenta Informaticae 54, 295–344 (2003)

14. Gorrieri, R., Roccetti, M., Stancampiano, E.: A Theory of Processes with Dura-
tional Actions. Theoretical Computer Science 140, 73–94 (1995)

15. Hennessy, M., Regan, T.: A Process Algebra for Timed Systems. Information and
Computation 117, 221–239 (1995)

16. Hoare, C.A.R.: Communicating Sequential Processes. Prentice Hall, Englewood
Cliffs (1985)

17. Jensen, K., Rozenberg, G. (eds.): High-level Petri Nets. Theory and Application.
Springer, Heidelberg (1991)

Modelling and Verification of Timed Interaction and Migration 229

18. Milner, R.: Communication and Concurrency. Prentice Hall, Englewood Cliffs
(1989)

19. Milner, R.: Communicating and Mobile Systems: the π-calculus. Cambridge Uni-
versity Press, Cambridge (1999)

20. Moller, F., Tofts, C.: A temporal Calculus of Communicating Systems. In: Groote,
J.F., Baeten, J.C.M. (eds.) CONCUR 1991. LNCS, vol. 527, pp. 401–415. Springer,
Heidelberg (1991)

21. Niaouris, A.: An Algebra of Petri Nets with Arc-Based Time Restrictions. In:
Liu, Z., Araki, K. (eds.) ICTAC 2004. LNCS, vol. 3407, pp. 447–462. Springer,
Heidelberg (2005)

22. Starke, P.: Some Properties of Timed Nets under the Earliest Firing Rule. In:
Rozenberg, G. (ed.) APN 1989. LNCS, vol. 424, Springer, Heidelberg (1990)

	Modelling and Verification of Timed Interaction and Migration
	Introduction
	A Calculus for Timed Mobility
	Syntax
	Operational Semantics

	An Algebra of Nets
	Firing Rule for tm-Nets
	Composing tm-Nets

	From Networks of Located Processes to Nets
	Conclusions and Related Work

