
MODELLING APPROACH FOR DISTRIBUTED DAT A BASES

Michel ADIBA

Laboratoire d'Informatique

Universitg de Grenoble

B.P. 53 / 38041 GRENOBLE Cedex (France)

ABSTRACT

This paper describes a general ~odel for distributed data (MOGADOR) together with a
language for describing and manipulating dispersed data.

In providing an homogeneous level for the description and the behaviour of distri-

buted data bases, MOGADOR can be viewed also as a logical tool for designing hetero-

geneous distributed data bases management systems.

!. INTRODUCTION : DIFFERENT APPROACHES TO DISTRIBUTED DATA BASES MANAGEMENT SYSTEMS

The advent of computer networks and the increasing development of data base techno-

logy brought a great potential for sharing data among heterogeneous computing faci-

lities.

This area of research is currently refered to as distributed data bases, one of the

main problems being the design and the implementation of a distributed data base mana-

gement system (DDBMS) [12][23].

In France, a national project ("SIRIUS") projet [24]) sponsored by IRIA, coordinates

several research projets on this area such as the one described here which is in

process at the Grenoble University.

There is a common agreement to recognize two kinds of DDBMS [11] :

I) Homogeneous or standardized DDBMS where the description and the manipulation of the

distributed data base components are made by the same kind of DBMS which is implemen-

ted on each sites [26][12].

2) Heterogeneous or integrated DDBMS where these description and manipulation func-

tions are assumed by heterogeneous DBMS such as I.M.S, I.D.S, SOCRATE, etc ...

[25][14].

The second approach seems to be more realistic in the way that a great variety of

DBMS are to day commercially available. Often in some big enterprises or administra-

tions data processing has been made by sectorization then creating several data bases

This research is supported by IRIA SIRIb~ Project (contract 77 076).

320

with heterogeneous implementations but having however semantic links. It is this

common semantic which allows the gathering of different data bases in order to

implement new applications.

It is not conceivable to come back to a centralized approach which goes against the

natural entreprise structure, but rather to have a distributed data base approach

in which each component data base keeps a part of autonomy, while being able to share

data with other data bases.

Making the assumption that several data bases are currently in existence and that we

want to use them without modification, leads to a cooperation approach where the dis-

tributed data base corresponds to the gathering of data stored in these existing data

bases [25].

On the other hand, the implementation of a new data base with a distributed DBMS is

rather a distributed approach which is easier because of the freedom we have to defi-

ne the component data bases [14][12].

These two approaches are possible either with homogeneous or heterogeneous DDBMS.

The goals of the POLYPHEME project developed at the Grenoble University are the

study and the design of an heterogeneous DDBMS in a cooperation approach [25].

The system architecture, a prototype of which is currently being implemented, stands

upon a relational data model (MOGADOR General Model for distributed data [5]) which

provides an homogeneous level for :

l) the description and the manipulation of the cooperating data bases and of the

distributed data base.

2) the behaviour of the cooperating data bases in order to be able to share data. Each

data base is considered as a standard abstract machine.

The goal of this paper is to present this particular data model MOGADOR.

At section 2, we define basic concepts of MOGADOR, i.e level and spaces, object,

category, functions.

In section 3, we describe LDDM, i.e a language for distributed data description and

manipulation based upon MOGADOR concepts.

With this language, it is possible to ensure, at the local level the homogeneisation

of the cooperating data bases by describing them with local views. Through the global

view concept this language is used also to describe and manipulate the distributed

data base.

321

2. MOGADOR : BASIC CONCEPTS

A distributed data base is first a data base and we make the assumption that it is

described by a kind of conceptual schema [7] and that the users access it through

external schemas (Figure 2.1).

Let us ignore for the moment this distinction between conceptual and external sche-

mas in order to define the nature of the model and of the corresponding tools

(languages) we need, to implement new applications involving the cooperation of

different and heterogeneous, data bases.

It is a well-known fact that relational models can be used to describe data which

are structured in a hierarchical or network way [18][19].

In a previous paper [4], using Abrial's Data Semantics [I] formalism we give a first

methodological approach for distributed data bases.

Distributed Data Base Users

Local

Level

External]

Schema I

Global Level

Local

Schema I

 % nal a 2

Distributed

Data Base [Schema ~ "

I Schema2 Schema3 [

Fig. 2.1 - Local Data Bases and Distributed Data Base

In going further in this direction, we define a general model for distributed data :

(MOGADOR) which, in the framework of POLYPHEME project, allows us to implement tools

for describing, retrieving, updating distributed data, tools which are available at

different system levels by interfaces and languages.

322

Besides set theory, MOGADOR is based on three fundamental concepts :

1) element concept : objeets and names

2) category concept : set of elements

3) function concept to express relationships between categories.

These concepts are used at three levels :

l) At the level of the definition of MOGADOR itself with pre-defined categories

and functions.

2) At the local level of the cooperating data bases to describe the behaviour

of these data bases by making homogeneous the data description (local names and

objects) and the operations they can execute.

3) At the global level which concerns the local data bases cooperation, in order

to describe the distributed data base schema and its manipulation (global names).

Particularly we have to define the mapping between this level and the local ones for

the following two types of operations (global rules) :

- access to the distributed data base : how to process local objects to

transform them into global ones ?

- creation and updating at the global level : what are the repercussions

of these operations at the local data base levels ?

2.1. Elements : Object Space, Name Space

Elements in MOGADOR are divided into two spaces, namely object spaces and name spa-

ces.

2.i.~. £~i~£~_~£~

We define four types of objects.

They correspond to an elementary value belonging to one of the following sets

(predefined categories) :

INTEGER (set of integers), REAL (set of real numbers), LOGICAL (true, false),

STRING (set of character strings).

2.1.1.2. Compound object

It is a tuple of simple objects.

For example <F56, NEW-YORK, 525, I0000>.

2.1.I.3. Program

A "program object" corresponds to the set of instructions executable by a given

machine.

323

2.1.1.4. Process

Execution of a given program by a given machine.

2.1.2. N_am_~_S~e

It concerns the description of an object space as we are going to see in section 3.

A name is a character string. It is used to give names to eategories and functions.

By convention, we use upper ease letters for categories and lower case letters for

functions and we make the distinction between functions which send back one element

(monovalued functions) and those which send back a set of elements (multivalued func-

tions [2]).

We consider also that there exists a special name space constituted by predefined

categories and functions (3.1).

2.2. Categories

In MOGADOR we suppose the existence of predefined categories like INTEGER, REAL,

STRING, LOGICAL but also those which correspond to the description of data bases. We

shall find in section 3.4.]. a table giving these main predefined categories.

It is possible to define a category using already defined ones.

For this, we use the following operators

]) Assignment ":="

A := B define category A as the set B.

2) Cartesian Product "x"

AxB = ((a,b) i a~A, bE B}.

3) Restriction "(predicate)" after a category is used to define a subset of

this category :

A (predicate) = {acA] predicate (a) = true}.

Examples

i) AGE := INTEGER (18..65) define AGE as a set of integers which are between

18 and 65.

ii) DAY := INTEGER (I..31)

MONTH := INTEGER (I..12)

YEAR := INTEGER (0..99)

DATE := DAY x MONTH × YEAR.

iii) LCC := STRING (length N 8) defines LCC (Loca] Concrete Category) as a set of

strings (names set).

324

2.2.2. ~ E ! ~ ! ! ~ _ ~ E _ ~ ! ~

Four basic operations are defined on categories :

1) Creation of an element of a category.

2) Deletion of an element.

3) Test of the existence of an element in a category.

4) Enumeration of all the elements of a category.

For each space we define operators to realize these operations :

- for object space we have manipulation operators and

- for name space description operators.

These operators will be used in the language for describing and manipulating distri-

buted data (LDDM), see section 3.2.

2.2.3. ~ _ ~ $ ~ ! ~

They correspond to sets of simple or compound objects upon which we cannot apply

creation and deletion operators. This means that abstract objects already exist in

our universe and that we can use them directly.

For example AGE is an abstract category. The character string "AGE" is the name of

the category and AGE is the name of a set of integers.

If AC is the name of the abstract categories set we have

AGE e AC (Name)

and for instance 26 e AGE (Object).

This notion of abstract category can be viewed as the domain notion in the relational

data model []8][19].

At the local level we consider local abstract categories (LAC) and at the global

level, global abstract categories (GAC).

2.2.4. ~2~![~!_~!~[~

They correspond to sets of objects upon which the category operations are defined

(section 2.2.2.).

This notion is analogous to the relation concept in Codd's relational model but as it

was pointed out by J.M. Smith and D.C.M. Smith in [10], this notion supports two

distinct forms of abstraction : aggregation, i.e materialization of a relationship

into a set of objects, and generalization, where similar objects are regarded as a

generic object.

In MOGADOR, to make explicit the difference between these two forms, we consider

the function concept as it is described in section 2.3.

To define a concrete category we need at least two elements :

I) the name of the category, for example PERSON, RESERVATION

325

2) the cartesian product of abstract categories which can be used to identify

the concrete object (key). We call it the identifier name of the concrete

category.

For instance, if a set of persons are being identified by a social security number,

we have :

- SSN := STRING (length = 13)

- Concrete Category PERSON identified by SSN.

If RESERVATION is a set of couples SSN and H@ (Hotel number) we have Concrete Cate-

gory RESERVATION identified by SSN × H~.

We consider local concrete categories (LCC) and global concrete categories (GCC)

together with local identifier name (LIN) and global identifier name (GIN).

2.3. Functions

The function concept is a well known mathematical notion [13] which has been applied

by Abrial in [1] to data models.

This concept presents a double aspect :

- static aspect, namely the existence of a named relationship f, for example,

between two sets A and B

- a dynamic aspect, namely given one object a~ A and a function f how the rela-

ted object f(a) can be obtained. If function f is completely determined by

the existence of its graph (i.e by the set of couples (a, f(a)), then from a

given a, we can obtain f(a) by accessing objects in the graph.

The second possibility is to have the set of operations (the equation) to apply on a

to obtain f(a).

Applying these mathematical notions to distributed data bases, provides a very flexi-

'ble way for :

l) expressing the existing relationships between local objects

2) taking into account logical access paths between categories of objects

3) making a given data base execute some data access programs

4) expressing new relationships between distributed objects.

2.3.1. ~!~!-~-£~i~£~!

A function in MOGADOR is defined by the following elements :

- the name of the functions (written in lower case letters)

- the type of the function, namely if it is mono or multi-valued

- the source and target, i.e if f goes from A to B, A is the source of f and B

its target. Note that A and B can be cartesian product, for instance :

birthdate is a monovalued function from PERSON to DATE (DAY × MONTH × YEAR)

- if a relationship between A and B is completely determined by the graph of a

function f, this mean that there exists, for example in a local data base, a

326

set of objects belonging to a concrete category C :

C = {(a, f(a)) I Va c A}.

Note however that we are not concerned by the physical representation of concrete

dategories.

- '£o denote the inverse function of a function f we use the notation inv f

- Functions can be composed to form new functions

- There is an identify function, named "id".

2.3.2. 9~!£~__£~__~£~!£~!

We define four basic operations on functions :

I) Access i.e given a to obtain f(a) which can be an element if f is monovalued or

a set if f is mnltivalued.

By extension if f applies to a set this means that it has to be applied successi-

vely to each element of the set :

X = {Xl,X2,...,x n} i A

f(X) z {f(xl) , f(x2) , f(x3) , ..., f(Xn)}.

2) Link a set of objects to a given object, for example :

f(a) := {b}

or g(x) := {yl,Y2,...,yn}.

3) Erase the link between an object and its related objects

f(a) :# {b}.

4) @raph : to obtain the graph of a function {(a, f(a))}.

327

3. LDDM : A LANGUAGE FOR DISTRIBUTED DATA DESCRIPTION AND MANIPULATION

3.1. Predefined Categories and Functions

As we have said at the beginning of section 2 the basic concepts of MOGADOR are used

at three levels, the first one concerning MOGADOR definition, the second and third

ones concerning respectively local and global levels.

Predefined categories, functions and corresponding operations are basic elements of

the LDDM language. This language is intended to provide an homogeneous way to des-

cribe and use both the components of the distributed data base and the distributed

data base itself. Our purpose is not to provide a complete and new data base lan-

guage like SEQUEL [21] or an equivalent language, but rather to define a minimum

set of primitives for describing and manipulating dispersed data, primitives availa-

ble in a high level host language like PL/I.

It is beyond the scope of this paper to give a complete list of all the predefined

categories and functions [5].

The predefined functions are divided into descriptive functions to express relation-

ships between names in a given space or between two different spaces (local and glo-

bal), and manipulating functions which are in fact operators.

The following table T shows some of the main predefined categories and functions

and explanations on its content are given in the following sections.

3.2. Operators

Operators in the LDDM are divided into description and manipulation operators.

3.2.1. ~ ~ _ ~ E ~ ! ~

They are used to describe both local and global views. These descriptions are given

to the cooperation system which stores them in an internal format into local and

global machines (Figure 3.1).

These operators apply to predefined categories and functions in order to define name

spaces. To simplify the description these operators are combinations of elementary

operations seen at section 2.2.2. and 2.3.2.

For example to create a name of a local concrete category (LCC) and to link it with

its identifier name (LIN), we use two operators Icc and lin in the following manner :

Icc PERSON lin N~ME × FIRST-NAME.

To define a global monovalued function (GOF), together with its source and target

we write :

go___~f age from PERSON to AGE.

MOGADOR Global Machine (g)

3,2.2. ~!E~!!~!~_£~!!!£[~ (see table TOP)

They are used to manipulate local data bases through the local views and the distri-

buted data base through the global view, Software systems which manipulate the distri-

buted data are viewed as standard automata or abstract data base machines.

We assimilate the name of each local data base with the name of the machine which

permits its utilization (see figure 3.1) and we say that the global machine (named

"g~') is the one accessed by distributed data base users.

Each machine is able to execute two kinds of operations :

-~rimitive operation s on categories and functions according to the correspon-

ding local or global view ;

- operations on objects or set of objects : these operations can be applied to

the result of "enumerate", "access" and "graph" primitives, They are used to

derive new sets of objects upon which other operations can be applied and so

on.

Sets of compound objects are in facts n-ary relations so we find here a complete set

of relational operations [18],

Global

users

Local Machine 3

328

Local Machine B2
Local Machine B1

Fig. 3.1 - Logical Structure of the Distributed Data Base System

L
O
C
A
L

L
O
C
A
L
/
G
L
O
B
A
L

M
A
P
P
I
N
G

G
L
O
B
A
L

]

2

O
B
J
E
C
T
S

N
A
M
E
S
-
O
B
J
E
C
T
S

M
A
P
P
I
N
G

3

N
A
M
E
S

.

B
A
S
E

l
o
c
a
l

d
a
t
a

b
a
s
e
s

.

L
S
O

l
o
c
a
l

s
i
m
p
l
e

o
b
j
e
c
t
s

•

L
C
O

l
o
c
a
l

c
o
m
p
o
u
n
d

o
b
j
e
c
t

.

L
I
D

l
o
c
a
l

i
d
e
n
t
i
f
i
e
r
s

(
k
e
y
s
)

l
o
c
a
l

p
r
o
g
r
a
m
s

c
o
d
e
s

l
o
c
a
l

p
r
o
c
e
s
s
e
s

•

L
P
C

•

L
P
S

G
R

:

g
l
o
b
a
l

r
u
l
e
s

o
n

c
a
t
e
g
o
-

r
i
e
s

a
n
d

f
u
n
c
t
i
o
n
s

(
o
b
j
e
c
t
s

l
o
c
a
l
i
z
a
t
i
o
n
)

G
E
N
~

G
C
R
,

G
D
E
L
,

G
E
X
,

G
F
A
,

G
F
L
,

G
F
E

G
S
O

g
l
o
b
a
l

s
i
m
p
l
e

o
b
j
e
c
t

G
C
O

g
l
o
b
a
l

c
o
m
p
o
u
n
d

o
b
j
e
c
t

G
I
D

g
l
o
b
a
l

i
d
e
n
t
i
f
i
e
r

G
P
C

g
l
o
b
a
l

p
r
o
g
r
a
m

c
o
d
e
s

G
P
S

g
l
o
b
a
l

p
r
o
c
e
s
s
e
s

M
a
n
i
p
u
l
a
t
i
o
n

o
p
e
r
a
t
o
r
s

o
n

l
o
c
a
l

c
a
t
e
g
o
r
i
e
s

a
n
d

f
u
n
c
-

t
i
o
n
s

(
t
a
b
l
e

T
O
P

f
o
r

m

E

B
A
S
E
)

(
l
o
c
a
l

m
a
c
h
i
n
e
s
)

D
e
c
o
m
p
o
s
i
t
i
o
n

P
r
o
c
e
s
s

(
s
e
c
t
i
o
n

3
.
5
.
1
)

M
a
n
i
p
u
l
a
t
i
o
n

o
p
e
r
a
t
o
r
s

o
n

g
l
o
b
a
l

c
a
t
e
g
o
r
i
e
s

a
n
d

f
u
n
c
t
i
o
n
s

(
t
a
b
l
e

T
O
P

f
o
r

m

=

g
)

(
g
l
o
b
a
l

m
a
c
h
i
n
e
)

•

L
A
C

•

L
C
C

•

L
I
N

•

L
A
F

•

L
P
D

a
b
s
t
r
a
c
t

c
a
t
e
g
o
r
i
e
s

c
o
n
c
r
e
t
e

c
a
t
e
g
o
r
i
e
s

l
o
c
a
l

i
d
.

n
a
m
e

(
L
O
F
,

L
M
F
)

m
o
n
o

a
n
~

m
u
l
t
i
-

v
a
l
u
e
d

f
u
n
c
t
i
o
n
s

l
o
c
a
l

p
r
o
g
r
a
m
s

d
e
s
c
r
i
p
t
i
o
n

N
a
m
e
'
s

l
o
c
a
l
i
z
a
t
i
o
n

G
A
C

~

G
a
c
l
o
c

÷

B
A
S
E
x
L
A
C

G
C
C

÷

G
c
c
l
o
c

÷

B
A
S
E
x
L
C
C

G
A
F

÷

G
a
f
l
o
c

÷

B
A
S
E
×
L
A
F

B
A
S
E

G
A
C

÷

l
o
e
n
a
m
e
g
a
c

÷

L
A
C

B
A
S
E

G
C
C

÷

l
o
c
n
a
m
e
g
c
c

÷

L
C
C

B
A
S
E

G
A
F

÷

l
o
c
n
a
m
e
g
a
f

÷

L
A
F

g
l
o
b
a
l

a
b
s
t
r
a
c
t

c
a
t
e
g
o
r
i
e
s

g
l
o
b
a
l

c
o
n
c
r
e
t
e

c
a
t
e
g
o
r
i
e
s

(
G
O
F
,

G
M
~
 ~
)

g
l
o
b
a
l

f
u
n
c
t
i
o
n
s

g
l
o
b
a
l

i
d
e
n
t
i
f
i
e
r

n
a
m
e

g
l
o
b
a
l

p
r
o
g
r
a
m

d
e
s
c
r
i
p
t
i
o
n

.

G
A
C

.

G
C
C

•

G
A
F

.

G
I
N

.

G
P
D

6
0

c
o

T
a
b
l
e

T

-

P
r
e
d
e
f
i
n
e
d

C
a
t
e
g
o
r
i
e
s

i
n

M
O
G
A
D
O
R

330

Primitive Operations

Tabl e ,TOP : operators

Operation Syntax Output

creation create (m, c, i) ~ ~ LOGICAL

deletion delete (m, c, i) £

existence test test (m, c, i)

enumeration enumerate (m, c) X(Set of i)

access access (m, f, X) Z

or f(X)

link link (m, f, x, Y)

erase erase (m, f, x, Y)

graph graph (m, f) Z

Oper_____ations on Simple objects

Operation

addition

subtraction

multiplication

division

Syntax

add (sl, s2)

sub (s!, s2)

mult (sl, s2)

div (sl, s2)

Output

s3 = s~ + s2

s3 = sl - s2

s3 = s! * s2

s3 = s! / s2

Op___eerations on Compound objects

Operation

union (u)

intersection (n)

difference (-)

cartesian product (×)

projection

restriction

j oin

division

cardinality

sum, product

eliminate redundancy

concatenation

Syntax

union (X, Y)

inter (X, Y)

diff (X, Y)

cart prod (X, Y)

project (X, filter)

select (X, filter)

join (X, Y, condition)

divide (X, Y, condition)

card (X)

sum (X), prod (X)

unique (X)

concat (X, Y)

Output

s e INTEGER

s E INTEGER u REAL

Y

Z

Notations

- machine name m m e BASE u {g} for categories and functions operations (g stands

for "global")

- category c ~ LCC u GCC

- function f ~ GAF u LAF (N.B. Composition of function is a function)

331

- objects % e LOGICAL

x, y, z objects, X, Y, Z set of objects

i identifier i c LID u GID

s simple object.

3.3. Local Level (Tll, TI2, T]3 of table T)

3 . 3 . 1 . ~££~!_z!s~_is~s[i~!i£n

Given one local data base in use under a given DBMS, we consider that this data

base corresponds to the following elements :

- a local object space constituted by the data stored in the data base : we

assume that it is always possible to see this data as simple and compound

objects (Tll) [3][5]

- a local name space constituted by the data base schema which is re-interpreted

in MOGADOR terms to form what we call the local view of the data base (TI3).

This means that the data is seen as a collection of n-ary relations but explained

in terms of local abstract categories (LAC), local concrete categories (LCC) with

their identifier names (LIN) and local access functions (LAF).

Furthermore, associated to this view, we consider a serie of local programs which

are pre-compiled in the data base and which realize at least the elementary operations

of creation, updating and accessing°

Let us consider a simple example of distributed data base. We have a big enterprise

managing several factories making several products. These factories are distributed

over the country but data processing is done in 3 computing centers C], C2 and C3. In

C] we consider data base B1 implemented under a codasyl-like system with the follo-

wing schema :

jc6

$I and $2 are codasyl-sets.

Each factory is described by a number F~, a town, the number of employees (NBEMP), the

total of all salaries (TOTSAL) and the functioning budget (FBUD).

Each product has a number (P~), a name (PNAME).

~etSl links a factory to all the products made in this factory and set $2 links a

product to all the factories which made it.

In one record PRODFAC we find a factory number (F~), a product number (P~) and the

332

number of products made per day (NBPD).

In relational terms, we have :

I FACTORY (F_~, TOWN, EMPNB, TOTSAL, FBUD)

BI PRODUCT (P_~, PNAME)

PRODFAC (e~, F@, NBPD)

WithMOGADOR concepts, the local view of this data base BI is :

LAC = {F~, TOWN, EMPNB, TOTSAL, FBUD, P~, PNAME, NBPD}

LID = {F~, F~ x P~, p~}

LCC = {FACTORY, PRODUCT, PRODFAC}.

Local Function (LAF) :

Function's name Type Source Target

towil

empnb

totsal

fbud

pname

nbpd

factory

production

fabrication

mono

mono

mono

mono

mono

mono

mul t i

multi

multi

FACTORY

FACTORY

FACTORY

FACTORY

PRODUCT

PRODFAC

PRODUCT

FACTORY

PRODUCT

TOWN

E~IPNB

TOTSAL

FBUD

PN~

NBPD

FACTORY

PRODFAC

PRODFAC

Graph

in FACTORY

in FACTORY

in FACTORY

in FACTORY

in PRODUCT

in PRODFAC

in PRODFAC

in PRODFAC

in PRODFAC

N.B. To be complete, this local view example must contain local program descrip-

tions involving :

- the program name

- the type of operation (access, update)

- the nature of inputs and outputs.

The program code is supposed to be stored into the local data base.

N.B. Programs are linked to concrete categories rather than to functions. In fact

an access program linked to category C realizes all the monovalued functions having

C as source.

In data base B2, we consider also works and products :

I~NUFACTORY (M~, TOWN, EMPNB, MBUDGET)

Be PRODUCT (P_~, PNAME)

PROMAN (P@, M@, NBPD).

Note that in B2 the budget is not split into two components as in B1 (TOTSAL and

FBUD).

In MOGADOR, we have :

333

LAC = {M@, TOWN, EMPNB, MBUDGET, P@, PNAME, NBPD}

LCC = {MANUFACTORY, PRODUCT, PROMAN}

LIN = {P@, F@, P@ × F~}

Local functions of B2

Name Type

town

empnb

nbudget

pname

nbpd

manufactory

production

fabrication

mono

mono

mono

mono

mo no

multi

multi

multi

Source

MTuNUFACTORY

MANUFACTORY

i~NUFACTORY

PRODUCT

PROMAN

PRODUCT

FACTORY

PRODUCT

Target

TOWN

EMPNB

MBUDGET

PNAME

NBPD

MANUFACTORY

P ROMAN

PROMAN

Graph

in 14ANUFACTORY

in MANUFACTORY

in MANUFACTORY

in PRODUCT

in PROMAN

in PROMAN

in PROMAN

in PROMAN

Finally, in B3 we have :

B3 PRODUCT (P_~, PNAME, PDESCR, SELLPRICE, COSTPRICE)

For each product made by the enterprise we have here a complete description with

cost and selling prices.

In MOGADOR :

LAC = {P~, PNAME, PDESCR, SELLPRICE, COSTPRICE}

LCC = {PRODUCT}

LIN = {P@}

Local functions of B3 :

Type

mono

mono

mono

mono

Source

PRODUCT

PRODUCT

PRODUCT

PRODUCT

Target

PNA~

PDESCR

SELLPRICE

COSTPRICE

Graph

in PRODUCT

in PRODUCT

in PRODUCT

in PRODUCT

Name

pname

pdeser

sellprice

costprice

3.3.2. ~gs~!_!iE!_N!~e~!~H!!!!2~

The local view is stored by a MOGADOR local machine (see figure 3.1) which is an

abstract machine whose physical components can be distributed. This machine can at

least execute basic operations on local categories and functions (see TI2). These

executions involve in fact calls to local programs which are executed by the local

DBMS. This MOGADOR local machine provides a standardized behaviour for heterogeneous

data bases. It is used by a MOGADOR global machine form which global users manipu-

late the distributed data base (Figure 3.]).

334

3.4. Global level and global view

The description of the distributed data base can be logically divided into three parts :

- definition of global names

- localization or mapping between global and local names

- global rules on categories and functions.

3.4.1. Global names ~E~£~ (T31)

It is composed with names of global abstract categories (GAC), global concrete

categories (GCC) with their global identifier name (GIN) and global functions GAF

(GOF, GMF). Global categories and functions are of two kinds :

- distributed where the global name has some synonym into several local views.

This mean that the global objects are in fact local objects dispersed over

several object spaces.

- calculated where the global name has no equivalent in the local views. This

means that the corresponding global objects are going to be elaborated at the

global level by mean of a calculation expressed by a global rule (see section

3.4.3).

N.B. From this global name space, we consider that it is possible to derive external

schemas given to users of the distributed data base and for whom the distribution

of objects will be transparent.

Example of global view for BI, B2 and B3 :

At the global level we want to see data bases BI, B2 and B3 in the following manner :

we consider two global concrete categories (GCC) namely :

- FACTORY which corresponds to distributed but not duplicated objects on B1 and

B2. The global identifier name (GIN) is F~. We consider that the criterion for dis-

tributing factories depends on the value of the town attribute. For example factories

located in New York, Boston or Washington are managed by data base BI and factories

located in Denver, Los Angel~s, San Francisco are managed by data base B2. We shall

come back to this point in section 3.4.3.1.

- PRODUCT which corresponds to distributed and duplicated objects ocer BI, B2

and B3 (GIN is P~). We make the assumption that each product is described at least

in B3 i.e B3 contains the general catalogue of all the products.

We consider the following global abstract categories (GAC) :

- distributed : F~, TO~, NBEMP, P~, PDESCR, PNA~, SELLPRICE, COSTPRICE and

BUDGET.

The last one is not a strictly distributed category because it exists in B2 (MBUDGET)

and not directly in BI (TOTSAL+FBUD) ; this will be expressed together with the global

function "budget" (see 3.4.3).

- calculated : let TOTALP be, for a given product the total number of this pro-

duct made per day, over all the factories (BI and B2).

335

We consider also the following global functions (GAF) :

GAF name Type

town mono

nbofemp mono

budget mono

pname mono

pdescr mono

costprice mono

sellprice mone

production multi

inv produc- multi
tion

totalp mono

Source

FACTORY

FACTORY

FACTORY

PRODUCT

PRODUCT

PRODUCT

PRODUCT

FACTORY

PRODUCT

PRODUCT

Target

TOWN

NBE~

BUDGET

PNAME

PDESCR

COSTPRICE

SELLPRICE

PRODUCT

FACTORY

TOTALP

Graph

in B1 or B2

in B1 or B2

calculated in BI,

exists in B2

in BI, B2, B3

in B3

in B3

in B3

in B] or B2

in B1 and B2

calculated

3.4.2. Localization on names (T23)
.

For each distributed GAC, GCC and GAF we have to give the corresponding LAC, LCC and

LAF using predefined functions gacloc, gccloc and gafloc (see table T : T23).

For instance

- g a c l o c (F~) := ((BI,F~), (B2,M~))

- gccloc (PRODUCT) := ((BI,PRODUCT), (B2,PRODUCT), (B3,PRODUCT))

- gccloc (FACTORY) := ((BI,FACTORY), (B2,MANUFACTORY))

- gafloc (nbofemp) := ((Bl,empnb), (B2,empnb))

- gafloc (production) := ((BI, inv factory), (B2, inv m~nufactory))

- gafloc (inv production):= ((Bl,factory), (B2,manufactory))

- gafloc (budget) := ((BI, calc), (B2, budget))

- gafloc (totalp) := ~.

3.4.3. Global rules (T21)

Global rules are a very important notion relating to distributed data bases. We have

defined two kinds of global rules, i.e on global concrete categories (GCC) and on

global functions (GAF). These global rules express what are the repercussions of a

global operation concerning GCC or GAF at the local levels.

For example :

- how to execute the creation of a factory ?

- how to enumerate all the products ?

- how to calculate the TOTALP of a given product ?

Obviously to express all these semantics we need manipulation operators. In the fol-

lowing two sections, we give some examples of global rules. We want to stress, that

global rules can express semantic properties of the distributed data base and in this

336

way, they have to be written by a global administrator. However in some simple cases

these rules can be deduced automatically by the cooperation system given, for example,

only global names and name localizations.

3.4.3.1. Global rules on concrete categories (GCC)
. * . ° * * ° * * .

They concern the four operations creation, deletion, enumeration, existence test.

For example to express the following semantic :

÷ GRI global enumeration of factories is realized by enumeration of local components,

we write :

gen (FACTORY) := enumeration (gccloc (FACTORY)).

Note that gccloc (FACTORY) gives the set :

((Bl, FACTORY)~ (B2, MANUFACTORY))

so the global rule will be interpreted as (see section 2.3.2)

(enumeration (BI~FACTORY), enumeration (B2,MANUFACTORY)).

At name's level this corresponds to the creation of two independant processes which

can be executed in parallel one on the local machine B], the other on B2.

÷ GR2. To express that the creation of a factory depends on the value of attribute

TOWN, we suppose the existence of a special global function named "locfactory" from

TOWN to BASE and whose graph is :

TOWN

BASE

NEW-YORK

BI

BOSTON

B!

WASHINGTON

B!

DENVER

B2

LOS ANGELES

B2

SAN FRAN-

CISCO

B2

Then the global rule for the creation of a factory is :

gcr (FACTORY, F~, TOWN) := create (locfactory (TOWN), locaname

locnamegcc (locfactory (TOWN), FACTORY), F~)

Creation of factory F15 located in DENVER will be :

create (B2, MANUFACTORY, FI5).

(locnamegcc is defined in T23).

N.B. Note that if the graph of the localization function (here "locfactory") is not

available, this function will be calculated. This allows more complex localization

criteria.

÷ GR3. The enumeration of all the products is to be made only on B3

gen (PRODUCT) := enumeration (B3, PRODUCT)

÷ GR4. The deletion of a product is not allowed :

gdel (PRODUCT) := not allowed.

337

3.4.3.2. Global rules on functions (GAF)
. , o * . . . ,

They concern the three basic operations : access, link, erase.

For example :

÷ GR5 : access to the number of employees of a given factory (GAF is nbofemp)

gfa (F~) := (access (gafloc (nbofemp), F~))

Two accesses will be generated, one on Bl, one on B2 since we dent know where the

factory is located (unless we define a localization function on factories).

GR6 : access to a factory budget (GAF is budget)

Let us give all the description of this function :

gnf budget from FACTORY to BUDGET

locgaf (budget) := ((BI, calc), (B2, mbudget))

gfa (F~) := (add (access (Bl, totsal, F@), access (Bl, fbnd, F~)),

access (B2, mbudget, F~))

gfl () := impossible the link operation is impossible at the global level

gfe () := impossible idem.

GR7 : Access to all the products made by a given factory :

global multivalued function "product"

gfa (F~) := (access (gafloc (production), F~))

N.B. The result set will come only from Bl or B2.

GR8 : Access to all factories which made a given product : global and multivalued

function "inv production".

gfa (P@) := concat (access (BI, factory, P~), access (B2, manufactory, P~)).

The result set is the concatenation of the two sets coming respectively from B] and

B2 because of duplication of prodnct.

GR9 : Obtain the total number of product per day : global monovalued function

totalp

gfa (P~) := add (sum (access (Bl, nbpd o fabrication, P~)),

sum (access (B2, nbpd o fabrication, P~)))

gfl () := impossible

gfe () := impossible.

The operator "o" denotes the composition of functions.

3.5. Manipulation of the distributed data base

We have seen the main elements of LDDM language but these elements cannot constitute

the external form of this language given to an end-user. It is beyond the scope of

this paper to give the syntactic form of this external LDDM but we shall discuss

briefly two points, i.e decomposition of a global transaction into local operations

and execution of these local transactions.

338

3.5.1. ~ ~ ! ~ _ ~ f

Let us consider a sample of global transaction :

QI give number and town of all the factories which made products whose costprice

is > p.

QI can be expressed in LDDM as :

X + F@ : id x TOWN : town [(in v product (inv.costprice (> p)))]

This means that from "p" we apply the inv costprice function to find all products

whose costprice is greater than p. On the result (set of P~) we apply inv-product

which gives all the factories (set of F@) making those products. On this set of F~

we apply two functions, "town" and "id" (the identity function) to form a set of

tuple :

(F#, TOWN).

Since inv.costprice is not defined in the global view, this expression is in fact :

X + F~ : id x TOWN : [town (inv.production (project (select

(P~ : id × PRICE : eostpriee (enumeration (PRODUCT)), PRICE > p), P@)))].

Which can be transformed into the following graph, showing the macrosynchronization

of operations :

V
i I

P~ x PRICE

PRICE ~] p

P@ × PRICE

[_i~ inv-pr°Huct~

~ TOWN

A
F~ x TOWN

339

All operations in square boxes are going to be decomposed into local operations

using global rules. This will give another graph where some parts are to be executed

by local machines. From this graph we have to generate a distributed program and to

execute it [29].

3.5.2. ~ H ~ - ~

The distributed program is composed of several procedures which are distributed over

several sites. On each site mechanisms are provided to execute these procedures some

of them involving calls to procedures which are located in another site []5][16].

Therefore a global transaction is transformed into several global procedures which

call local procedures in order to initialize local program execution and which are

called themselves by local procedures when local objects are available.

CONCLUSIONS

We have presented here the basic concepts of our distributed data model MOGADOR

together with the elements of a language for describing and manipulating distributed

data.

In providing an homogeneous level for the description and the behabiour of distri-

buted data bases MOGADOR is not only a data model but also a logical tool for the

design of heterogeneous distributed data base management systems.

ACKNOWLEDGMENTS

We are grateful for the comments of J.R. Abrial, C. Delobel and M. LEonard and of

all SIRIUS people. We also acknowledge the contribution of all the POLYPHEME team :

J.M. Andrade, E. AndrE, J.Y. Caleca, P. Decitre, C. Euzet, Nguyen Gia Toan and

A. Stiers. We also acknowledge Professor M. S~ave for correcting our english.

REFERENCE S

340

[I] J.R. ABRIAL, Data Semantics, IFIP-TC2 Working Conference, Carg~se, Avril 1974.

[2] J.R. ABRIAL, Langage de specification Z. Paris, Mai 1977.

[3] M. ADIBA, C. DELOBEL, M. LEONARD, A unified approach for modelling data in

logical data base design. IFIP-TC2, Freudenstadt, January 1976.

[4] M. ADIBA, C. DELOBEL, The cooperation problem between different Data Base

Management Systems. IFIP-TC2 Working Conference, Nice, January 1977.

[5] M. ADIBA, Projet POLYPHEME : MOGADOR : Un MOdgle GgngrAl de DOnn~es Rgparties.

Laboratoire d'Informatique. Research Report 81, July 1977, Grenoble.

[6] ASTRAMAN et al., System R. Relational Approach to Data Base Management.

ACM-TODS, Vol. l n°2, June 1976o

[7] ANSI/SPARC, Interim Report ACM Sigmod FDT.7, December 1975.

[8] G. BRACCHI~ G. PELAGATTI, P. PAOLINI, Models views and Mappings in multilevel

Data Base representation. Politechnico di Milano. 1976.

[9] BROOKS, CARDENAS, NAHOURAII, An approach to data communication between diffe-

rent GDBMS. Very Large Data Base Conference. Brussels, September 1976.

[10] J.M. SMITH and D.C.P. SMITH, Data base abstractions. Aggregations and Genera-

lization ACM-TODS. Vol.2 Nb.2, June 1977.

[11] M.E. DEPPE, J.P. FRY, Distributed Data Bases : a summary of research.

Computer Networks 1.1976.

[12] J.B. ROTHNIE, N. GOODMAN, An overview of the preliminary design of SDD-I :

a system for distributed data bases C.C.A. Cambridge. 1977.

[13] C.C. PINTER, Set Theory. Addison Wesley Publishing Company. 1971.

[14] G. GARDARIN, M. JOUVE, C. PARENT, S. SPACCAPIETRA, Designing a distributed

data base management system. AICA. October 1977.

[15] E. ANDRE, P. DECITRE, On providing Distributed Applications Programmers with

control over synchronizations. Accepted for publication in computer

network protocols symposium, Ligge, February 1978.

[16] DANG, G. SERGEANT, System and Portable Language intended for distributed and

heterogeneous network applications. ENSIMAG, December 1976.

[171

[18]

[19]

[20]

[211

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

341

R. DEMOLOMBE, M. LEMAITRE, R$1es d'un mod&le commun dans la conception d'un

SGBD rgparti : analyse des principaux modgles CERT. Research Report.

March 1977.

E.F. CODD, A relational model of data for large shared data banks.

CACM 13, 6 (June 1970).

P. PIN-SHAN CHEN, The Entity-Relationship model. Toward a unified view of

data ACM TODS, March 1976.

J.Y. CALECA, J.P. FORESTIER, L'interrogation simultange de plusieurs bases de

donn~es. Rapport de D.E.A., Universitg de Grenoble. Juin 1976.

D. CHAMBERLIN et al., Sequel 2. A unified approach to Data Definition,

Manipulation and Control. IBM Journal of Research and Development,

Vol.20 n°6, November 1976.

D. CHAMBERLIN et al., Views Authorization and locking in a relational Data

Base System. Proc. 1975 National Computer Conference Anaheim Ca.,

May]975.

Canning Publications, Distributed data Systems. EDP Analyser, June 1976,

Voi. 14 n°6.

J. LE BIHAN, SIRIUS Project, IRIA, Domaine de Voluceau, 78150 LE CHESNAY,

France.

POLYPHEME, Propositions pour un modgle de rgpartition et de cooperation de

Bases de Donn~es dans un r~seau d'ordinateurs. Laboratoire Informatiques

CII/ENSIMAG/USMG, Universit~ de Grenoble. Rapport de Recherche n ° 29,

D~cembre 1975.

E. NEUHOLD, M. STONEBRAKER, A distributed data base version of INGRES.

Memorandum n ° ERL-M612, Septembre 1976, Universitg de Californie,

Berkeley.

M.E. SENKO, DIAM as a detailled example of the ANSI/SPARC architecture.

IFIP-TC2 Working Conference, Freudenstadt, Germany, January 1976.

M. STONEBRAKER et al., The Design and Implementation of INGRES. ACM TODS

Vol.l n°3, September 1976.

M. ADIBA, J.Y. CALECA, ModUle relationnel de donnges r~parties, problgme de

dgeomposition. Journges sur le mod&le relationnel. Paris. Avril 1978.

