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Abstract

Wastewater treatment processes are inherently dynamic because of the
large variations in the influent wastewater flow rate, concentration and
composition. Moreover, these variations are to a large extent not possible
to control. The adaptive behaviour of the involved microorganisms
imposes further difficulties in terms of time-varying process parameters.
Mathematical models and computer simulations are essential to describe,
predict and control the complicated interactions of the processes. The
number of reactions and organism species that are involved in the system
may be very large. An accurate description of such systems can therefore
result in highly complex models, which may not be very useful from a
practical, operational point of view. The thesis contains a thorough discus-
sion on aspects concerning the mathematical modelling of the activated
sludge, sedimentation and biofilm processes.

A reduced order dynamic model, describing an activated sludge process
performing carbonaceous removal, nitrification and denitrification with
reasonable accuracy, is presented. The main objective is to combine know-
ledge of the process dynamics with mathematical methods for estimation
and identification. The identifiability of the model is investigated using
both off-line and on-line methods, and its dynamic behaviour is validated
by simulations of a recognized model. The information required by the
identification algorithms are based on directly measurable real-time data.
The simplified model may serve as a tool for predicting the dynamic
behaviour of an activated sludge process, since the parameters can be
tracked on-line during varying operating conditions. The model is aimed
for operation and control purposes as an integral part of a hierarchical
control structure.

The main objective of the work on settler modelling is to support and
enlighten recent theoretical results. A new settler model is compared to a
traditional layer model by means of numerical simulations. Emphasis is put
on the numerical solution’s ability to approximate the analytical solution of
the conservation law written as a non-linear partial differential equation.
The new settler model is consistent in this respect. Several problems that
occur when integrating a model of the biological reactor with a model of
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the settler are also discussed. In particular, the concentrations of the
biological components of the particulate material are of importance for an
accurate description of the sludge that is recycled to the biological reactor.
Two one-dimensional algorithms have been evaluated. The first algorithm
is commonly used and some of its inherent problems are discussed. The
second algorithm, which is preferred, is a new analytically derived method.

Few attempts have been made to take into account the influence of higher
order organisms in biofilm systems when developing or applying mathe-
matical models. This work describes a simplified modelling approach to
include some possible effects of higher order organisms on nitrification,
based on a proposed hypothesis of their oxygen consumption in the
biofilm. Three different models are developed and investigated. Model
simulations are validated using data from a laboratory experiment using
continuous-flow suspended-carrier biofilm reactors, where the predators
were selectively inhibited. The proposed models are capable of reproduc-
ing several of the observed effects. They are primarily aimed at capturing
the steady-state behaviour of the biofilm but may also prove to be a useful
basis for describing the dynamics of the process.
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Preface

This thesis contains my work on Modelling Aspects of Wastewater Treat-
ment Processes at the Department of Industrial Electrical Engineering and
Automation (IEA), Lund Institute of Technology, Lund, Sweden. In order
to improve the comprehensibility of the thesis it is divided into five
different parts, where Part I and Part V contain a General Introduction to
Mathematical Modelling and Conclusions, respectively. Part II contains
my work in the field of Modelling the Activated Sludge Process, Part III
deals with Modelling the Settling Process and Part IV contains some new
aspects of importance when Modelling Biofilm Processes. Although the
different processes are related and in practice normally combined within a
wastewater treatment plant, I believe that this division will make it easier
for the reader to locate areas related to his/her special interests.

Several parts of the work presented in this thesis have previously been
published in or submitted to international journals, or presented at inter-
national conferences and workshops. A list of the relevant references in
chronological order is given below.

Main Papers
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1004)/1-177/(1993), IEA, Lund Inst. of Tech., Lund, Sweden.

[2] Jeppsson, U., Olsson, G. (1993), “Reduced Order Models for On-
Line Parameter Identification of the Activated Sludge Process”.
Wat. Sci. Tech., vol. 28, no. 11-12, pp. 173-183.

[3] Jeppsson, U. (1994), “Simulation and Control of the Activated
Sludge Process – a Comparison of Model Complexity”. Proc.
IMACS Symposium on Mathematical Modelling, (I. Troch and F.
Breitenecker eds.), Technical University Vienna, Vienna, Austria,
vol. 3, pp. 444-451.
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[4] Olsson, G., Jeppsson, U. (1994), “Establishing Cause-Effect
Relationships in Activated Sludge Plants – what Can Be
Controlled”. Proc. 8th Forum Applied Biotechnology, Med. Fac.
Landbouww., University of Gent, Gent, Belgium, vol. 59, pp.
2057-2070.

[5] Diehl, S., Jeppsson, U. (1995), “A Simulation Model of the
Reactor–Settler Interaction in Wastewater Treatment”. Paper VI in
Conservation Laws with Application to Continuous Sedimenta-
tion. Ph.D. dissertation by S. Diehl (ISBN 91-628-1632-2), Dept
of Mathematics, Lund Inst. of Tech., Lund, Sweden.

[6] Jeppsson, U. (1995), “A Simplified Control-Oriented Model of the
Activated Sludge Process”. Mathematical Modelling of Systems,
vol. 1, no. 1, pp. 3-16.

[7] Jeppsson, U., Diehl, S. (1995), “Validation of a Robust Dynamic
Model of Continuous Sedimentation”. Proc. 9th Forum Applied
Biotechnology, Med. Fac. Landbouww., University of Gent, Gent,
Belgium, vol. 60, pp. 2403-2415.

[8] Jeppsson, U., Lee, N., Aspegren, H. (1995), “Modelling Micro-
fauna Influence on Nitrification in Aerobic Biofilm Processes”.
Proc. Int. IAWQ Conf. Workshop on Biofilm Structure, Growth
and Dynamics, Delft University of Technology, The Netherlands,
pp. 77-85.

[9] Diehl, S., Jeppsson, U. (1996), “A Model of the Settler Coupled to
the Biological Reactor”. Submitted to Wat. Res.

[10] Jeppsson, U., Diehl, S. (1996), “An Evaluation of a Dynamic
Model of the Secondary Clarifier”. Accepted for presentation at
Water Quality International ’96, IAWQ 18th Biennial Inter-
national Conference, Singapore, June 23-28.

[11] Jeppsson, U., Diehl, S. (1996), “On the Modelling of the Dynamic
Propagation of Biological Components in the Secondary Clari-
fier”. Accepted for presentation at Water Quality International
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Subsidiary Papers
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rolleghem, M. Henze eds.), European Commission, Directorate-
General XII: Science, Research and Development, Luxembourg,
pp. 89-104.

[18] Carstensen, J., Vanrolleghem, P., Ayesa, E., Jeppsson, U.,
Urrutikoetxea, A., Vanderhaegen, B. (1996), “Objective Functions
for Wastewater Treatment Design and Operation”. COST 682:
Environment, (D. Dochain, P. Vanrolleghem, M. Henze eds.),
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[19] Vanrolleghem, P., Jeppsson, U. (1996), “Simulators for Modelling
of WWTP”. COST 682: Environment, (D. Dochain, P. Van-
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Comment

For reasons of simplification, the above papers are scarcely referenced
explicitly within the thesis although they are all included in the Biblio-
graphy to provide a complete description of the used sources. Instead, their
main contributions to the thesis are listed below.

Of the main papers, my licentiate’s thesis [1] is the basic source for my
research on modelling of the activated sludge process and has consequently
strongly influenced the contents of Chapters 2, 3 and 4. Chapter 3 further
covers material from [4] and parts of Chapter 4 are also discussed in [2],
[3] and [6]. Chapters 5 and 6 cover material from [5], [7], [9], [10] and
[11], while [8] is the initial work that has been extended in Chapter 8.

The influences of the subsidiary papers are more difficult to define (as they
are subsidiary). Chapters 2 and 3 are to some degree influenced by con-
cepts presented in [15], [16], [17], [18], [19] and [20], while [12], [13] and
[14] contain some ideas that have been incorporated into Chapter 4.
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Axioms of Modelling

Three fundamental axioms to consider for everyone working with the
development of mathematical models and model simulations are summa-
rized below. The pictures are from Ljung and Glad (1991).

Note! No figure available.

Pygmalion: King of Cyprus, who was also a famous
sculptor. He fell in love with one of his sculptures and
pleaded with the gods to bring it to life.

Axiom 1: Do not fall in love with your model.

xi



Note! No figure available.

Procrustes’ bed

Procrustes: A robber in Greek mythology known for his
bed where he tortured the people he caught. He
stretched those who were too short until they fitted the
bed, and he cut off the legs and the head of those who
were too long.

Axiom 2: Do not try to adapt reality to your model.

Note! No figure available.

Axiom 3: Do not extrapolate your model’s region of
validity too far.
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Chapter 1

____________________________________________________________

Introduction

All forms of life are dependent on water. The most prominent theories
claim that life on this planet first developed in the surface layer of the
prehistoric oceans approximately three billion years ago. Humans still
spend the first nine months of their development completely surrounded by
water and during an early phase of the growth of the fetus, it develops
rudimentary gills. The human body consists of approximately 64 % water
and requires 2–3 litres of drinking water daily to maintain a healthy
balance within the body (during normal conditions). The immense quantity
of water, covering 71 % of the earth’s surface to a mean depth of 3.8 km,
measures in volume about 1.4·109 km3. But only a maximum of about
0.3 % of the world’s total water resources is available for human usage.

In comparison with other life forms, man has a greater influence on the
quality of the water around him. Man’s influence is both negative and
positive. Pollution, depletion of natural water resources and the deteriora-
tion of living conditions for other life forms are products of man’s modern
society. Nature’s own self-cleansing mechanisms have been adopted by
man to treat the wastes which are generated in his increasingly industrial
society. As abundant supplies of clean, fresh water become more scarce,
the need to protect these sources become more acute. The lack of clean
drinking water is today probably the single most important factor for the
spreading of various diseases in many parts of the world, leading to the
deaths of thousands of people every day. On many occasions, wars have
been initiated as a result of disagreements over the use of natural water
resources. 

The need for various aspects of sanitary engineering has been recognized
for thousands of years. References are made in the Bible to sanitation laws
and some ancient structures, such as the Cloaca Maxima built be the
Romans more than 2500 years ago, are still in use today (Fuhrman, 1984).
Epidemics like the Black Plague showed man’s vulnerability to poor



hygienic conditions. Sir John Harington’s invention of the flush toilet in
1596 was a significant technical development in the quest for improved
hygienic conditions (although an arguable claim today) but its use was not
common until much later. Prior to the mid 1800s there was little treatment
of wastewaters as most utilities were constructed only for drainage
purposes. The more general introduction of the flush toilet around the turn
of the century led to a dramatic decrease of sanitary problems within the
cities but instead created another problem – heavily polluted receiving
waters. This initiated much of the development of wastewater treatment
systems.

Today, modern and environmentally developed cities utilize vast sewage
collection systems to collect and transport all types of wastewaters from
homes, businesses and industries to wastewater treatment facilities. Once
at the treatment plant, the wastewater is exposed to different processes
which can remove most of the pollutants. The degree to which the waste-
water must be purified depends on the ability of the recipient to accept,
without harm, the effluent. In Figure 1.1 the development of wastewater
treatment systems in Sweden in recent years is illustrated.

Note! No figure available.
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Figure 1.1 The development of the Swedish wastewater treatment
systems in urban areas from 1965 to 1990 (Hultman, 1992).

Modern wastewater treatment (WWT) techniques have been in use for over
a century. Many different processes have been developed and many varia-
tions tested. The activated sludge process and processes using biofilms
(i.e., biological treatment) are two of the most common processes used
today. Practically all wastewater treatment systems also use sedimentation
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at some stage of the treatment process, to separate the solid matter from the
liquid in a suspension. Some aspects of these three fundamental processes
have been investigated from the viewpoint of mathematical modelling and
will be presented in this work.

1.1 Motivation

Wastewater treatment processes can be considered as the largest industry
in terms of treated mass of raw materials. In the European Community, for
instance, a daily wastewater volume of approximately 40·106 m3 has to be
processed (Lens and Verstraete, 1992). However, studies have shown that
even well attended WWT plants fail to meet the required effluent quality
standards up to 9 % of the operation time (Berthouex and Fan, 1986), not
including the short upsets lasting less than one day. The U.S. Environ-
mental Protection Agency estimated that one out of three treatment works
were not in compliance with discharge limitations (Ossenbruggen et al.,
1987), and in Germany and the Netherlands clarification problems were
found to occur in almost half of the evaluated treatment plants (Chambers
and Tomlinson, 1982). Besides poor design, overloading and inadequately
trained operators, a lack of process control leading to excessive effluent
quality variations, was reported as the main cause.

A closer look at the current operation of wastewater treatment plants shows
that automation, while introduced in the late sixties, can still be considered
minimal. Few plants are equipped with more than a few elementary
sensing elements and control loops, mostly concerning flow metering and
control, and for monitoring the basic plant performance over longer
periods of time. Since the early seventies, when a major leap forward was
made by the widespread introduction of dissolved oxygen control, little
progress has been made. A number of reasons for this lack of instrumen-
tation, control and automation (ICA) have been put forth (Beck, 1986;
Olsson, 1993):

• Understanding: Insight in the treatment processes is still insuffi-
cient and there is a lack of suitable mathematical models.

• Inadequate instrumentation: Non-existent or insufficiently reli-
able technology.

• Plant constraints: Inapt and insufficient flexibility to manipulate
the process.

Chapter 1.  Introduction 5



• Economic motivation: There exists a lack of fundamental know-
ledge concerning benefits versus costs of automated treatment
processes. In addition, WWT processes are not productive and
automation can only contribute to a decrease of operating costs
but does not directly lead to increased profit.

• Education and training: Operators are not always adequately
trained to operate advanced sensor and control equipment and
most environmental engineers would need more basic under-
standing of process dynamics and control in order to appreciate
the potential of ICA.

• Communication: The interaction between operators, designers,
equipment suppliers, researchers and government regulatory
agents is often unsatisfactory and leads to poorly designed plants.

Over the last decade, the increased public awareness, as reflected in more
stringent effluent regulations, has considerably increased the requirements
imposed on treatment plants. Not only the organic carbon pollution of a
wastewater must today be eliminated but also nutrients (i.e., nitrogen and
phosphorus). With biological nutrient removal being the most economic
way of treatment (in most cases), rather complex process configurations
have resulted. The numerous interactions that occur among the different
unit processes and the fact that the biological potential is taken to its limits,
lead to nutrient removal plants being quite vulnerable to external distur-
bances or erroneous manipulations. Hence, the increased complexity is a
major driving force for the introduction of advanced instrumentation that
can provide the necessary information of the process condition. Moreover,
as process complexity increases, more possibilities are required to act upon
the process to guarantee satisfactory treatment performance. Finally, the
increasing number of measured and manipulable variables gives rise to
more complex control systems that take advantage of the new possibilities.

Many wastewater treatment plants are presently operated according to
predetermined schemes with very little consideration to the variations of
the material loads. Using on-line sensors for on-line control of the opera-
tion of the plants may enhance the ability to comply with assigned effluent
standards. In general, a better understanding of the dynamic behaviour of
the process, adequate mathematical models and an on-line identification of
model parameters and influent loads in combination with the use of control
systems have significant potential for solving operational problems as well
as reducing operational costs. In addition, this knowledge may be used for
reduction of volume holdings in the design of the plants to be constructed
in the future.
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Control of wastewater treatment plants relies on four building blocks (see
Figure 1.2):

• insight in the plant operations and dynamics summarized in an
appropriate mathematical process model;

• sensors that provide on-line data from some of the output vari-
ables of the process and disturbances acting upon it;

• adequate control strategies which try to minimize deviations from
the control objectives;

• actuators which implement the controller outputs on the plant.

Control
system Actuators Plant

Sensors

Disturbances

Objectives Outputs

Figure 1.2 Schematic description of the control chain of a wastewater
treatment plant (Vanrolleghem, 1994).

It must be realized that probably the most critical phase in the solution of
any control problem is in the modelling stage. This is because nearly all
control techniques require a knowledge of the dynamics of the system to be
controlled before an attempt can be made to design a controller for it. This
means that the primary building block of any modern control exercise is to
construct and identify a model for the system to be controlled. Moreover,
the quality of the control system obtained depends on the designer’s under-
standing of the given system’s dynamics and its limitations.

Many model construction and identification studies are conducted using
general linear statistical models and corresponding identification algo-
rithms. It is easy to assume more or less complete ignorance of a system
and then let a general algorithm find an empirical model for it. This
approach works fairly well on linear processes but a vast number of
important systems (such as wastewater treatment processes) cannot be
described adequately by linear equations. Another disadvantage of such an
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approach is that it gives no or very little physical information about the
system in question.

It is currently not possible to model and identify general non-linear
systems because of their great variety and because of their structural com-
plexity. There are numerous non-linear systems which must be controlled
in the present industrial world. Thus, it is important to develop methods to
model non-linear systems and to estimate the model parameters. Once the
models are available, it is also important to investigate how they can be
used to establish an understanding and an effective control of the relevant
system.

The behaviour of biotechnological processes occurring in a bioreactor has
a complexity unparalleled in the chemical industry. As a consequence, its
prediction from information about the environmental conditions is
extremely difficult. The number of reactions and organism species that are
involved in the system may be very large. An accurate description of such
complex systems can therefore result in quite involved models, which may
not be useful from a control-engineering viewpoint. We can summarize
some of the major problems when trying to model WWT processes in
general as follows:

• lacking process knowledge (e.g., biofilm structure changes, hydro-
lysis, flocculation, settling characteristics);

• several different unit processes interconnected by various internal
feedbacks;

• macroscopic modelling of microscopic reactions;

• highly non-linear processes;

• non-stationary processes;

• time varying process parameters (due to the adaptive behaviour of
living organisms to changing environmental conditions);

• practically non-controllable and highly variable process inputs;

• lack of adequate measuring techniques.
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1.2 Objectives and Contributions of the Thesis

Current research in the area of wastewater treatment process modelling is
among other things concerned with the following items (Olsson, 1993;
Vanrolleghem, 1994; Henze et al., 1996):

• Incorporation of the latest scientific insights in the different
processes: Significant efforts are made to model important
processes, such as the
1) phosphate removal;
2) hydrolysis of substrates;
3) fate of biopolymers;
4) sedimentation process with special emphasis on the inter-

action between the biological phenomena such as filament
growth and settling properties of the sludge.

• Identifiability: A discrepancy has developed between the amount
of data needed to identify the increasingly complex models and
the amount of information that can be obtained from the process.
Especially if only on-line data can be used for model identi-
fication, serious problems may occur when trying to find unique
parameter estimates. Even the combination of on-line and off-line
data may be insufficient for accurate modelling. Current research
is therefore directed towards the development of new monitoring
equipment and off-line methodologies adapted to the information
need of the complex models.

• Verifiability: The mathematical models that have been introduced
recently are the result of fundamental studies aimed at elucidating
the mechanisms of certain microbial processes. To explain the
detailed experimental findings more precisely, state variables and
parameters that are not directly measurable (e.g., active hetero-
trophs), have been introduced in the models. Hence, since verifi-
cation of a model requires that all model predictions of the state
variables can be compared with experimental data, current
models have become intrinsically non-verifiable.

• Model reduction for process control: The identifiability and
verifiability problems mentioned above means that considerable
efforts must be devoted to the development of new sensor
technology and experimental methods so that the new models
may be used in model-based control systems. An alternative
approach which attracts much attention is directed to the
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reduction of the complexity of existing mechanistic models. The
reduction is carried out to such a level that on-line identification
with existing sensor technology is feasible while maintaining the
necessary predictive capabilities of the major phenomena in the
process.

In a broad perspective, the objective of this thesis is to cover different
aspects of all the four items discussed above. As the various processes in
wastewater treatment are closely related (activated sludge, sedimentation
and different types of biofilm processes), it is the aim of this thesis to
provide a good overview of the processes and in detail investigate some
important modelling possibilities for each system. The introduced models
should provide an adequate basis for future model development and refine-
ments and also fulfil a potential need for different practical applications
within the wastewater treatment industry.

The main objective of the work on activated sludge modelling is to
combine knowledge of the process dynamics with mathematical methods
for estimation and identification, in order to obtain the simplest possible
models capable of describing the carbonaceous and nitrogenous activities
in the process with reasonable accuracy. The objective of the models is that
they should be identifiable from available on-line measurements and
thereby provide a basis for future development of more sophisticated
control strategies, such as feed-forward, adaptive and other types of model-
based control. Due to the time varying characteristics of the process it is
essential that the model parameters can be uniquely updated on-line. In
order to make the reduced models more comprehensible and easy to use it
is also important to maintain the basic mechanistic structure and model the
reactions in a simplified but still physically reasonable way.

The behaviour of the secondary clarifier is often reported to be a bottleneck
of the AS process. The need for adequate models is apparent. The highly
complex two and three-dimensional models that have recently become
available are still too complex to be used in practical simulations and are
difficult to integrate with bioreactor models. The majority of used settler
models are one-dimensional layer models. The objective of this thesis
within the field of settler modelling is to enlighten and demonstrate the
benefits of using a stringent mathematical analysis as the basis for model
development. The model should not contain any ad hoc assumptions and
predictions should be consistent with the analytical solution of the con-
tinuity equation, on which it is based. Moreover, it should be as simple as
possible, computationally efficient, and easy to combine with models
describing the bioreactor.
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Effects due to higher order organisms in biofilm systems are normally
neglected in current biofilm models, although it is known that the
organisms play an important role. The objective of the biofilm modelling
in this thesis is to introduce new knowledge (or a new hypothesis) into a
biological model in an attempt to explain recent experimental findings
concerning the influence of higher order organisms on the nitrification
capacity of aerobic biofilms. However, as biofilm models are extremely
complex in their current forms, a related objective is to describe the
observed behaviour in a simplified manner. As the amount of information
from the experimental system is limited, the primary aim is only to extend
an existing model to explain the steady-state behaviour of the process.

The main results of this thesis are summarized in Chapter 9 together with
some suggestions of topics for future research. The major contributions of
the thesis are given below.

• The development of a set of reduced order models for the acti-
vated sludge process aimed at control applications. A detailed
analysis of the identifiability properties and general dynamic
behaviour of the models are given together with an investigation
of both off-line and on-line methods for state and parameter esti-
mation using currently available on-line measurements.

• A thorough evaluation of different one-dimensional settler models
with respect to consistency and robustness. In particular, the coup-
ling between a bioreactor model and a new robust settler model,
derived from a stringent mathematical analysis based only on the
constitutive assumption by Kynch, is presented in detail. This
modelling of the entire AS process includes the prediction of the
concentrations of the individual biological components as they
propagate through the settler.

• A set of preliminary attempts to include the influence of higher
order organisms on aerobic biofilm systems into existing bio-
logical models, without increasing the model complexity in any
significant way. The modelling approach is based on the oxygen
consumption of higher order organisms within the biofilm and
will be further investigated in the future.

The thesis also includes an extensive bibliography, summarizing much of
the innovative work performed within the field of modelling wastewater
treatment processes, which the interested reader can use as a basis for
further literature studies.
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Finally, it is believed that the thesis (at least parts of it), with regard to its
rather broad perspective on mathematical modelling of processes related to
wastewater treatment, may serve as a good introduction for graduate
students, when starting their work within this important field of research.

1.3 Outline of the Thesis

An interdisciplinary approach is often required to understand complex
systems such as wastewater treatment processes. Unfortunately, within the
field of wastewater treatment there appears to be a division between people
working primarily with the process itself and people working with mathe-
matical modelling and control aspects of the process. To enhance the
understanding of this thesis for readers with different backgrounds, the
basics of mathematical modelling are reviewed in Chapter 2 and descrip-
tions of the investigated processes are included in Chapters 3, 5 and 7.
Although this approach increases the scope of the thesis, it is believed to be
beneficial in terms of allowing readers from different research fields to
understand the purpose of the work better.

The thesis is organized in five different parts in order to make the content
more comprehensible and also to make it easier for the reader to locate
areas related to his/her special interests. These five parts are:

• Part I (Chapters 1 and 2): General introduction to problems
related to wastewater treatment and various aspects of mathe-
matical modelling;

• Part II (Chapters 3 and 4): Problems and possibilities related to
modelling of the activated sludge process, focusing on reduced
order models for future control applications;

• Part III (Chapters 5 and 6): Capabilities of one-dimensional layer
models for an accurate description of the behaviour of the secon-
dary clarifier, focusing on an analytically derived model using a
consistent numerical algorithm;

• Part IV (Chapters 7 and 8): Possibilities of including the
influence of higher order organisms on aerobic biofilms into a
biological model in a simplified manner, validated against experi-
mental data;

• Part V (Chapter 9): Conclusions and future perspectives.

12 Modelling Aspects of Wastewater Treatment Processes



In Chapter 2 we introduce several concepts related to mathematical
modelling. A strategy for model building is presented together with a
thorough discussion on model validation. Methods for model structure
evaluation, model reduction, model identifiability, state and parameter
estimation, etc., are reviewed. A small example is also used to demonstrate
some of the problems related to mathematical modelling.

Chapter 3 provides a detailed background of the activated sludge (AS)
process – the historical development, different types of processes available,
and a review of the research within the field of modelling leading up to the
models used today to describe the mechanisms of the AS process. The
IAWQ AS Model No.1 is studied in detail. Finally, various problems
related to the AS process, such as the lack of proper sensor technology and
the limited flexibility of the process for control purposes, are discussed.

Chapter 4 deals with reduced order models for the AS process. Two
reduced order models are developed (based on the IAWQ model) and
investigated by means of numerical simulations. The identifiability pro-
blem is considered and the behaviour of the reduced models are compared
with results of the IAWQ model for different operating conditions. State
and parameter estimations are performed by both off-line and on-line
methods, using the IAWQ model as a reference model.

The fundamentals of settler modelling are described in Chapter 5. The
conservation law, which is the basis for all mechanistic settler models, is
thoroughly presented from a mathematical viewpoint. The development of
one-dimensional layer models is discussed together with problems related
to the settling velocity functions used in these models, leading up to the
models commonly used today. Finally, a new robust settler model that is
derived using the knowledge of the analytical solution of the continuity
equation and Kynch’s constitutive assumption only, is described in detail.

In Chapter 6 problems related to the coupling of a settler model to a model
of the bioreactor are investigated. A detailed analysis of the behaviour of
the robust settler model compared with other one-dimensional models is
carried out by means of numerical simulations. The models are investi-
gated during steady-state and dynamic conditions, both for the settler
model used as a stand-alone model and when coupled to the bioreactor
(simulating an entire AS process). A special analysis is performed in
relation to the problem of describing the propagation of the individual
biological components through the settler.
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Chapter 7 presents the fundamental mechanisms of biofilm processes
together with a review of available process variants and some of the most
important model developments during the last decades. A special descrip-
tion of the behaviour of higher order organisms influencing the biofilm
process is also provided. Finally, a state-of-the-art biofilm model is
discussed together with the numerical algorithm used to solve the resulting
system of stiff partial differential equations.

An experimental system was used to investigate the influence of higher
order organisms on the behaviour of a nitrifying aerobic biofilm. The
results are presented in Chapter 8 together with a hypothesis on the role of
this type of organism within biofilm systems. Based on the hypothesis,
three different models are developed (extensions of the IAWQ model) and
calibrated. Computer simulations are used to validate the behaviour of the
models when compared with the experimental results (primarily the
steady-state behaviour).

In the concluding chapter of this thesis the main results are summarized.
Directions for future research and perspectives are also briefly discussed.

14 Modelling Aspects of Wastewater Treatment Processes



Chapter 2

____________________________________________________________

Mathematical Modelling

In this chapter we give an introduction to the field of mathematical
modelling and some relevant areas related to this subject. Model objec-
tives, structures and construction are discussed as well as associated topics
such as model identification, estimation, reduction and validation. Of
necessity the introduction is limited, as mathematical modelling in general
is an area that has provided enough material for hundreds (or possibly
thousands) of books. Part of the material in this chapter is covered in [181].

2.1 Overview

Ever since Isaac Newton published his fundamental work Mathematical
Principles of Natural Philosophy in 1687 where the fundamental laws of
force and motion were formulated, the conclusion within the scientific
community has been: Nature has laws, and we can find them. The
importance of this statement cannot be overestimated. It implies that every
system – mechanical, electrical, biological or whatever – can be accurately
described by a mathematical model. Although proved wrong by the
quantum theory or by the recently developed theory of chaos, the influence
on the way scientists think has been enormous. In combination with the
rapid development of computers during the last fifty years, the number of
available models within every scientific area has exploded. The models can
today also be applied in practice as the computers allow us to numerically
solve process models of such complexity that could hardly be imagined a
couple of decades ago.



In an ideal world, process modelling would be a trivial task. Models would
be constructed in a simple manner yet in every way reproduce the true
process behaviour. Not only would the models be accurate, but they would
be concise, easy to use and reveal everything about the internal cause-
effect relationships within the process. Each model would be built for a
specific task to a prescribed accuracy. Unfortunately, our world is not ideal
although the above modelling perspective may serve as an excellent long
term goal for everyone dealing with modelling. In the real world it must be
realised that a model is always a simplification of reality. This is especially
true when trying to model natural systems containing living organisms.
The common relationship between reality and a mathematical model is
illustrated in Figure 2.1.

All process
characteristics

All essential process
characteristics

Reality

Identified essential
process characteristicsIdentified non-essential

process characteristics

Incorrectly identified
process characteristics

Model

Identified essential
process characteristics

Identified non-essential
process characteristics

Incorrectly identified
process characteristics

Figure 2.1 The relationship between reality and a model (Thensen, 1974).
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Available Literature (Examples)

The number of books dealing with mathematical modelling in general is
extensive. A few examples that describe the fundamentals of mathematical
modelling, process dynamics and automatic control are Seborg et al.
(1989), Åström and Wittenmark (1990), Murthy et al. (1990), Kuo (1991)
and Olsson and Piani (1992).

There exist a large number of books dealing with system identification and
related subjects. A few recent examples are Ljung (1987), Söderström and
Stoica (1989), and Bohlin (1991). A thorough introduction to the important
field of mathematical optimization is given in Fletcher (1987). As the main
focus of the above books is aimed at linear and discrete-time models (for
automatic control applications), the survey by Mehra (1980) may serve as a
good complement, as it deals with system identification methods of non-
linear systems. An excellent review of identifiability analysis and problems
associated with this is given by Godfrey and DiStefano (1985; 1987). In
the dissertation by Robertson (1992) several methods for model reduction
are thoroughly explained and a number of case-studies are given.

Modelling of wastewater treatment (WWT) systems can be studied, for
example, in Grady and Lim (1980), Patry and Chapman (1989), Andrews
(1992), Henze et al. (1992) and Orhon and Artan (1994). A good intro-
duction to the possibilities and difficulties of identification, estimation and
control of WWT processes is given in Beck (1986; 1987). A large number
of relevant references covering much of the work in this field until 1987
are provided. In Beck (1991) the concept of model calibration versus
model uncertainty is further emphasized. Finally, the works by Bastin and
Dochain (1990), Vanrolleghem (1994) and Reichert (1994b) cover many
important aspects of on-line estimation and model structure character-
isation for WWT applications.

The above examples of available literature will provide the enthusiastic
reader with thousands of more references covering almost every possible
aspect of mathematical modelling, system identification and automatic
control.

Why Do We Need Mathematical Models?

The word ‘model’ has a wide spectrum of interpretations, e.g., mental
model, linguistic model, visual model, physical model and mathematical
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model. In this work we will restrict ourselves to mathematical models, that
is, models within a mathematical framework where equations of various
types are defined to relate inputs, outputs and characteristics of a system.

Primarily, mathematical models are an excellent method of conceptualising
knowledge about a process and to convey it to other people. Models are
also useful for formulating hypotheses and for incorporating new ideas that
can later be verified (or discarded) in reality. An accurate model of a
process allows us to predict the process behaviour for different conditions
and thereby we can optimize and control a process for a specific purpose of
our choice. Finally, models serve as an excellent tool for many educational
purposes.

The mathematical model is a tool that allows us to investigate the static
and dynamic behaviour of a system without doing – or at least reducing –
the number of practical experiments. In practice, an experimental approach
often has serious limitations that make it necessary to work with mathe-
matical models instead. Some rather extreme examples of such limitations
are given below (Finnson, 1994).

• Too expensive: It is somewhat expensive to launch rockets to the
moon until one successfully hits the surface, then rebuild this
type of rocket in order to use it for the intended purpose.

• Too dangerous: Starting to train nuclear power plant operators at
full-scale running plants is not advisable.

• Too time-consuming: It would take far too much time to
investigate all variations of combinations of mixtures, tempera-
ture and pressure in a complex chemical process to identify the
optimum combination. With a few experiments, the rest of the
experimental domain can be simulated by a model.

• Non-existing system: While designing a suspension bridge it is
necessary to simulate how different designs will be affected by,
for example, high winds.

2.2 General Modelling Strategy

The reasons why we need mathematical models suggested in the previous
section are by no means exhaustive. However, once we have concluded
that models are useful, we need a general strategy for model building. Such

18 Modelling Aspects of Wastewater Treatment Processes



a strategy will be discussed in this section. The formulation is inspired by
the work of Robertson (1992).

In overview, the modelling of any system occurs in five rather distinct
steps, as illustrated in Figure 2.2 (Murthy et al., 1990). Step one is to
delineate the system being modelled as a functional specification. A
quantitative understanding of the structure and parameters describing the
process is required. Typically for wastewater applications this functional
specification may include such information as equipment type and size,
flow-sheet layout, environment variables, nominal operating conditions.

Functional process
specification

Select modelling
objectives

Select model
type

Model validation

Model construction
methodology

Pick the form of the
model, e.g., stochastic,

deterministic, linear

Create a model structure
and calculate the
model parameters

Determine the process
parameters, e.g., equipment

sizes, process topology

Select model purpose,
required model accuracy,

model boundaries, etc.

Figure 2.2 An overview of the modelling process.

The modelling objectives are then decided and then the desired model type
selected. A model building strategy is then followed to arrive at the appro-
priate model for the desired application. In the following subsections we
will assume that the first step, i.e., the functional process specification, has
been successfully accomplished and look somewhat closer at the following
four steps.
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Modelling Objectives

Any given process may have different ‘appropriate’ models. The chosen
appropriate model will depend on its objectives. These a priori decisions
about the model must be made before the model construction can begin.
Some of the more relevant objectives concern model purpose, system
boundaries, time constraints and accuracy.

Model Purpose

A wide variety of models are possible, each of which may be suitable for a
different application. For example, simple models which may be suitable
for model-based control algorithms, may be totally inadequate for simu-
lating and predicting the entire process behaviour for safety and opera-
tional analysis. A clear statement of the model intention is needed as a first
step in setting the model objectives. This entails listing all the relevant
process variables and the accuracy to which they must be modelled.

For example, within the field of wastewater treatment we can define a
number of general purposes for mathematical models (also applicable to
many other fields). These are listed below.

• Design – models allow the exploration of the impact of changing
system parameters and development of plants designed to meet
the desired process objectives at minimal cost.

• Research – models serve as a tool to develop and test hypotheses
and thereby gaining new knowledge about the processes.

• Process control – models allow for the development of new
control strategies by investigating the system response to a wide
range of inputs without endangering the actual plant.

• Forecasting – models are used to predict future plant performance
when exposed to foreseen input changes and provide a frame-
work for testing appropriate counteractions.

• Performance analysis – models allow for analysis of total plant
performance over time when compared with laws and regulations
and what the impact of new effluent requirements on plant design
and operational costs will be.

• Education – models provide students with a tool to actively
explore new ideas and improve the learning process as well as
allowing plant operators training facilities and thereby increasing
their ability to handle unforeseen situations.
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System Boundaries

The system boundaries define the scope of the model. A correct choice of
the system boundaries is necessary so that all the important dynamics in
the process are modelled. Choice of boundaries which include too many
insignificant details will lead to an unduly large model. This may cloud an
understanding of how and why the system dynamics are occurring as well
as being computationally more expensive. Conversely the definition of
boundaries which fail to include significant features of the real process
could lead to inaccurate dynamic responses and a loss of confidence in the
final model.

If uncertainty exists about the correct choice of boundary, a criterion for
boundary selection is to check whether the streams crossing the proposed
boundary are easy to characterize (e.g., constant, step impulses). If the
streams are well characterized, then the correct boundary has been chosen.

Time Constraints

Time constraints are important model restrictions to be chosen before
construction of dynamic models. Frequently the process under investi-
gation will contain a wide range of dynamic activity with widely varying
speeds of response. Characteristic time constants in the process may range
over many orders of magnitude. Invariably the modeller is interested in a
simulation over a defined period of time. For example, in an activated
sludge process the dynamics of the dissolved oxygen concentration have a
time constant in the range of minutes whereas the dynamics of the biomass
population are more in the range of days-weeks.

To produce an appropriate model, the modeller should therefore identify a
‘time-scale-of-interest’ and not model any latent dynamic effects outside
this time-scale. This identification should be in the form of maximum and
minimum characteristic time constant. Selection of an appropriate time-
scale will also have the added advantage of possibly avoiding ultra-stable
or stiff problems in the model numerical solution. These numerical
problems occur in systems with widely varying time constants or speed of
response (Willoughby, 1974).

Accuracy

The appropriateness of the model depends on the ability to predict the
system performance within a prescribed accuracy. The accuracy sought
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will affect the degree of simplification which can be achieved in building
the model. It is important that the desired accuracy of the model be
specified before the model is constructed and that this accuracy reflect the
purpose of the model. A measure of accuracy must be created to confirm
this, or the accuracy must be confirmed during the model validation.

Model Types

Many different classifications have been produced for the different model
types which are available (e.g., Murthy et al., 1990; Jørgensen, 1992). It is
possible to separate mathematical models based on the philosophy of the
approach and with regard to the mathematical form of the model (some-
times also depending on the application area of the model). We start by
looking at some different model philosophies.

Reductionist versus Holistic Models

Reductionist models are based on the attempt to include as many details as
possible into the model and to describe the behaviour of a system as the net
effect of all processes. In contrast to this approach, holistic models are
based on a few important global parameters and on general principles.

Internal versus External Models

Internal (or mechanistic) models describe system response as a conse-
quence of input using the mechanistic structure of the system, whereas
external (or input/output, black-box, empirical) models are based on
empirical relationships between the input and the output. Typical external
models are time-series models (e.g., ARMAX models) and neural net-
works. A mechanistic model is a model based on fundamental engineering
and scientific knowledge about the physical, chemical and biological
mechanisms that affect a system. A model based on elementary principles
tends to produce more reliable results when used for extrapolation
(Andrews, 1992). In complex systems it can be very difficult to obtain the
necessary fundamental relationships of the process and, consequently, a
model must be based on empirical relationships. In practice, models are
often a mixture of mechanistic and empirical models, using different
concepts at different levels of resolution. As an example, microbial growth
rates are in most cases parameterized empirically at the cell level, but
macroscopic water flow and substance mass balances are treated in a
mechanistic way. External models may even be used to obtain simplified
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descriptions of situations in which the validity of an internal model is
widely accepted. As an example, empirical parameterizations of turbulent
correlations are used in equations describing mean values of turbulent
flow, because the solution of the underlying Navier-Stokes equations is too
difficult (e.g., Stull, 1988). A good example of a combined mechanistic-
empirical approach (so called grey-box modelling) for wastewater appli-
cations are presented in Carstensen (1994).

Depending on the mathematical form of the models we can separate them
in several ways. Some of the most common ones are presented below.

Dynamic versus Static Models

This classification arises between models that do or do not vary with time.
Static models are often referred to as steady-state models. They model the
equilibrium behaviour of the system. Conversely dynamic models account
for the time varying responses of a system. Both these types are used
extensively in engineering applications. This is evidenced by the large
number of commercially available ‘simulators’ for both types. While it
may appear that the dynamic simulators are dominating, they have
received a more limited acceptance outside of an academic environment.

Deterministic versus Stochastic Models

Another classification arises between models that contain uncertainty or
randomness in their final results and those that do not. Stochastic models
are models in which the final outcome is not known with certainty but can
be expressed as a distribution of all possible outcomes. In deterministic
models all future outcomes are known with precision by the present state
and the future values of external variables (inputs) of the model. Stochastic
models also take into account the random influences of the temporal
evolution of the system itself. Although the stochastic description of, for
example, environmental systems may be more realistic, the large majority
of environmental models formulated so far are deterministic. The main
reasons for this fact may be the lack of data for the characterization of
random variables, high requirements of computational resources for
solving stochastic differential equations and the success of deterministic
models in describing average future behaviour.
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Continuous-Time versus Discrete-Time Models

Continuous-time models are based on formulations of the rates of change
of state variables. The values of the state variables as functions of time are
then obtained as the solution of a system of differential equations. In
contrast to this approach, discrete-time models are based on a division of
the time-scale into discrete intervals and specify the state variables in a
given time interval as algebraic functions of the values in the immediately
preceding time interval. When a model is simulated in a computer the
model is always discretized as a digital computer is in itself discrete,
although special algorithms and very short time steps may be used to
mimic the behaviour of the original continuous system almost perfectly.

Distributed versus Lumped-Parameter Models

Many courses of events which are of interest to modelling are distributed
not only in time but also in space. Mathematically, variables distributed in
space can be described by partial differential equations and the resulting
models are called distributed models. Application of such equations will,
however, result in a complex simulation problem. A common way of over-
coming this difficulty is to use the lumped-parameter approximation of
these distributed equations. To use this approach, isotropic regions in the
process are identified. These are regions in which composition, specific
energy and momentum are approximately invariant with spatial dimension.
The time-varying properties of this ‘lump’ are then calculated from the
transfer of mass, energy and momentum over the boundary of the region.

Other possible ways of classifying mathematical models are, for example,
linear versus non-linear models and continuous versus discrete-event
models.

Model Construction Methodology

For the last thirty years the importance of building appropriate models has
been recognized in many disciplines. Many attempts have been made to
apply a systems approach to the development of a modelling methodology,
(see Murthy et al., 1990). While a wide variety of different methodologies
exist, all possess a number of common features. A general summary of
these features is shown in Figure 2.3. After the definition of the modelling
objectives and selection of model type, several key steps can be found in
all current model building methodologies. These steps are outlined below.
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Figure 2.3 A generic modelling methodology.

System Characterization

The first step is to characterize the process. This is achieved by developing
a set of axioms or descriptions of the process. These axioms can be formed
by intuitively describing the process or in some manner idealizing or
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approximating the process behaviour. They could be a result of some prior
knowledge of the process or based on postulated mechanisms within the
process. The end result of this step is a set of relationships that the
modeller expects will adequately describe the process to the accuracy
which is required.

The description invariably is incomplete so that a number of different
possible models and processes could satisfy them. The axioms may also
contain information which is incorrectly characterized from the process (cf.
Figure 2.1). Identification of all important characteristics may, however, be
impossible due to the complexity of the process and the limited expertise
and knowledge of the modeller. Therefore, the task of the modeller is to
strive for a good characterization, i.e., identify many of the most important
characteristics whilst limiting incorrect and non-essential identifications.

Model Construction

In this step of the model building process, the axioms developed during the
system characterisation are refined into mathematical relationships. This
requires a quantitative assessment of the physical phenomena judged to be
important during the characterisation step and involves determining a
mathematical structure for the model and assigning parameters to the
model.

The distinction between conservative and constitutive should be empha-
sized. Conservation relationships are fundamental physical laws whereas
constitutive relationships are postulated mechanisms usually based on
empirical evidence. In using constitutive relations, the modeller is incorpo-
rating more questionable but necessary information into the model.

In principle, the conservation laws can be applied at every point of a
process. Mass, energy and momentum profiles are obtained throughout the
process along all spatial directions. This is the earlier discussed distributed
formulation and can be written as a general set of partial differential
equations. The general formulation of these equations lies beyond the
scope of this work. Instead the conservation law in combination with mass
transfer by gravity settling is thoroughly discussed in Sections 5.2 and 5.4
for the sedimentation process and the conservation law is also discussed in
Section 7.2 in connection to biofilm process modelling. The general set of
equations describe the physical behaviour at any point of the system and
are created by considering the mass, energy and momentum transfer from
an infinitesimal control volume within the process. Transfers between
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control volumes are governed by physical phenomena. Table 2.1 presents
some of the more common constitutive mechanisms for mass, energy or
momentum transfer experienced in process systems (Bird et al., 1976).

Transfer mechanisms Mass transfer Energy transfer Momentum transfer

Transport by
molecular diffusion

Fick’s law
of diffusion

Fourier’s law
of conduction

Newton’s law
of viscosity

Transport in solids Not available Conduction Not available

Laminar transport
in fluids

Convection Convection Convection

Turbulent transport
in fluids

Eddy diffusivity Eddy thermal
conductivity

Eddy viscosity

Interphase transport Mass transfer
coefficients

Conduction,
convection,

radiation
Friction factors

Generation/
accumulation

Chemical-
biological
reactions

Chemical-
biological
reactions

Not available

Table 2.1 Constitutive mechanisms for transport phenomena.

As discussed earlier, this type of partial differential equation system is
almost impossible to solve and, therefore, it is more common to transform
the model into a lumped parameter approximation. But even if the trans-
port phenomena are modelled accurately, it still remains to include the
physical, chemical and biological mechanisms that affect the process.

In a completely different direction, an arbitrary structure for the model can
be chosen. Model parameters are then varied to achieve agreement
between the process and the model. This type of model originates from the
field of system identification and is only suitable for model realisation
from observed process data. Different model structures and numerous
methods for identification of such models are given in Ljung (1987) and
Söderström and Stoica (1989), together with suitable experimental
methods used to increase the amount of information in a certain data set.
However, it should be noted that methods for parameter estimation are
becoming increasingly important also for modellers working with
deterministic models of complex systems. This topic will be discussed in
Section 2.4.
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Model Verification and Validation

Model verification and validation may be regarded as part of the model
construction methodology or a concluding step (cf. Figure 2.2). However,
it is clear that model construction and model validation are closely related
and require an iterative procedure according to Figure 2.3.

The constructed model must be tested by simulations. In the first
simulation the model behaviour is analysed/verified. This amounts to
checking that the simulated responses are consistent with the axioms
proposed during the process characterisation and the mathematical
structure used in the model. It also means debugging the model code and
ensuring that the simulated responses appear feasible.

The validation step involves checking that the model responses generated
during the model analysis agree with that obtained from the true process.
This is the ultimate check on the success of model building. A variety of
methods are available for this purpose and some of them will be discussed
in Sections 2.3-2.5.

If the process model fails the validation step, then it has to be reformulated
and the verification/validation analysis repeated. If the mismatch between
process and model is severe, then a new characterisation is required. A new
model will result. When the mismatch is small, it may be possible to tune
the model parameters to achieve a satisfactory agreement. In this case no
new characterisation of the process will be required.

2.3 Model Structure Evaluation

In this and the following two sections we will discuss aspects on model
structure, system identification and parameter estimation, and model
validation. These areas can hardly be separated and should therefore be
regarded as an entity when a model is evaluated. The discussion will
primarily be focused on evaluation of internal, deterministic models (see
Section 2.2) as this type of model is used throughout the work. We will
also limit the discussion to models which are used in WWT applications,
although many methods and procedures are naturally applicable to any
type of model. Much of the inspiration for these three sections is due to
Reichert (1994b).
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Why Are Simple Models Needed?

As discussed before, a model is nothing more than a mathematical abstrac-
tion of a real process. The equation or set of equations that comprise the
model are at best an approximation of the true process. Hence, the model
cannot incorporate all of the features, both macroscopic and microscopic,
of the real system. The engineer normally must seek a compromise
involving the cost of obtaining the model, that is, the time and effort
required to obtain and validate it and the expected benefits to be derived
from its use. The ultimate application and purpose of the model finally
determines how accurate it needs to be.

In general, modelling is still much of an art. The modeller must bring a
significant level of creativity to the task, namely to make a set of simpli-
fying assumptions that result in a realistic model. An ‘optimal’ model
incorporates all of the important dynamic effects, is no more complicated
in its structure than necessary, and keeps the number of equations and
parameters at a reasonable level. The failure to choose an appropriate set of
simplifying assumptions invariably leads to either a rigorous but overly
complicated model or models that are overly simplistic. Both extremes
should naturally be avoided.

For example, activated sludge models are often derived from simpler unit
operations and then combined into larger plant models. Consequently, the
model parameter values may not be the same. Moreover, several parameter
combinations can often explain the same dynamical behaviour. This is
further accentuated when the influent wastewater composition is taken into
consideration; the consequence of a change in its characteristics can quite
often be explained by kinetic parameter changes. 

Even if a major problem concerning models for wastewater treatment has
to do with the complex model structure and the large number of states and
parameters to be identified, instrumentation problems amplify these diffi-
culties (see Section 3.4). Available on-line sensors and laboratory proce-
dures are usually not adequate to validate the details of a complex model.
Furthermore, for a reliable identification result, the operation has to be
perturbed (or purposefully disturbed) in such a way that all the interesting
dynamical modes of the process are excited. This creates a demand not
only in amplitude but also in the time frame of the disturbances.
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It is practically impossible to develop a model for the activated sludge
process, which is reliable on a microscopic level. Though available models
are quite complex they are still greatly simplifying the representation of
many species of organisms. As the microbial population changes this needs
to be reflected in changing kinetic parameters and even by adding new
state variables. For example, filamentous organisms ought to be repre-
sented during many operating conditions. On the other hand, quite simple
models can be used effectively if the key model parameters are properly
identified to the current operating conditions. This is especially important
if the process is time variant.

A simplified model does not provide a fully explanatory model for every
physical reaction. Several parts of the process are often lumped together in
order to reduce the complexity. For a non-expert, the intuitive under-
standing of the process is, however, often enhanced by such models (if its
basic structure is mechanistic). Furthermore, in many cases the model
output needs only to be qualitatively significant, for example, show trends
and whether a variable is increasing or decreasing, without providing exact
quantitative results. The relative change of model parameters may also
provide useful information. This may allow effective use of simplified
models for highly complex processes. 

The activated sludge process is suited for a hierarchical control structure
based on several simple models. The process can in a natural way be
divided into unit operations – aerobic reactor, anaerobic reactor, anoxic
reactor, settler, sludge digester, etc. It can also be modularized based on
different time constants of the processes (see Section 3.4). Each single
model would be used to control and predict the behaviour of its specific
area in some optimal way but would also be synchronized with a high level
control system which optimizes the performance of the entire plant
according to preset criteria, which are often contradictory. The inclusion of
a knowledge-based system at the top level to allow for logical reasoning,
diagnosis, and decision support would further enhance the capabilities. In
Figure 2.4, a schematic view of such a hierarchical control system is
demonstrated. A recent example of a full-scale implementation of an on-
line hierarchical control system for the activated sludge process is
presented in Nam et al., (1996).
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Simplified
reactor models

Oxygen model
control & estimation

on-line

Settler model
predictions

Other sources
of information

Models for other
parts of the plant

Overall control system for
optimizing total plant

performance

local controllers

Control 
strategy Forecasts

Knowledge-based system for diagnosis and decision support

local controllers

Figure 2.4 Hierarchical control structure of the WWT process.

Simplified models, like the ones aimed at in Chapter 4, should conse-
quently not be evaluated and judged separately but be considered in a
broader perspective and in the context of a full-scale hierarchical control
structure. This type of distributed automation has been successfully applied
to many complex industrial applications, for example, chemical, paper, and
pulp processes. A similar approach could probably be applied to WWT
plants as well.

If the main purpose of a model is control, the need for simplicity is
evident. Due to the internal structure of a closed loop system, a reasonably
small error will automatically be compensated for. As the practical control
possibilities for the activated sludge process are quite limited, it is even
more important to use the ones available to their full extent. Due to the
large time constants and the difficulties in detecting problems early,
traditional control strategies based on feedback are probably not sufficient.
Methods based on feed-forward, predictive, or adaptive control appear to
be better suited for this purpose. However, all these methods require a
process model which is relatively simple in its structure, robust, uniquely
identifiable, and possible to update on-line as the operational conditions
change.

A model for operation and control has to be sufficiently complex to
describe the major phenomena taking place but still so simple that its
parameters can be updated while the plant is running normally, either by
taking advantage of the natural disturbances of the process or by
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introducing small deliberate perturbations. The need for highly complex
models is recognized for design purposes so the operational model has to
be considered as a special case, either for certain operational levels or for
particular time scales.

The Basic Problem

For most physical and many chemical applications, the a priori knowledge
is of such high quality that the system framework and most of the model
structure can be deduced from it. The modelling methodology developed
for these systems is adequate to estimate the parameters and solve the
minor uncertainties in the model structure by using final validation experi-
ments and eventually iterating a few times through the model building
procedure (see Figure 2.3).

The behaviour of biotechnological processes occurring in a bioreactor has
a complexity unparalleled in the chemical industry (Van Impe, 1993). The
number of reactions and species that are involved in the system may be
very large. An accurate description of such complex systems can therefore
result in highly complex models, which may not be very useful from a
control engineering viewpoint. The inherent characteristics of bio-
processes, i.e., their non-linearity and non-stationarity, in combination with
with the lack of adequate measuring techniques, make it necessary to
modify the modelling methodology (Vansteenkiste and Spriet, 1982).
More emphasis must be given to inductive reasoning to infer a larger part
of the model structure from the scarce (or harder to obtain) experimental
data. Consequently, structure characterisation methods (to infer the level of
model complexity and the functional relationships between variables)
become a more important tool, because the chance of obtaining an invalid
model is much larger and, hence, the number of model building iterations
may increase substantially (Vanrolleghem, 1994). The data scarcity also
induce an important problem for parameter estimation. Identifiability of
model parameters, i.e., the possibility to give a unique value to each
parameter of a mathematical model, is a general concern in current WWT
modelling efforts. The last problem is naturally more pronounced in on-
line identification because one is relying much more on real-time informa-
tion to perform the parameter estimation whereas off-line model calibra-
tion can take more advantage of the off-line data.

The three main sources of information that contribute to the model
building process are:
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• a priori knowledge;
• experimental data;
• modelling objectives.

It must also be realised that model structures with unidentifiable para-
meters are useless, and although a priori identifiability analysis is very
useful, the estimation of accuracy and correlation of estimated parameters
ultimately quantifies parameter identifiability.

Evaluation Criteria

Model structure evaluation consists of finding adequate model structures
and of comparing their quality. In the text below we will assume that a
number of different models are already available and discuss how to select
the best one. The most important criterion for the comparison of models is
that the deviations between measurements and model calculations should
be as small as possible. This criterion cannot be used alone, because it
favours the use of complex models with many parameters which are
difficult to identify uniquely. For this reason, this criterion has to be com-
plemented by a criterion of ‘parsimony’ leading to a preference for simple
model structures.

The three most important techniques for deciding between competing
model structures are:

• graphical or statistical searching for systematic deviations
between calculations and measurements (i.e., the residuals);

• quantitative measures of model adequacy;
• recursive parameter estimation.

In most cases, graphical comparisons clearly show the existence or absence
of systematic deviations between calculations and measurements. Such
deviations can also be detected with the aid of statistical analyses such as
residual plots, distribution or correlation tests of residuals, etc. The advan-
tage of such statistical measures over graphical methods is mainly the fact
that they facilitate the partial automation of model structure evaluation.

It is evident that a quantitative measure of the differences between calcu-
lated and measured values is an important criterion for the adequacy of a
model. However, in order to avoid the above problem of favouring more
complex models, which in turn will lead to problems in uniquely identi-
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fying the model parameters, an extra criterion to promote simplicity is
necessary. We can summarize the two criteria as follows (Spriet, 1985):

• quality of fit – the model structure should be able to represent the
measured data in a proper manner;

• parsimony – the model structure should be as simple as possible
compatible with the first criterion.

The first quantitative measure to include both these aspects was introduced
in a series of papers by Akaike (see e.g., Akaike, 1981). It is a generali-
zation of the maximum likelihood principle for parameter estimation of a
given model (see Section 2.4). The Akaike information criterion (AIC) can
be formulated as

AIC y meas( ) = −2 log max
θ

L y meas ,  θ( )( )



 + 2m (2.1)

where θ is the array of model parameters, ymeas the array of measured
values, L the likelihood function of the model (probability density of the
model at the measured values) and m the number of parameters. Equation
(2.1) formulates the trade-off to be made between quality of fit and model
complexity. The first term of the right-hand side increases with decreasing
quality of fit, while the second term increases with increasing model
complexity measured in terms of the number of parameters. The criterion
is easy to use since the first term corresponds to the usual criterion for
maximum likelihood parameter estimation, i.e., for all competing model
structures, a maximum likelihood parameter estimation is performed. Then
the model with the smallest value of AIC is chosen as the best model. The
criterion has, however, been criticized because of the heuristic arguments
for its justification and because it only accounts for model complexity in
terms of the number of parameters. An alternative information criterion (B)
was proposed by Schwarz (1978) as

BIC y meas( ) = −2 log max
θ

L y meas ,  θ( )( )



 + m log n( ) (2.2)

where n is the number of measured data points. Criterion (2.2) favours
more simple models than does criterion (2.1) if 8 or more measured data
points are used. For a large number of data points, the two criteria differ
significantly from one another. Several other suggestions for such criteria
exist, see e.g., Söderström and Stoica (1989) and Vanrolleghem (1994),
and it is not clear which measure performs best, especially when con-
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fronted with the general problem of discriminating between non-linear
models such as those used for modelling WWT processes (Spriet, 1985).

In most cases, model parameters are assumed to be constant. In contrast to
the usual parameter estimation, which compares the result of calculations
performed using different – but fixed – parameters, recursive parameter
estimation of time series data allow the parameters to change slowly in
time (e.g., Ljung and Söderström, 1983 and Young, 1984). Recursive
parameter estimation thus tests the model hypothesis of constant para-
meters and can therefore also be regarded as a model identification method
(see Section 2.4).

Model Reduction

The discussion so far has dealt with the situation when a number of
different candidate models are available and we want to select the best one.
Another situation occurs when we have a reference model (a state-of-the-
art model) available and we want to simplify this model for some specific
purpose. For example, the reference model may be a complex model
developed for providing deep insight in the behaviour of a process and we
may want to reduce this model into a simpler one, which is more suited for
control purposes. The reference model may also cover a wide range of
time-scales whereas we may be interested in isolating the part of the model
that describes the fast dynamics only. Some of latest modelling tools such
as ASCEND (Piela et al., 1991) and MODEL.LA (Stephanopolous et al.,
1990) have the capability to construct very detailed deterministic models,
which are suited for reference model construction and later model
reduction. 

There are two principles for accomplishing this type of model reduction,
namely

• intuitive model reduction;
• mathematical techniques for model reduction.

Intuitive model reduction implies that the modeller uses his knowledge and
experience of the true process and its dynamics in combination with the
defined purpose of the new model to infer a simplified model. Such a
simplification may affect both the model structure and the functional
relationships within the model. This is still the most common way used to
simplify models (at least for complex non-linear systems) and is the
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method that has been applied to a reference activated sludge model in
Chapter 4. The simplified model is then validated in a traditional way in
order to confirm or falsify the reduced model. A major disadvantage is that
it is difficult to prove that the applied simplifications are the most relevant
ones and another modeller may have a very different view on the relevance
of the assumptions made.

A wide variety of mathematical methods for model reduction are available.
The area has been the focus of much research particularly in the field of
control. In Robertson (1992) approximately 20 different methods are
described and evaluated according to four criteria:

• simplicity – the method should be easy to apply regardless of the
model type or level of complexity;

• power of reduction – the method should be powerful so that the
greatest reduction possible is achieved;

• error estimation – the method should possess a meaningful error
estimate to allow for a quantitative assessment of the reduced
model accuracy;

• structure preservation – the method should produce models that
maintain the physical significance of the state variables.

The evaluation is restricted to dynamic-deterministic models classified into
three different types:

• linear state-space models;
• non-linear state-space models;
• frequency domain models.

In this short review of Robertson’s work we will not describe any details
about the techniques but only discuss some major advantages and dis-
advantages of such methods. For details and references to the different
techniques we refer to Robertson (1992).

The majority of model reduction techniques have been developed for linear
models. Despite this, most linear model reduction methods are inappro-
priate because they are invariably structure destroying. Many reduction
techniques such as aggregation or principal component analysis frequently
make use of linear coordinate transformations to reduce the model dimen-
sions. These transformations invariably lead to an alternative coordinate
system in which state variables have no physical significance. A novel
approach for reduction of linear models, is the use of structural dominance
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concepts. Measures are developed which are indicative of the strength of
the coupling between model components. By neglecting weak couplings, a
reduced order model can be formed.

A large number of methods also exist for frequency domain models but
most of them suffer from two major limitations. Firstly, they are all in
practice limited in reducing only medium to small size models and do not
work well for highly complex models. The other main problem is that
when a deterministic state-space model is transformed into the Laplace
domain, this transformation is in itself structure destroying. No physical
significance can therefore be attached to the resulting frequency domain
models.

The area of non-linear model reduction is still in its infancy with respect to
the four selection criteria. Many of the methods resort to the use of non-
linear transformations to turn the non-linear problem into a linear one (e.g.,
exact linearisation). This strategy, whilst destroying the original structure
of the reference model will also lead to the limitations imposed on linear
methods. Another serious inadequacy with the surveyed non-linear
methods is that few methods allow for global reductions. Many techniques
are limited to local reductions near fixed points in the solution manifolds
(e.g., bifurcations, stationary points).

The conclusion of Robertson is that the combined non-linear methods of
singular and regular perturbations (see e.g., Kokotovic et al., 1976;
Kevorkian and Cole, 1980; Jamshidi, 1983; Martinez and Drozdowicz,
1989) are the most appropriate for reference model reduction. These two
methods are simple to apply, are both structure preserving and generate
low-order reduced models. A reduction error estimate can also be calcu-
lated based on the linearized model before and after the reduction and the
methods are applicable to non-linear process models (which is practically
always the case). A small drawback when using these methods is that the
model prior to reduction must be written in a particular format. Invariably
the models encountered in the modelling of process systems do not always
display this form. An identification step is therefore required to transform
the reference model into the explicit form required for reduction.

The entire set of evaluated model reduction methods investigated by
Robertson (1992) is provided in Table 2.2.
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Model reduction methods

Linear models Frequence domain mod. Non-linear models

Perturbations Moments matching Perturbations

Regular Continued fraction Regular
Singular Stability equation method Singular

Aggregation Pade/Routh approximation Lindstedt’s method

Exact Chebychev/Darlington func. Centre manifolds
Model Laguerre functions Normal forms
Approximate Shifted Legendre polynom. Two variable expan.
Continued fraction Averaging

Chained Lie transforms

Error minimization Liapunov-Schmidt red.

Principal comp. analysis Exact linearisation

Balancing Approx. linearisation

Quasi-Kalman decomp. Integral manifolds

Impulse response match.

Markov param. match.

Table 2.2 Model reduction methods (Robertson, 1992).

2.4 System Identification

The task of system identification consists of making optimal use of the
available information in order to find the most adequate model. The model
structure evaluation discussed in the previous section is a part of this
process as well as the final model confirmation or falsification (validation).
In this section we will discuss two equally important subjects: model
identifiability analysis and parameter estimation techniques. We also
include the topic of state variable estimation (reconstruction) in this
section.
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Theoretical Identifiability

Theoretical identifiability analysis treats the problem of the uniqueness of
the determination of model parameters resulting from a given input-output
experiment with perfect data (acquired by simulation). Such an analysis
can and should be performed prior to any real experimental investigations
in order to investigate if the model structure is theoretically sound. For a
given model and ideal measurements a parameter is called

• uniquely (globally) identifiable – if there exists a unique solution
for the parameter;

• locally identifiable – if there exists a finite number of parameter
values;

• unidentifiable – if there exists an infinite number of parameter
values,

which make the model (exactly) reproduce the measurements. In the case
of unidentifiable parameters, there exists different sets of parameter values
which will lead to (exactly) the same model behaviour. In this case, it is
important to investigate which combinations of parameters that are
identifiable (e.g., if only the product of two parameters is used in a model,
the parameters are not separately identifiable but the product may very
well be identifiable).

Whereas there exist several methods for identifiability analysis of linear
models, there is only one universal technique applicable to non-linear
systems. This technique (Pohjanpalo, 1978) is based on a Taylor series
expansion of the measured variables with respect to time. The coefficients
of the power series contain the model parameters and the decision whether
these parameters can be determined from the Taylor series coefficients is
reduced to an algebraic problem. If the algebraic equations can be solved
for the parameters then these are identifiable. An example of such an
analysis is presented in Section 2.6. However, practical limitations make
this method troublesome to apply for more complex models. The reason
for this is that for non-linear systems there is no theoretical upper limit to
the number of model differentiations which may provide new information.
The use of computer algebra programs can partially improve the situation,
but the fundamental problem still remains.

Another approach is to linearize the model around a suitable operating
point (if such a point exists) and apply one of the many methods for
identifiability analysis of linear systems. However, fewer identifiable para-
meter combinations than for the full non-linear model may result and
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parameters of the non-linear model may not even appear in the linearized
one. As a consequence, non-identifiability of a linearized system does not
necessary indicate that the original non-linear model is unidentifiable.

An investigation of local identifiability is not very complicated. This can
be done by examining the rank of the Jacobian of the model (Godfrey and
DiStefano, 1985). 

Practical Identifiability

Practical identifiability analysis treats the problem of parameter identi-
fication in the presence of noisy measurements. It is evident that practical
identifiability of parameters requires their theoretical identifiability. Since
practical identifiability is mainly a problem of the estimation of parameter
uncertainty, it is not an objective characteristic of a model for a given
experimental situation, but depends instead on the values of the measured
data and on the desired accuracy of the parameters. Lacking practical
identifiability means that unique sets of parameters can seldom be
obtained, parameters estimated from data obtained during apparently
similar conditions show considerable variations, and that the estimation
methods show poor convergence properties. Parameter estimation results
where the identified parameter values vary depending on the initial values
is also an indication to proceed with care. Altogether, it is often easy to
obtain sets of parameters which provide a good model fit but since these
parameters may be far from the true ones, situations where they are given
an exact physical/biological/chemical interpretation should be avoided.

Practical identifiability problems often arise as a result of the following
factors: 

• unsuitable model structure;
• poor sampling strategies, lack of reliable sensors and troublesome

noise conditions;
• poor system ‘excitement’ during the identification experiment;
• unsuitable identification algorithms.

Improvement of the practical identifiability may be obtained by: 

• changing the model structure (use reduced order models);
• improving the experimental design, available information and

noise characteristics;
• model reparametrization (use combinations of model parameters).
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There are two main techniques for practical identifiability analysis: sensi-
tivity analysis (linear or non-linear) and parameter covariance estimation.

Linear sensitivity analysis consists of calculating a linear approximation to
the change in a variable caused by a given change in a parameter. Depend-
ing on whether absolute or relative measures of the variable and of the
parameter are used, the following four sensitivity function can be dis-
tinguished:

δa,a = ∂x

∂θ
    (a)           δr,a = 1

x

∂x

∂θ
  (b)

δa,r = θ ∂x

∂θ
  (c)           δr,r = θ

x

∂x

∂θ
  (d)

(2.3)

Sensitivity function (2.3a) gives the absolute change in variable x per unit
change in parameter θ, (2.3b) the relative change in x per unit change in θ,
(2.3c) the absolute change in x for a 100 % change in θ, and (2.3d) the
relative change in x for a 100 % change in θ. The two most often used
sensitivity functions are (2.3c) and (2.3d) because the units of these
functions do not depend on the units of the parameter. This makes the com-
parison of the sensitivity of a variable to different parameters possible.

The larger the values of the sensitivity functions, the more accurately a
single parameter can be identified. In the case of several parameters, the
sensitivity functions of the parameters as functions of the independent
variable of the measurements (e.g., time) have to be linearly independent.
Otherwise, the parameters are not individually identifiable because a
change in one parameter can be compensated for by changes in the other
parameters. The more different the patterns of the sensitivity functions are,
the better the parameters can be identified.

Non-linear sensitivity analysis is based on the calculation of the probability
distribution of calculated variables from the probability distributions of the
parameters. This is done with the aid of Monte Carlo simulation. It is
evident that this analysis, which takes the non-linearity of the model fully
into account, gives much better information than does linear sensitivity
analysis. The disadvantage of this method is that it requires a large compu-
tational effort and (at least approximate) knowledge of the probability
distributions of the parameter.
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Mathematical analysis based on the numerical properties of the covariance
matrix of the estimated parameters, observability matrix or Fisher informa-
tion matrix (the inverse of the parameter estimation error covariance
matrix), etc. can be used to evaluate the quality of information with refe-
rence to the estimated parameters of the model. This kind of analysis is
able to detect the unidentifiable cases and can also be useful for deter-
mining sampling strategies and experimental design, see for example,
Vanrolleghem (1994).

Parameter Estimation

Parameter estimation consists of determining the ‘optimal’ values of the
parameters of a given model with the aid of measured data. Although this
procedure uses a given model structure, it is not completely independent of
model structure evaluation, because the model may degenerate to a simpler
structure for particular values of some parameters. Since the initial state of
a simulation, the boundary conditions and the external variables can also
be formulated with the aid of parameters, all these parameters, together
with the model parameters, can be combined to yield a single array of
parameters to be estimated simultaneously using the same estimation
technique.

There are four important conventional techniques which can be used for
parameter estimation, see for example, Beck (1987) and Ljung (1987):

• Bayesian estimation;
• maximum likelihood estimation;
• weighted least squares estimation;
• least squares estimation.

These four methods are listed in decreasing order of the amount of
information that has to be provided by the user of the method, or,
equivalently, in increasing order of the number of a priori assumptions
already included in the method. For the most complicated case of Bayesian
estimation, the probability distribution of the parameters and the condi-
tional probability distribution of the measurements for given parameter
values have to be parameterized, whereas the simplest case of least squares
estimation can be performed without any extrinsic information. Weighted
least squares and least squares estimation are special cases of the
maximum likelihood method in which the measurements are assumed to be
uncorrelated and normally distributed. Practical experience have shown
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that the methods above do not always suffice, since distributions of real
data are never known exactly. This has lead to the development of methods
for robust estimation, see for example, Birkes and Dodge (1993).

Bayesian estimation treats both measurements and model parameters as
random variables. If an a priori probability density p(θ) for the occurrence
of the parameter vector θ and the conditional probability density p(ymeas |θ)
of the model for measuring the values ymeas for given parameter values θ
are known, the probability density of the parameters for given values of the
measurements can be written (according to Bayes’ rule) as

p θ  y meas( ) =
p y meas  θ( )p θ( )

p y meas( ) (2.4)

Equation (2.4) does not directly specify estimates of the parameters, but it
yields a complete description of the distribution of parameter values for
given measurements. Additional assumptions are necessary for the choice
of parameter estimates. The central idea of Bayesian estimation is to
update prior information on the distribution of parameters by taking
measured data into account.

In contrast to Bayesian estimation, maximum likelihood estimation treats
the parameters not as random variables but as constant parameters of the
distributions of the measurements. Maximum likelihood estimation
consists of maximizing the so-called likelihood function, L, which is the
probability density of a model for the occurrence of the measurements for
given parameters. The likelihood function is a complex function which
depends on the probability distribution of the measurements. If we assume
these to be uncorrelated normal distributions the likelihood function is
given as

L y meas  θ( ) = 1
2πn

1
σmeas,ii=1

n

∏ exp − 1
2

y meas,i − y i θ( )
σmeas,i








2

i=1

n

∑








 (2.5)

where yi(θ) is the calculated value of the model corresponding to ymeas,i

using the parameters θ and σmeas,i is the (estimated) standard deviation of
ymeas,i. For given measurements ymeas, the maximum likelihood estimates
θ̃ y meas( ) of the parameters are those values of θ for which the likelihood
function has its maximum. Maximizing (2.5) is equivalent to minimizing
the function
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y meas,i − y i θ( )
σmeas,i








2

i=1

n

∑ (2.6)

The uncertainty of the estimates may in turn be estimated from the uncer-
tainty of the measurements by studying the covariance matrix.

The weighted least squares method is a special case of the maximum
likelihood estimation. In fact, the likelihood function (2.5) is actually the
function used for weighted least squares estimation, which is then maxi-
mized as discussed above.

If not even the standard deviations σmeas,i of the measurements are known,
all of them are assumed to be of equal size. In this case, the expression to
be minimized for the simple least squares estimation is

y meas,i − y i θ( )( )2

i=1

n

∑ (2.7)

The conventional parameter estimation techniques described above are
derived using assumptions concerning the form of the distributions of the
measured variables. If real data violate these assumptions slightly, the
estimation techniques may give incorrect results. The application of robust
estimation techniques makes the results much less dependent on slight
violations of the parameterized probability distributions by the data (e.g.,
non-existing data points and outliers). One of the simplest robust estima-
tion methods is the minimization of the median of the squares of the
residuals instead of their sum, or, more efficiently, changing the sums in
equations (2.6) and (2.7) to include only the smaller half of the squares of
the residuals (Rousseeuw and Leroy, 1987). The only disadvantage of
robust estimation techniques compared with the conventional ones is the
increased computation time involved.

The statistical methods above can only be applied if reasonable amounts of
measured data are available. An alternative approach, which can by applied
in the case of bad resolution of data or even using semi-quantitative
information on system behaviour, is the Monte Carlo filtering technique.
The basic idea of the method is to fix the ranges of parameters which
characterize reasonable system behaviour, to perform Monte Carlo simu-
lations with the model, and to select sets of parameters which lead to the
desired behaviour. This method does not lead to a unique set of parameter
values but the sets of parameter values found to be compatible with the
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data can be used for predictions, which then have to be statistically
evaluated.

One broad distinction between different methods for estimation are:

• off-line estimation;
• on-line estimation.

When performing off-line estimation, a complete set of data is available in
time-series form. It is then straightforward to apply the estimators
discussed above to this data set. The procedure consists of performing a
simulation with constant parameter values over the whole time interval
containing measurements, and locating the minimum of (2.6) or (2.7). The
estimation becomes an optimization problem. Several different algorithms
are available for rapidly solving this optimization problem, e.g., simplex
methods, Newton’s method, quasi-Newton methods, conjugate direction
methods, Levenberg-Marquardt methods (Fletcher, 1987). The Nelder-
Mead simplex method (Nelder and Mead, 1965), which will be used in this
work is described in Appendix D. The on-line methods (Kalman filter,
recursive instrumental variable method, etc.) give estimates recursively as
the measurements are obtained and are the only alternative if the identifi-
cation is going to be used in an adaptive controller or if the process is time
varying (Åström and Wittenmark, 1990). In many cases the off-line
methods give estimates with higher precision and are more reliable, for
instance in terms of convergence. However, it is often possible to reform-
ulate an off-line method into a recursive equivalent.

State Estimation

It is often unrealistic to assume that all the internal state variables of a
system and the disturbances can be measured. If a mathematical model of
the system is available, the states can often be computed from measured
inputs and outputs – state estimation.

The non-linear reduced order models that will be presented in Chapter 4
can be schematically described in the format

dx
dt

= f x, t( ) + g u, t( )

y = h x, t( )






(2.8)
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where x is the state vector, y represents the measurable variables and u is
the model input. f, g and h are general functions that describe the relation-
ships between the variables. The same system can also be described by the
time discrete representation

x t k +1( ) = F x t k( ), t k( ) + G u t k( ), t k( )
y t k( ) = H x t k( ), t k( )






(2.9)

where tk and tk+1 are consecutive measurement times. Alternatively, it may
be written on the form (2.10), when it is linearized for every time step.
Note that the Φ, Γ and C matrices may depend on x and u as well as time.

x t k +1( ) = Φx t k( ) + Γu t k( )
y t k( ) = Cx t k( )





(2.10)

If the model (2.10) is fully observable, the complete state vector can be
directly calculated from the measured inputs and outputs. One disad-
vantage of such a method is that it may be sensitive to disturbances. But
more important, the result depends on the model being sufficiently
accurate. In models for wastewater treatment processes, several parameters
(the Φ and Γ matrices) are time variant and it is essential to keep track of
their values as conditions change as a function of time. Therefore, a direct
method is not sufficient. However, it is possible to use the dynamic model
to reconstruct the state variables as well as performing parameter esti-
mation, simultaneously.

The method of reconstruction is based on the assumption that the true state
x can be approximated by the state x̂ of the model

x̂ t k +1( ) = Φx̂ t k( ) + Γu t k( ) (2.11)

which has the same input u as system (2.10). If the model (2.11) is perfect
in the sense that the parameters are identical to those of system (2.10) and
if the initial conditions of (2.10) and (2.11) are the same, then the state x̂
will be identical to the state x of the true system. If the initial conditions
are different, then x̂ will converge to x only if system (2.10) is asymptot-
ically stable (Åström and Wittenmark, 1990).

The reconstruction in (2.11) does, however, not make use of the measured
output y. Therefore, the method can be improved by introducing the
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difference between the measured and estimated output as a feedback to
obtain

x̂ t k +1 t k( ) = Φx̂ t k t k −1( ) + Γu t k( ) + K y t k( ) − Cx̂ t k t k −1( )( ) (2.12)

The system (2.12) is called an observer and exists in many variations
depending on how the K matrix is chosen. The notation x̂ t k +1 t k( ) is used
to indicate that it is an estimate of x(tk+1) based on measurements available
at time tk. In order to use this method for simultaneous state and parameter
estimation it is has to be slightly modified and x̂ will be interpreted as a
generalized state vector which contains not only the state variables but also
the unknown parameters to be estimated. In this work we will use one such
method, the extended Kalman filter, which is described in Appendix E.

2.5 Model Validation

The last step when evaluating a model consists of testing the model with
independent data sets (data sets not used for model identification or
calibration). It is, however, important to note that the absence of significant
deviations between the model calculations and the measurements only
proves that the model assumptions are compatible with the system
behaviour. Thus in a strict sense, model validation is impossible, see
Reichert (1994b). Because significant deviations between model calcu-
lations and measurements disprove a model, the goal of model confir-
mation should be to attempt to refute the model. It is important that the
performed tests put the model in jeopardy and a goodness of fit is not a
sufficient condition for model acceptance. Then, the confidence in the
model assumptions increases as the model passes more and more severe
tests. It is very desirable to quantify the result of such hypothesis tests with
the aid of statistical criteria (Thomann, 1982). A related problem for model
validation is that different postulated mechanisms may lead to the same
mathematical description, thus making it impossible to verify certain
mechanisms by traditional means. Situations may also arise where two or
more models based on partly contradictory hypotheses explain experi-
mental results equally well (Holmberg, 1981).

Just as it is important to investigate how well and under what specific
conditions a model realistically mimics the true system behaviour, it is
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equally important to consider the objective for which the model was
developed. A model may, for example, be valid for describing

• steady-state behaviour (no transients);
• various types of dynamic behaviour and time horizons;
• certain operating conditions;
• certain input (amplitude, variability, frequency) conditions;
• specific noise distributions;
• qualitative differences.

This situation is especially true for highly complex processes such as
wastewater treatment processes, where no such thing as the true model
exists. Different models have different advantages, drawbacks and objec-
tives. The final validation of a model can only be achieved by using it in
practice for its intended purpose and critically evaluate the results over a
longer period of time (Söderström and Stoica, 1989).

Since most models describing WWT processes are mechanistic, it is
actually not sufficient that only the output of the model is validated against
the true process. Many model parameters have a direct physical inter-
pretation, which implies that the validation has to include an evaluation of
those parameters when compared with the actual process parameters.
However, mechanistic models nearly always include empirical qualities
and it is unlikely that any biological or biochemical system has ever been
described exactly by a theoretical model. Thus, a ‘true’ mechanistic model
is one which describes the mechanisms well enough to assist
understanding and to allow useful – but not exact – extrapolation. Clearly,
the classification of biological models as empirical or mechanistic depends
on what is expected of the ultimate model.

Although no true model validation may be possible it is necessary to
investigate the model behaviour to the best of our abilities. We can
distinguish between three general types of methods:

• use of plots and common sense;
• statistical methods based on the prediction errors;
• investigation of the underlying model assumptions.

Statistical validation is performed by calculating the residual difference
between simulated and real process responses. For the model and the
process to agree, the residuals should be small and devoid of any
information. Often we can base the validation on four different criteria
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(Söderström and Stoica, 1989). These criteria (not always applicable) state
that for an adequate model, the residuals

• are zero mean white noise;
• have a symmetric distribution;
• are independent of past inputs;
• are independent of all inputs.

From these criteria several statistical tests can be constructed. In order to
check if the residuals appear as white noise, the auto-correlation of the
residuals should be zero or, equivalently, the power spectrum of the resi-
duals should display no peaks. By testing the changes of sign of the
residuals we can investigate the distribution of the residuals and cross-
correlation tests can be performed to check the independence of the
residuals on the inputs. Further details of these residual analysis methods
can be found in Ljung (1987) and Söderström and Stoica (1989). Other
methods for model validation are described in Sargent (1982).

From the discussion of the importance of model structure evaluation,
identifiability, and validation in the last three sections it may be appro-
priate to extend the model validation part of the general modelling metho-
dology shown in Figure 2.3. One possible approach is schematically
outlined in Figure 2.5.

When an adequate model has been developed and calibrated for the
behaviour of the system under consideration, an estimate of the uncertainty
of the predictions is important. Especially if the model is to be used for
management decisions it is important not to accept model results without
questioning the model assumptions. Three main sources of uncertainty are
distinguished (Beck, 1991):

• uncertainty in model structure;
• uncertainty in parameter values and initial state;
• uncertainty associated with external variables.

However, it is beyond the scope of this work to discuss any details of such
an uncertainty analysis, instead we refer to Beck (1987; 1991) and Reichert
(1994b).
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Figure 2.5 Model validation methodology. 

2.6 A Small Example

In order to exemplify a few of the problems discussed in the previous
sections, especially the ones dealing with identifiability, we present a small
example from the field of bacterial growth and decay in this section.

One of the simplest possible models to describe growth of a single
organism on a single substrate in a batch reactor with no other growth
limitations, can be formulated as

dX

dt
= µ S( )X − bX

dS

dt
= − 1

Y
µ S( )X










(2.13)
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where: X = concentration of microorganisms [mg/l];
S = concentration of growth-limiting substrate [mg/l];
µ(S) = specific growth rate [day–1];
b = decay rate [day–1];
Y = yield factor [g cell COD formed (g COD oxidized)–1].

We define µ(S) according to the famous Monod growth-rate expression
(Monod, 1942), i.e.,

µ S( ) = µ̂S

K S + S
(2.14)

where µ̂ is the maximum specific growth rate and KS is the so called
substrate half-saturation coefficient. We assume that both X and S are
possible to measure directly and that only X and S are time variant, i.e., all
model parameters are constant during the experiment. The measured data
are further considered to be free from noise and continuously available.
The model is obviously non-linear but not very complex.

Question: Can all four model parameters be uniquely determined
from perfect data, i.e., is the system globally identifiable?

In Section 2.4 various methods for investigating identifiability were
discussed. It was stated that there is only one universal technique applic-
able to non-linear systems, i.e., the Taylor series expansion of observations
method. This analytical technique is applicable to small systems, such as
(2.13), although it is often not practically feasible to use the method for
complex systems.

We define the following nomenclature:

X 0 = X 0( )
S0 = S 0( )





(2.15)

′X 0( ) = µ̂S0

K S + S0
X 0 − bX 0 = X 1

′S 0( ) = − 1
Y

µ̂S0

K S + S0
X 0 = S1











(2.16)
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µ = µ̂S0

K S + S0
(2.17)

Equation (2.16) can now be formulated in a less complex way as

X 1 = µ − b( )X 0

S1 = − µ
Y

X 0






(2.18)

If equation (2.16) is differentiated one more time it yields, after some
simplifications,

′′X 0( ) = µ − b( )X 1 + µK SX 0S1

K S + S0( )S0
= X 2

′′S 0( ) = − µ
Y

X 1 + µK SX 0S1

K S + S0( )S0







= S2











(2.19)

From the first equation of (2.18) and the second equation of (2.19), an
analytical expression for the substrate half-saturation coefficient can be
determined as

K S = S2S0
2X 0 − S1S0

2X 1

S1
2X 0 − S2S0X 0 + S1S0X 1

(2.20)

From the first equations of (2.18) and (2.19) together with (2.20), the
expression for µ can be formulated as

µ = X 2X 0S1 − X 1
2S1

S2X 0
2 − S1X 1X 0

(2.21)

from which an expression for the maximum specific growth rate can be
determined by using equations (2.17) and (2.20), which yields

µ̂ =
X 2X 0S1 − X 1

2S1( ) K S + S0( )
S2S0X 0

2 − S1S0X 1X 0

(2.22)

The decay rate is easily calculated from the first equation of (2.18) and
(2.21), which yields
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b = S1X 2 − S2X 1

S2X 0 − S1X 1
(2.23)

Finally, the yield factor can be determined from the second equation of
(2.18) and (2.21) as

Y = X 1
2 − X 2X 0

S2X 0 − S1X 1
(2.24)

The above analysis, originally presented by Holmberg (1981; 1982),
clearly shows that all four parameters of the model (2.13) and (2.14) are
theoretically identifiable (i.e., when perfect data are available) from
measurements of X and S if neither X(0) nor S(0) are equal to zero.
Holmberg also performed a sensitivity analysis of the same model. This
analysis revealed a possible difficulty of distinguishing between effects of
µ̂ and KS from non-perfect (i.e., true) measurements of X and S.

Question: How is the model behaviour and the identifiability
affected by noise?

We assume the same batch reactor system as described above but now
noise is included in the process. The added process noise (ν) is Gaussian
with a mean value of zero and a standard deviation which is 10 % of the
actual value of the state variable. The measurement noise (ε) is specified
equivalently but an extra Gaussian noise component with zero mean value
and a standard deviation of 2 mg/l is added to reflect the difficulties of
measuring very low concentrations accurately. It should be noted that the
chosen noise level is not very high when compared with real measurements
(particularly for X, which is not possible to measure directly in a true
process). Moreover, real measurements are normally affected by outliers,
non-existent measurement values, noise with non-zero mean and changing
variance, trends, etc. Such extra difficulties are neglected here and we
define the following system:

dX

dt
= µ S( )X − bX + ν1

dS

dt
= − 1

Y
µ S( )X + ν2










(2.25)

X meas = X + ε1

Smeas = S + ε2





(2.26)
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Figure 2.6 Simulation of system (2.13) using the Monod growth rate
expression (2.14) with very different sets of model parameter
values, compared with noise corrupted measurements of
system (2.25) and (2.26). For all simulations X(0) = 2 mg/l
and S(0) =100 mg/l. For the noise affected system the chosen
parameter values are: µ̂ = 6.0 day–1, KS= 10 mg/l, b= 0.48
day–1, Y =0.66.

A simulation of the system (2.25) with noise conditions specified above is
shown in Figure 2.6 (the measurable variables plotted). Although we
earlier showed that the system was theoretically identifiable there is no
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guarantee that this holds for true measurements, because the added noise
makes it impossible to accurately calculate the derivatives that were used
in the analytical analysis. By simulating model (2.25) for different sets of
model parameters without noise, several sets can be found which produce a
model output that are well within the noise deadband of the measurable
variables. A few simulations with very different parameter values (com-
pared to the ones used during the noisy conditions) are also presented in
Figure 2.6, and it is clear that the simulation results are not very different.
This indicates the importance of noise on the discussed system and why it
has a significant effect on the identifiability analysis. The structure of the
model leads to small variations of the assumed measurable quantities even
when the internal model parameters are changing significantly and the
small output differences are easily lost in the noise.

To improve the measurable outputs (2.26) various means of filtering may
be used. An on-line filtered signal is always affected by an undesired time
lag. If the outputs are manipulated off-line then this problem can be
avoided. In this example a special low-pass filter with exactly zero-phase
distortion (Little and Shure, 1988) is used to transform the measurable data
into a more suitable form (see Figure 2.7). It should be noted that this is an
ideal type of filter that cannot be physically implemented and any real-time
filter will produce a poorer result. Because the applied noise in this
example is chosen in a favourable way, filtering is not necessary for
estimation purposes but still it is used to exemplify some difficulties with
regard to filtering.

By applying an optimization algorithm to the filtered data, a set of model
parameters, which provide the best possible fit according to a certain
criterion (in this case minimizing the sum of squared residuals), can be
determined. Two different algorithms have been tested (Fletcher, 1987): 

• Nelder-Mead’s algorithm (NM) – a simplex method which is
very robust but exhibits slow convergence (see Appendix D);

• Gauss-Newton’s algorithm (GN) – a generalized least squares
method with linear search, which is less robust but converges
faster than the NM algorithm.

Both methods above are suited for off-line parameter estimation but the
GN method is quite sensitive to the chosen initial parameter values – large
differences between the initial and true values cause divergence of the
algorithm. The NM method is more reliable for optimizing the above type
of system (i.e., (2.25)), and all optimization results presented in this section
are based on this algorithm.
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Figure 2.7 Simulation of system (2.13) using the Monod growth rate
expression (2.14) with the optimum set of model parameter
values determined by the NM algorithm, compared with noise
corrupted measurements of system (2.25) and (2.26), filtered
and non-filtered. For all simulations X(0) =2 mg/l and
S(0) =100 mg/l. For the noise affected system the parameter
values are: µ̂ =6.0 day–1, KS= 10 mg/l, b =0.48 day–1,
Y= 0.66. The calculated optimum parameter set is: µ̂= 6.6
day–1, KS =19 mg/l, b = 0.47 day–1, Y= 0.67.
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In Figure 2.7, a result of the NM algorithm is shown, when optimizing the
parameter set from filtered noisy data. It should be noted that the optimized
set of parameters provides an excellent fit to the filtered data, though the
values are quite far from the true set. 

It is difficult to determine whether the optimized parameter values are the
best ones in a global sense or only a local optimum. By running the
algorithm for a large number of different initial parameter values and
comparing the final results, the global identifiability can be made plausible
although it is not a proof. On the other hand, if the algorithm converges
towards different values depending on the initial conditions we can
conclude that the system is not globally identifiable from the available
data. A very small change in the noise characteristics of the system or of
the low-pass filter parameters will also greatly influence the optimum
parameter set determined by the optimization algorithm. Especially the
parameters µ̂ and KS are difficult to determine accurately and should
therefore be considered to be uncertain (if not practically unidentifiable),
whereas the estimates of b and Y seem to be more reliable (from this type
of idealized batch experiment).

If no noise is added (i.e., model (2.13)), both optimization algorithms
locate the true parameter values practically independent of the chosen
initial parameter values, i.e., the system is fully identifiable when perfect
data are continuously available (which the analytical analysis also has
shown). This is not the case even for ‘favourable’ noise conditions.

The discussed example points out some of the problems that may appear,
even for simple models. Taking into account the fact that models used to
describe WWT processes are much more complicated, the model para-
meters are usually time varying and functions of temperature, pH, etc.,
measurements are seldom continuously available and many of the state
variables are not measurable at all, it is easily realized that the uncertainty
of any estimated results from a true process are considerable. 

The behaviour of the complex models will be discussed later in this work.
Instead an attempt will be made to simplify model (2.13) in order to
develop a practically identifiable model. As true measurements are usually
scarce and uncertain, a low complexity model is easier to identify (may
even be on-line identifiable), which may lead to more reliable model
predictions even though the biological and physical interpretation of some
model parameters may be lost.
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One possible way to adjust the simple model in this example is to replace
the Monod formulation (2.14) with the simpler expression

µ S( ) =
rS        if S < Ssat

rSsat     if S ≥ Ssat





(2.27)

where: r = reaction rate factor [l (mg day)–1];
Ssat = growth saturation concentration [mg/l].

The growth function is reduced to a first-order rate expression for low
substrate concentrations (the normal case) and a zero-order expression for
high substrate concentrations, originally proposed by Blackman (1905). As
the model in this example is to be used for a batch experiment, both parts
of the growth expression must be included. This means that the number of
parameters is not reduced (both r and Ssat have to be estimated), only the
structure is simplified. However, if the model (2.27) is to be used for
continuous-flow bioreactors treating municipal wastewater, the substrate
concentrations are usually sufficiently low to motivate the use of a first
order reaction only, which would imply a significant model simplification.

In Figure 2.8, a comparison of the behaviours of the traditional (2.14) and
modified (2.27) growth rate expressions are presented. The model (2.13) is
simulated using the two growth rate functions with the optimized para-
meter sets determined by the NM algorithm from noisy data and compared
with the original disturbed system (2.25) and (2.26) using the standard
Monod expression. The result for the organism concentration is presented
in Figure 2.8. The result is equally good for the substrate concentration
(although not shown). It is apparent that the results when using the
simplified growth expression are very similar to that of the original Monod
expression. If only a few measurements are available then the parameter r
is much easier to identify than µ̂ and KS.

For the parameter estimations exemplified in Figure 2.8, the measurements
have been considered to be continuously available and distributed over the
entire range of interesting substrate concentrations. However, this is often
not the true case. In order to demonstrate how the sampling rate affects the
results, two series of estimations are performed using different sampling
rates to describe how frequently data are available for the estimation. The
two investigated cases are (assuming both X and S to be measurable):

• sampling rate = 10 hour-1 (case A);
• sampling rate = 1 hour-1 (case B).
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 Monod: mumax = 6.1, Ks = 11.6   
 Blackman: r = 0.22,  Ssat = 24.0
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Figure 2.8 Illustration of the behaviour of the Monod (2.14) and
Blackman (2.27) growth rate expressions (top). Simulation of
system (2.13) using both growth rate expressions with the
optimized sets of model parameter values determined by the
NM algorithm based on non-filtered noise corrupted measure-
ments of system (2.25) and (2.26) using the Monod function
(bottom). For all simulations X(0) =2 mg/l and S(0) =100
mg/l. For the noise affected system the used parameter values
are: µ̂ = 6.0 day–1, KS= 10 mg/l, b =0.48 day–1, Y = 0.66.
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For both cases the system (2.25) and (2.26) using the Monod growth rate
expression is used to generate three different data sets on which the estima-
tions will be based. The following three data sets are specified:

• no noise added;
• including noise (distributed as earlier described); 
• including noise and low-pass filtering (as shown in Figure 2.7). 

The NM algorithm is then used for the off-line parameter estimation and
optimized sets of parameters are determined for model (2.13) using both
types of growth rate functions. Various initial estimates are used in order to
indicate possible global identifiability. The results are presented in Table
2.2. The importance of the number of samples is obvious when using noisy
measurements as well as the significant effects of low-pass filtering. Note
that the model fit to the available data is in all cases satisfactory (in the
least squares sense) even though the estimated parameter values differ
significantly. In all cases the convergence rates for Y and b are high
whereas the parameters in the growth rate expressions are more difficult to
determine. However, the convergence rates are significantly higher when
using (2.27), i.e., when estimating r and Ssat, than when using (2.14) and
estimating µ̂ and KS.

In this example we have demonstrated the difficulty of globally identifying
the parameters of a fairly simple model when the measurements are
corrupted by noise. For the Monod growth parameters the difficulty is
primarily caused by the internal correlations (the change of one parameter
value can be compensated by changing the value of another parameter).
The problem is especially prominent when the measurable data are not
continuously available. Signal processing (e.g., filtering) also have a
significant effect on the estimation results. Several parameter sets provide
a good fit to the measurable data but it is difficult to determine whether the
estimated parameters are the true ones. This is an especially important
issue when the model parameters are given a direct physical or biological
interpretation.

Conclusion: In order to improve the identifiability of a model it may
be necessary to use simplified models and avoid the
over-parameterized models that are so common within
the field of WWT.
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Monod function initial estimates final estimates

µ KS b Y µ KS b Y

no noise 5.0 5 0.4 0.5 6.00 10.0 .480 .660
6.0 10 0.5 0.65 6.00 10.0 .480 .660
7.0 20 0.6 0.8 6.00 10.0 .480 .660

including noise 5.0 5 0.4 0.5 6.13 11.6 .472 .664
6.0 10 0.5 0.65 6.13 11.6 .472 .664
7.0 20 0.6 0.8 6.13 11.6 .472 .664

including noise and 5.0 5 0.4 0.5 6.65 18.7 .473 .665
low-pass filtering 6.0 10 0.5 0.65 6.65 18.7 .473 .665

7.0 20 0.6 0.8 6.65 18.7 .473 .665

no noise 5.0 5 0.4 0.5 6.00 10.0 .480 .660
6.0 10 0.5 0.65 6.00 10.0 .480 .660
7.0 20 0.6 0.8 6.00 10.0 .480 .660

including noise 5.0 5 0.4 0.5 7.07 23.2 .474 .677
6.0 10 0.5 0.65 7.07 23.2 .474 .677
7.0 20 0.6 0.8 7.07 23.2 .474 .677

including noise and 5.0 5 0.4 0.5 10.7 74.4 .488 .687
low-pass filtering 6.0 10 0.5 0.65 10.7 74.4 .488 .687

7.0 20 0.6 0.8 10.7 74.4 .488 .687

Blackman function r Ssat b Y r Ssat b Y

no noise 0.15 10 0.4 0.5 .224 23.7 .481 .660
0.25 25 0.5 0.65 .224 23.7 .481 .660
0.4 50 0.6 0.8 .224 23.7 .481 .660

including noise 0.15 10 0.4 0.5 .222 24.0 .472 .663
0.25 25 0.5 0.65 .222 24.0 .472 .663
0.4 50 0.6 0.8 .222 24.0 .472 .663

including noise and 0.15 10 0.4 0.5 .161 33.4 .474 .666
low-pass filtering 0.25 25 0.5 0.65 .161 33.4 .474 .666

0.4 50 0.6 0.8 .161 33.4 .474 .666

no noise 0.15 10 0.4 0.5 .222 24.0 .481 .660
0.25 25 0.5 0.65 .222 24.0 .481 .660
0.4 50 0.6 0.8 .222 24.0 .481 .660

including noise 0.15 10 0.4 0.5 .141 39.2 .476 .679
0.25 25 0.5 0.65 .141 39.2 .476 .679
0.4 50 0.6 0.8 .141 39.2 .476 .679

including noise and 0.15 10 0.4 0.5 .097 59.3 .491 .690
low-pass filtering 0.25 25 0.5 0.65 .097 59.3 .491 .690

0.4 50 0.6 0.8 .097 59.3 .491 .690
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Table 2.2 Parameter estimates of model (2.13) using the Monod and
Blackman growth rate expression from different data sets
using the Nelder-Mead optimization algorithm.
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Modelling the
Activated Sludge Process
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Chapter 3

____________________________________________________________

Processes and Models – a Review

In this chapter we describe the principles for mathematical modelling of
the activated sludge process. A short historical perspective of the develop-
ment of the process and a review of the large number of existing process
variants available today are provided. A literature review of different
modelling approaches for the activated sludge process evolved during the
last thirty years is also given. Special emphasis is put on the description of
the IAWQ Activated Sludge Model No.1 (Henze et al., 1987), which is the
principal model used throughout this thesis. A simplified description of the
most significant biological processes, essential to a nitrogen removal
system, is provided alongside the model formulation. Finally, the possi-
bilities of measuring and manipulating different process variables and
parameters in an activated sludge system are commented upon. Parts of
this chapter are covered in [181] and [257].

3.1 Historical Perspective

The basic idea of the activated sludge process is to maintain ‘active sludge’
suspended in wastewater by means of stirring or aeration. The suspended
material contains not only living biomass, that is, bacteria and other micro-
organisms, but also organic and inorganic particles. Some of the organic
particles may be broken down into simpler components by a process
known as hydrolysis, while other organic particles are not affected (inert
material). The biomass in the process will use the organic material as its
energy source (usually in combination with oxygen or another oxidation
agent), that is, the organic material will be removed from the wastewater
while more biomass is produced. The amount of suspended material in the



process is normally controlled by means of adding a sedimentation tank at
the end of the process, where the biomass is transported towards the
bottom by gravity settling and is either recirculated back to the biological
process or removed from the system as excess sludge, whereas the now
purified wastewater is withdrawn from the top of the sedimentation tank
and released either for further treatment or directly into a receiving water.

The concept of using supplemental aeration as a means of sewage
purification dates back to the late 19th century. These early systems were
based on the fill-and-draw approach, that is, wastewater was put into a
reactor and aerated, and after a period of time the wastewater was released,
the deposit of solids was removed and the process was repeated. In 1914,
Arden and Lockett (1914), in England, pioneered one of the most popular
processes in sewage treatment. Disregarding the current practice, they
saved the flocculent solids and studied the effect of their repeated use in
sewage treatment by aeration. These flocculent solids, which they called
activated sludge proved to increase the purification capacity of simple
aeration. The accelerating effect depended upon the proportion of activated
sludge (AS) to the sewage treated. News of these findings spread rapidly to
the United States, and during 1914, similar studies were undertaken at the
University of Illinois, leading to the same conclusions. Efforts were then
directed towards the adaptation of the process to operate under continuous-
flow conditions. By 1917, two small-scale continuous-flow plants in
England and a larger plant in Houston, Texas, were put into operation.
Successful experience with these plants and the establishment of the
diffused air process as a feasible means of air provision, encouraged the
construction of other major plants, which were soon placed in operation.
All were based on the continuous-flow principle, which had proven itself
as the major practical method for activated sludge operation.

The early success of the activated sludge process did not persist for long.
Rapid population expansion and industrial development greatly altered the
magnitude and nature of sewage loads to existing wastewater treatment
(WWT) plants, and the effect of flow and organic load variations became
more pronounced. One of the most serious problems was caused by what
was generally described as sludge bulking, a phenomenon that manifested
itself as an appreciable reduction in settleability of activated sludge, often
resulting in excessive suspended solids (SS) concentrations in the plant
effluent. Extensive studies during the 1930s identified some environmental
conditions causing this problem to be:
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• improper balance of food caused by high carbohydrate levels;
• high carbon-to-nitrogen ratio, attributable to industrial discharges;
• low dissolved oxygen levels in the aeration tanks;
• increasing organic loads on the treatment plants.

Another serious problem that haunted the AS process was the shortage of
oxygen, primarily at the head of the aeration tanks. It was only after the
recognition of the importance of oxygen as a quantitative factor in the
process and studies on the oxygen utilization during sewage treatment
(Grant et al., 1930; Bloodgood, 1938) that the relationship between oxygen
and degradation of organic material became clear. It was suggested that
appreciable changes might occur with regard to the character of the sludge
as a function of the length of the oxygen deficiency period. Therefore, it
was concluded that dissolved oxygen must be present at all points in the
aeration tank.

Process Modifications

The difficulties encountered in the operation of AS plants, triggered the
development of modified processes that would permit existing plants to
treat larger flows and greater loads while maintaining a high effluent
quality. The frequent shortage of oxygen in aeration tanks led to a modi-
fication of the process, known as tapered aeration. It involved sizing the
aeration equipment as a function of anticipated oxygen requirements, that
is, increasing the number of diffusers at the head of the aeration tank while
decreasing the number of diffusers closer to the outlet (Kessler and
Nichols, 1935). This modification was initiated around 1930 and today
almost all AS plants include provision for tapered aeration.

Attention was also focused on the occasional load transients to which the
process is exposed and which it must accommodate. It was noticed that the
oxygen demand of a mixture of activated sludge and sewage could often
exceed the ability to dissolve oxygen by means of conventional or modi-
fied aeration systems, if the entire incoming load together with the return
sludge were applied to the head of an aeration basin. Around 1940, this led
to the idea of adding sewage in regulated amounts, at multiple points along
the tank, instead of applying tapered aeration (Gould, 1940). This process,
known as step aeration, distributed loading, step feed, multiple-point
dosing and incremental dosing, could produce an activated sludge with a
good purifying capacity while maintaining the oxygen requirements at a
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more uniform level throughout the aeration tank. The process could also
reduce the effects of shock loads and produce savings in terms of less
required tank volume.

Around the same time, two different process modifications were tested that
never found any wide application. One was the modified aeration system,
where the sewage was aerated for shorter periods and with a smaller
quantity of biological solids in the aerators (Setter et al., 1945). The sludge
in this system settled rapidly and compacted to a concentration twice that
of a conventional AS system. Less oxygen and recirculation was required
but the effluent quality was generally reduced as well. The other process
was the activated aeration system, where the excess sludge from a
conventional AS process was to be utilized (Shapiro and Hogan, 1945).
Therefore, this sludge was diverted into a second aeration unit to which
part of the influent wastewater was directed. This added process operated
without recycling of sludge.

Practical development of high-capacity aeration devices made it possible to
develop the high-rate AS process. The basis of this process was that the
conventional aeration period could be drastically reduced if adequate
oxygen input to the system was ensured. In combination with a high degree
of turbulence, it was possible to substantially increase the sewage load by
an appreciable reduction in the floc size and improving the oxygen
diffusion rate into smaller flocs. The short detention time and high
substrate to biomass ratio could maintain the biomass in a very active
phase, that is, the log-growth phase. The process was found to be as stable
as conventionally operated plants, although it required a high sludge return
rate. A major benefit was that the process was operated with comparably
small aeration basins.

Large volumes of waste sludge that had to be treated and disposed of were
a factor that led to the development of the extended aeration AS process.
The process modification was established as a means of eliminating the
problem of excess sludge handling, while producing a highly stabilized
effluent and requiring a minimum of attention. On the other hand it
requires large aeration basins allowing for a long hydraulic detention time.
The process became popular during the 1950s. A feature of the process is
its ability to contain a relatively large mass of sludge and thereby, for all
practical purposes, totally remove the influent organic material in the
wastewater. The effluent organic material is almost entirely due to the
suspended solids that escape from the system. The process produces
comparably small amounts of sludge, and the sludge is very stable as the
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low substrate to biomass ratio maintains the biomass in the endogenous
phase. An intentional sludge wastage is often provided to improve the
effluent quality although the initial intent of the process was to be operated
without any excess sludge production.

The concept of sludge reaeration was initially intended for improving the
sludge settleability by aerating the recycled sludge in a separate tank prior
to returning it to the aeration basin. The process could also be used as a
way of providing a reservoir of sludge that was buffered against poisonous
effects of short pulses of influent toxic material. The process later evolved
into the contact-stabilization process (Ullrich and Smith, 1951). Basically
the process employs two aerated reactors separated by a settling system.
Either raw or presettled wastewater is mixed with activated sludge and
aerated in a contact tank with a short detention time. Here the biomass
adsorbs the influent organics and then settles out in the secondary clarifier.
The concentrated sludge is then pumped into the stabilization tank and
aerated for several hours prior to return to the contact basin. The process is
still popular and it is often considered to increase the possible volumetric
loading capacity and efficiency compared with a conventional-flow AS
process, and to some extent improve the settleability of the sludge.

A way of improving the capacity of an AS process while maintaining the
reactor volumes is to convert it to a pure-oxygen or enriched oxygen
system. By applying oxygen (usually added under pressure) instead of air
to the system it is possible to maintain high levels of oxygen in the aeration
tank without excessive turbulence, which would break up the flocs and
deteriorate the settleability. This allows for higher loadings, higher sludge
concentrations and shorter detention times than in a conventional system.
The process is especially favoured in areas with very limited space for
plant expansions. Naturally, the cost for aeration is significantly increased
by this approach.

The sequencing batch reactor (SBR) is an AS system operating on a fill-
and-draw basis. As earlier discussed, this was the principle applied in the
early AS plants. After the choice for continuous-flow processes, the
interest for SBRs was revived in the early 1960s with the development of
new technology and equipment. The SBR process is essentially composed
of a single tank. The process modification basically consists of its semi-
batch operation and the fact that biological conversion and settling take
place in the same reactor in a cyclic operation. Most of the advantages of
this process may be attributed to the very flexible nature of the operating
parameters, as the process can be controlled by time rather than by space.
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However, the SBR process normally requires a more sophisticated control
strategy than a traditional continuous-flow system.

Processes for Nutrient Removal

The processes described above were developed primarily for the removal
of organic material from the wastewater. However, during the last thirty
years, nutrient removal has become a very important factor in WWT, that
is, the removal of nitrogen and phosphorus components from the waste-
water. In order to accomplish this in an AS process, a large number of
different process configurations have been developed. One basic problem
is that the microorganisms performing nitrification, denitrification and
enhanced biological phosphorus removal (EBPR) require very different
environments to function effectively, that is, a combination of aerobic,
anoxic and anaerobic conditions. The term anoxic is frequently used to
define a condition when oxygen is absent and nitrate or nitrite is present.
Some of the most established processes for nutrient removal will be
schematically described below.

Biological nitrogen removal AS systems are normally separated in two
different categories – separate-sludge systems and single-sludge systems.
The separate-sludge system is characterised by two sets of reactors with
individual settling and sludge recycle, operated in sequence and sustaining
two different types of microbial communities. The first reactor is aerated to
achieve carbon removal and nitrification, whereas the second reactor
provides an anoxic environment for denitrification. This process configura-
tion is also known as a two-sludge system. Three-sludge systems with
carbon removal, nitrification and denitrification in successive reactors are
also a possible solution. Since the organic matter of the wastewater is
almost completely consumed in the first part of the process, the anoxic
reactor often requires the addition of an external carbon source, for
example, methanol or ethanol. Another possibility is to bypass a portion of
the influent wastewater to the anoxic reactor to provide the necessary
carbon for the denitrification. While total separation of aerobic and anoxic
processes enables optimum design and performance stability, economical
considerations have been the major incentive in the development of com-
bined or single-sludge systems. Basically, the combined process is applied
in two different configurations – single-sludge predenitrification and
single-sludge postdenitrification.
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The postdenitrification process consists of two reactors in series, the first
aerobic and the second anoxic, see Figure 3.1a. It was first suggested by
Wuhrmann (1964) and is consequently known as the Wuhrmann process.
The energy source for the denitrification process is provided by energy
released by the sludge mass due to the death of organisms. However, since
this rate is low, the denitrification rate is also low. Therefore, a very large
anoxic volume is required for a high denitrification efficiency.

(a) (b)

(d)

(c)

anoxic reactor aerobic reactor

Figure 3.1 Single-sludge nitrogen removal systems: (a) the Wuhrmann
process, (b) the Ludzack-Ettinger process, (c) the modified
Ludzack-Ettinger process, and (d) the Bardenpho process.

The predenitrification process was first developed and proposed by
Ludzack and Ettinger (1962) and, consequently, known as the Ludzack-
Ettinger process. It consists of two reactors in series, partially separated,
without intermediate settling, see Figure 3.1b. As there is only partial
separation between the two reactors, a mixing of the nitrified and anoxic
wastewater is induced, and the nitrate entering the anoxic reactor is
reduced to nitrogen gas. This process was later modified by Barnard
(1973), who completely separated the anoxic and aerobic reactors,
recycling the settler underflow to the anoxic reactor, and providing an
additional recycle from the aerobic to the anoxic reactor, see Figure 3.1c.
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The process is known as the modified Ludzack-Ettinger process and the
control of the process is significantly improved. However, with this flow
scheme, complete denitrification is not possible, and the degree of
denitrification depends upon the fraction of the total flow from the aerobic
reactor not recycled but discharged directly with the effluent.

In order to overcome the incomplete denitrification, the Bardenpho
process was proposed as a combination of the modified Ludzack-Ettinger
and Wuhrmann processes, see Figure 3.1d. The low concentration of
nitrate discharged from the aerobic reactor to the second anoxic reactor
will be denitrified to produce an effluent free of nitrate. To strip the
nitrogen bubbles generated in the secondary anoxic reactor attached to the
sludge flocs, a flash aeration is introduced between the secondary anoxic
reactor and the settler. This extra aeration is also considered necessary to
nitrify the ammonia released through endogenous decay in the previous
reactor.

In order to achieve EBPR in a conventional activated sludge process an
anaerobic reactor can be added in front of the aerobic reactor, as shown in
Figure 3.2a. This process is known as the two-stage Phoredox process or
the A/O process. The real challenge was the development of an AS process
capable of performing organic removal, nitrification, denitrification and
EBPR within a single-sludge system. A number of such processes are
schematically outlined in Figure 3.2, without further explaining any details
about the flow schemes and reactor interactions of these complicated
processes. Such a description is beyond the scope of this overview. An
important event of the development of these processes was the observation
of high and stable phosphorus removal in a pilot plant (Bardenpho process)
designed by Barnard in 1975 for nitrogen removal (Barnard, 1975). Having
observed that EBPR was possible when an anaerobic stage was followed
by an aerobic stage, Barnard proposed to employ an anaerobic stage before
the nitrogen removing Bardenpho system, thereby creating the modified
Bardenpho process or the five-stage Phoredox process, see Figure 3.2b.
When only partial nitrogen removal was required, it could be reduced to
three stages – anaerobic, anoxic and aerobic (Barnard, 1983). This process
is often referred to as the three-stage Phoredox process or the A2/O
process, see Figure 3.2c. 
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(a)

(b)

(c)

(d)

(e)

(f)

anoxic reactor aerobic reactoranaerobic reactor

Figure 3.2 Single-sludge nutrient removal systems: (a) two-stage Phoredox
(A/O) process, (b) five-stage Phoredox (modified Bardenpho)
process, (c) three-stage Phoredox (A2/O) process, (d) UCT process,
(e) modified UCT (MUCT) process, and (f) Johannesburg process.
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As researchers continued to develop biological nutrient removal AS
systems, and discovered the significance of the sequence of anaerobic-
aerobic stages, the inhibiting effect of nitrate recycle to the anaerobic stage
on EBPR was also recognized (Nicholls, 1975; Barnard, 1976). These
considerations later led to the introduction of the University of Cape Town
(UCT) process, the modified UCT (MUCT) process and the Johannesburg
process (Dold et al., 1991), outlined in Figures 3.2d-3.2f.

It should be noted that modifications have also been made on other types
of AS processes, such as the oxidation ditch and the SBR, converting them
into nutrient removal systems. Two good examples of alternating processes
(a development of the SBR process) including nutrient removal are the
BIO-DENITRO (Christensen, 1975) and the BIO-DENIPHO processes
(Einfeldt, 1992).

3.2 Model Development

There has been a long transition period between the promotion of the
activated sludge method of wastewater treatment and the establishment of
a theoretical framework that both quantitatively describes the process, and
provides a rational basis for its design. The conflicting nature of the many
hypotheses for the mechanistic explanation of the process, the difficulty of
expressing them in precise mathematical models, and the contrived nature
of the systems on which the models were developed were the main reasons
for this slow transition. Due to the absence of basic rational guidelines, the
early developments of plant design and operation have been more of an art
than a science.

From the 1920s until the 1960s different hypotheses for explaining the
mechanisms of organic matter removal by activated sludge, were proposed.
In Arden and Lockett’s original work, it was recognized that physical,
chemical and biological mechanisms might be responsible in varying
degrees for the purification of the wastewater, although no attempts were
made to identify their existence or their relative importance. The hypo-
theses included theories recognized today as the coagulation theory, the
adsorption theory, the colloid theory, the biozeolite theory and the enzy-
matic theory. A description of these theories is given in Orhon and Artan
(1994). Although the adsorption theory was the dominating theory for
many years it should be noted that already in 1923 a biological mechanism
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was proposed as an alternative theory by Buswell and Long (1923). On the
basis of their observations they reported that AS flocs were made of
synthetic, gelatinous matrix enclosing filamentous and unicellular bacteria,
as well as various protozoa and some metazoa. Their experimental evi-
dence suggested that the purification was accomplished by ingestion and
assimilation of the organic matter from sewage and their synthesis into the
living material of the floc. This theory has later found universal acceptance
and has remained virtually unchallenged.

By 1940, a number of experimental investigations had shown that adsorp-
tion could not be the only nor the predominant mechanism of organic
matter removal. If adsorption did occur, it had to be accompanied by a
biochemical reaction. McKee and Fair (1942) stated that the removal
mechanism consisted of two distinct but interrelated steps:

• a physical process of adsorption and flocculation which pro-
ceeded rapidly and decreased as the organic substances were
removed from sewage or as the contact surfaces became covered
with these substances;

• a biological process of organic matter consumption for energy
and cellular synthesis purposes, which was instituted simultan-
eously but proceeded more slowly.

The idea of the two-step adsorption/metabolism found immediate support,
although there was no common agreement on the relative importance of
each step in the overall removal mechanism. The concept was used as the
basis for process modifications – especially for the development of the
contact-stabilization process discussed in the previous section.

In all the theoretical speculations as well as the attempts to verify them
experimentally, it must be noted that all organic material of the sewage
was considered an an entity without any emphasis on its particulate and
soluble components. It was first around 1955 that researchers began to
consider the composition of the sewage and its impact on the reactions.

Operational difficulties encountered, together with new process extensions
such as nutrient removal, have greatly increased the use of process
modelling. This has led to an ever-increasing need for mathematical
models incorporating the fundamental microbial mechanisms into a
rational engineering description of the process. Consequently, a significant
evolution in modelling practice has been experienced in the last three
decades, from the single-component model advocated by McKinney
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(1962), to the elaborate model including 19 components, 65 parameters
and 19 different processes recently proposed as the IAWQ AS Model No.2
for combined carbon, nitrogen and phosphorus removal (Henze et al.,
1995). The accumulated scientific information and ingenuity of the recent
modelling efforts are noteworthy. However, the reliability of the proposed
models depends on an increasing number of kinetic and stoichiometric
parameters, which to a large degree depend on characteristics of the actual
wastewater and must therefore be experimentally determined.

Bacterial growth and decay

The biological processes in a WWT plant are carried out by many different
types of bacteria. The most important microorganisms in the AS process
are bacteria, while fungi, algae and protozoa are of secondary importance.
The different types of organisms that can be found in an AS process, are
also found in the raw wastewater flowing into the plant or in the immediate
surroundings of the plant. The predominant genera of bacteria in the
activated sludge are mainly determined by the composition of the raw
wastewater, the design of the plant, and to some extent the operation of the
specific plant.

Bacteria constantly need energy in order to grow and to support essential
life activities. Growing cells utilize substrate and nutrients located outside
the cell membrane for growth and energy in a process, which can be
described in a simplified form as

Substrate + Nutrients + Oxygen → Biomass + Energy

The bacteria can also accumulate substrate and nutrients and store them
internally in modified forms (typically polysaccharides, lipids and poly-
phosphates). The major part of bacteria in activated sludge (called hetero-
trophic bacteria) use organic carbon in the form of small organic molecules
as substrate, and some bacteria (called autotrophic bacteria) which are
essential to biological nutrient removal, use inorganic carbon as substrate.
When the bacteria decay, the organic carbon of the bacteria is partly reused
in the process.

For example, the formation of a typical biomass compound (C5H7NO2)
from a typical substrate (C18H19O9N) in an aerobic environment with a
typical yield coefficient is given by the following reaction:
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C18H19O9N + 0.74NH4
+ + 8.80O2 →

                       1.74C5H7NO2 + 9.30CO2 + 4.52H2O + H+

The end-products on the right-hand side of the biochemical reaction is
obviously harmless to the environment. It should be noted that in addition
to the removal of organic matter, ammonia is removed by growth of
bacteria. The above process is carried out by the heterotrophic bacteria in a
WWT plant.

In order to mathematically describe the kinetics of the reactions taking
place in a biological reactor, practically all models are based on the two
fundamental processes discussed above, that is, microbial growth (3.1) and
decay (3.2), usually described mathematically as

dX

dt
= µX (3.1)

dX

dt
= −bX (3.2)

where µ is the specific growth rate and b is the decay coefficient. Process
stoichiometry is then used to relate substrate (S) utilization to microbial
growth (3.3), as

dX

dt
= −Y

dS

dt
(3.3)

where Y is the yield coefficient. The decay process is generally defined by
a first-order rate expression with respect to the biomass concentration (X).
The above model is equivalent to the one investigated in the small example
in Section 2.6. This description cannot differentiate between degradation of
endogenous mass for the generation of maintenance energy, microbial
death, cell lysis and interactions between predators and bacteria, but it
reflects the overall combined effect.

A major issue has been how to mathematically describe the specific growth
rate for a continuous culture of microorganisms growing in wastewater on
a mixture of organic and inorganic substrates. The most commonly recog-
nized rate expression is the hyperbolic expression proposed by Monod
(1942; 1949), as an empirical deduction from pure culture studies, i.e.,
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µ = µ̂ S

K S + S
(3.4)

where µ̂ is the maximum specific growth rate, KS is the half-saturation
constant and S is the concentration of the growth-limiting substrate. This
expression is in turn compatible with the Michaelis-Menten (1913) enzym-
atic reaction model. Monod deduced the above expression by investigating
the different growth phases of pure bacteria cultures in a batch system, see
Figure 3.3. The growth rate is very much depending on the living condi-
tions for the organisms but the growth phases are generally categorized as:

I: lag phase II: acceleration phase III: exponential (log) phase
IV: retardation phase V: steady-state phase VI: declination phase

Note! No figure available.

Figure 3.3 The bacterial growth phases (Monod, 1942).

During the lag phase the bacteria adapt to the environment and no growth
can be seen. The lag phase is followed by the acceleration phase, which is
characterized by a fast increase of the growth rate. This later leads to the
exponential phase. As a consequence of decreasing access to nutrients and
increasing amounts of metabolic products and toxins the increase of the
growth rate starts to decline and in the stationary phase the growth rate
eventually stabilizes at a certain level. Finally, the bacteria die off during
the declination phase.

The bacteria can be measured either as concentration of cells, that is, the
number of individual cells per volume, or as bacteria density, i.e., the total
dry weight of bacteria per volume (Finnson, 1994). A complicating fact
when measuring the growth rate of bacteria is that in practice the size of
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the microorganisms vary between the different growth phases (Monod,
1942). In general, the size of a cell reaches its maximum at the end of the
lag phase, continue at constant size through the exponential phase and
subsequently decrease in size. In the exponential phase the growth rate is
proportional to the bacteria density (Monod, 1942), following that the size
of the cell is constant. It must also be realised that a multiplicity of reaction
mechanisms occur even in the simplest biological reaction. Adsorption,
enzyme catalysis, inhibition and diffusion processes represent the major
functional mechanisms that may control the uptake of a specific substrate.
Furthermore, these mechanisms are dependent upon a number of physical,
chemical and biological variables within a given system (cf. medical
literature on glucose uptake by red blood cells).

The Monod expression is developed as an acceptable mathematical
description of experiments conducted with pure bacterial cultures growing
on single substrates. In WWT practice, the latter is substituted with non-
specific parameters like BOD (biological oxygen demand) or COD
(chemical oxygen demand). Although they are mathematically treated as
single substrate components, these parameters include a great variety of
organic compounds with different biodegradation characteristics. The
influent wastewater also contains artificially manufactured chemical
compounds and toxic materials, to which various organisms respond
differently. Furthermore, conditions like the dissolved oxygen (DO)
concentration and the pH may vary within the treatment plant. Conse-
quently, in the biological reactors used for the removal of the mixture of
organic compounds in wastewaters, there is no way to select a given
microbial species, since a mixed microbial community develops as an
enriched culture, resulting from natural selection. Taking the above into
consideration, a slightly more realistic growth rate function for WWT
plants, including growth on n multiple substrates where the different
components exhibit a competitive inhibition effect on the utilization of the
other components, may look like

µ = µ̂ iS i

K S,i + ai, jS j
j=1

n

∑i=1

n

∑
(3.5)

where ai,i=1 and ai,j represents the inhibition effect of the jth substrate on
the utilization of the ith substrate by the organism. However, this complex
model structure only addresses a few of the problems discussed above. It
would, on the other hand, be practically impossible to identify and verify
such a model for values of i and j larger than 1, both because of the
inherent model structure and due to the necessary detailed measurements.
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In fact, a drawback of the original Monod expression is that the parameters
as part of a biological model cannot be measured directly but must be
estimated. This is difficult because even a model in the very simple form of
(3.1)–(3.4) is not practically identifiable (Holmberg, 1981), although it is
theoretically identifiable from perfect measurements of X and S in a batch
experiment (Holmberg and Ranta, 1982), as discussed in Section 2.6. The
lack of practical identifiability means that unique sets of parameters can
rarely be obtained. Parameters estimated from data obtained during
apparently similar conditions show considerable variations and parameter
estimation methods show poor convergence properties (Holmberg, 1982).
In Vialas et al. (1985) ways of improving the practical identification of the
Monod equation by using different sample times depending on the current
state of the process, is suggested. Ratkowsky (1986) proposes a different
parametrization of the Monod equation to improve the identifiability of the
model and enhance the convergence of estimation algorithms. Both linear
and non-linear regression techniques are applied for estimating the growth
model parameters as well as the yield and decay rate coefficients from true
plant data in Vaccari and Christodoulatos (1990). The estimates are,
however, not significant at the 95 % confidence level and, therefore, the
use of a simple first-order rate equation is promoted instead of the Monod
expression. A comparison of the non-linear Monod equation and a linear
simplification is also performed in Derco et al. (1990a; 1990b). The
investigations show that a linear rate model is not as good for predicting
actual transient responses in biomass and substrate concentrations as the
traditional formulation. On the other hand, the standard Monod expression
does not provide perfect results either, when compared with true data. The
advantage of the linear rate equation is that it improves the practical
identifiability of the model. In a similar way, it has also been shown that by
measuring the oxygen uptake rate (OUR) during very well-controlled
conditions using a respirometer it is only possible to uniquely identify
certain combinations of parameters and state variables in model (3.1)-(3.4),
see Vanrolleghem (1994).

The relevance of the basic structure of the empirical Monod equation is
also a matter of dispute. Depending on what mechanism is considered to be
most important (biochemistry, adsorption, diffusion, etc.) the growth
expressions are formulated differently. A large number of rival models that
exhibit practically the same behaviour have been suggested and investi-
gated from an identification point of view (Boyle and Berthouex, 1974;
Dochain and Bastin, 1984). Some of the proposed variants that have been
applied in WWT modelling are given below (all K and θ coefficients
represent different model parameters).
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The Tiessier model (Tiessier, 1936):

µ = θ1 1 − eθ2S( ) (3.6)

The Blackman model (Blackman, 1905; Garrett and Sawyer, 1952):

µ =
µ̂S

K B
     if S < K B

µ̂         if S ≥ K B






(3.7)

The Contois model:

µ = µ̂S

K CX + S
(3.8)

The Powell model (Powell, 1967):

µ = θ1
θ2 + θ3 + S

2θ3







1 − 1 − 4θ3S

θ2 + θ3 + S( )2









 (3.9)

The Haldane model for inhibition kinetics:

µ = µ̂S

K S + S + S2

K I

(3.10)

The behaviour of some of the equations is exemplified in Figure 3.4. By
choosing the model parameter values properly, the similarities of the
equation behaviours are made obvious and indicate that the growth rate
may be described by many different expressions.

There is evidence in the literature to show that Monod-type expressions
provide reasonable models to describe the growth of the enriched culture
sustained in WWT reactors, with the provision that the kinetic parameters
be interpreted not as absolute values, but as average figures related to the
predominant species in the particular growth conditions of the reactor.
Bearing this in mind, it would seem appropriate to promote growth
expressions that produce results similar to the original Monod expression
but simultaneously enhance the identifiability of the model. Of the models
discussed above, the Blackman model is the easiest one to identify,
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especially if we consider the fact that in municipal WWT plants the
substrate concentrations are generally so low that only the first part of the
model (the first-order growth rate expression) is required.

 Monod model (3.4)   
 Tiessier model (3.6)
 Blackman model (3.7)
 Haldane model (3.10)
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Figure 3.4 Behaviour of different bacterial growth rate equations.

Nitrification and Denitrification

Two more processes, which are of great importance for the AS process
and, consequently, should be included in a mathematical model, are the
nitrification and denitrification processes. Nitrification is a two-step micro-
biological process transforming ammonia into nitrite and subsequently into
nitrate. The process is well-known from the biosphere, where it has a major
influence on oxygen conditions in soil, streams and lakes. Soluble
ammonia serves as the energy source and nutrient for growth of biomass of
a special group of autotrophic bacteria (called nitrifiers). If ammonia is
used only as a source of energy, the first step of oxidizing ammonia into
nitrite is described as

NH4
+ +1.5O2 → NO2

– + H2O + 2H+

and the second step of oxidizing nitrite into nitrate is

NO2
– + 0.5O2 → NO3

–
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A typical representative for the first step is the bacteria of the genus Nitro-
somonas and for the second step the bacteria of the genus Nitrobacter.

Because the reactions above only give a small energy yield, the nitrifying
bacteria are characterized by a low biomass yield. This is an essential pro-
blem for the nitrification process in biological nutrient removal systems.
Using a typical yield for autotrophic growth of biomass, the following
reaction for the total nitrification process is obtained:

NH4
+ +1.86O2 +1.98HCO3

– →

           0.02C5H7NO2 + 0.98NO3
– +1.88H2CO3 +1.04H2O

where HCO3
– is the form of soluble carbon-dioxide for pH-values in the

range from 5 to 9. From the reaction above, it is seen that a large amount of
alkalinity is consumed for every NH4

+ being oxidized. Although the waste-
water in many areas contains large alkalinity buffers, some WWT plants
require the addition of lime or soda ash to maintain desirable pH-levels for
nitrification. Normally, the nitrification is mathematically described as a
one-step process in order to keep the models fairly simple.

Denitrification is a microbiological heterotrophic process transforming
nitrate into nitrogen gas, using nitrate instead of oxygen as the oxidization
agent. The conditions during which this process occurs, are called anoxic,
because oxygen is not present and some heterotrophic bacteria are able to
use nitrate for oxidation. Denitrification is also well-known from the
biosphere, where it is common in soil and beneath the surface in stationary
waters. Most of the heterotrophic bacteria are optional to the use of
oxidation agent, but the energy yield of using nitrate is less than when
using oxygen. Thus, if oxygen is present, the bacteria prefer to use oxygen.
In practice, denitrification only takes place at low oxygen concentrations.
The overall mechanism can be described by a typical microbial reaction of
a saccharide with nitrate:

5C6H12O6 + 24NO3
– → 12N2 + 24HCO3

– + 6CO2 +18H2O

The lower energy yield for the heterotrophic bacteria during the anoxic
conditions is also reflected in a somewhat lower biomass yield. Denitri-
fying bacteria using ammonia and the typical form of organic substrate
(C18H19O9N) in wastewater for bacterial growth with an observed yield
coefficient of 0.47 g biomass/g substrate gives the following reaction:
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0.61C18H19O9N + 4.54NO3
– + 0.39NH4

+ + 4.15H+ →

                             C5H7NO2 + 2.27N2 + 6.70CO2 + 5.12H2O

Fortunately, some of the alkalinity lost by nitrification is gained by denitri-
fication. A very important parameter for the denitrification process is the
organic carbon/nitrogen-fraction (C/N ratio) of the raw wastewater, which
also plays a significant role for the design and operation of the WWT plant.
In practice, the C/N ratio of the raw wastewater should be at least 8-9
g COD/g N for a typical WWT plant, in order to assure a relatively high
denitrification rate (Carstensen, 1994).

Dynamic Models

It was the 1950s before the first dynamic models of the AS process were
proposed (Goodman and Englande, 1974). Prior to this time the models
had dealt only with steady-state behaviour of the process. Initially, two
state variables (substrate and biomass) were considered sufficient for a
good dynamic description of the process, and degradation was modelled as
a first order reaction as discussed above (Eckenfelder and O’Connor, 1955;
McKinney, 1962; Eckenfelder, 1966). Later, saturation of the degradation
capacity was included by introducing a Monod-type dependency of the
removal rate on substrate concentration (Lawrence and McCarty, 1970).
To describe new experimental findings, Andrews and coworkers intro-
duced one of the first structured models. In this model the biomass was
structured into three parts: active, stored and inert (Busby and Andrews,
1975). Another structured approach was suggested in McKinney and Ooten
(1969) for conversion of carbonaceous material. These researchers pro-
posed the following:

• the mixed liquor can be divided into three volatile solids frac-
tions: active, endogenous-inert and inert (from the influent);

• a relationship between the mass of substrate utilized and the
active mass of organisms was stated;

• an accumulation of endogenous-inert solids takes place because
of endogenous respiration;

• a relationship between the oxygen demand and the organisms
synthesized and the active mass loss due to endogenous respi-
ration was stated;

• an accumulation of inert solids takes place due to the presence of
this material in the influent wastewater.
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An important factor that coincided with the development of dynamic
models was the increasing computer power and falling prices for com-
puters during the 1970s. This liberated mathematical modelling from many
constraints. Systems of partial and ordinary differential equations could
now be numerically solved and dynamic models could quickly be tested
and validated.

Some of the most fundamental work concerning the development of
dynamic models for the AS process has been performed at the University
of Cape Town, Republic of South Africa. Based on the proposals of
McKinney-Ooten above (except the suggestion for the rate of synthesis of
active mass), Marais and Ekama (1976) developed a steady-state aerobic
model from which a dynamical model evolved. Instead they accepted
Lawrence-McCarty’s proposal linking the specific organism growth rate to
the concentration of substrate via the Monod relationship. They further
suggested that influent carbonaceous material should be divided into three
fractions:

• biodegradable;
• non-biodegradable particulate;
• non-biodegradable soluble.

The biochemical oxygen demand was rejected as a suitable parameter for
defining the organic material and instead they accepted the electron
donating capacity in its equivalent form, the chemical oxygen demand. The
oxygen utilization rate was also recognized as the most sensitive parameter
by which to verify the behaviour of proposed models to the activated
sludge process. They further suggested that the influent nitrogen should be
divided into the following four fractions:

• non-biodegradable soluble;
• non-biodegradable particulate;
• biodegradable organic;
• free and saline ammonia.

For the conversion of ammonia to nitrate they again followed the Monod
approach, as set out by Downing et al. (1964).

Progressively the Marais-Ekama model evolved into a full dynamic model
(Ekama et al., 1979; Dold et al., 1980; van Handel et al., 1981) also
including denitrification. Two key features of particular importance had
then been included in the model, namely, the bisubstrate and death-
regeneration hypotheses.
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In accordance with practical experiments, it was proposed that the bio-
degradable COD in the influent wastewater consisted of two fractions:
readily and slowly biodegradable COD (Ekama and Marais, 1979). This
was the bisubstrate hypothesis included in the aerobic model (including
nitrification) by Dold et al. (1980). The readily biodegradable COD was
assumed to consist of simple molecules able to pass through the cell wall
and immediately be used for synthesis by the organisms. The slowly
biodegradable COD, which consisted of larger complex molecules, were
enmeshed by the sludge mass, adsorbed and then required extracellular
enzymatic breakdown (often referred to as hydrolysis) before being
transferred through the cell wall and used for metabolism. The above
approach was claimed to significantly improve the model predictions of the
process under cyclic load and flow conditions.

The death-regeneration hypothesis was introduced in an attempt to single
out the different reactions that take place when organisms die. The
traditional endogenous respiration concept described how a fraction of the
organism mass disappeared to provide energy for maintenance. However,
practical experiments with varying anaerobic and aerobic conditions in a
reactor showed that the endogenous respiration model was not satisfactory.
It could not explain the rapid oxygen uptake rate that occurred when a
reactor was made aerobic after an anaerobic period. In the death-
regeneration model, the decayed cell material was released through lysis.
One fraction was non-biodegradable and remained as an inert residue while
the remaining fraction was considered to be slowly biodegradable. It could
thus return to the process and be used by the remaining organisms as
substrate through hydrolysis, consequently providing an explanation to the
observation described above as a build up of biodegradable material during
the anaerobic period.

Besides the carbonaceous conversion aspects described above, van Handel
et al. (1981) showed that the bisubstrate and death-regeneration approach
could be integrated in a consistent manner with the transformations of
nitrogen.

The full UCT model (Dold et al., 1991) consists of 14 different processes
including 14 state variables and 21 parameters. It has provided the basis for
most future mechanistic modelling approaches of the AS process, for
example, for the IAWQ AS Model No.1 discussed in the next section.
However, it is important to note that in order to successfully apply a model
of such high complexity to a real process, an extensive measurement
program in combination with estimation methods is required to determine
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suitable values for the parameters and to characterize the influent waste-
water. A description of methods for measuring these quantities is beyond
the scope of this work. Some relevant references addressing these issues
are (Ekama and Marais, 1984; Cech et al., 1985; Dold and Marais, 1986;
Ekama et al., 1986; Henze et al., 1987; Henze, 1988; Grady et al., 1991;
Ayesa et al., 1991; Dold et al., 1991; Sollfrank and Gujer, 1991; Henze,
1992; Kappeler and Gujer, 1992; Larrea et al., 1992; Siegriest and Tschui,
1992; Vanrolleghem, 1994; Henze et al., 1995).

The highly complex mechanistic models have initiated research to develop
simpler, reduced order models for the AS process, more suited for on-line
control and identification. One approach to develop a structured kinetic
model for the activated sludge system is given in Padukone and Andrews
(1989). The proposed model is stated to be the simplest one capable of
giving a realistic description of the contact-stabilization process for
carbonaceous removal although no validation of the model using experi-
mental data is presented in the paper. Based on a traditional storage-
metabolism hypothesis for the substrate, the rate equations are chosen in a
way that reduce them to the Monod equation during ‘balanced growth’
(when the external conditions to which the cell is exposed change so
slowly that its composition remains perfectly acclimated to them, for
example in the completely mixed AS process). Because the rate equations
are linear, the cell growth and substrate uptake in a stirred tank can be
defined exactly in terms of the average composition of the biomass. The
composition of the flocs is described by the ratio of stored substrate to
active biomass. However, the type and number of parameters and state
variables make this model difficult to verify and would require lengthy
experiments in order to update the parameters for changing environmental
conditions.

A simplified AS model is presented in Fujie et al. (1988). It predicts the
concentration of organic material in the aeration basins and in the effluent
from a wastewater treatment plant performing only carbonaceous removal.
Only soluble organic substance is modelled since the particulate material is
considered to be immediately adsorbed by the activated sludge and thereby
remain within the system. The model is easily verified since practically all
parameters and state variables are directly available through simple
measurements. In the paper the predictions are validated against experi-
mental data and they show a large degree of agreement. However, it has to
be emphasized that the effluent concentration of organic substrate is not
the most suitable variable for modelling a modern treatment plant receiving
municipal wastewater. This concentration is in many cases so low that the
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uncertainty of any measurement is considerable. Since many modern plants
also perform nitrification/denitrification, the sludge age is usually so high
that the effluent concentration of organic soluble material is more or less
negligible.

A number of mechanistically simplified models for the organic substrate
and the active biomass are presented and tested against each other in
Sheffer et al. (1984). Ways of automatically selecting the best possible
model for a certain purpose are also discussed as well as the need for on-
line updating of model parameters. A similar comparison between different
levels of mechanistic simplification of the IAWQ model to experimental
data is given in Gujer and Henze (1991). Complete models for entire
wastewater treatment processes, including primary settling, aeration,
secondary settling, gravity thickening, anaerobic digestion, waste disposal
etc., have also been proposed, for example by Tang et al. (1987). Such
large models are usually only applicable for steady-state conditions and are
mainly used to analyse the most cost-effective approach for operating an
entire plant.

A somewhat different modelling approach is suggested in Benefield and
Molz (1984). It is based on a modified Monod relationship and the transfer
of nutrients into the flocs is modelled as spherical molecular diffusion
depending on the floc radius. Biological phosphorus removal is also
included in the model though in a very rudimentary  form. The rate of the
removal is simply stated to be directly proportional to the rate of microbial
growth. The model is further investigated and validated in Benefield and
Reed (1985).

In recent years, significant efforts have been made to mathematically
model the processes involved in enhanced biological phosphorus removal.
There are still many questions to be resolved concerning this highly
complex process. Today, two main biochemical models can be recognized.
They are referred to as the TCA model (Comeau et al., 1985; Wentzel et
al., 1986) and the Glycogen model (Mino et al., 1987). The basic
principles of these models are discussed and compared in Wentzel et al.
(1991). Both models recognize that stimulation of an EBPR process
requires anaerobic/aerobic sequences and that VFA (volatile fatty acids),
for example acetate, play a central role in the anaerobic phase. The models
differ primarily with respect to the origin of the reducing equivalents
(NADH) necessary for the production of poly-hydroxyalkanoate (PHA)
from acetate. There is also questions with regard to which bacteria within
the microbial community in a WWT plant that play the most important role
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for EBPR. The mathematical models for describing EBPR are often added
on as extensions to established models for carbonaceous and nitrogen
removal in AS systems, applying many of the concepts incorporated in the
original models. Some of the most recent proposals for modelling the
EBPR process are Dupont and Henze (1989), Wentzel et al. (1989), Dold
(1992), Wentzel et al. (1992), Johansson (1994), Henze et al. (1995) and
Smolders et al. (1995). As EBPR is not considered in this work, the
process will not be further discussed. A good reference for the interested
reader is Aspegren (1995), where EBPR is investigated, both from a
modelling and a practical perspective. A large number of relevant refer-
ences concerning EBPR are also provided.

A very different approach when modelling the AS process is to use black-
box models, e.g., stochastic processes or neural networks. A problem is the
difficulty to incorporate any mechanistic knowledge about the processes
into these types of models. Instead they rely heavily on identification and
estimation algorithms in combination with a large and reliable database
describing different dynamical aspects of the process. Although black-box
models are reliable when it comes to interpolating results within a region
which they have been trained for (calibrated), there is no guarantee that
they will produce any relevant results when used to extrapolate data.
Therefore, the use of black-box models to describe the full dynamics of the
AS process is quite limited but they may prove useful for on-line control of
certain well-defined parts of the process. A few relevant references dealing
with black-box models (both stochastic processes and neural networks) in
WWT applications are Bhat and McAvoy (1990), Hiraoka et al. (1990),
Kabouris and Georgakakos (1991), Novotny et al. (1991), Boger (1992),
Capodaglio et al. (1992), Yang and Linkens (1993), te Braake et al.
(1994). A more fruitful use of black-box models may be to apply them in
combination with established mechanistic models of the AS process for
specific control purposes or for estimating and updating the mechanistic
model parameters as the conditions of the process change.

Another, more promising approach is to use so called grey-box models for
describing the AS process. In this type of model, some of the physical
knowledge of the process is incorporated into a stochastic model, which
means that many model parameters maintain their physical interpretation.
Such a model has been successfully used for control and identification of
an alternating process including nutrient removal (BIO-DENITRO and
BIO-DENIPHO) and is thoroughly described in Carstensen (1994). The
full potential of this modelling approach is still to be determined but
significantly more research efforts are required within this new field.
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3.3 A State-of-the-Art Model

In 1983, the International Association on Water Quality (IAWQ, formerly
IAWPRC) formed a task group, which was to promote development, and
facilitate the application of, practical models for design and operation of
biological wastewater treatment systems. The first goal was to review
existing models and the second goal was to reach a consensus concerning
the simplest mathematical model having the capability of realistically
predicting the performance of single-sludge systems carrying out carbon
oxidation, nitrification and denitrification. The final result was presented in
1987 (Henze et al., 1987) as the IAWQ Activated Sludge Model No.1.
Although the model has been extended since then, for example to
incorporate more fractions of COD to accommodate new experimental
observations (Sollfrank and Gujer, 1991), to describe growth and popula-
tion dynamics of floc forming and filamentous bacteria (Gujer and
Kappeler, 1992) and to include new processes for describing enhanced
biological phosphorus removal (Henze et al., 1995), the original model is
probably still the most widely used for describing WWT processes all over
the world. Due to its major impact on the WWT community it deserves
some extra attention and it can still be considered as a ‘state-of-the-art’
model when biological phosphorus removal is not considered.

Many basic concepts were adapted from the UCT model discussed in the
previous section, such as the bisubstrate hypothesis and the death-
regeneration hypothesis. Again the Monod relationship was used to
describe the growth rate of both heterotrophic and autotrophic organisms.
COD was selected as the suitable parameter for defining the carbonaceous
material as it provides a link between electron equivalents in the organic
substrate, the biomass and the oxygen utilized. Furthermore, mass balances
can be made in terms of COD.

Some substantial modifications were also proposed by the IAWQ task
group with regard to the UCT model in terms of the enmeshment-
adsorption (storage) and in the solubilization (hydrolysis) concepts. The
task group rejected the view that the biodegradable particulate COD was
adsorbed and stored on the organism mass. Instead they proposed that the
enmeshed biodegradable material was hydrolysed to readily biodegradable
COD, and released to the bulk liquid by the action of extracellular enzymes
secreted by the organism mass. With regard to denitrification, the group
separated the processes of hydrolysis and growth. Finally, the fate of the
organic nitrogen and source of organic nitrogen for synthesis were treated
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somewhat differently. The task group also introduced the concept of
switching functions to gradually turn process rate equations on and off as
the environmental conditions were changed (mainly between aerobic and
anoxic conditions). The switching functions are ‘Monod-like’ expressions
that are mathematically continuous and thereby reduce the problems of
numerical instability during simulations. Furthermore, the work of the
group promoted the structural presentation of biokinetic models via a
matrix format, which was easy to read and understand, and consolidated
much of the existing knowledge on the AS process. A complete description
of all differences between the UCT and IAWQ models is given in Dold
and Marais (1986). The full IAWQ AS Model No.1, in the original matrix
format, is provided in Appendix B.

As a comparison, the fourteen process equations of the UCT model were
reduced to eight in the IAWQ model whereas the number of state variables
were only reduced by one (from fourteen to thirteen). An evaluation of the
two models (Dold and Marais, 1986; Dold et al., 1991) revealed more or
less identical predictions under most operating conditions when the models
had been properly calibrated.

State Variables

The carbonaceous material in the IAWQ model is divided into
biodegradable COD, non-biodegradable COD (inert material) and biomass,
see Figure 3.5. The biodegradable COD is further divided into readily bio-
degradable substrate (SS) and slowly biodegradable substrate (XS). The
readily biodegradable substrate is hypothesized to consist of simple soluble
molecules that can be readily absorbed by the organisms and metabolized
for energy and synthesis, whereas the slowly biodegradable substrate is
assumed to be made up of particulate/colloidal/complex organic molecules
that require enzymatic breakdown prior to absorption and utilization. Note
that a fraction of the slowly biodegradable substrate may actually be
soluble although it is treated as a particulate material in the model. The
non-biodegradable COD is divided into soluble (SI) and particulate (XI)
material. Both are considered to be unaffected by the biological action in
the system. The inert soluble material leaves the system by the secondary
clarifier effluent, whereas the inert particulate material is enmeshed in the
sludge mass and accumulates as inert VSS (volatile suspended solids). The
inert particulate material will be removed from the system by the removal
of excess sludge and to some extent be present in the settler effluent as
well. Moreover, the active biomass is divided into two types of organisms:
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heterotrophic biomass (XB,H) and autotrophic biomass (XB,A). Finally, an
extra state variable (XP) for modelling the inert particulate products arising
from biomass decay is included, similar to the endogenous mass of
McKinney and Ooten (1969).

Total COD

Biodegradable
COD

Active mass
COD

Nonbiodeg.
COD

Soluble
SS

Particulate
XS

Heterotrophs
XB,H

Autotrophs
XB,A

Soluble
SI

Particulate
XI & XP

Figure 3.5 Wastewater characterization for carbonaceous components.

The nitrogenous material in the wastewater is divided according to Figure
3.6. Based on measurements of total Kjeldahl nitrogen (TKN), the nitrogen
is divided into free and saline ammonia (SNH), organically bound nitrogen
and active mass nitrogen, that is, a fraction of the biomass which is
assumed to be nitrogen. Similar to the division of the organic material, the
organically bound nitrogen is divided into soluble and particulate fractions,
which in turn may be biodegradable or non-biodegradable. It should be
noted that only particulate biodegradable organic nitrogen (XND) and
soluble biodegradable organic nitrogen (SND) are explicitly included in the
model. The active mass nitrogen (XNB) is included in the model only in the
sense that decay of biomass will lead to a production of particulate bio-
degradable organic nitrogen. Organic nitrogen associated with the inert
organic particulate products (XNP) and the inert organic particulate matter
(XNI) can easily be calculated, although not described in the model matrix.
No inert soluble nitrogen is modelled (SNI). Finally, nitrate and nitrite
nitrogen are combined into one variable (SNO), as a way of simplifying the
model.
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Figure 3.6 Wastewater characterization for nitrogenous components.

The last two components described in the IAWQ model are the dissolved
oxygen concentration (SO), expressed as negative COD, and the alkalinity
(SALK).

Dynamic Processes

The different processes incorporated in the IAWQ model are briefly
described below.

• Aerobic growth of heterotrophs: A fraction of the readily biodegradable
substrate is used for growth of heterotrophic biomass and the balance is
oxidized for energy giving rise to an associated oxygen demand. The
growth is modelled using Monod kinetics. Ammonia is used as the
nitrogen source for synthesis and incorporated into the cell mass. Both
the concentration of SS and SO may be rate limiting for the growth
process. This process is generally the main contributor to the production
of new biomass and removal of COD. It is also associated with an
alkalinity change.

• Anoxic growth of heterotrophs: In the absence of oxygen the
heterotrophic organisms are capable of using nitrate as the terminal
electron acceptor with SS as substrate. The process will lead to a
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production of heterotrophic biomass and nitrogen gas (denitrification).
The nitrogen gas is a result of the reduction of nitrate with an associated
alkalinity change. The same Monod kinetics as used for the aerobic
growth is applied except that the kinetic rate expression is multiplied by
a factor ηg (< 1). This reduced rate could either be caused by a lower
maximum growth rate under anoxic conditions or because only a
fraction of the heterotrophic biomass is able to function with nitrate as
electron acceptor. Ammonia serves as the nitrogen source for cell
synthesis, which in turn changes the alkalinity.

• Aerobic growth of autotrophs: Ammonia is oxidized to nitrate via a
single-step process (nitrification) resulting in production of autotrophic
biomass and giving rise to an associated oxygen demand. Ammonia is
also used as the nitrogen source for synthesis and incorporated into the
cell mass. The process has a marked effect on the alkalinity (both from
the conversion of ammonia into biomass and by the oxidation of
ammonia to nitrate) and the total oxygen demand. The effect on the
amount of formed biomass is small as the yield of the autotrophic
nitrifiers is low. Once again the growth rate is modelled using Monod
kinetics.

• Decay of heterotrophs: The process is modelled according to the death-
regeneration hypothesis (Dold et al., 1980). The organisms die at a
certain rate and a portion of the material is considered to be non-
biodegradable and adds to the XP fraction. The remainder adds to the
pool of slowly biodegradable substrate. The organic nitrogen associated
with the XS becomes available as particulate organic nitrogen. No loss of
COD is involved and no electron acceptor is utilized. The process is
assumed to continue with the same rate under aerobic, anoxic and
anaerobic conditions.

• Decay of autotrophs: The process is modelled in the same way as used
to describe decay of heterotrophs.

• Ammonification of soluble organic nitrogen: Biodegradable soluble
organic nitrogen is converted to free and saline ammonia in a first-order
process mediated by the active heterotrophs. Hydrogen ions consumed
in the conversion process results in an alkalinity change.

• Hydrolysis of entrapped organics: Slowly biodegradable substrate
enmeshed in the sludge mass is broken down extracellularly, producing
readily biodegradable substrate available to the organisms for growth.
The process is modelled on the basis of surface reaction kinetics and
occurs only under aerobic and anoxic conditions. The rate of hydrolysis
is reduced under anoxic conditions compared with aerobic conditions by
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a factor ηh (<1). The rate is also first-order with respect to the hetero-
trophic biomass present but saturates as the amount of entrapped
substrate becomes large in proportion to the biomass.

• Hydrolysis of entrapped organic nitrogen: Biodegradable particulate
organic nitrogen is broken down to soluble organic nitrogen at a rate
defined by the hydrolysis reaction for entrapped organics described
above.

Model Parameters

The selection of values for the kinetic and stoichiometric coefficients of a
mathematical model is known as model calibration. In the case of activated
sludge models, the calibration has traditionally been carried out through
specific and well-controlled experiments at pilot and bench-scale plants
assuming constant operating conditions. However, the values obtained in
such a way may not be totally reliable for two prime reasons. The first
reason being the difficulty of configuring and operating a small-scale plant
in exactly the same way as a full-scale plant and thereby introducing a risk
of changing the behaviour of the microorganism population and also the
conditions that influence the values of the parameters which should be
determined. The second reason is that the experiments and calculations are
often based on the fact that the coefficients are constants. Since the
experiments may take several days or even weeks to perform, they are not
carried out very often. Many of the parameters are time variant and some
of them may change considerably over a limited period of time. Factors
such as plant configuration, operating conditions, microorganism popu-
lation dynamics, degree of inhibition by toxic compounds, composition of
the influent wastewater, temperature, pH, etc., all affect the values of the
process parameters. The same type of problem is even more emphasized
for characterizing the influent wastewater. While the parameters discussed
above may change their values considerably over a period of a few days,
the characteristics of the influent wastewater may change significantly
within a few hours. The fact that the influence of the influent wastewater
composition on the model behaviour is usually large, further amplifies
these difficulties.

By examining the sensitivity, variability, and uncertainty of the model
parameters, an indication is given as to which coefficients are most
important to determine accurately. Such an investigation is performed in
Henze (1988) for the IAWQ model. It is stated that for plants performing
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nitrification and denitrification, the model show little sensitivity with
regard to the COD due to the long mean cell residence time. The para-
meters that are considered to be the most important ones for this type of
process are the

• decay rate of heterotrophs;
• growth rate for anoxic growth of heterotrophs;
• maximum specific hydrolysis rate;
• half-saturation coefficient for hydrolysis;
• correction factor for anoxic hydrolysis;
• maximum specific growth rate of autotrophs.

In Henze (1988) it is also demonstrated how different sets of parameter
values may lead to approximately the same model behaviour. This is due to
the fact that many model coefficients are correlated. It implies that
parameters can often not be adjusted one by one, but rather a whole set
must be tuned simultaneously. Some examples of such interrelations are
given below.

• Growth rate and decay rate – increased growth and decay rate
may produce an identical net growth rate but will increase the
oxygen demand and speed up the substrate cycling.

• Yield and growth rate – increased yield and growth rate may
outbalance each other with respect to substrate conversion rate
but will increase the oxygen consumption.

• Yield and heterotrophs in the influent wastewater – high yield
and a low concentration of heterotrophs in the influent waste-
water is equal to a low yield and a high concentration of hetero-
trophs in the influent.

The situation outlined above is an indication that methods for identifying
and estimating the non-measurable state variables and model parameters
have to be employed. This should be done in order to extract all possible
information from available on-line measurements as well as from labora-
tory investigations.

As an example, values for the model parameters suggested by the IAWQ
task group are presented in Table 3.1. Note that many parameter values are
strongly influenced by the environmental conditions and should be
regarded more as average values indicating a reasonable order of magni-
tude. As a comparison, values commonly found in the literature are
provided for some of the coefficients.
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Table 3.1 Typical model parameter values at neutral pH (Henze et al., 1987).

Chapter 3.  Processes and Models – a Review 97



Model Formulation

Based on the above description, we can now formulate the full set of
ordinary differential equations, making up the IAWQ AS Model No. 1 (not
taking the flow terms into consideration). Each model equation is written
explicitly, in order to demonstrate the full complexity which is somewhat
hidden when using the matrix format.

The dynamic behaviour of the heterotrophic biomass concentration is
affected by three different processes – aerobic growth, anoxic growth and
decay – according to

dX B,H

dt
= µ̂H

SS

K S + SS







SO

K O,H + SO







+













                ηg
K O,H

K O,H + SO
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− bH






X B,H

(3.11)

The situation for the autotrophic biomass concentration is simpler since the
autotrophs do not grow in an anoxic environment. Consequently,

dX B,A

dt
= µ̂A

SNH
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X B,A (3.12)

The concentration of readily biodegradable substrate is reduced by the
growth of heterotrophic bacteria (in both aerobic and anoxic conditions)
and is increased by hydrolysis of slowly biodegradable substrate and the
differential equation describing this is

dSS

dt
= − µ̂H
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(3.13)

98 Modelling Aspects of Wastewater Treatment Processes



The concentration of slowly biodegradable substrate is increased by the
recycling of dead bacteria according to the death-regeneration hypothesis
and decreased by the hydrolysis process according to

dX S

dt
= 1 − fP( ) bHX B,H + bAX B,A( ) −

            k h
X S X B,H

K X + X S X B,H( )
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+
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X B,H

(3.14)

The shortest model equation is the one describing the concentration of inert
particulate products arising from biomass decay, which is simply

dX P

dt
= fP bHX B,H + bAX B,A( ) (3.15)

Similar to (3.14) the concentration of particulate organic nitrogen is
increased by biomass decay and decreased by the hydrolysis process. The
differential equation becomes

dX ND
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(3.16)

The concentration of soluble organic nitrogen is affected by ammonifi-
cation and hydrolysis, according to

dSND

dt
= −k aSND + k h
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(3.17)
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The ammonia concentration is affected by growth of all microorganisms as
ammonia is used as the nitrogen source for incorporation into the cell
mass. The concentration is also decreased by the nitrification process and
increased as a result of ammonification of soluble organic nitrogen. This
leads to a complex differential equation formulated as

dSNH

dt
= −iXBµ̂H
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(3.18)

The concentration of nitrate is only involved in two processes – it is
increased by nitrification and decreased by denitrification. The dynamic
equation describing this is formulated below.

dSNO

dt
= −µ̂Hηg
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Finally, the oxygen concentration in the wastewater is reduced by the
aerobic growth of heterotrophic and autotrophic biomass, according to

dSO

dt
= −µ̂H
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(3.20)

We do not present the differential equation describing the dynamics of the
alkalinity. Equations (3.11)–(3.20) clearly shows why the matrix format
(see Appendix B) is preferred for describing this type of complex model.
On the other hand, the matrix format creates an illusion for the non-
experienced reader that, for example, the IAWQ model is not very
complex. Equations (3.11)–(3.20) demonstrate the opposite.
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A few final comments regarding the IAWQ model equations are required.
The factor 2.86 in the stoichiometric expression for anoxic growth of
heterotrophic biomass in (3.19) is the oxygen equivalence for conversion
of nitrate nitrogen to nitrogen gas and it is included to maintain consistent
units on a COD basis. The value is theoretical and means that if all the
organic matter added to the denitrification reactor were only converted to
CO2 and H2O, it would require 1 /2.86 = 0.35 g NO3–N for each g COD
removed. Similarly, the 4.57 term in the stoichiometric expression for
aerobic growth of autotrophs in (3.20) is the theoretical oxygen demand
associated with the oxidation of ammonia nitrogen to nitrate nitrogen, i.e.,
4.57 g O2/g NH3–N is consumed. Due to the death-regeneration hypothesis
used in the model, the heterotrophic decay rate is not the traditionally
decay parameter used to describe endogenous decay, instead the value is
significantly larger. If we denote the traditional decay rate by ′bH, the two
decay rates are related according to

bH = ′bH

1 − Y H 1 − fP( ) (3.21)

Note that the specific decay rate coefficient for autotrophic bacteria, bA, in
the IAWQ model, is numerically equivalent to the traditional decay rate
constant. This follows from the fact that the recycling of organic matter
that results from decay occurs through the activity of the heterotrophic
biomass and not by the autotrophic biomass. Also the coefficient fP,
representing the fraction of the biomass that ends up as inert particulate
products following decay, is affected by the death-regeneration description.
If the decay is modelled as endogenous decay, this value is usually
assumed to be approximately 0.2 (i.e., 20 %), whereas the recycling of
biomass by death-regeneration results in the use of a significantly lower
value in order to end up with the same amount of particulate inert mass. If
we denote the fraction of inert material following a traditional decay
approach by ′fP , the two coefficients are related according to

fP =
1 − Y H( )

1 − Y H ′fP
′fP (3.22)

It is naturally important to be aware of this type of special interpretation of
various model parameters when attempting to calibrate the model to a real
AS process.
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Model Restrictions

A certain number of simplifications and assumptions must be made in
order to make a model of a WWT system practically useful. Some of these
are associated with the physical system itself, while others concern the
mathematical model. A number of such restrictions concerning the IAWQ
model are listed in Henze et al. (1987) and are summarized below.

• The system operates at constant temperature. In order to allow for
temperature variations an Arrhenius equation may be used to
adjust the model parameters within a certain region.

• The pH is constant and near neutrality. The inclusion of alkalinity
in the model allows the user to detect potential problems with pH
control.

• No consideration has been given to changes in the nature of the
organic matter within any given fraction (e.g., the readily
biodegradable substrate). Therefore, the coefficients in the rate
expressions have been assumed to have constant values. This
means that changes in the wastewater character cannot be
properly handled by the model.

• The effects of limitations of nitrogen, phosphorus and other
inorganic nutrients on the removal of organic substrate and on
cell growth have not been considered. Thus, care must be taken
to be sure that sufficient quantities of inorganic nutrients are
present to allow for balanced growth.

• The correction factors for denitrification are fixed and constant
for a given wastewater.

• The coefficients for nitrification are assumed to be constant and
to incorporate any inhibitory effects that other waste constituents
are likely to have on them.

• The heterotrophic biomass is homogeneous and does not undergo
changes in species diversity with time. This means that effects of
substrate concentration gradients, reactor configuration, etc. on
sludge settleability is not considered.

• The entrapment of particulate organic matter in the biomass is
assumed to be instantaneous.

• Hydrolysis of organic matter and organic nitrogen are coupled
and occur simultaneously with equal rates.

• The type of electron acceptor present does not affect the loss of
active biomass by decay.
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3.4 Controllability of the Process

Traditionally, biological WWT processes have been regarded as more or
less self-controlled and quite inflexible in their operation. The plants
normally function under pseudo steady-state conditions for long periods of
time, which are suddenly interrupted by abrupt failures. Some of these
instabilities can be attributed to sudden, external disturbances of high
amplitude but most are probably due to the propagation of slowly variable,
internal perturbations in the largely inaccessible microbiological state of
the system. The available control usually depends on the expertise of the
human plant operators in combination with a few automatic, single-loop
controllers. Since the early seventies, when a major leap forward was made
by the widespread introduction of dissolved oxygen control, limited
progress has been made.

Measurement Problems

The earliest models for describing the AS process were based on state
variables which were quite readily measurable. Model calibration was
performed using results obtained by operating continuous-flow plants at
steady-state conditions for different sludge retention times. Today, mecha-
nistic models have evolved considerably. In order to precisely explain the
different phenomena occurring, many state variables and model parameters
that are not directly measurable, have been introduced.

It is obvious that sensor technology for WWT applications has not evolved
as fast as the complexity of the mathematical models. In order to use the
highly complex models for the AS process available today for practical
applications, a significant effort is required for model calibration in terms
of exhaustive measuring campaigns, designing and performing special
identification experiments, maintaining a sophisticated laboratory with
highly trained technicians, etc. Process identifiability may be enhanced by
means of exciting the system, perturbing the input and control signals in an
optimal manner, properly choosing the sampling instants, using various
methods of signal processing, etc. The proper design of identification
experiments is a very troublesome task but of the utmost importance in
order to produce reliable results, see (Ljung, 1987; Söderström and Stoica,
1989). A few major drawbacks are the large amount of resources required
(both equipment and personnel), the high degree of uncertainty (two
equally skilled persons may reach quite different results when performing
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identical experiments due to the need for subjective interpretation of many
results), the long time to perform certain experiments (some results may be
obsolete by the time they are reached), and the lack of standardized
methods (different methods for determining the same quantity may show
considerable variations). Furthermore, many parameters used in complex
models have to be considered as constants because of the practical difficul-
ties of performing identification experiments as often as would be required
to keep track of their variation.

Another possibility is to use simplified, reduced order models and take full
advantage of the variables which are measurable on-line, that is, design
models that are better adjusted to the current level of sensor technology. In
combination with mathematical identification-estimation algorithms such
models could be automatically calibrated on-line and always be tuned to
the current situation of the plant (adaptive models). The drawback in this
case is the lack of reliable on-line sensors (only a few variables can be
accurately measured). This may lead to overly simplified models, which
are not capable of producing any realistic predictions (the number of
parameters which can be accurately estimated is related to the amount and
quality of the available data). Moreover, the cost and need of maintenance
for advanced instrumentation are quite high.

A combination of the two approaches is naturally an alternative. Depend-
ing on the purpose of the model and for what time scale the model is to be
used, the best procedure can be selected. A model used for design of new
plants simulates plant behaviour over long periods of time. The variations
which are of real relevance are those with time constants of days, weeks or
even longer. On the other hand, an oxygen regulator for an aerobic tank
reacts within minutes and relevant parameter changes with time constants
of seconds and minutes have to be detected. This can only be accomplished
by on-line measurements.

It is interesting to note that the main measurement problem for WWT
plants is usually not lack of data. On the contrary, large amounts of
information are being measured and stored at a modern plant. The number
of inputs from sensors usually varies between a few hundred and several
thousand. The problem is often that the available measurements are not
very relevant for modelling purposes. Moreover, the data must be available
with adequate accuracy and frequency.

Traditionally, on-line measurements have been restricted to physical-
chemical variables such as flow rates (of both water, sludge and air), power
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to pumps, levels in reactors, temperature, pH, redox potential, water
conductivity, etc. The introduction of on-line sensors for measuring the
oxygen concentration of the wastewater led to intensive research and
development of regulators, estimators and models for controlling the
dissolved oxygen concentration as a key variable. This work has continued
over the last two decades. The sensors are now very reliable and oxygen
consumption is considered the key variable used for verifying mathe-
matical models as well as for control purposes. On-line measurements of
the oxygen concentration is today used in combination with model-based
estimators to identify the oxygen dynamics of the activated sludge process,
that is, on-line estimation of the oxygen transfer function (KLa) and the
respiration rate (oxygen utilization rate), see e.g., Koo et al. (1982),
Holmberg and Olsson (1985), Holmberg et al. (1989), Holmberg (1991),
Carlsson and Wigren (1993), Carlsson and Lindberg (1994).

During the last 5 to 10 years, it appears as if the problem of unreliable and
unavailable on-line sensors has become more pronounced and a lot of
research and development is currently directed towards this very important
field. Not surprisingly, this new development coincides with the more
widespread implementation of biological nutrient removal at many WWT
plants. A comprehensive review of existing and new sensor technology
was recently presented by Vanrolleghem and Verstraete (1993). Develop-
ments are many and increasingly sophisticated devices are proposed in an
attempt to provide the necessary information on the complex processes
needed to meet strict effluent standards. Table 3.2 summarizes the avail-
able sensor technology, the processes in which they can be implemented
and the range of applicability, that is, the extent to which they are con-
sidered proven technology. Two significant trends in the developments of
new on-line monitoring equipment are the application of ultrafiltration
systems to bring automated wet chemistry to the WWT plant on the one
hand and the combination of robust, proven sensor technology with
extended data interpretation on the other hand.

However, not even sophisticated laboratory analyses and new sensor
technology are enough to solve all problems related to the calibration of
complex models. Many models are inherently unidentifiable. As an
example, the IAWQ model contains five stoichiometric coefficients, four-
teen kinetic parameters, and five non-measurable state variables (Larrea et
al., 1992).
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Physical measurements Physical-Chemical
measurements

(Bio-)Chemical
measurements

Variable Applicability

Process ↓
Variable Applicability

Process ↓
Variable Applicability

Process ↓

Temperature G ⊕ pH G ⊕ Respiration rate 2,3 ⊕
Pressure G ⊕ Conductivity G ⊕ stBOD4 2,3 ⊕
Liquid level G ⊕ Oxygen Toxicity 2,3 ⊕
Flow rates – Liquid 2,3 ⊕ Sludge activity 2,3 ⊕

– Liquid G ⊕ – Gas 2,3 ⊕ COD 1,2,3 ∅
– Gas 1,2,3 ⊕ Digester gas TOC 1,2,3 ∅

Suspended solids – CH4 1 ⊕ NH4 3 ∃

– 0.0-0.1 g/l 4 ∃ – H2S 1 ⊕ NO3 3 ∃
– 1.0-10 g/l 1,2,3 ∃ – H2 1 ⊕ PO4 3 ∃
– 10-100 g/l 4 ∃ CO2 1,2,3 ⊕ Bicarbonate 1,3 ∅

Sludge blanket 4 ∃ Flourescence Volatile fatty acids 1,3 ∅

Sludge volume 4 ∃ – NAD(P)H 2,3 ∃
Settling velocity 4 ∅ – F420 1 ∅
Sludge morphology G ∅ Redox 1,3 ⊕
Heat generation 1,2,3 ∅ NH4 (ISE3) 3 ∃

UV absorption G ∃ NO3

– ISE 3 ∅
– UV absorbance 3 ∃

1Applicability range
⊕ : state of technology; ∃ : applicable in certain cases; ∅ : requires development work.

2Unit process in the wastewater treatment plant where the sensor can be implemented
1: anaerobic digestion; 2: activated sludge; 3: nutrient removal; 4: sedimentation; G: all.

3ISE: ion selective electrode.
4stBOD: short-term biological oxygen demand.

Table 3.2 On-line monitoring equipment for wastewater treatment
processes (Vanrolleghem and Verstraete, 1993).

A general description of an extensive procedure to determine the unknown
parameters of the model is given in Henze et al. (1987). It is a combination
of practical experiments and curve-fitting procedures and it is clearly stated
that an error introduced when determining certain coefficients will be
compensated when determining another parameter. This might seem satis-
factory but is actually an indication of lacking model identifiability (non-
unique solutions), as different sets of model parameters will produce
identical results. 
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Establishing Cause-Effect Relationships

During the last decade the complexity of the AS process has increased
significantly with the introduction of biological nitrogen and phosphorus
removal. This complexity in combination with the ever stricter legislative
requirements on the effluent wastewater quality is today the major driving
force for developing new control strategies, more sophisticated sensors and
improving plant flexibility. It must also be recognized that suitable
mathematical models of the processes are prerequisites for any successful
implementation of sophisticated control strategies.

A WWT process is hardly ever in steady state, mostly due to load
variations. As a consequence its dynamical properties and its response to
changes has to be known if the plant is going to be consistently controlled
towards a desired result. A traditional way to solve the problem of variable
loads has been to increase the tank volumes. A better operation, however,
can offer the possibility to calculate the trade-off between design and
operational costs.

Since load variations have to be accepted, any operation has to make sure
that the detrimental influence of any disturbance is minimized. The control
and operation problem naturally has to focus on disturbance rejection. Still
it is an open question how much operation (as opposed to design) can
improve a WWT system.

One way of approaching the control problem is to realize that many of the
control variables act in different time scales and, consequently, they may
look as if they are quite independent of each other. Their influence can be
observed via sensors or estimation procedures. In an advanced nutrient
removal system it becomes increasingly important to monitor the system
on the microbial level, and floc structures and organism compositions are
of crucial importance.

A key question for nutrient removal systems is whether or not the process
is sufficiently controllable with the existing control variables. This can
qualitatively be expressed as: given an undesired operational condition
(such as bulking sludge, excessive foam formation or poor sludge settlea-
bility), are there any operational procedures that can bring the plant from
the present state to some desired state? At present there is insufficient
knowledge available to answer this question completely. In particular, for
undesired microbial conditions, there is no operational procedure that can
be derived from known mathematical models, since the knowledge of these
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conditions is far too limited (Albertson, 1991; Gabb et al., 1991; Jenkins et
al., 1993). In order to further improve the controllability of plants, a much
better understanding of microbial conditions and the plant parameters that
may influence them, has to be established.

Often the goals of the plant operation are not clearly stated. One apparent
goal is to satisfy the effluent requirements consistently. Furthermore the
costs should be minimized while maintaining the water quality. Frequently,
control criteria are mixed up with constraints. The goal of the operation is
not to keep the dissolved oxygen concentration in the aerobic zone at 2
mg/l, maintaining the mixed-liquor suspended solids (MLSS) concen-
tration at a fixed value or to ensure that the sludge retention time exceeds
ten days. These values are chosen set-points that contribute to keep the
plant running properly.

The main objectives of WWT plant operations may be categorized into the
following groups:

• maintaining liquid and sludge inventories;
• maintaining required effluent quality;
• disturbance rejection;
• efficient operation and reduction of cost.

Liquid inventories are usually well taken care of for the total plant. How-
ever, as the settler unit is highly sensitive to hydraulic disturbances, any
damping of hydraulic disturbances is important. Plants using parallel
channels are designed for hydraulic symmetry. In practice, however, the
flow symmetry has to be guaranteed by flow meters and control actions.
For sludge inventories, more remains to be done at many plants and the
mass balances have to be more closely maintained.

The product quality in terms of effluent carbon content is not a big issue
anymore. Biological nitrogen and phosphorus removal are still challenges,
in particular in cold climates. Most often the sludge settleability is not
sufficiently controllable. Consequently, it may be difficult to guarantee the
effluent suspended solids concentration.

For the disturbance rejection it is usually impossible to remove the source,
even if this is an important option, especially for industrial effluents, where
production control in the industry may be improved. Sometimes the
magnitude of the disturbance can be reduced before it reaches the WWT
plant. An integrated sewer-treatment plant control can attenuate hydraulic
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disturbances, and some waters can be pretreated in order to avoid harmful
effects on the plant. The control can also compensate for effects within the
process. A common example is dissolved oxygen control.

An efficient operation can be obtained in many ways. A close monitoring
of the plant by on-line measurements, estimation of non-measurable para-
meters and diagnosis of operational conditions are all important. Methods
like statistical monitoring ought to be used to a greater extent. By main-
taining certain concentration profiles of dissolved oxygen or sludge, more
efficient operations can be obtained. Furthermore, alternative designs –
such as sequential batch or alternating systems – can offer better opera-
tional flexibility.

The dynamics of the AS system spans several orders of magnitude, from
seconds to months. The fact that the phenomena can be grouped into
several classes will allow many control actions to be decoupled. As a
result, slow phenomena can be controlled while considering the fast
dynamics instantaneous. For the control of fast varying variables, the slow
modes are considered constant. This approach is also useful for model
development, in the sense that models can be simplified based on their
range of applicability in time. From a complete set of models describing
the different dynamics of the process, a fairly simple model suited for a
specific purpose can be selected.

In a first attempt to systematically describe the many cause-effect relation-
ships of the AS process, an incidence matrix is proposed, see Table 3.3.
Manipulated variables and disturbances define the columns and measurable
or estimated variables define the rows of the matrix. Each matrix element
indicates the influence from one manipulated variable to a measurable
variable of the AS process. The element is marked with a letter indicating
the time scale of the dynamics of this particular interaction. However, the
amplitude of the cause-effect is not indicated. The incidence matrix is by
no means complete and there are still many unknown elements in the
matrix, especially the relationships between manipulated variables and floc
formation and microbial composition.

Table 3.3 (Next two pages)  Incidence matrix of the AS process, based
on Olsson and Jeppsson (1994a). F indicates fast (minutes), M
means medium (hours) and S indicates slow (≥ days) dynamic
influence. Empty boxes indicate too small or unknown effect,
while ? means an unknown but probable influence.
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CAUSE
EFFECT

Infl.
flow

WAS
flow

RAS
flow

RAS
distr.

NO3

circ.
Chem.
add.

C
add.

REACTOR (measurements)

DO total M S M M F M

DO profile M S M M F M

MLSS M S M M M F S

COD M S M M M M

NH4–N M S M M M

NO2–N and NO3–N M S M M M M

Redox M M M

Water temp. M

REACTOR (estimations)

Total mass M S S S S F-M S

Organic load (F/M) M S M M S M M

SRT, sludge age M-S S ?

Oxygen transfer F?

Respiration rate M S M M M M

CO2 production M S M M M M

Nitrification rate M S M M (M)

Denitrification rate M S M M F F

Sludge volume, SVI S ? ? ? M

Biomass (VSS, enzymes, ATP) M-S S S S S F-M S

Foam formation ? ? ? ? ?

SETTLER (measurements)

Effluent SS F ? F M F-M

Sludge blanket level F-M M F M

Return AS concentration M F M

Wastage AS concentration M F M

SETTLER (estimations)

Settler influent flow rate F M F F

Total mass M S F M

VSS M-S M

Initial settling velocity M

Clear depth F M F M

Floc structure ? ? ? ? ? ?

Bulking index ? ? ? ? ? ?

Filamentous organisms ? ? ? ? ? ?
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Air
total

Air
distr.

CODs
infl.

CODp
infl.

NH4

infl.
Toxic
infl.

Temp.
infl.

pH
infl.

Super-
natant

Back-
wash

F F F M F F M-S M M F
F F M M M F M-S M M F

S S S S S S S S M F

S S M M M M S S M M

M M M M F M M M M

M M M M M M M

F F M F F

M F

S S S S S S S S M

S S M M M M S M M M

S S M

F F M

F F F M F F M M M M

F F F M F F M M M M

F F M M F F M M M M

F F M M F M M M F

? ? M ? ?

S S S S S S S S M M

? ? ? ? ?

? ? ? ? ? M M F

S

S

S

? ? ? ? ? S ? ?

? F

S? S? S? S? ? ?

S? S? S? S? ? ?

S? S? S? S? ? ?
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Table 3.3 indicates a major difficulty when attempting to control the AS
process. When one variable in the process is manipulated it affects a large
number of measurable variables in a very complex way. Over a longer
period of time, the total system behaviour may change considerably. The
ideal situation would naturally be that a change of one control variable
would produce a well-defined response in one process variable, instead the
situation is practically the opposite. This is an indication that it may be
necessary to use control strategies based on multi-variable control to solve
the problems in some cases.

From a modelling point of view a similar problem exists. A changing
process behaviour will naturally have an impact on the microbial
population in the system as they adapt to new environmental conditions
(due to changing influent wastewater characteristics, operational modi-
fications, physical-chemical variations, etc.). The model parameters can
consequently not be regarded as constants but must be dynamically
updated as the plant conditions change. More adequate and adaptive
models are necessary in order to predict both the long and short term
behaviour of the AS system and to determine and implement better control
strategies.
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Chapter 4

____________________________________________________________

Reduced Order Models

In this chapter a set of reduced order models for the activated sludge
process is developed based on a number of simplifying assumptions. A
comparison of the dynamic behaviour of the reduced order models and the
IAWQ model is performed, considering different types of process opera-
tions. The possibility to globally identify the parameters of the reduced
order models is first investigated using an off-line optimization method.
The identifiability of the parameters is tested based on different assump-
tions of what measurements are available (using the IAWQ model to
simulate the ‘true’ process). The sensitivity of the reduced order models to
parameter changes during normal operating conditions is also presented.
Finally, an on-line estimation algorithm is tested for similar conditions as
used for the off-line method, in order to evaluate the possibility of
identifying the simplified models from on-line measurements. The material
in this chapter is covered in [181], [182], [183] and [185].

4.1 Model Assumptions and Development

The basis for the development of reliable mathematical models is a
thorough understanding of the involved processes. The understanding may
to some extent be replaced by the use of stochastic models, a fast com-
puter, proper software and a sufficient amount of experimental data. This is
the field of system identification discussed in Chapter 2, which can in its
ultimate form, be described as multi-dimensional curve-fitting procedures.

Physical modelling is, however, an analytical approach where basic laws
from physics, chemistry, etc. are used to describe the behaviour of a pro-
cess. Based on such process knowledge, a model suited for its predefined



purposes can be hypothesised. Its structure and behaviour may then be
analysed using available tools (cf. Sections 2.3–2.5) and step by step
further tested, modified and validated.

One of the main difficulties when developing a model is often to determine
which reactions are the most significant ones and to describe these in a
simple, yet comprehensive manner. A good physical model should realis-
tically mimic the true dynamics of the process in question but still contain
a minimum number of variables and parameters while maintaining the
physical interpretation of those.

Overall Considerations

Activated sludge systems are usually described by mathematical models
based on mass balance equations. These equations relate the changes of the
state variables of the system (i.e., concentrations) due to transport and
transformation mechanisms. Transport mechanisms are characteristic for
the design and physical outline of a system (reactor configuration, distri-
bution of the influent, mixing, excess sludge removal, etc.) but they leave
the chemical structure of all material unchanged. A mass balance equation
for a single component within a defined system boundary can be described
according to

input – output + reaction = accumulation

The eight transformation processes used in the IAWQ AS Model No.1
(Henze et al., 1987) were discussed in detail in Section 3.3. The model is
considered to be particularly useful for the prediction of

• biological degradation of organic material and denitrification;
• nitrification;
• the distribution of oxygen consumption along a ‘plug-flow’

reactor in the course of diurnal variations;
• sludge production;
• variation in effluent quality during dynamic loading conditions.

In order for the above to be completely true there is normally a need to
combine the biological model with other models describing for example
the settling process and the oxygen transfer mechanisms. However, in this
chapter we will focus on the biological mechanisms and problems related
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to other process units will not be considered. Although the IAWQ model
comprises much of the current knowledge of the biological reactions – in a
fairly simple manner – a number of drawbacks exist. Apart from the model
restrictions listed in Section 3.3 we have summarized some of those
drawbacks below.

• Lacking identifiability – different sets of model parameters will
produce inseparable results.

• Lacking verifiability – certain state variables and parameters are
not directly measurable and, therefore, it is difficult to experi-
mentally validate all aspects of the model.

• Limited understanding and knowledge about some of the
described processes (for example, the hydrolysis mechanism).

• Troublesome practical characterisation of the influent waste-
water, although essential for the model behaviour.

• Difficult to estimate and update the varying model parameters
(functions of time, pH, load, temperature, etc.) on-line.

• Troublesome non-linearities (Monod functions, switching func-
tions, etc.).

• Not useful for on-line control applications.
• Expert knowledge required to understand all internal model inter-

actions (i.e., complex cause-effect relationships).
• Sophisticated instrumentation and laboratory facilities required

for calibration and validation purposes in combination with
expensive (time and money) measurement campaigns.

The aim of the work presented in this chapter is to approach some of the
problems listed above and develop reduced order models which can ade-
quately describe both carbonaceous and nitrogenous activities for the
purpose of on-line control. A fundamental requirement is that the models
contain a minimum number of state variables and parameters to allow for
model identification based on available on-line measurements.

General mathematical methods for reduction of non-linear models are still
difficult to apply (as discussed in Section 2.3). In order to maintain the
basic mechanistic structure of the reference model and describe the signi-
ficant reactions in a physically reasonable manner, the model reduction is
instead based on traditional reasoning and means of analysis. Due to the
widespread use, the general acceptance and the mechanistic structure of the
IAWQ model, it was selected as the best reference model for the model
reduction study.
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Measurable Variables

Models for on-line control purposes must be related to quantities and
variables which are possible to measure on-line. This is especially impor-
tant as the model parameters are not constant but vary with time and opera-
tional conditions. Results from laboratory experiments and bench scale
tests should be used for validation and further improvements of the model
predictions whenever possible but not be of vital importance for the basic
reliability and performance of the model.

Quantities and variables which are possible to measure and quantify on-
line in the activated sludge process were discussed in Section 3.4. New
types of sensors and measurement technologies are also continuously being
developed. For the work presented in this chapter the following set of
quality variables are assumed to be measurable on-line:

• biodegradable organic substrate concentration;
• ammonia nitrogen concentration;
• nitrate nitrogen concentration;
• volumetric flow rates.

In some cases, measurements of the oxygen uptake rate (OUR) or respira-
tion rate are considered to be available as well (for example, by means of a
respirometer).

Cost, accuracy, sensitivity and repeatability of the above measurements are
not considered nor are the practical aspects of where to place the sensors,
how data should be transferred to the computer systems, etc. Such ques-
tions are of great importance at a later stage of the work. But until the more
basic and fundamental questions concerning the reduced order models
have been investigated, the measurement quality issues are overlooked.

Simplifying Assumptions

The assumptions for simplifying the IAWQ model are from a physical and
biological viewpoint mainly based on a discussion of how the following
components are treated in the model:

• dissolved oxygen;
• organic matter;
• nitrogen;
• microorganisms.
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For the reduced models, measurements of the dissolved oxygen (DO) con-
centration are not considered although the DO sensor is usually regarded as
the most reliable on-line instrument for the activated sludge process. This
is because the oxygen concentration is excluded as a state variable. It is
assumed that the DO is controlled separately on a routine basis, so that
corresponding growth expressions become independent of DO variations.

Still, the DO mass balance contains a lot of useful information. It is, for
example, the basis for the estimation of the oxygen uptake rate, which is
recognized as fundamental information for future control aspects. Conse-
quently, the models describing the DO, oxygen transfer rate, blowers, etc.,
are considered to make up an important but separate module of an hier-
archical control structure as outlined in Figure 2.4. The different sub-
models need to be synchronized with the overall control of the plant. Such
an approach makes it possible to separate the biological model from the
oxygen model on the first level of control. It also allows for a more strict
boundary between the anoxic and aerobic environments from a modelling
point of view. The existing DO control is assumed to provide a sufficient
amount of oxygen in the aerobic reactor while minimizing the oxygen
concentration into the anoxic reactor. The above model separation can also
be motivated by considering the different time scale of the process dyna-
mics. The dynamics with regard to the DO concentration have time con-
stants in the range of seconds to a few minutes whereas the time constants
for the biological reactions vary from hours all the way up to weeks.

The above model separation may appear as too rough a simplification.
However, it must be remembered that we are discussing models for control
and not models for design. Naturally the different models will interact but
such interactions will be handled by a supervisory control system, whereas
the various small models performs their specific tasks. Moreover, the
approach does not imply that the biological models are insensitive to the
DO concentration. The effects of DO changes are rather combined with
other inhibitory circumstances and reflected as variations in the estimated
growth rate factors whereas the IAWQ model uses a switching function to
single out the effects of different DO concentrations.

The assumption of a constant DO concentration within a reactor at a
specific time is valid only if the reactors are truly completely mixed. The
situation is often quite different at real WWT plants. Experiments show
that an aerobic reactor which is assumed to be completely mixed, with a
DO probe in the centre of the tank and connected to a control system with
a DO setpoint of 2 mg/l, may actually have a DO concentration of 0.5 mg/l
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close to the influent and 5 mg/l close to the effluent. The expected value
exists only close to the sensor. The reasons for such differences are mainly
due to improper mixing, varying concentrations of available substrate and
lacking control flexibility. There is no easy way of modelling these effects
of non-ideal reactors. A method often applied to improve the situation is to
model the aerator as a number of reactors (each completely mixed) in
series to reduce the discrepancies. Another possibility is to use a plug-flow
model and add on effects of turbulent diffusion or use partial differential
equations to describe the spatial distribution (as well as the distribution in
time) of the concentration variations for all the model variables including
DO. Such approaches will result in more complex models. Compared with
the problems discussed above, the assumption of having completely anoxic
and aerobic reactors is only a small additional simplification. The major
simplification in this respect is actually to assume completely mixed
reactors.

The description of the organic matter represents the second considerable
difference of the reduced models compared with the IAWQ model. In the
IAWQ model four fractions of organic matter are considered: 

• soluble inert organic matter (SI);
• readily biodegradable substrate (SS);
• particulate inert organic matter (XI and XP);
• slowly biodegradable substrate (XS).

All the above fractions are replaced by a single variable in the reduced
models (XCOD), which is considered to be made up of all biodegradable
organic matter and is assumed to be directly measurable. The approach can
be motivated in several ways.

The two inert fractions are not important from a biological point of view.
The SI fraction simply follows the wastewater flow and passes through a
WWT plant without having any effect and the particulate inert fraction is
used for predicting the total amount of sludge in the system to determine
the wastage and recirculation rates. Variations of the amount of sludge in
the system is a slow process and, consequently, it is not necessary to
include this in a model for control with a predictive time horizon in the
range of hours. On the other hand, the two biodegradable fractions are of
the utmost importance for describing the biological reactions. SS is con-
sidered to be directly available for the microorganisms while XS first has to
be enzymatically broken down into SS (the hydrolysis mechanism) before
the organisms can use it for metabolism.
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The hydrolysis process is, however, not very well understood. The IAWQ
description of it is quite complex but still a simplification of the true reac-
tion. Due to the uncertainty and complex description of the mechanism it is
not included in the reduced order models.

Another reason for lumping the biodegradable organic matter together is
the difficulty of measuring the SS and XS fractions separately. In a labora-
tory scale experiment it is possible to monitor the oxygen uptake rate of a
small batch reactor and thereby determining an average value of the two
fractions. To do this on-line at a full-scale plant is more difficult although a
respirometer can be used to determine the so called short-term COD con-
tent of a wastewater. In practice, COD measurements on filtered samples
of the wastewater is often considered to be equal to the amount of SS.
However, there is no evidence that all soluble biodegradable matter is
readily biodegradable and that all particulate biodegradable matter is
slowly biodegradable. Moreover, the time constant for the hydrolysis
process may be very different for various organic components. Recent
extensions of the IAWQ model suggests that XS should be divided into two
variables, rapidly and slowly hydrolysable COD, where the rapidly
hydrolysable organics are primarily soluble in nature (Sollfrank and Gujer,
1991; Henze, 1992).

The organic matter that is received by a WWT plant includes all kinds of
different molecular structures. Different organisms deal with different sub-
strates in different time scales, which makes it probable that an entire set of
biodegradation processes with time constants ranging from fast to slow
biodegradability is at work here. Since there is no apparent upper limit to
the number of substrates which would really need to be included, the oppo-
site solution is suggested in this work, that is, we model only one type of
organic biodegradable substrate. This means that the reduced models do
not take rapid uptake phenomena into consideration. Instead it makes some
averaging of biosorption and growth by combining soluble and stored
organic substrate. Consequently, fast dynamics (in the order of less than an
hour) are neglected. Together with the earlier discussed way of modelling
the DO concentration, these simplifications make the models less stiff, that
is, the ratio between the smallest and the largest time constants is reduced.
The complexity and the number of model parameters are naturally also
significantly reduced and the possibility to end up with an identifiable
model structure is increased.

The third major difference between the IAWQ model and the reduced
models concerns the nitrogen components. In the IAWQ model four
fractions of nitrogen are considered:
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• nitrate and nitrite nitrogen (SNO);
• ammonia nitrogen (SNH);
• soluble biodegradable organic nitrogen (SND);
• particulate biodegradable organic nitrogen (XND).

The only two nitrogen fractions included in the reduced order models are
the nitrate nitrogen and the ammonia nitrogen, which are both assumed to
be measurable on-line. The reason for this is firstly to reduce the com-
plexity of the model structure and the number of parameters. Secondly, the
two organic nitrogen fractions SND and XND primarily describe the internal
formation of SNH by hydrolysis and ammonification (see Section 3.3). In
the reduced models, ammonia nitrogen is assumed to be measured and,
therefore, its formation mechanism is not considered to be crucial for
control purposes. Moreover, as the hydrolysis mechanism was excluded to
describe the transformation of organic matter it should consequently not be
used to describe the transformation of nitrogen (as it is basically the same
process according to the IAWQ model).

The two types of microorganisms described in the IAWQ model (and
many other AS models) are maintained in the reduced models, i.e.,

• active heterotrophic biomass (XB,H);
• active autotrophic biomass (XB,A).

In the reduced models heterotrophs are considered to grow in both anoxic
and aerobic environments whereas autotrophs only grow in an aerobic
environment. A death-regeneration principle (see Section 3.2) is also used
to describe the decay of the organisms but in a modified way. The decayed
biomass is considered to transform into biodegradable COD and ammonia
nitrogen directly. In the IAWQ model the decay material is suggested to be
partly inert (a small fraction) and partly transformed into XS and XND
which after hydrolysis and ammonification become available as SS and
SNH, respectively.

The Reduced Order Model

The simplifications discussed in the previous subsection has reduced the
number of state variables to five compared with the twelve state variables
of the original IAWQ model (alkalinity is not considered). The reaction
mechanisms for hydrolysis of entrapped organics, hydrolysis of entrapped
organic nitrogen, and ammonification of soluble organic nitrogen have also
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been removed, mainly due to measurement problems, uncertainties of the
actual processes, and the need to reduce the overall model complexity.

It is possible to continue the simplification procedure one step further. As
illustrated by the example in Section 2.6 there are good reasons to recon-
sider the parametrization of the Monod growth rate expression and the
similar switching functions. The idea is to approximate the Monod func-
tions by linear functions (cf. Figure 2.8), that is, use a first-order reaction
followed by a zero-order reaction (Blackman, 1905). If we further note that
for most operating conditions of WWT plants receiving municipal waste-
water the substrate concentrations are generally quite low, then there is
only a need to model a first-order reaction.

As a result of the assumed existing DO control, the DO influence on the
switching functions is constant. The switching functions are regarded
solely as functions describing growth limitation due to low concentrations
of DO or different types of substrates. Therefore, the estimated parameters
of the first-order rate equations include both maximum specific growth
rates and possible limitations by DO, COD, nitrate, etc. The switching
functions are consequently removed.

The differential equations for the first reduced order model (model A) of
the activated sludge process can now be formulated. It describes carbon-
aceous oxidation as well as nitrification and denitrification according to the
simplifications discussed above. Altogether three summary processes are
proposed to describe the anoxic environment – growth of heterotrophs,
decay of heterotrophs and decay of autotrophs – and four parameters
should be estimated – rH, YH, bH and bA – preferably on-line. For anoxic
conditions the following simplified model is suggested:

dX COD

dt
= − 1

Y H
rHX CODX B,H + bHX B,H + bAX B,A (4.1)

dSNH

dt
= −iXB rHX CODX B,H − bHX B,H − bAX B,A( ) (4.2)

dSNO

dt
= − 1 − Y H

2.86Y H
rHX CODX B,H (4.3)

dX B,H

dt
= rHX COD − bH( )X B,H (4.4)

dX B,A

dt
= −bAX B,A (4.5)
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In an aerobic environment four main mechanisms are defined – growth of
heterotrophs, growth of autotrophs, decay of heterotrophs and decay of
autotrophs – and six parameters need to be updated – rH, rA, YH, YA, bH and
bA. The following set of equations is suggested:

dX COD

dt
= − 1

Y H
rHX CODX B,H + bHX B,H + bAX B,A (4.6)

dSNH

dt
= −iXB rHX CODX B,H − bHX B,H − bAX B,A( )

             − iXB + 1
Y A







rASNHX B,A

(4.7)

dSNO

dt
= 1

Y A
rASNHX B,A (4.8)

dX B,H

dt
= rHX COD − bH( )X B,H (4.9)

dX B,A

dt
= rASNH − bA( )X B,A (4.10)

where: rH = reaction rate factor for heterotrophs [l (mg day)–1];
rA = reaction rate factor for autotrophs [l (mg day)–1];
YH = yield factor for heterotrophs;
YA = yield factor for autotrophs;
bH = decay rate coefficient for heterotrophs [day –1];
bA = decay rate coefficient for autotrophs [day –1];
iXB = mass N/mass COD in biomass.

The model is also described using the traditional matrix format in Appen-
dix C. By comparing equations (4.1)–(4.10) with the full set of equations
describing the IAWQ model, that is, equations (3.11)–(3.20), the simplicity
of the reduced order model is obvious. The factor 2.86 (see equation 4.3) in
the stoichiometric coefficient for anoxic growth of heterotrophic biomass
is the oxygen equivalence for conversion of nitrate nitrogen to nitrogen gas
included to maintain consistent units on a COD basis. The parameter iXB is
considered to be a constant with a value of 0.086, as suggested by the
IAWQ task group (Henze et al., 1987). The other parameters are con-
sidered to be time varying and need to be identified for adequate model
performance. Note that the model parameter values are not assumed to be
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identical for anoxic and aerobic conditions and should be estimated within
their specified environment.

For purposes of comparison and estimation, the oxygen uptake rate is in
some cases considered to be measurable. It is modelled in the same way as
in the IAWQ model apart from the use of first-order reaction rates and the
absence of switching functions according to

OUR = 1 − Y H

Y H
rHX CODX B,H + 4.57 − Y A

Y A
rASNHX B,A (4.11)

The factor 4.57 in the stoichiometric coefficient for aerobic growth of auto-
trophs is the theoretical oxygen demand associated with the oxidation of
ammonia nitrogen to nitrate nitrogen.

Theoretical Identifiability

Prior to any further investigations it is important to determine if the
suggested model is theoretically identifiable. If the model does not pass
this test then it must be reformulated. Methods for investigating the theore-
tical identifiability of a model were discussed in Section 2.4. For non-
linear models the only universal technique is the Taylor series expansion of
observations method. The details of this method were demonstrated in
Section 2.6. By applying the same method to the reduced order model it is
possible to examine its theoretical identifiability.

We start by investigating the anoxic part of the model, that is, equations
(4.1)–(4.5). Assume that all five state variables are possible to measure
continuously with no noise and that the model parameters are constant
during the experiment. If we differentiate the model equations one more
time, the following system results: 

d2X COD

dt2 = − rH

Y H
′X CODX B,H + X COD ′X B,H( ) + bH ′X B,H + bA ′X B,A (4.12)

d2SNH

dt2 = −iXB rH ′X CODX B,H + X COD ′X B,H( ) − bH ′X B,H − bA ′X B,A( ) (4.13)

d2SNO

dt2 = − 1 − Y H

2.86Y H
rH ′X CODX B,H + X COD ′X B,H( ) (4.14)
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d2X B,H

dt2 = rH ′X CODX B,H + X COD ′X B,H( ) − bH ′X B,H (4.15)

d2X B,A

dt2 = −bA ′X B,A (4.16)

From equation (4.5) we can immediately deduce that

bA = −
′X B,A

X B,A
(4.17)

By combining equations (4.2), (4.4) and (4.5), an analytical expression for
the iXB parameter can be determined as

iXB = ′SNH

′X B,H + ′X B,A
(4.18)

From the equations (4.4) and (4.15) the expression for rH can be formu-
lated as

rH =
′X B,H ′′X B,H − ′X B,H( )2

′X COD ′X B,H( )2 (4.19)

By continuing the analysis we can derive analytical expressions for the
remaining parameters (YH and bH) as well.

In a similar way it can be shown that the aerobic part of the reduced order
model, that is, equations (4.6)–(4.10) are theoretically identifiable if all
five state variables are assumed to be known with perfect accuracy.

If only measurements of XCOD, SNH and SNO are assumed to be available,
the identifiability analysis is more complicated. For the anoxic part of the
model we can formulate an expression for XB,H using equation (4.3) that
only depends on the available state variables according to

X B,H = 2.86 ′SNO

1 −1 Y H( )rHX COD
(4.20)

and from equations (4.1) or (4.2) we can define an expression for XB,A (in
combination with (4.20)), which depends only on the three measurable
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variables. Based on these expressions defining XB,H and XB,A, together with
equations (4.1)–(4.5) and their derivatives, the same type of identifiability
analysis can be performed. However, in this case the set of equations
becomes more complex and will require lengthy calculations (or a suitable
computer program for symbolic mathematical analysis, e.g., Maple™ or
Mathematica™). A detailed analysis of this case (or the equivalent case
describing the aerobic part of the model) has not been performed in this
study although preliminary results show that bA cannot be identified within
the anoxic reactor if measurements of XB,A are not available. This fact may
actually be directly concluded by observing equations (4.1)–(4.5), since bA
and XB,A always occur as a combined variable (bA XB,A).

Further Simplifications

While maintaining the basic structure of model A (equations (4.1)–(4.10)),
it is possible to impose some further simplifications to improve the identi-
fiability. It is not unrealistic to assume the decay rates for heterotrophs and
autotrophs, respectively, to be equal for both anoxic and aerobic condi-
tions. This will reduce the total number of parameters to be estimated from
ten to eight.

Taking this approach one step further, bH and bA can be lumped together
into one single decay rate, b, equal for all conditions. This reduces the
number of unknown parameters to seven. The simplification is not totally
realistic but on the other hand not very drastic – the assumption of having
only two kinds of microorganisms representing the entire microbial popu-
lation in a WWT plant is definitely a much more severe simplification.
Moreover, it is really the net growth rate of the organisms that determine
their behaviour and since the growth rates are estimated separately for the
different types of organisms this simplification should be valid.

A more practical reason for such a simplification is due to the difficulty of
estimating decay rates during normal plant operations. The small example
in Section 2.6 indicated that the decay rate parameter was easily estimated.
This was primarily because during the final stage of such a batch experi-
ment, the decay rate is the sole factor to influence the behaviour of the
process (when all available substrate has been consumed). Its identifiability
is therefore enhanced. From continuous-flow reactors, however, the effects
of microbial growth and decay are difficult to separate, especially when the
oxygen uptake rate is not monitored. In the previous subsection we also
concluded that bA is not theoretically identifiable in the anoxic reactor if
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the autotrophic organism concentration is not monitored. These problems
will be more closely investigated later in this chapter.

The second proposed reduced order model which will be investigated,
referred to as model B (see Appendix C), contains the same principal equa-
tions as model A. The only difference is that all parameters bH and bA have
been replaced by a single decay rate, b, which is assumed to be identical
for both anoxic and aerobic conditions.

In much the same way as the growth and decay rates may be difficult to
separate, identifiability difficulties may arise when trying to estimate the
yield and reaction rate factor simultaneously. A higher value for both the
yield and reaction rate factor will outbalance each other with respect to the
substrate conversion rate. In the example (Section 2.6), the situation was
improved because both the substrate and organism concentrations were
assumed to be measurable, in combination with the fact that a batch experi-
ment excites all modes of the system as it covers a wide range of different
concentrations. This is not true during traditional continuous-flow plant
operation. For this reason model B may be even further reduced by assum-
ing the same value for the heterotrophic yield, YH, for both anoxic and
aerobic conditions (model C). It is clear from equations (4.7) and (4.8) that
a similar problem exists for the growth rate and yield coefficients describ-
ing the autotrophic organisms. It may prove necessary to estimate the ratio
of these parameters rather than their individual values and use some
additional measurement to separate them (for example, the OUR). These
final simplifications leave a total of six model parameters to be estimated.
This model will, however, not be further investigated in this study.

As for the reaction rate factor of the heterotrophic organisms, rH, it does
not seem realistic to assume this parameter to be identical for both anoxic
and aerobic conditions. Experiments have shown that either only a fraction
of the heterotrophic biomass is able to function with nitrate as the terminal
electron acceptor or the maximum specific growth rate is lower for anoxic
conditions (Batchelor, 1982). The reaction rate factor must therefore be
separately identified to take such effects into account. The absolute mini-
mum realistic number of parameters to be updated would therefore be the
six parameters suggested for model C – rH (both anoxic and aerobic), rA,
YH, YA and b – where some additional measurements may be required to
separate rA and YA.
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The above types of highly simplified models will naturally not predict all
the intricate details of the more complex models, since many reactions and
variables have been lumped together. Instead the models should be
evaluated in view of their specific purpose, that is, on-line model-based
control. However, the basic mechanistic structure of the models have been
maintained when possible and, consequently, the possibility to directly
interpret the results. The presented models serve a major purpose as an
experimental platform to investigate how far the model reduction prin-
ciples can be pursued without losing the possibility of adequately predict-
ing the main phenomena of the true processes while simultaneously gain-
ing the possibility to determine unique estimates of the model parameters
and perform on-line model calibration.

4.2 Methods for Model Analysis

A large number of methods for analysing the properties of a model exist.
Some of those were discussed in Sections 2.3–2.5. In this work we focus
on investigating the practical identifiability of the reduced order models
depending on which variables are assumed to be measurable. Therefore,
we will study the possibility to estimate the model parameters by using one
off-line and one on-line estimation method and also perform a sensitivity
analysis of the reduced model for continuous-flow plant operation.

Estimation as an Optimization Problem

Parameter estimation problems can be formulated as an off-line opti-
mization problem where the best model is the one that best fits the data
according to a given criterion. Such a criterion (J) is often based on the
difference between the real measurements y and the model outputs ŷ
written in the form

J = y t k( ) − ŷ t k( )[ ] T

k =1

n

∑ W y t k( ) − ŷ t k( )[ ] (4.21)

where n is the number of discrete time measurements and W is a weight
matrix. J is a function of all the unknown model parameters. These are
adjusted until J has obtained a minimum. If there is only one unique mini-
mum for J (independent of the initial estimates) then the system is defined
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as globally identifiable. The loss function (4.21) is an example of a
weighted least squares criterion (cf. Section 2.4).

In this work the weight factors (the diagonal elements of W) have been
chosen so that a 10 % difference between the measured values and the
model estimates around a specified steady state gives approximately the
same contribution to the loss function (J) for all measured variables. This
means that the measurements are considered to be of the same quality and
that the model is capable of estimating all variables with the same accu-
racy. If this was not considered to be the case, less weight could have been
given to some of the residuals. It is also possible to let the weight factors
vary with time and the actual value of the measurements.

The Nelder-Mead simplex method (Nelder and Mead, 1965; Fletcher,
1987) used in this work is an ad hoc optimization method that applies a
type of random search by calculating and examining the function value
(i.e., the loss function) at several points in the state space of the model –
together forming a so called simplex – and moving towards lower values
until convergence. The method has already been used in the example in
Section 2.6 with good results. The main advantage of the algorithm is its
robustness and its insensitivity to noise, whereas the convergence rate is
slow and the computational effort goes up rapidly (typically as 2n) with the
dimension (n) of the model. A more detailed description of the simplex
optimization algorithm is given in Appendix D. Results of the method
applied to the reduced order models are presented in Section 4.4.

The Kalman Filter

One of the most commonly used methods for on-line state estimation is the
Kalman filter. It is based on the reconstruction algorithm (2.12). By
updating the gain matrix K in a special way, the estimation of the states is
optimal in the sense that the variance of the reconstruction error is mini-
mized. The problem is that the disturbances and properties of the noise
have to be fairly well known. For the extended Kalman filter not only the
modelled states x̂ are updated from the available measurements but also
the unknown model parameters. The filter algorithm can be divided into
two phases: prediction and correction. The principal structure of the on-
line identification procedure is illustrated in Figure 4.6.
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ut k

y t k

x̂ t k t k −1

x̂ t k t k

Figure 4.1 Structured identification using an extended Kalman filter.

During the prediction phase, the dynamic equations of the model are inte-
grated between two measurements, from time tk–1 to time tk (using a much
smaller time step) as shown below.

x̂ t k t k −1( ) = Φx̂ t k −1 t k −1( ) + Γu t k −1( ) (4.22)

The states (in this case the concentrations) and the model parameters are
now based on measurements up until time tk–1. As new measurements are
acquired at time tk, they are used to update the generalized state vector.
This latter part is called the correction phase and is based on the
calculation

x̂ t k t k( ) = x̂ t k t k −1( ) + K y t k( ) − Cx̂ t k t k −1( )( ) (4.23)

A Kalman filter is, however, based on the assumption that the dynamics
are linear, which is not the case for this application. In order to calculate K,
the dynamic equations are linearized around the existing operating point
for each measurement instance. At the time for correction, K is calculated
from the linearized equations at time tk and depends not only on the
linearized state equations but also on the properties of the noise that affects
both the process states and the available measurements.
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In this work the gain matrix K has been kept constant in order to simplify
the computations (a constant gain extended Kalman filter (Hendricks,
1992)). The values of K will influence the convergence speed of the para-
meters towards their final values. The chosen values of K have been
calculated according to equations (E.19) and (E.20) using the calculated
steady state values of the IAWQ model (which is used to simulate the true
process) as the operating point (the conditions are defined in Section 4.3)
together with the selected noise characteristics. In Appendix E, a more
detailed description of the extended Kalman filter is given and some of the
computational results are presented in Section 4.5.

The state variables in the models have significantly different values,
expressed as mg/l. In order to obtain reasonably accurate identification
results, it is mandatory to scale the equations or normalize them to a
reference point so that all the concentration values are expressed in the
same order of magnitude. This is even more important when the parameter
values are considered, that is, when performing simultaneous state and
parameter estimation. If no scaling is done, the K matrix will contain such
different elements that the estimation becomes numerically infeasible.

Sensitivity Analysis

Sensitivity analysis is another important tool when analysing model
characteristics. It expresses the influence of a small parameter change on
the state variables and can therefore provide strong indications as to which
parameters are most difficult to identify either because of their limited
influence on the total system behaviour or due to the fact that several
parameters compensate for the effects of others. A good illustration of the
latter was the combined effect of µ̂ and KS in the example of Section 2.6.
Several parameter sets produced approximately identical results because
the effect of one parameter was compensated by another.

The method is also useful for experimental planning and design as well as
for model reduction. Since the aim of this study is to identify the para-
meters of the reduced order models for normal operating conditions the
analysis is performed for similar conditions, i.e., varying influent flow
rates and concentrations, both anoxic and aerobic zone active, changing
internal and sludge recirculation rates (the exact conditions are described in
Section 4.3). By simulating such a process using model A, changing one
parameter slightly and rerun the simulation repeatedly (Monte Carlo
simulations) and storing the value of the loss function (4.21) for each
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simulation, a rough ‘map’ describing the influence of the parameters on the
model behaviour is acquired. The relative change of the parameters is iden-
tical for every simulation to make a fair comparison possible. The results
of such an analysis are presented and discussed in Section 4.4. 

It is often more practical to do a sensitivity analysis on decoupled systems
(only anoxic or aerobic reactor) for batch conditions and without any feed-
back (recirculation). Results from this type of unit operation may show
quite different results, which are not applicable for real continuous-flow
plant operation because special modes that do not appear during normal
plant operation are often emphasized. For example, the decay rate coeffi-
cient in the example was easily identified from a batch experiment because
its effect was enhanced when no substrate was available (as a sensitivity
analysis will show). However, a situation like that will not occur during
normal operating conditions and in a continuous-flow reactor the identifi-
cation will be much more difficult.

Therefore, since the purpose of this work is aimed at on-line parameter
identification during normal operating conditions, it is advantageous to
perform the sensitivity analysis for the same type of condition. On the
other hand, if the work is aimed at experimental design, the possibility of
investigating how different conditions affect the identifiability may prove
very useful (e.g., Vanrolleghem, 1994).

4.3 Simulated Plant Configuration

So far no validation has been performed using real data but only with
simulated data mainly based on the IAWQ model. Comparisons are made
of model outputs from the IAWQ and the reduced order models to
determine if they incorporate the same dynamical phenomena – both
qualitatively and quantitatively – of importance when subjected to the
same type of model input (i.e., influent wastewater). There are several
reasons for such an approach. Since the analysis is mainly theoretical,
fundamental model weaknesses can be more thoroughly investigated using
simulated data because it is possible to change the noise characteristics,
repeat an experiment for identical conditions but for a change in one
specific variable, control the inputs to the system, etc. Furthermore, the
time and effort required to collect this type of detailed data from a full-
scale WWT plant have been considered to be outside the scope of this
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work. When the structural modelling problems have been satisfactory
solved then investigations based on real data are called for.

In order to investigate the behaviour of the reduced order models, the
IAWQ model has been used to simulate the ‘real’ AS process. The
physical outline of the simulated WWT plant includes a completely mixed
anoxic reactor for pre-denitrification followed by a completely mixed
aerobic reactor and a secondary clarifier. The process includes an internal
recirculation stream from the aerobic to the anoxic reactor as well as
sludge recycling from the thickener to the anoxic reactor. All influent
wastewater is fed into the anoxic reactor. The system is operated with a
sludge age of ten days and a hydraulic retention time of ten hours (in
steady state). The default set of parameters for the IAWQ model at 20 °C is
used for the simulations. A more detailed description of the volumes, flow
rates, influent wastewater characteristics, etc., is presented in Figure 4.2.

+

= 6.0 day-1

KS = 20 mg COD/l
KO,H = 0.2 mg O2/l
KNO = 0.5 mg NO3–N/l
bH = 0.62 day-1

= 0.8 day-1

KNH = 1.0 mg NH3–N/l
KO,A = 0.4 mg O2/l
bA = 0.2 day-1

ka = 0.08 mg/(mg COD day)
kh = 3.0 mg COD/(mg COD day)
KX = 0.03 mg COD/(mg COD)
hg = 0.8
hh = 0.4
YH = 0.67 mg COD/(mg COD)
YA = 0.24 mg COD/(mg COD)
fP = 0.08
iXB = 0.086 mg N/(mg COD)
iXP = 0.06 mg N/(mg COD)

Influent flow rate (Qin) = 3000 m3/day
Recycle flow rate = 0.5*Qin

Internal recycle flow rate = 3*Qin

Anoxic tank volume = 250 m3

Aerobic tank volume = 1000 m3

Settler volume = 1250 m3

Sludge age = 10 days
Hydraulic retention time = 10 hours

SS = 30 mg COD/l
XS = 70 mg COD/l
SI = 0 mg COD/l
XI = 10 mg COD/l
SNO = 2 mg N/l
SNH = 10 mg N/l
SND = 1 mg N/l
XND = 1 mg N/l
SO = 0 mg (–COD)/l
XB,H = 0 mg COD/l   
XB,A = 0 mg COD/l

Influent wastewater characteristics

Operational variables Model parameters (Henze et al.,1987)

Setpoint for oxygen concentration in the aerobic reactor = 2.0 mg O2/l

µ̂A

µ̂H

Figure 4.2 Configuration of the simulated WWT plant.
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It is necessary to include a model of the secondary clarifier to describe the
behaviour of the entire plant. Models for the settling process will be
studied in detail in Chapters 5 and 6. For this study, a simple model was
used because we are not interested in predicting the true effluent and
underflow concentrations. The thickener is modelled as a constant compac-
tion ratio (γ) of the underflow sludge concentration and the average sludge
concentration in the reactors (Olsson and Andrews, 1978). Based on a
steady state relationship over the settler, the compaction ratio can be
expressed in terms of flow rates and the sludge retention time as

γ = Q in + Q r − V θX

Q r
(4.24)

where: Qin = influent flow rate to the WWT plant;
Qr = sludge recycle flow rate from the settler;
θX = sludge retention time;
V = total bioreactor volume.

This model is highly idealized in the sense that the compaction ratio will
be adjusted so that for any given flow rates the required sludge age will be
maintained. The hydraulic retention time of the settler is taken into account
by a subsequent time lag. It should be noted that all the biodegradable
organic matter of the reduced models (XCOD) is considered to be part of the
flocs (which is why the IAWQ nomenclature for particulate matter, X, is
used) and, consequently, settles. In the IAWQ model only the XS fraction is
particulate whereas the SS fraction is considered soluble. This difference
will not have any major impact on the process behaviour since the SS
concentration is normally very low when the wastewater reaches the
settler, due the long sludge age of the simulated plant. The different
definitions of the biodegradable substrates in the models will have a more
significant effect when the total biodegradable substrate concentration (i.e.,
SS+ XS in the IAWQ model) of the influent wastewater changes. In the
IAWQ model only the SS fraction is directly available for microbial growth
whereas the entire XCOD fraction in the reduced models can be immediately
used for microbial growth.

The importance of process excitation was discussed in Section 2.4. In this
study the system was perturbed using pulse disturbances of the following
input variables:

• the influent flow rate;
• the influent biodegradable organic substrate concentration;
• the influent ammonia concentration.
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The reduced order models display a somewhat different behaviour than the
IAWQ model, especially for the transient behaviour. Thus, pulse distur-
bances appear to be a decisive model test. The model input is not opti-
mized from an identifiability point of view although step changes of the
input signals have the advantage that they excite several modes of the
process whereas sinusoidal variations excite only one specific frequency.

At a real continuous-flow WWT plant it is often possible to excite the
influent flow rate in a step wise manner by changing the input pumping
capacity of the plant. It is more difficult to produce a similar change of the
biodegradable substrate concentration and the ammonia concentration. At
certain times, abrupt changes of the above concentrations may occur due to
external events and may then be used for identification purposes. It is
important to take advantage of such natural variations of the influent
wastewater characteristics to improve the possibility of producing good
estimation results.

For the off-line estimation results presented in Section 4.4, the input
variables are in most cases perturbed according to Figure 4.3. The identi-
fication is based on measurements during a ten day period which begins
with a steady state period lasting for three days (based on the values given
in Figure 4.2) followed by a 50 % increase of the three input variables
discussed above during a two day period (each disturbance lasts for one
day, see Figure 4.3). Measurements for five more days are included during
which the process slowly approaches steady state. Such a time series
includes steady state behaviour, fast dynamics during the disturbance
period, and slow dynamics as the system settles down towards the initial
steady state. For the on-line identification results in Section 4.5, other types
of process perturbations have been used.

The possibility to estimate the parameters of the reduced order models will
be investigated for three different cases. The basic case assumes the three
following concentrations to be directly measurable on-line:

• biodegradable organic matter concentration;
• ammonia concentration;
• nitrate concentration.

The sampling time for the measurements is chosen to be six minutes. It is
assumed that the above variables are measured not only in the influent
wastewater stream but also in both the anoxic and aerobic reactor. The
influent flow rate is also assumed to be continuously available. 
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Figure 4.3 Perturbations of the influent variables (normalized values).

The second investigated case also considers the oxygen uptake rate to be
continuously available as a measurable variable in the aerobic reactor. For
the third case the concentrations of microorganisms (both heterotrophic
and autotrophic organisms) are assumed to be measurable. Although this is
not a realistic assumption, this case is included to examine the model
behaviour if all state variables of the reduced order models are possible to
measure directly.

The noise conditions used for the different simulations vary significantly.
For the off-line estimation problem, noise is usually not added to the
process because the main purpose is here to investigate the basic identi-
fication properties. If the amount of data is sufficiently large then similar
results will usually be achieved whether noise is added or not (for the
chosen noise distributions in this study) as was illustrated in the example in
Section 2.6.

In the simulations where noise is added to the system (mainly for the on-
line identification in Section 4.5), this is done in two ways. Process noise
is simulated by adding Gaussian white noise to the variables of the IAWQ
model input (influent flow rate, biodegradable organic matter and ammonia
concentration, etc.). The white noise has a mean value of zero and a stan-
dard deviation which is 10 % of the steady-state value of each individual
variable, that is, all input variables are exposed to the same relative noise
level. Measurement noise (with the same properties) is added to the
measurable variables in the same way as to the input variables, which
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implies that all measurements are assumed to be equally uncertain. The
chosen noise level is quite realistic although related problems, such as
‘outliers’, trends, uncalibrated sensors and sensor failures, have not been
considered.

All computer simulations in this chapter have been carried out using the
simulation platforms Simnon™ (SSPA Systems, 1991) and Simulink™
(MathWorks, 1995). More detailed descriptions of these two simulation
programs are provided in Appendix F.

4.4 Off-Line Estimation

In order to perform an investigation of the behaviour of the reduced order
models and the possibility to identify the parameter sets from the type of
data available from full-scale WWT plant, a number of simulations are
carried out. These analyses do not provide proof whether a model is fully
identifiable or not but they give strong indications of the major charac-
teristics of the models and point out some of their potential weaknesses.

The assumed physical outline of the plant, the variations and character of
the influent wastewater and the measurable variables, were all defined in
the previous section together with the chosen values of the IAWQ model
parameters used to simulate the true WWT plant. The off-line optimization
algorithm (the Nelder-Mead simplex method) and the type of loss function
applied, were discussed in Section 4.2 and the algorithm is described in
more detail in Appendix D. In Section 4.1 the reduced order models were
developed and discussed, based on the biological and physical processes
involved. In this section they will be further investigated mainly from an
identifiability point of view. Note that all the off-line estimations presented
in this section are based on simulated data without any noise added.

The results and conclusions are based on a large number of massive com-
putations. Only a limited number of these can be presented here. The case
studies to be discussed below are selected to illustrate how the results
depend on the following situations:

• availability of different measurable variables;
• unit or coupled optimization of the two reactor types;
• identification based on models A or B.
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An examination of the sensitivity of the loss function (4.21) to parameter
changes will also be presented using model A for both unit and coupled
optimization. Such an analysis may explain some results of the parameter
estimations.

All results and graphs in this chapter are presented using the units
milligramme [mg] (mg COD or mg N depending on the variable), litre [l]
and day [day]. During the actual computations the variables are scaled to
avoid numerical problems. 

Case 1 – Anoxic Reactor Using Model A

The first presented case is an investigation of the part of model A describ-
ing an anoxic environment, that is, equations (4.1)–(4.5). Data are gene-
rated by simulating the IAWQ model of an entire plant according to the
description given in Section 4.3. The variables describing the total input to
the anoxic reactor (i.e., the combination of influent wastewater, internal
recirculation and sludge recirculation) as well as the internal variables of
the reactor are stored and then used for the off-line optimization. The
anoxic part of model A is then simulated using the stored influent data.

The loss function on which the optimization is based, is calculated as the
sum of weighted squares of the residuals, see (4.21). These residuals are
the difference between the measurable variables of the IAWQ and the
reduced model in the anoxic reactor. The simplex method finally suggests
a new set of parameters for model A and the procedure is then repeated
until an optimum solution is reached. The optimization procedure is illu-
strated in Figure 4.4.

IAWQ
influent data

optimization

new parameters

loss function

IAWQ
anoxic data

residuals

Complete run

start new run

model A
anoxic reactor

predictions

 

Figure 4.4 Optimization procedure for an anoxic reactor.
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Two special cases are examined depending on which variables are assumed
measurable. In case 1A the XCOD (i.e., SS+ XS of the IAWQ model), SNH
and SNO concentrations in the anoxic reactor are assumed to be measurable
and in case 1B the above variables plus the XB,H and XB,A concentrations
are assumed possible to measure. This difference affects the value of the
loss function and thereby the optimization. In both cases all five quantities
are assumed available from the influent data (necessary if an optimization
is to be performed for a single anoxic reactor without modelling the aero-
bic reactor and the settler of the true process).

It should be noted that the generated data for the true plant are based on a
simulation with both anoxic and aerobic reactors, settler, sludge recircula-
tion, etc., and not a special identification experiment using an isolated
anoxic reactor. This is because the aim of the study is to identify the
models during normal plant operation. However, the situation is simplified
since the anoxic reactor of model A is simulated as a single unit although
the input data are generated from a simulation of an entire plant.

This is a first test to determine whether the anoxic part of the reduced
model is at all capable of mimicking the behaviour of the IAWQ model in
an anoxic environment. It is also a first rough test of the identifiability of
model A since several sets of initial parameter values are used for the
optimization and different variables are assumed to be measurable for the
different test cases. Results of the optimizations are presented in Table 4.1.

Optimization initial estimates final estimates

model A, anoxic part rH YH bH bA rH YH bH bA

Case 1A .024 .35 .46 .06 .013 .498 .000 .014 19.3
(measured: .046 .69 .94 .12 .013 .502 .000 .207 19.5
 XCOD, SNH, SNO) .057 .86 1.18 .15 .025 .663 .326 .000 31.9

.068 1.03 1.42 .18 .013 .498 .000 .000 19.3

Case 1B .024 .35 .46 .06 .013 .498 .000 .014 19.5
(measured: .046 .69 .94 .12 .013 .506 .000 .383 20.4
XCOD, SNH, SNO, .057 .86 1.18 .15 .013 .500 .000 .079 19.5
XB,H, XB,A) .068 1.03 1.42 .18 .013 .502 .000 .159 19.6

value
of loss
func.

Table 4.1 Results of the parameter optimization for case 1.

An analysis of the final estimates suggests some possible conclusions.
Firstly, the autotrophic decay rate is extremely difficult to estimate for the
applied conditions. The concentration of autotrophs does not change much
due to reaction mechanisms in the anoxic reactor (see equation (4.5)) but
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more due to the variations of the input data (since an aerobic reactor was
included to generate the data). Moreover, the volume of the anoxic reactor
is only 20 % of the total reactor volume. Therefore, bA may assume practi-
cally any small value and its effect will be negligible. The situation is
emphasized by the fact that the estimations are not improved for case 1B
when XB,A is assumed to be measurable. The effect of bA on the XCOD and
SNH concentrations by the transformation of dead microorganisms is also
small due to the low XB,A concentration. Part of the above also holds for bH
and its effect may be compensated for by the value of rH for the applied
conditions.

Secondly, the parameters rH and YH determine the main behaviour of the
investigated system. In most situations these two parameters converge
more or less globally (if the initial estimates are ‘reasonable’) for both
cases 1A and 1B. The effect of including measurements of XB,H and XB,A in
the loss function is small (the same optimum is reached for both cases).
However, for the initial estimates of case 1A(row 3), a completely different
optimum is reached which shows that the model is not globally identifiable
from the available data. When XB,H and XB,A are included in the loss
function, their influence is significant enough to draw the optimization
algorithm away from this local optimum and towards the truly best para-
meter set, even when the values for the local optimum are used as initial
seeds for the optimization (not shown).

The reason why both optima produce similar model outputs (see Figures
4.5–4.9) is due to the fact that the numerical values of the net reaction rate
expressions (rH XCOD– bH) and (rHXCOD/YH + bH) are practically identical
for both parameter sets (cf. equations (4.1) and (4.4)). By optimizing the
system for several initial parameter sets and examining the value of the
loss function it is possible to detect this type of problem. 

However, it is not realistic to assume XB,H and XB,A to be measurable. The
situation may be improved if instead measurements of the denitrification
rate are included in the optimization. Such measurements can be performed
with reasonable accuracy (though not on-line) but the possibility to include
this information has not been tested in this study.

In order to verify the behaviour of the anoxic part of model A after the
optimization is concluded, the system is simulated with the obtained para-
meter sets and the values of the internal state variables are compared with
those of the IAWQ model when using the same set of input data. Such a
comparison is illustrated in Figures 4.5–4.9.
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Figure 4.5 Biodegradable organic matter concentration in the anoxic
reactor using the IAWQ and A models (model A with two
different sets of parameters).

 IAWQ model           
 mod A, case 1A(row 2)
 mod A, case 1A(row 4)

0 2 4 6 8 10
2.5

3

3.5

4

4.5

5

5.5

time [days]

am
m

on
ia

 c
on

ce
nt

ra
tio

n 
[m

g 
N

/l]

Anoxic reactor

Figure 4.6 Ammonia concentration in the anoxic reactor using the
IAWQ and A models (model A with two different sets of
parameters).
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Figure 4.7 Nitrate concentration in the anoxic reactor using the IAWQ
and A models (model A with two different sets of para-
meters).

 IAWQ model             
 model A, case 1A(row 2)
 model A, case 1A(row 4)

0 2 4 6 8 10
460

480

500

520

540

560

580

600

time [days]

he
te

ro
tr

op
hi

c 
or

ga
ni

sm
 c

on
ce

nt
ra

tio
n 

[m
g 

C
O

D
/l]

Anoxic reactor

Figure 4.8 Heterotrophic organism concentration in the anoxic reactor
using the IAWQ and A models (model A with two different
sets of parameters).
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Figure 4.9 Autotrophic organism concentration in the anoxic reactor
using the IAWQ and A models (model A with two different
sets of parameters).

It is obvious from the graphs that the behaviour of the anoxic part of the
reduced model is similar to that of the IAWQ model, both during transient
and steady-state situations. The main difference can be observed for the
biodegradable organic substrate since this variable is described quite diffe-
rently by the two models. The discrepancy, however, is not significant.

Case 2 – Aerobic Reactor Using Model A

The second case is an investigation of the aerobic part of model A, that is,
equations (4.6)–(4.10). It is carried out using the same principle as was
described for case 1. Data are generated by simulating the IAWQ model
for an entire plant according to Section 4.3. The variables of the waste-
water flowing into the aerobic reactor as well as the internal variables of
the reactor are stored and used for the optimization. The aerobic part of
model A is then simulated using the stored data as model input. The loss
function on which the optimization is based, is calculated as the sum of
weighted squares of the residuals. The residuals are the differences of the
assumed measurable variables of the IAWQ and the reduced model output.
A new set of model parameters is proposed by the algorithm and the
procedure is repeated until an optimum parameter set is achieved.
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Four special cases are examined depending on the set of variables that are
assumed to be measurable in the aerobic reactor. They are defined below.

• Case 2A: measurements of XCOD, SNH and SNO.
• Case 2B: measurements of XCOD, SNH, SNO and OUR.
• Case 2C: measurements of XCOD, SNH, SNO, XB,H and XB,A.
• Case 2D: measurements of XCOD, SNH, SNO, XB,H, XB,A and OUR.

The investigation shows whether the aerobic part of the reduced model is
capable of mimicking the basic behaviour of the IAWQ model or not. It is
also a preliminary test of the identifiability of the aerobic part of model A
since several sets of initial parameter values are used for the optimization
and different variables are assumed to be measurable for the various cases.
Some results of the optimizations are presented in Table 4.2.

Two different situations can immediately be observed from the results –
when the OUR is included in the optimization and when it is not. The
significance of the OUR measurements leads to similar results for cases 2B
and 2D, whereas the results for cases 2A and 2C are more scattered. As
was also seen for case 1, it is extremely difficult to estimate the autotrophic
decay rate factor bA with any relevance for the operational conditions
assumed in this simulation. The impact of bA on the model behaviour is
practically negligible and is compensated for by other model parameters.

It is interesting to observe that several parameters appear to converge
almost globally – rH, YH and bH. For example, it was not possible to deter-
mine bH realistically in case 1 (converged towards zero in most cases). The
optimum parameter set is quite different when the OUR is included in the
calculations due to the extra information. 

The parameters rA and YA do not appear to converge globally. However,
the ratio rA/YA always converges towards practically the same values (0.89
for cases 2A and 2C, 0.98 for cases 2B and 2D). This implies that the small
difference of the XB,A concentration is not sufficient to separate the effects
of the two parameters even when this variable is assumed measurable –
especially as bA varies as well. Only the combined effect of the parameters
is possible to determine for the conditions used in this simulation. A
modification of the weight factors defined for the loss function may
improve matters slightly. It should also be noted that for case 2A there
exist a number of local optima close to each other depending on the strong
correlation between rH and bH. This is quite natural since the optimization
in case 2A is based on the smallest amount of information.
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Optimization model A, aerobic part

initial estimates final estimates

rH rA YH YA bH bA rH rA YH YA bH bA

Case 2A (measured: XCOD, SNH, SNO) 

.046 .111 .33 .10 .42 .064 .029 .004 .494 .004 .172 .000 376
 .093 .222 .66 .20 .86 .126 .035 .066 .558 .075 .227 .000 376
 .116 .278 .83 .25 1.08 .157 .034 .000 .552 .000 .213 .072 369
.140 .333 .99 .30 1.30 .188 .032 .000 .528 .000 .219 .096 375

Case 2B (measured: XCOD, SNH, SNO, OUR)

 .046 .111 .33 .10 .42 .064 .044 .043 .582 .045 .358 .000 472
.093 .222 .66 .20 .86 .126 .044 .000 .588 .000 .364 .153 468

 .116 .278 .83 .25 1.08 .157 .044 .001 .583 .000 .357 .018 466
.140 .333 .99 .30 1.30 .188 .043 .000 .581 .000 .342 .309 469

Case 2C (measured: XCOD, SNH, SNO, XB,H, XB,A)

.046 .111 .33 .10 .42 .064 .033 .012 .554 .013 .207 .116 380

.093 .222 .66 .20 .86 .126 .034 .000 .554 .000 .208 .042 375
 .116 .278 .83 .25 1.08 .157 .034 .000 .552 .000 .210 .080 377
.140 .333 .99 .30 1.30 .188 .033 .025 .544 .028 .209 .000 374

Case 2D (measured: XCOD, SNH, SNO, XB,H, XB,A, OUR)

.046 .111 .33 .10 .42 .064 .044 .042 .583 .043 .362 .000 474

.093 .222 .66 .20 .86 .126 .044 .000 .584 .000 .359 .009 470
 .116 .278 .83 .25 1.08 .157 .044 .000 .589 .000 .368 .000 472
.140 .333 .99 .30 1.30 .188 .043 .024 .579 .025 .352 .000 472

value
of loss
func.

Table 4.2 Results of the parameter optimization for case 2.

The behaviour of the aerobic part of the reduced model is quite similar to
that of the IAWQ model for both steady state and transient situations (see
Figures 4.10 and 4.11). The differences are, however, more significant than
for the anoxic part of the model (partly due to the fact that the aerobic
reactor volume is 80 % of the total reactor volume and the internal process
mechanisms therefore play a more important role). This is obvious when
the values of the loss functions for cases 1 and 2 are compared. For case 2
the values are more than ten times higher, although the weight factors in
both cases are chosen to show the same impact for the same relative value
of the squared residuals. The behaviour of the model is investigated by
simulating the system with the optimized parameter sets and comparing it
with data generated with the IAWQ model. In Figures 4.10 and 4.11 such a
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comparison is illustrated for two variables, namely SNH and OUR. For the
other variables the differences are not significant.
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Figure 4.10 Ammonia concentration in the aerobic reactor using the
IAWQ and A models (model A with two different sets of
parameters).
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Figure 4.11 Oxygen uptake rate in the aerobic reactor using the IAWQ
and A models (model A with two different sets of para-
meters).
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It is clear from the graphs in Figure 4.10 that the difference for the SNH
concentration when compared with the IAWQ model is larger in the
aerobic reactor than in the anoxic one (cf. Figure 4.6). A main reason for
the difference is that the growth rate of autotrophs in the reduced model is
described by a first-order reaction, while the IAWQ model uses the Monod
growth rate expression with a very low value for the ammonia half-
saturation coefficient (KNH = 1 mg N/l). Therefore, the autotrophic growth
rate in the IAWQ model (in an aerobic environment) is almost constant for
ammonia concentrations higher than a few mg N/l while the growth rate
expression used in the reduced model will increase proportionally to the
ammonia concentration and, consequently, transform more ammonia into
nitrate. Consequently, it may be better to assume a zero-order autotrophic
growth rate for the reduced order model. The graphs of the OUR in Figure
4.11 show that the reduced model produces reasonable results even when
the optimization is not based on information of this variable (dashed line).
The result is further improved when OUR is included in the calculation of
the loss function, especially in the steady state region (dotted line).

The amount of readily biodegradable substrate (SS) is dependent on the
hydrolysis of slowly biodegradable substrate (XS) in the IAWQ model,
especially in the aerobic reactor since the influent SS is primarily consumed
in the first anoxic reactor. Variation of the SS /XS ratio is consequently an
important factor for the behaviour of the IAWQ model whereas the
reduced model does not respond to such changes as long as the SS+ XS
concentration is fairly constant. Changes in the ratio of organic substrate
fractions are therefore troublesome to mimic with the reduced model
(especially in an off-line estimation approach) and differences will occur
because the reduced order model does not include a hydrolysis process.

If the optimization of cases 1 and 2 is carried out using only steady-state
data or data generated using small disturbances, the parameters will not
converge towards the values found in this study. In such a case the results
will to a large extent depend on the initial values of the parameters because
the amount of information in the data is insufficient to locate a true
optimum set.
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Sensitivity Analysis of Cases 1 and 2

In cases 1 and 2, the anoxic and aerobic parts of model A were investigated
for their identifiability properties. Parameter optimization was performed
using different sets of initial parameter values and assuming various
variables to be measurable. The reactor models were identified separately
and the effect of the recirculation due to the behaviour of the reduced
model was therefore not taken into account (although the model inputs
were generated from a complete WWT plant simulated with the IAWQ
model including recirculation etc.). It was demonstrated that the reduced
model was capable of mimicking the behaviour of the IAWQ model during
these conditions although it proved troublesome to identify all the model
parameters – especially bH and bA but also rA and YA – in a global sense.

In order to investigate the sensitivity of the model to parameter variations,
the value of the loss function is analysed. This is not to be considered as a
complete sensitivity analysis of the model but since the result of the opti-
mization algorithm is based on how the value of the loss function changes,
it may serve as a good indicator of convergence problems.

The case which will be examined in this subsection is the one where the
loss function is calculated from measurements of XCOD, SNH and SNO (i.e.,
the earlier described cases 1A and 2A). By simulating each reactor type
repeatedly with identical input data, introducing a small change in one
parameter for each run and storing the value of the loss function, a ‘map’
describing how the loss function varies can be created (i.e., a type of
Monte Carlo simulation). The initial sets of parameters are the optima
found in case 1A(row 1) and case 2A(row 2) and each parameter (four for
the anoxic and six for the aerobic part of the model) varies ±20 % around
its initial value in steps of 2 % for each simulation.

The situation is first illustrated in Figure 4.12 for the anoxic part of model
A. The model is simulated for the same conditions as described in case 1.
Contour plots show how the value of the loss function is affected as the
parameters change. In the upper plot of Figure 4.12, the parameters bH and
bA are kept constant at the optimized values and in the lower plot rH and
YH are kept constant. Consequently, not all possible parameter interactions
are shown (only two parameters vary within each plot). To show the effect
of all the parameter variations simultaneously would require a four-
dimensional plot which would be difficult to interpret.
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A small complication occurs when the sensitivities of bH and bA are to be
examined. Since the optimized values for these parameters are close to
zero, the effect of a 20 % change would be negligible. Instead the values
for bH and bA are set to vary from 0.0 to 0.4 day–1 in the lower plot of
Figure 4.12 while the other two parameters are kept constant. To be able to
compare the two plots, two contour lines next to each other indicate that
the value of the loss function has changed with a value of 10 (the same
scale is used in Figure 4.13).
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Figure 4.12 Contour plots showing the sensitivity to parameter changes
for the anoxic part of model A (case 1A).
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The first plot in Figure 4.12 shows that the loss function is sensitive to
small changes of both rH and YH and the direction of the gradient is well
defined. This implies a reliable convergence of the optimization algorithm
although a problem occurs as the optimum is approached. Two different
optima appear, very close to each other. The values of the parameters are
almost the same for both optima but it is an indication that the information
on which the loss function is based, is not sufficient or that there is a struc-
tural problem in the model. If the region of analysis was extended, a third
optimum would appear for the parameter set found in case 1A(row 3). It is
obvious that the ratio of the two parameters are of importance for the
model behaviour. Within the narrow valley seen in the plot – indicating a
low value of the loss function – this ratio is almost constant.

The second plot illustrates the previously discussed problem of identifying
bA. The gradient of the loss function indicates how the optimization
algorithm would change the value of bH to improve the result but a signifi-
cant change of bA does practically not affect the loss function. The model
is not sensitive to this parameter for the applied conditions which explains
the results from case 1. In Table 4.1 it was shown that the sensitivity is not
significantly improved when XB,H and XB,A are also included in the calcu-
lation of the loss function (cf. case 1B).

In Figure 4.13 results from the same type of analysis as described above
are shown for the aerobic part of model A. The initial parameter values are
the optimized set found in case 2A(row 2) and the simulation conditions
are identical to the ones described there. Due to the fact that the initial
value of bA is almost zero, its value is set to vary between 0.0 and 0.4 day–1

in the last plot.

The first plot of Figure 4.13 illustrates the high sensitivity of the model to
the two parameters rH and YH. A well-defined optimum appears although
from the results shown in Table 4.2 it is clear that the best parameter set for
rH and YH is also influenced by the convergence of the other model para-
meters.

The second plot shows that the model is also sensitive to variations of the
parameters rA and YA. However, their individual values are obviously of
practically no significance for the applied conditions; it is only the ratio of
the two that matters. The optimum valley is extremely long and narrow
which indicates that the optimization algorithm has no problems deter-
mining the best ratio but cannot find the correct individual values of the
parameters. This explains some of the results earlier discussed for case 2.
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The final plot demonstrates the much smaller influence of bH and bA on the
model behaviour. Variations of the value of bA has a very limited effect. It
should also be noted that the true optimum for bA in this case appears to be
a negative value. However, a deliberate restriction built into the optimiza-
tion algorithm hinders any of the model parameters to assume negative
values even if such a change would further lower the value of the loss
function. Negative parameter values do not have any relevance when inter-
preting the parameters in a physical/biological sense.
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Figure 4.13 Contour plots showing the sensitivity to parameter changes
for the aerobic part of model A (case 2A).

Case 3 – Anoxic/Aerobic Reactor Combination Using Model A

In this subsection the optimization is generalized. A natural extension
would be to investigate the anoxic and aerobic part of model A separately
but for conditions where the effect of the recirculation is included in a
direct way, that is, simulating a plant with either an anoxic or an aerobic
reactor in combination with a settler. However, for practical reasons the
number of different cases has to be limited and, therefore, the optimization
algorithm is now used for the complete model (i.e., coupled operation of
the two reactor types) and all parameters are simultaneously estimated. The
principle of the optimization is shown in Figure 4.14.

The necessary data are generated by simulating the IAWQ model (describ-
ing the true WWT plant) as discussed earlier. The character of the influent
wastewater to the plant is identical to what was used for the earlier cases
(see Figures 4.2 and 4.3). The reactor volumes, recirculation rates, settler
model, etc., are naturally the same for both the IAWQ and the reduced
model, according to Figure 4.2. Measurements are assumed to be available
from the influent wastewater, the anoxic reactor and the aerobic reactor.
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Figure 4.14 Optimization procedure for the complete model A.

In the influent wastewater four variables are always considered to be
measurable – XCOD, SNH, SNO and Qin (the concentration of micro-
organisms in the influent wastewater is assumed to be zero). Depending on
which variables are considered to be measurable in the two reactors, five
different cases will be examined.

• Case 3A: measurements of XCOD, SNH, SNO in both the anoxic
and aerobic reactor;

• Case 3B: measurements of XCOD, SNH, SNO in both reactors
plus OUR in the aerobic reactor.

• Case 3C: measurements of XCOD, SNH, SNO in both reactors
plus OUR, XB,H, XB,A in the aerobic reactor.

• Case 3D: measurements of XCOD, SNH, SNO in both reactors
plus XB,H, XB,A in the anoxic reactor.

• Case 3E: measurements of XCOD, SNH, SNO, XB,H, XB,A in both
reactors plus OUR in the aerobic reactor.

The results of the optimizations are presented in Tables 4.3 and 4.4 (next
opening) for different sets of initial estimates. The two tables show the
results for the anoxic and aerobic part, respectively, but the results should
be interpreted simultaneously. They are separated into two tables only to
make the results easier to read. Consequently, the values of the loss func-
tion given in Table 4.4 represent the values of the total loss function for
both the anoxic and aerobic part of the model.

It is obvious that the values of the loss function are much larger for case 3
than would be expected if the results from cases 1 and 2 could simply be
added together to describe coupled operation. This is because the input
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characteristics to the unit reactors in cases 1 and 2 were identical to the
input calculated by the IAWQ model. In case 3 only the input to the entire
plant is the same. A small error in the prediction of the behaviour in the
anoxic reactor is in case 3 propagated into the aerobic reactor, further amp-
lified, and propagated back to the anoxic reactor by the recirculation (the
internal feedback of the model). This emphasizes the differences between
the reduced and the IAWQ model.

The different way the organic matter is described in the IAWQ and
reduced order models also has an influence on the behaviour, especially in
this case where the settler model is included for both models. On an aver-
age more biodegradable organic matter is recirculated when using the
reduced model (γXCOD) than when using the IAWQ model (SS+ γXS). As
the recirculated sludge is fed back to the anoxic reactor, this difference will
also have an impact on the behaviour of the models, which was not
included in cases 1 and 2.

In order to avoid the influence of the initial transients when the parameters
are updated during the optimization, the new steady state of the reduced
order model is first calculated for each new parameter set before the actual
optimization is initiated.

The results for case 3A show large variations. Ten parameters are opti-
mized based on six measurable variables and several local optima are
detected. Even the most sensitive parameters, that is, rH and YH, converge
towards different values depending on the initial estimates. However, a
strong correlation between rH and bH is apparent for both reactors. A high
value of rH is always accompanied by a high value of bH and vice versa.
This is because the algorithm attempts to minimize the residuals of XCOD.
A high rH indicates a high growth rate and, consequently, a large consump-
tion of organic matter. This effect is compensated by a high bH, which
leads to a high conversion rate of decayed material into XCOD. The mathe-
matical relationship between the two parameters is not clear due to the
different values of YH (among other things). However, the model sensi-
tivity to the heterotrophic decay rate is increased by the recirculation when
compared with cases 1 and 2.
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Optimization initial estimates final estimates

model A, anoxic part rH YH bH bA rH YH bH bA

Case 3A .024 .35 .46 .06 .023 .723 .372 .111
(measured: .046 .69 .94 .12 .014 .726 .131 .071
 XCOD, SNH, SNO) .057 .86 1.18 .15 .008 .711 .015 .073

.068 1.03 1.42 .18 .030 .626 .579 .040

Case 3B .024 .35 .46 .06 .050 .872 1.10 .090
(measured: .046 .69 .94 .12 .013 .660 .117 .057
XCOD, SNH, SNO) .057 .86 1.18 .15 .021 .743 .302 .086

.068 1.03 1.42 .18 .047 .862 1.02 .158

Case 3C .024 .35 .46 .06 .043 .744 .830 .120
(measured: .046 .69 .94 .12 .032 .691 .521 .139
XCOD, SNH, SNO) .057 .86 1.18 .15 .019 .573 .172 .110

.068 1.03 1.42 .18 .029 .671 .452 .101

Case 3D .024 .35 .46 .06 .031 .675 .510 .116
(measured: .046 .69 .94 .12 .037 .711 .644 .128
XCOD, SNH, SNO, .057 .86 1.18 .15 .020 .566 .185 .070
XB,H, XB,A) .068 1.03 1.42 .18 .041 .733 .782 .136

Case 3E .024 .35 .46 .06 .027 .647 .360 .209
(measured: .046 .69 .94 .12 .028 .652 .340 .075
XCOD, SNH, SNO, .057 .86 1.18 .15 .025 .630 .335 .163
XB,H, XB,A) .068 1.03 1.42 .18 .027 .646 .380 .286

Table 4.3 Results of the parameter optimization for case 3 (anoxic part).

The same type of correlation appears to exist for rA and bA in the aerobic
reactor due to the minimization of the residuals of SNH. This conclusion is,
however, more uncertain as a part of the formed SNH originates from the
decay of heterotrophs (i.e., depends on bH). The values for the hetero-
trophic yield coefficient in the anoxic reactor appears quite stable whereas
the other yield coefficients and the anoxic bA display large variations.

Another important factor which must also be considered, does not show in
the tables. As the concentrations of microorganisms are not assumed to be
measurable, the different optimized parameter sets lead to very different
values of the XB,H and XB,A concentrations. Based on the measurements in
case 3A, the optimization algorithm cannot determine whether the true
system contains a high concentration of organisms with a low reaction rate
or vice versa. This affects all parameter values and is the major reason why
the optimized parameter sets are so different.
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Optimization model A, aerobic part

initial estimates final estimates

rH rA YH YA bH bA rH rA YH YA bH bA

Case 3A (measured: XCOD, SNH, SNO) 

.046 .111 .33 .10 .42 .064 .078 .156 .766 .202 .780 .042 1430
 .093 .222 .66 .20 .86 .126 .041 .180 .728 .059 .385 .097 1238
 .116 .278 .83 .25 1.08 .157 .019 .250 .643 .716 .123 .174 979
.140 .333 .99 .30 1.30 .188 .042 .162 .478 .052 .385 .069 1499

Case 3B (measured: XCOD, SNH, SNO, OUR)

 .046 .111 .33 .10 .42 .064 .025 .142 .555 .129 .203 .030 1361
.093 .222 .66 .20 .86 .126 .028 .192 .602 .141 .234 .107 1112

 .116 .278 .83 .25 1.08 .157 .029 .196 .576 .707 .248 .105 1200
.140 .333 .99 .30 1.30 .188 .028 .214 .568 .500 .239 .108 1370

Case 3C (measured: XCOD, SNH, SNO, XB,H, XB,A, OUR)

.046 .111 .33 .10 .42 .064 .091 .232 .714 .208 .944 .138 2359

.093 .222 .66 .20 .86 .126 .041 .223 .539 .204 .406 .124 2146
 .116 .278 .83 .25 1.08 .157 .050 .238 .586 .219 .503 .152 2121
.140 .333 .99 .30 1.30 .188 .044 .244 .556 .222 .439 .160 2150

Case 3D (measured: XCOD, SNH, SNO)

.046 .111 .33 .10 .42 .064 .042 .141 .528 .128 .409 .023 1369

.093 .222 .66 .20 .86 .126 .038 .208 .501 .188 .374 .107 1413
 .116 .278 .83 .25 1.08 .157 .043 .221 .530 .199 .421 .138 1376
.140 .333 .99 .30 1.30 .188 .033 .201 .466 .180 .315 .095 1429

Case 3E (measured: XCOD, SNH, SNO, XB,H, XB,A, OUR)

.046 .111 .33 .10 .42 .064 .044 .148 .548 .136 .443 .021 2149

.093 .222 .66 .20 .86 .126 .041 .189 .526 .173 .401 .097 2169
 .116 .278 .83 .25 1.08 .157 .044 .189 .549 .172 .442 .075 2156
.140 .333 .99 .30 1.30 .188 .042 .166 .536 .152 .418 .015 2153

value
of loss
func.

Table 4.4 Results of the parameter optimization for case 3 (aerobic part).

In an attempt to improve the behaviour of model A and enhance the
optimization, OUR is included as a measurable variable in case 3B. The
effect is apparent on the parameters rH, YH and bH in the aerobic reactor,
which now converge towards approximately the same values indepen-
dently of the initial estimates. Consequently, the predicted value of XB,H is
much more stable (although not identical to the concentration predicted by
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the IAWQ model). Since the concentration of autotrophic organisms is
much smaller than XB,H, its effect on the OUR is small. Therefore, XB,A
converges towards different values and the estimates of the autotrophic
parameters rA, YA and bA are not significantly improved by the added
information. The same result could be observed for case 2B. In the anoxic
reactor the earlier discussed correlation between rH and bH still holds
although the results are not improved when compared with case 3A.

In case 3C the concentrations of heterotrophs and autotrophs in the aerobic
reactor are also assumed to be measurable. This will draw the XB,H and
XB,A concentrations of the reduced model towards the values calculated by
the IAWQ model and thereby eliminating one of the problems discussed
for cases 3A and 3B. Note that the concentration of microorganisms will
be approximately the same in both reactors due to the recirculation,
although it is only assumed to be measurable in the aerobic reactor. The
result of row 1 is clearly a special case where the algorithm has converged
towards a local optimum quite far from the best one. The other three
optimizations produce almost identical values of the loss function but with
quite different parameter sets although the convergence of the autotrophic
parameters is remarkably consistent. For case 3B the situation was practi-
cally the opposite. There are a number of reasons for this.

Apart from the earlier discussed correlation between rH and bH in the two
reactors a new correlation can be observed. A low rH in the aerobic reactor
leads to a high rH in the anoxic reactor and vice versa (the same correlation
holds for the ratio rH/YH). In case 3A the opposite relationship could be
observed. This implies that the reduced model deals with dynamic distur-
bances differently in the two reactors which can be observed by comparing
dynamic simulations but not by the value of the loss function where all
errors are lumped together. The value of (1 –YH)rH /YH in the aerobic
reactor is practically the same for all examples of case 3C due to the
available OUR and XB,H measurements.

A problem is that the measurements of the organism concentrations are in
conflict with the OUR measurements. To reach the best estimated result of
the OUR behaviour, the reduced model requires a set of parameters which
leads to a significantly higher XB,H concentration whereas the measure-
ments of this variable force the optimization algorithm away from that set
of parameters in order to predict the low organism concentration calculated
by the IAWQ model. Therefore, the values of the loss function are much
higher for cases 3C and 3E than for cases 3B and 3D.
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In case 3D the concentrations of microorganisms in the anoxic reactor are
considered to be measurable. Only the three basic variables are assumed to
be measurable in the aerobic reactor. The results of the optimization are
similar to the ones for case 3C. The values of the loss function are almost
identical for all examples although much lower than for 3C. The parameter
values found in cases 3C and 3D are in the same region, which is an
indication that the weight factor for the OUR residuals should perhaps be
increased to enhance the influence of the OUR measurements. However, it
is obvious that the information of XB,A is essential for estimating many of
the autotrophic parameters. 

In the final case, all state variables of model A are assumed to be measur-
able in both reactors. Furthermore, the OUR is also available. It is not
realistic to have so much information available. Parameters that do not
converge globally for this case will probably not be possible to estimate
directly in a continuous-flow plant. The conclusion would be that the
influence of such parameters is practically negligible.

The results for case 3E clearly indicate that most model parameters con-
verge globally when all this information is available. The slightly differing
parameter values are mainly due to the slow convergence of the optimiza-
tion algorithm and in some cases the optimization has been stopped
prematurely. However, the autotrophic decay rate coefficient does not
converge globally for the chosen conditions in neither the anoxic nor the
aerobic reactor (which to a small extent also influence the values of rA and
YA though the ratio rA /YA is perfectly constant). A low bA value in the
anoxic reactor is compensated by a higher value in the aerobic reactor and
vice versa. The recirculation then equalises the differences of the XB,A
concentrations in the two reactors. A small correlation is also apparent
between the values of rH and bH.

The low concentration of autotrophic organisms (2–10 %) compared with
the heterotrophs, implies that bA – from the model point of view – is only
of importance for keeping the XB,A concentration at the correct level (if it is
assumed to be measurable). The parameter has no real significance on the
process of transforming decayed material into XCOD and SNH. This is a
common problem and motivates the modification of model A into model
B, which is further discussed in the next subsection.

An investigation of the sensitivity for the complete model A during
coupled operation has been performed. By varying the model parameters
(the same principle as was shown for cases 1 and 2), the model sensitivity
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to parameter changes has been examined. Although not presented here, the
results of this analysis further motivate the conclusions discussed above.

The behaviour of model A is validated by simulating the process and
comparing the results to the predictions of the IAWQ model using identical
influent wastewater characteristics, flow rates, recirculation rates, etc. In
Figures 4.15–4.19 such a comparison is illustrated for some of the state
variables using a few of the parameter sets determined by the optimization.

All graphs show that the qualitative behaviour of the IAWQ model and
model A is similar. Figures 4.15–4.17 also indicate that the behaviour of
model A with regard to XCOD, SNH and SNO is similar for both cases 3A and
3E although the optimized parameter sets are based on different amounts
of information. The reasons for the difference in XCOD concentration
between the IAWQ and the reduced models were commented in a previous
subsection (e.g., the hydrolysis process, the changing ratio of SS and XS,
and the behaviour of the settler).

Figure 4.17 shows a significant difference in the behaviour of the two
models with regard to the predicted ammonia concentration, especially
around day five. This is primarily because the ammonia half-saturation
coefficient of the IAWQ model is set to 1 mg N/l. As the SNH concentration
is increased from 1 to 3 mg/l (i.e., the most non-linear region of the Monod
growth rate expression used for the autotrophs) in the aerobic basin it is
impossible to achieve the same behaviour for model A when using a first-
order approximation to describe the autotrophic growth rate. Therefore, the
nitrification rate will increase more rapidly in the reduced model when the
ammonia concentration increases and the ammonia peak predicted by the
IAWQ model is flattened. As a consequence, a higher concentration of
nitrate in the anoxic reactor is also predicted by the reduced model during
the same period due to the recirculation from the aerobic reactor (see
Figure 4.16).
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Figure 4.15 Biodegradable organic matter concentration in the anoxic
reactor using the IAWQ and A models (model A with two
different sets of parameters) to simulate an entire AS process.
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Figure 4.16 Nitrate concentration in the anoxic reactor using the IAWQ
and A models (model A with two different sets of parameters)
to simulate an entire AS process.
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Figure 4.17 Ammonia concentration in the aerobic reactor using the
IAWQ and A models (model A with two different sets of
parameters) to simulate an entire AS process.

Figure 4.18 illustrates how differently the quantitative concentrations of
microorganisms are predicted by the reduced model for cases 3A and 3E.
This is the major reason for the different sets of parameters found by the
optimization algorithm. If instead the organism concentrations are norma-
lized around their steady state values the results are almost inseparable,
that is, the qualitative behaviour of the model for the different cases is
identical.

Finally, the OUR is shown in Figure 4.19. It appears remarkable that the
predictions from case 3A are better than from case 3E, although OUR
measurements were not included for the optimization in case 3A. The large
offset for case 3E compared with the result of the IAWQ model is due to
the simultaneous optimization of the organism concentrations. While the
predictions of XB,H and XB,A are improved for this case, the prediction of
the OUR is not satisfactory. If the OUR for case 3B would have been
plotted, it would be in perfect agreement with the results of the IAWQ
model. On the other hand, the steady-state heterotrophic concentration for
case 3B is close to 800 mg COD/l, which should be compared with the
steady-state value of 460 mg COD/l predicted by the IAWQ model.
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Figure 4.18 Heterotrophic organism concentration in the aerobic reactor
using the IAWQ and A models (model A with two different
sets of parameters) to simulate an entire AS process.
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Figure 4.19 Oxygen uptake rate in the aerobic reactor using the IAWQ
and A models (model A with two different sets of parameters)
to simulate an entire AS process.

Chapter 4.  Reduced Order Models 161



Case 4 – Anoxic/Aerobic Reactor Combination Using Model B

The results from case 3 show that the problems concerning global identi-
fiability are apparent. Even when a large number of variables are assumed
to be measurable it is difficult to obtain an optimum global set of para-
meters. Part of the problem is due to the model complexity. Although
model A is a simple model for the activated sludge process when compared
to the IAWQ model, there are still ten parameters to be identified simul-
taneously (if one anoxic and one aerobic reactor are modelled) during
normal operating conditions (no special identification experiments) for a
continuous-flow WWT plant. 

In an attempt to reduce the degrees of freedom for the model and improve
its global identifiability, model A is further reduced into model B. As
discussed in Section 4.1, this is done by assuming the decay rate factors bH
and bA to be identical, both for anoxic and aerobic conditions. The number
of model parameters are hereby reduced from ten to seven. Moreover, the
difficulty of separately identifying bH and especially bA, which has been
discussed for the previous cases, may also be reduced since the effect of
each of the four parameters on the model behaviour are now combined into
one. Therefore, the possibility for the optimization algorithm to detect
significant changes in the value of the loss function is improved, that is, the
model sensitivity to the decay parameter is enhanced.

From a biological point of view there is no motive to differentiate the
decay rate factors depending on the applied condition (anoxic or aerobic)
since the microorganisms are circulated through the plant and exposed to
both environments during their life cycles. As for the assumption that the
decay rates for both heterotrophic and autotrophic bacteria are the same,
this is more debatable. However, both bH and bA are rough average values
because heterotrophs and autotrophs are large groups that consist of many
different organism species with individual variations.

It should be noted that the different values for bH and bA suggested in the
IAWQ model (see Table 3.1) depends on the fact that bA represents a
traditional decay rate coefficient due to endogenous decay, whereas the
value of bH is affected by the death-regeneration hypothesis, as described
in Section 3.3, equation (3.21). Using the default parameter values of Table
3.1 and inserting them into equation (3.21), it is obvious that the decay rate
for heterotrophs in the IAWQ model (0.62 day–1) is equivalent to a tradi-
tional decay rate of 0.24 day–1 (which is practically the same value as used
to describe the autotrophic decay rate). However, in the reduced order
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models both types of organisms contribute to the recycling of decayed
organic matter in the process, as hydrolysis is not included. This implies
that for the reduced order models it is correct to assume practically iden-
tical decay rates for the different organisms because the recycling of
decayed material is modelled differently than in the IAWQ model.

In most AS models the decay coefficient is important in order to predict
the sludge production, sludge age and the oxygen consumption. This is not
the purpose of the simplified models presented in this chapter. As the
reduced models only describe active biomass and the fact that all material
which results from decay is directly transformed into XCOD and SNH, the
specific decay rate factor is in this case actually a rate coefficient, describ-
ing this transformation. To compare identified values of bH and bA from
the reduced models with values normally used in traditional AS models or
determined by laboratory experiments, may therefore not be relevant. This
is an important drawback of the reduced models.

The reasons discussed above motivate the simplification of model A into
model B. It is also considered important to apply a model structure which
enhances parameter identification and automatic model calibration from
full-scale continuous-flow plant operation. The possibility of determining
the traditional heterotrophic decay rate from laboratory experiments by
monitoring the OUR exists, although such experiments usually require a
significant amount of time and is based on a very small sample of the
sludge. To experimentally determine the special bH of the IAWQ model is
much more complicated (unless YH and fP are assumed to be exactly
known, in which case equation (3.21) may be used), since it includes the
transformation of decayed material into organic substrate. Also bA is diffi-
cult to determine with any true meaning (Henze et al., 1987).

In order to investigate the behaviour of model B, the off-line optimization
algorithm is used to estimate the model parameters for exactly the same
conditions as were described in case 3. The selection of cases to investigate
(4A to 4E), depending on which variables are assumed to be measurable,
are also identical to case 3. In Table 4.5 the results of the optimizations are
presented for different sets of initial estimates.

When the results are compared to case 3, there are three important obser-
vations that can be made immediately. The first is the fact that model B is
capable of mimicking the behaviour of the IAWQ model practically as
well as model A although the number of model parameters have been
reduced from ten to seven (compare the values of the loss functions in
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Tables 4.4 and 4.5). A small increase of the loss function values (10–15 %)
is noticeable for the cases where the microorganism concentrations are
considered to be measurable (cases 4C, 4D and 4E), whereas the results for
cases 4A and 4B are actually improved.

The second observation is that the variations of the values for the opti-
mized sets of parameters are significantly smaller for model B as compared
to the results when using model A. These smaller variations also mean that
the loss function values are much more consistent for each investigated
case when using model B. This fact more than adequately compensates for
the somewhat higher values for cases 4C, 4D and 4E. The possibility of
finding the truly optimum set of parameters (or values very close to it) is
thereby significantly enhanced.

Finally, the algorithm appears to converge towards a global optimum
parameter set not only for case 4E but also for case 4B. This is a dramatic
improvement since the assumption of being able to monitor the different
organism concentrations on-line (case 4E) is not practically possible. In
contrast to this, the assumption regarding what measurements are available
in case 4B is much more realistic.

When the five investigated cases are more closely examined, most parts of
the conclusions from case 3 still hold. In case 4A a strong correlation
between b, and rH and rA in the aerobic reactor is indicated. As the concen-
trations of microorganisms converge towards different values depending
on the initial estimates, the yield coefficients vary significantly.

The inclusion of OUR in the calculation of the loss function in case 4B
enables the optimization algorithm to determine an almost unique set of
parameters. In case 3B only the convergence of the heterotrophic para-
meters in the aerobic reactor were improved to this extent. The sole major
discrepancy is seen in row 3 for the autotrophic parameters. With this set
of parameters the concentration of XB,A is about one fourth of what is
predicted by the parameters in the other rows and, consequently, YA is four
times smaller. The principal reason for this is that the autotrophic para-
meters are less sensitive to the OUR because the concentration of XB,A is
very low when compared to XB,H. Apart from this problem the results are
remarkably consistent and this is clearly the main advantage of model B.
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Optimization model B

initial estimates final estimates

rH YH rH rA YH YA b rH YH rH rA YH YA b

Case 4A (measured: XCOD, SNH, SNO) 

.024 .35 .046 .111 .33 .10 .20 .011 .772 .018 .209 .635 .577 .114 992

 .046 .69 .093 .222 .66 .20 .40 .011 .754 .017 .197 .615 .160 .101 958

 .057 .86 .116 .278 .83 .25 .50 .014 .700 .012 .167 .434 .226 .073 1171

.068 1.03 .140 .333 .99 .30 .60 .015 .780 .027 .302 .679 .188 .209 1075

Case 4B (measured: XCOD, SNH, SNO, OUR)

.024 .35 .046 .111 .33 .10 .20 .016 .697 .024 .282 .564 .236 .189 1192

 .046 .69 .093 .222 .66 .20 .40 .016 .697 .025 .295 .568 .209 .202 1193

 .057 .86 .116 .278 .83 .25 .50 .016 .697 .021 .257 .539 .055 .163 1185

.068 1.03 .140 .333 .99 .30 .60 .016 .700 .025 .287 .568 .206 .195 1189

Case 4C (measured: XCOD, SNH, SNO  plus XB,H, XB,A, OUR in aerobic reactor)

.024 .35 .046 .111 .33 .10 .20 .018 .631 .033 .393 .476 .363 .309 2363

 .046 .69 .093 .222 .66 .20 .40 .015 .567 .023 .290 .403 .258 .196 2507

 .057 .86 .116 .278 .83 .25 .50 .018 .564 .028 .330 .443 .299 .238 2431

.068 1.03 .140 .333 .99 .30 .60 .034 .699 .052 .609 .586 .550 .533 2509

Case 4D (measured: XCOD, SNH, SNO  plus XB,H, XB,A in anoxic reactor)

.024 .35 .046 .111 .33 .10 .20 .022 .600 .027 .343 .418 .310 .253 1585

 .046 .69 .093 .222 .66 .20 .40 .021 .588 .031 .374 .447 .330 .281 1604

 .057 .86 .116 .278 .83 .25 .50 .017 .531 .019 .244 .330 .216 .147 1659

.068 1.03 .140 .333 .99 .30 .60 .020 .572 .021 .274 .356 .248 .181 1614

Case 4E (measured: XCOD, SNH, SNO, XB,H, XB,A, OUR)

.024 .35 .046 .111 .33 .10 .20 .026 .633 .032 .398 .465 .364 .314 2450

 .046 .69 .093 .222 .66 .20 .40 .024 .622 .034 .408 .479 .372 .323 2448

 .057 .86 .116 .278 .83 .25 .50 .025 .628 .034 .408 .474 .371 .323 2447

.068 1.03 .140 .333 .99 .30 .60 .025 .631 .035 .425 .487 .385 .340 2449

value
of loss
func.anoxic anoxic

Table 4.5 Results of the parameter estimation for case 4.

Case 4C shows a number of local optima yielding approximately the same
values of the loss function but with very different parameter sets. Row 2
and 4 illustrate this problem well. For the parameters in row 2, the OUR is
somewhat better predicted, whereas the XB,H concentration is more accura-
tely predicted by the parameter set in row 4. The differences are, however,
quite small and the total value of the loss function is the same. The para-
meter set of row 4 is clearly a local optimum, while the parameter values
of rows 1, 2 and 3 are more similar but still vary significantly. The
increased values of the loss function when compared to cases 4A, 4B and
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4D indicate the difficulties to simultaneously predict both the organism
concentrations and the OUR when using the reduced model B. The same
fact was also observed for model A. The main reason for this is once again
the different description of the organic substrate in the reduced models and
the IAWQ model. Note that the ratios of rA and YA are identical for all
examples in cases 4C, 4D and 4E (when XB,A is considered to be measur-
able) and the correlation between b, and rH and rA in the aerobic reactor for
case 4C is apparent.

In case 4D the OUR is excluded from the optimization. This leads to that
also the ratios of rH and YH converge towards the same values for all
examples in both the anoxic and the aerobic reactor.

Finally, a global optimum is reached for case 4E. Due to the assumed
measurements of XB,H and XB,A in both reactors the effects of the OUR
measurements on the optimization are reduced and the convergence is
improved when compared to case 4C.

The behaviour of model B is validated against data generated by the IAWQ
model by simulating the two systems separately using identical influent
wastewater characteristics, flow rates, recirculation rates, etc. In Figures
4.20–4.22 such a comparison is illustrated for some of the state variables.
The behaviour of the other variables (organic substrate, ammonia, and
nitrate) are similar to the ones earlier presented in Figures 4.15–4.19.

Figures 4.20 and 4.21 show how the concentration of heterotrophs is over-
estimated and how the concentration of autotrophs is underestimated when
the OUR is used for the optimization and measurements of the organism
concentrations are not available (i.e., case 4B). On the other hand, the
prediction of the OUR is more accurate for this case, see Figure 4.22.

In order to more accurately predict the concentration of heterotrophs for
case 4E compared to case 4B, the heterotrophic yield factor (YH) is reduced
(among other things). Consequently, to increase the predicted concen-
tration of autotrophs, the autotrophic yield factor (YA) is almost doubled
(cf. cases 4B and 4E in Table 4.5). These parameter changes also have an
immediate effect on the OUR. The factor (1 – YH) /YH in equation (4.11) is
doubled, which, however, is compensated for by the fact that the XB,H
concentration is reduced by almost 50 %. But since rH is simultaneously
increased to maintain the good predictions of XCOD and SNO, the predicted
oxygen uptake rate will be too high. The OUR for the autotrophs are on the
whole fairly constant for cases 4B and 4E since the factor (4.57 – YA) /YA is
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decreased by approximately 50 % while the factor rAXB,A is increased by
the same amount and, consequently, compensates for the different auto-
trophic yield factors determined for cases 4B and 4E.
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Figure 4.20 Heterotrophic organism concentration in the aerobic reactor
using the IAWQ and B models (model B with two different
sets of parameters) to simulate an entire AS process.
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Figure 4.21 Autotrophic organism concentration in the aerobic reactor
using the IAWQ and B models (model B with two different
sets of parameters) to simulate an entire AS process.
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Figure 4.22 Oxygen uptake rate in the aerobic reactor using the IAWQ
and B models (model B with two different sets of parameters)
to simulate an entire AS process.

Summary Discussion

A number of case studies have been presented in this section to illustrate
the behaviour and identifiability properties of the reduced order models
with regard to operational conditions, assumed measurable variables, initial
parameter values, etc. The investigations do not cover all important aspects
of the models but provide a basis for further analysis. 

In cases 1 and 2 it was shown that the reduced model A was capable of
mimicking the behaviour of the IAWQ model with reasonable accuracy in
unit operation (only one type of reactor). The main differences were due to
the fact that the reduced models do not include a hydrolysis process for the
organic matter which affects the time constants of the models. Difficulties
to identify global parameter sets for the simplified model were also clearly
indicated. 

This difficulty was further investigated by examining the sensitivity of the
model to parameter changes. The model proved to be especially insensitive
to variations of the decay rate coefficients but also rA and YA were almost
impossible to determine separately for the applied conditions and assumed
available measurements.
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In case 3 the complete model A was used to simulate a WWT plant with
both anoxic and aerobic reactors and the results were compared with
simulations of an identical plant simulated with the IAWQ model. The
recirculation introduced new problems when trying to determine a global
optimum parameter set by means of optimization. Not even when highly
favourable conditions were assumed, could the autotrophic decay rate
coefficient be uniquely determined.

This motivated the use of a further simplified model – model B. In this
model all the decay rate coefficients were identical. This approach signifi-
cantly improved the optimization results without deteriorating the general
behaviour of the model, as was shown in case 4. What appeared to be an
almost global optimum parameter set could be determined without assum-
ing the concentrations of the different microorganisms to be measurable. 

However, it appears troublesome to uniquely identify all the parameters of
the models based on measurements of XCOD, SNH and SNO alone (at least
for normal continuous-flow operating conditions). In many cases when
measurements of the OUR were considered to be available, the estimation
results were significantly improved, especially for parameters describing
the heterotrophic biomass in case 3 and for all parameters in case 4. New
sensor technologies, such as on-line respirometers which are currently
being developed, may therefore provide a very useful tool for identification
and validation of models describing the AS process. An important reason
for this is that the OUR provides direct information concerning the
activities of the microbial processes while traditional measurements of
concentrations only provide indirect knowledge.

In some cases it was assumed possible to measure the concentration of
active heterotrophic and autotrophic biomass. This is unrealistic but useful
when fundamental properties of a model are investigated. When XB,H and
XB,A are not measurable, these model variables may converge towards very
different values when the model is optimized, depending on the initial
parameter estimates. This leads to non-unique parameter sets because high
concentrations of microorganisms with a low activity in the system result
in approximately the same model behaviour as low concentrations of
microorganisms with a high activity.

Since it is practically impossible to measure the concentration of active
biomass directly, it may prove useful to base an AS model on estimations
of actual reaction rates instead of rate coefficients. Knowledge of the
reaction rates are important for process control, whereas the rate factors
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may be more important for biological interpretations concerning the state
of the process. For example, estimation of rHXB,H as a combined parameter
and not as two separate variables may improve the identifiability of a
model, especially as the XB,H concentration is not measurable. All the
parameters rH, rA, bH and bA of the reduced models always appear in multi-
plicative combinations with XB,H or XB,A and, consequently, the identifia-
bility may be global in the sense that the parameter combinations converge
towards identical values but may assume practically any value if all para-
meters are analysed separately. Fairly simple measurements of the
suspended solids concentration or the total COD content may also prove
useful since they contain a certain amount of information about the micro-
organism concentration (though in a complex combination with other
matter). The development and analysis of an AS model which uses the
concept of direct estimation of reaction rates is an interesting topic for
future work.

For all case studies presented, the measurements were assumed to be com-
pletely free from noise. An analysis of the impact of noise (Gaussian noise
with reasonable variance) shows that the effect is negligible for the type of
optimization presented here since it is based on a large number of
measurements. The reduced models with optimized sets of model para-
meters have also been compared with the IAWQ model using different
types of input dynamics than have been presented in this section. The
different behaviours of the reduced models and the IAWQ model were,
however, most prominent for step variations, which motivated the choice.

No thorough analysis has been performed to determine how the process
should be perturbed to further enhance the model identifiability. Influent
variations synchronized with the time constants of the model, repeated
rapid input variations of high amplitude, etc., may improve the identifia-
bility. However, since the possibilities to control and manipulate the
influent wastewater are quite limited for most WWT plants, such an inves-
tigation would probably produce results which are not practically feasible,
though theoretically interesting.

As a final remark the computational effort is commented upon. In order to
determine one set of optimized parameters the system of differential equa-
tions describing the dynamics of the plant has to be simulated between 500
and 1000 times (the simplex algorithm converges slowly). This means that
the required CPU time for one optimization on a ‘standard’ workstation is
measured in hours and even days rather than seconds and minutes. The
work presented in this section is based on hundreds of such optimizations.
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For practical use the optimization algorithm will have to be modified (for
example, combined with faster but less robust algorithms once a reason-
able set of parameters have been determined) or the error tolerance
increased.

4.5 On-Line Estimation

The main disadvantage of the off-line optimization approach used in the
previous section is that the resulting model is fitted to certain operational
and influent conditions. The model is capable of predicting the behaviour
of the real process as long as these conditions are not significantly
changed. However, over longer periods of time, small variations will also
accumulate and affect the plant performance and the behaviour of the
microorganisms. Therefore, it may prove necessary to update the model
parameters on a regular basis. A possible solution is to perform a new opti-
mization when needed but better still is to automatically update the model
and track the parameters on-line as new measurements become available.
This will guarantee that the model predictions are as reliable as possible
since the model will always be calibrated for the current conditions. In this
section results from such an approach are illustrated and discussed.

Off-line and on-line methods should produce approximately the same
results when used to estimate process parameters during identical operating
conditions. Off-line methods are, however, often easier to use and also
more robust. Therefore, the simplex method has been used for the principal
model investigations reported in Section 4.4 although on-line parameter
estimation is of great importance for time varying systems, such as the AS
process. The Kalman filter (described in Appendix E) can be shown to be
an optimum on-line estimation algorithm under certain conditions.
However, as a result of the recirculation and the long time delays of the
activated sludge system difficulties may occur. When a parameter is
adjusted the effect on the model behaviour is only partly ‘instantaneously’
noticeable. After a period of time (depending on the design of the plant but
normally several hours) the model input is also changed by the impact of
the recirculation, which is interpreted as a new disturbance of the system
and, consequently, may induce new parameter adjustments. In certain cases
this can lead to stability problems when the parameters are over-
compensated back and forth. Especially the effect on the microorganism
concentrations is slow and it may take days before significant variations
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can be observed. To some extent it is possible to modify the estimation
algorithms to take the correlation of a changing parameter and a later
change in the model feedback into account. Such modifications, however,
have not been tested in this study. Instead the maximum rate of change for
the model parameters is set to a low value (by adjusting the gain matrix of
the Kalman filter) to avoid oscillations in the parameter estimates.

The reasons above motivate the use of a combination of on-line and off-
line methods. By first applying an off-line optimization algorithm, a set of
reasonable parameter values can be determined. These values may then be
used as initial seeds for the on-line estimation algorithm, thereby reducing
the risk of divergence and unwanted oscillations. 

When performing on-line estimation using real data it is more important to
determine the noise characteristics of the process and the measurements.
Whereas the off-line methods are based on a large number of samples and
the effect of noise is reduced by the averaging calculations, the on-line
algorithms respond immediately to sudden changes in the measured data.
By performing a thorough investigation of the noise distribution of the
process, this information can be included in the identification algorithm to
prevent the estimated parameters from changing rapidly in an unrealistic
manner due to the influence of noise. Furthermore, the measurements
should be ‘logically’ analysed before the data are used for on-line para-
meter identification. The reason for this is to detect trends, outliers, drastic
sudden changes, etc., which may indicate that a certain sensor is not
properly calibrated or is out of operation, before the identification proce-
dures are applied and produce an erroneous result. This can be performed
on-line and would be one important function of the top level knowledge-
based system outlined in Figure 2.4.

A number of cases will be presented in this section to determine the basic
behaviour of the reduced order models when used for on-line parameter
identification. The assumed conditions for the simulated WWT plant will
be those already described in Section 4.3 and previously used for the off-
line optimizations. The following situations will be investigated: 

• a case study of a modified model A for various assumed available
measurements and initial estimates (the same principle as used in
Section 4.4 for cases 3A, 3B and 3E (without the OUR));

• the effects of both measurement and process noise on the identi-
fication results;

• the effect of a change in one of the IAWQ model parameters on
the reduced model behaviour during on-line estimation.
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Results from Tables 4.3 and 4.4 indicate that the decay rates (bH and bA)
may assume almost any values especially when only XCOD, SNH and SNO
measurements are available. If all ten parameters of model A are identified
simultaneously with the extended Kalman filter this is manifested as
divergence. The correlation between the decay rate factors and the other
parameters often lead to an oscillatory behaviour of the estimates, that is,
one parameter changes at a certain rate and another variable changes with
the same relative rate and the total effect on the measurable state variables
is negligible. Finally, the identification process breaks down. 

To avoid this problem the elements of the Kalman gain matrix related to
the decay parameters are set to zero, that is, the decay rate coefficients are
assumed to be constants. The more variables that are measurable the more
parameters may be estimated successfully. If the OUR or the organism
concentrations are assumed to be measurable as well, one or two of the
decay parameters may be estimated too. All ten parameters, however,
cannot be estimated simultaneously for those cases either. In order to allow
the results of the different on-line estimations to be compared, all decay
parameters are constant in this section. The model used for the on-line
estimations is consequently a simplification of models A and B since only
six parameters are assumed to vary (ten and seven parameters are con-
sidered to vary in models A and B, respectively).

One basic problem was already discussed in Section 4.4. It is ‘easy’ to
estimate the net reaction rates for the organisms but much more difficult to
determine the growth rates and the decay rates separately. Future models
should be developed taking this fact into account.

In Figure 4.23 the results from an on-line estimation are shown for some
key variables. The measurements assumed to be available for the identi-
fication in this case are the ones described for case 3A (i.e., XCOD, SNH and
SNO in both reactors) but the process is now in steady state. In order to
initiate the on-line estimation with reasonable parameter values, the off-
line results from case 3A(row 2) are used (solid line). This parameter set is
then increased (dashed line) and decreased (dotted line) by 15 % (not the
decay rate coefficients) and the identification procedure is repeated for
these new initial parameter sets to investigate the possibility for global
convergence.
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Figure 4.23 On-line state and parameter estimation of a modified model A
based on measurements of organic substrate, ammonia and
nitrate concentrations from a stationary AS process.
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The graphs in Figure 4.23 illustrate that the heterotrophic parameters
(shown for the anoxic reactor) and, consequently, the heterotrophic
organism concentration converge towards identical values independently
of the initial estimates. This is possible since the decay rate coefficients are
identical for all simulations (if not, the identification algorithm would find
different estimates). For the autotrophic parameters, however, the available
measurements are not sufficient. The autotrophic reaction rate converges
towards the same value, whereas the yield coefficient converges towards
different values. Since XB,A is not assumed to be measurable, this variable
may compensate for the effects of the different yield values. A high value
of the yield factor leads to a high concentration of autotrophs and vice
versa. The ratios of XB,A to YA converge towards identical values but the
Kalman filter cannot determine a global estimate for the two variables
separately, especially not based on data from a process in steady state. The
entire model is also less sensitive to variations of the autotrophic para-
meters due to the low concentration of autotrophs when compared with the
concentration of heterotrophs.

The low sensitivity is a major reason why the convergence rate is
considerably slower for the autotrophic parameters, which is clearly
illustrated in Figure 4.23. This is an expected result as the time constants
for the dynamics of the autotrophic biomass are larger than for other
mechanisms in the activated sludge process. Furthermore, the convergence
rates for all parameters shown in Figure 4.23 are very slow because of the
used steady-state data. Such data produce small residuals and, conse-
quently, a slow convergence rate. The simplified Kalman filter used in this
study (constant gain matrix) further emphasises this fact. The rate of con-
vergence is also correlated to the number of measured variables (see Figure
4.25) and the number of parameters to be estimated. Comparisons of the
convergence rates of the different parameters for different cases may
consequently provide some valuable information.

The estimation procedure described above is repeated to obtain the results
shown in Figure 4.24. In this case the identification is based on the
assumption that the OUR is also measurable. The first initial parameter set
is taken from case 3B(row 2) (solid line) and then changed ±15 % (the
same principles as were used in the previous example, +15 %: dashed line;
–15 % : dotted line). The same data, generated by simulating the IAWQ
model for a complete WWT plant during steady-state conditions, are used.
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Figure 4.24 On-line state and parameter estimation of a modified model A
based on measurements of organic substrate, ammonia and
nitrate concentrations plus the OUR from a stationary AS
process.
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The graphs in Figure 4.24 show that the additional information from the
OUR measurements is not sufficient for the identification algorithm to esti-
mate a global set of parameters. It was already discussed in Section 4.4 that
the effect of the OUR is most prominent for the heterotrophic parameters
because of the low concentration of autotrophs. The autotrophic yield
factor and the concentration of autotrophic biomass still converge towards
different values depending on the initial parameter set. The situation is,
however, somewhat different when compared with the previously investi-
gated case. The ratios of XB,A to YA do not converge globally. Rather the
weighted mean value of this ratio and the expression (4.57 – YA) XB,A/YA,
which is part of the calculation of the oxygen uptake rate (4.11), converge
in a global sense. Thereby the reduced model may provide a good fit to
data from the IAWQ model for several sets of parameter estimates also
when the OUR is assumed to be available.

In Figure 4.24 no estimations of the heterotrophic parameters in the anoxic
reactor are shown. In this reactor the OUR does not provide any new
information and the estimation results are therefore similar to what was
illustrated in Figure 4.23. An examination of the autotrophic variables in
Figures 4.23 and 4.24 show a higher rate of convergence when the OUR is
measurable. The effect of the OUR measurements is not significant enough
to determine a global set of parameter estimates but it increases the conver-
gence rate. Although not shown, the convergence rate for the heterotrophic
parameters also increase when compared with the previous example. The
more information available, the faster and more accurate is the conver-
gence of the identification algorithm.

Finally, the identification procedure is tested on a new case. Now the OUR
is not considered measurable, instead the organism concentrations (XB,H
and XB,A) in both reactors are assumed to be available. Some results are
presented in Figure 4.25. The initial parameter set is taken from case
3E(row 3) (solid line) and then changed ±15 % (+15 %: dashed line;
–15 % : dotted line). Note that two different time scales are used in the
graphs. Neither of the time scales are the same as the one previously used
in Figures 4.23 and 4.24.
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Figure 4.25 On-line parameter estimation of a modified model A based on
measurements of organic substrate, ammonia, nitrate and two
organism concentrations from a stationary AS process.
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The graphs in Figure 4.25 illustrate how all parameters converge globally
for different initial parameter sets. The rate of convergence is also dramati-
cally higher than for the earlier shown cases. In order to determine a global
set of estimates it would actually be sufficient to use measurements of XB,A
from the aerobic reactor. Possibly, measurements of the total organism
concentration (XB,H + XB,A) would also be sufficient instead of requiring
individual data of both types of organisms. Such approaches would,
however, slow down the convergence rates. The prediction of the oxygen
uptake rate based on the estimated parameters also converges rapidly.
Moreover, it converges towards the identical value as determined by the
IAWQ model (244 mg O2/(l day)), although it is only estimated by using
the reduced order model.

The actual values of the parameters estimated in this section are not identi-
cal when compared with the optimized sets determined in Section 4.4. The
reason for this difference is that the weighting of the residuals performed
by the gain matrix of the Kalman filter is not exactly the same as for the
loss function used by the simplex method. The off-line optimizations were
also based on data generated during dynamic conditions, whereas the on-
line estimations are performed using steady-state data.

The large initial transients for some of the estimates shown in Figures
4.23–4.25 are not an error produced by the identification algorithm.
Instead, they are the result of the very large residuals that occur at the early
stage of the estimation. The reason for these large residuals is that the
reduced model is simulated towards steady state prior to the identification
procedure is initiated and the steady-state values are then used as initial
predictions by the simplified model. Consequently, the values may be quite
different when compared with the assumed measured variables of the
IAWQ model in steady state. The use of a constant gain matrix for the
Kalman filter further emphasizes the large initial variations.

In order to investigate how noise affects the results of the on-line estima-
tion algorithm the available measurements are corrupted by Gaussian white
noise with a mean value of zero and a standard deviation which is 10 % of
the steady-state value of each variable. To complicate matters further,
noise with the same distribution is also added to the flow rate, organic
substrate concentration and ammonia concentration of the influent
wastewater, which are inputs to the IAWQ model used to simulate the true
WWT plant. Otherwise the conditions are identical to those that have
already been described in the previous examples. Note that the noise
components added to the different variables are uncorrelated.
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To demonstrate the magnitude of the chosen noise distribution added to the
model variables and to illustrate the difficulty the identification algorithm
has to deal with, two noise corrupted variables are shown in Figure 4.26.
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Figure 4.26 The magnitude of the used noise distribution shown for the
influent wastewater flow rate and measurements of the
organic substrate concentration in the anoxic reactor.

Noise causes problems for the identification algorithm. The residuals by
which the Kalman filter determines how the parameters are to be updated
are dramatically affected by the noise and it may very well conceal the true
differences between the measurements and the model predictions, thereby
causing the identification to fail. This problem is more apparent when the
process is close to steady state (i.e., small residuals) and the situation can
be improved by perturbing the system in a suitable manner. Since the
influent wastewater characteristics to a real WWT plant is only to a small
extent controllable (in practice only the flow rate is to a certain extent con-
trollable), such perturbations may be difficult to effectuate.

For this reason the identification procedure is performed using noisy data
for steady-state conditions, thereby giving the algorithm every possibility
to fail. Investigations have been performed for all three cases shown in
Figures 4.23, 4.24 and 4.25. For all cases the behaviour of the estimates
was approximately the same as already shown in those figures. The identi-
fication algorithm converge towards the same values as when the data was
free from noise, independently of the initial parameter values. The esti-
mates are naturally corrupted by the added noise although the Kalman
filter reduces its effects. By using a time-variable extended Kalman filter
the results could be improved further (on-line updates of the gain matrix).
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A few results from the estimations including noise are illustrated in Figure
4.27. The measurable variables and the initial estimates are the same as
those used for one of the estimations shown in Figure 4.25. In order to
allow for a closer comparison with the noise-free results, the estimates are
filtered using a traditional low-pass filter and then plotted together with the
estimates produced when no noise was present. Such a comparison is
shown in Figure 4.28 for some key variables. It is clear that the correct
information with regard to the parameter values is available also from the
noisy estimates.

The last example in this section demonstrates how the parameters of the
reduced model can be tracked and updated on-line to maintain a good fit of
the model to the measurements as conditions change. In order to simulate
this, the maximum specific hydrolysis rate (kh) of the IAWQ model is
increased by 50 % over a period of one day starting at t = 1 day (a ramp
disturbance) and then maintained at this higher level throughout the simu-
lation. The hydrolysis rate was selected as a suitable parameter because of
its significant influence on the overall behaviour of the IAWQ model. In
reality this change would reflect that the character of the influent slowly
biodegradable organic substrate had changed and could now more easily be
transformed into readily biodegradable substrate. A step increase of the
influent flow rate by 50 % (starting at t = 6 and lasting for one day) is also
simulated to investigate the behaviour of the reduced model to such a
disturbance. The process is initially in steady state. Note that no noise has
been added to the measurements in this example.

The effects on the behaviour of the IAWQ model, when the hydrolysis rate
is increased, are mainly a considerable reduction of the amount of slowly
biodegradable substrate in both reactors (in this case about 50 % in steady
state) and a lower concentration of nitrate in both reactors as the produced
readily biodegradable substrate improves the denitrification. The concen-
tration of heterotrophs is also somewhat increased. The effects on the
ammonia concentration and the autotrophic biomass are negligible.
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Figure 4.27 On-line parameter estimation of a modified model A based on
noisy measurements of organic substrate, ammonia, nitrate
and organism concentrations from a stationary AS process.
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Figure 4.28 The estimates from Figure 4.27 after low-pass filtering (solid)
compared with the same estimates (previously shown in Figure
4.25) determined from noise-free measurements (dashed).
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All three cases earlier described in this section (based on which measure-
ments are assumed to be available) have been investigated. It is interesting
to note that the model parameters are qualitatively updated in the same way
for all three cases, as shown for a few examples in Figure 4.29. Note that
the convergence rates are not a problem for any of the cases because the
process is now in a transient state due to the changes of the hydrolysis rate
and the influent flow rate. Consequently, the rate of convergence is much
higher than for the previous examples where steady-state data were used
for the estimations. Prior to t = 0, the Kalman filter has been used to esti-
mate the model parameters with the initial steady-state data so that the
parameters of the reduced model have converged, in order to avoid tran-
sients in the graphs shown in Figures 4.29 and 4.30.
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Figure 4.29 On-line parameter tracking based on different available
measurements – XCOD, SNH and SNO (dotted line), plus
OUR (dashed), plus XB,H and XB,A (solid). The hydrolysis
rate is increased by 50% from t=1 to t =2 (ramp) and then
maintained at this level while the influent flow rate is
increased by 50% at t =6 (step) and set back to its original
value at t=7.

Figure 4.30 illustrates some more detailed results of the on-line parameter
estimation when XCOD, SNH, SNO, XB,H and XB,A are assumed to be measur-
able. Predictions of the oxygen uptake rate is also shown. As the hydrolysis
rate of the IAWQ model increases, the total amount of biodegradable
organic substrate (SS+ XS) is decreased and, consequently, the measured
values of XCOD are reduced. As an effect rH increases rapidly (in both
reactors) but during the most transient stage (from t = 1 until 2) the hetero-
trophic yield is also affected. This is the way for the reduced model to
rapidly reduce the XCOD concentration while maintaining the correct
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concentration of heterotrophs during the transient phase – rH and YH are
correlated. As the process settles down at the higher hydrolysis rate, rH
reaches an optimum value and YH returns to approximately the original
value, which is realistic as the concentration of active biomass has not
changed in any significant manner. Measurements of the OUR would
reduce the variations of YH. The effects on the autotrophic parameters
caused by the changing hydrolysis rate are quite small, as would be
expected.

The influent flow rate disturbance is introduced at t= 6. If the reduced
model was a perfect replica of the true process (in this case the IAWQ
model), this perturbation would not require any model parameters to be
updated since both model and process would then react in exactly the same
way to such an external disturbance. This almost holds for the hetero-
trophic parameters where only small adjustments (≈ 2–3 %) are required to
maintain a good fit of the model. For the autotrophic parameters larger
adjustments are required (≈10 %). The reaction rate factor rA is decreased
primarily because the autotrophic growth rate of the IAWQ model is in its
most non-linear region for the concentrations considered in this example.
The sudden increase of the ammonia concentration caused by the increased
flow rate leads to an overly large predicted growth rate (cause by the linear
relationship used in the reduced model) for the autotrophs and, conse-
quently, the value of rA must be reduced. For the same reason YA is
increased. The predicted values of the OUR are during the whole experi-
ment fairly accurate when compared with the calculated values of the
IAWQ model (not shown in the graph).

Note that if the initial and final parameter values shown in Figure 4.30 are
compared, only the heterotrophic reaction rate factor has increased (for
both reactors) with any real significance. All other parameters are approxi-
mately the same. This is a realistic consequence of the imposed disturbance
of the process. A higher rate of the hydrolysis mechanism produces more
readily biodegradable substrate and, consequently, this substrate is con-
sumed at a higher rate by the active heterotrophic biomass, that is, in total
an increased reaction rate of the heterotrophic organisms.
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Figure 4.30 On-line parameter identification based on measurements of
XCOD, SNH, SNO, XB,H and XB,A during a change of the maxi-
mum hydrolysis rate (starting at t=1) and a disturbance of
the influent flow rate (starting at t=6).
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Summary Discussion

The examples presented in this section illustrate the behaviour of the
reduced model during on-line state and parameter estimation using an
extended Kalman filter. The model was investigated assuming different
variables to be measurable, for different sets of initial parameter sets,
regarding the sensitivity to noise, etc. As a result of the off-line optimiza-
tions in Section 4.4 it was clear that all ten parameters of model A could
not be estimated simultaneously for the conditions considered in this study.
Early on-line estimation studies confirmed this conclusion. Trying to esti-
mate all ten model parameters led to divergence and unstable estimates.
Therefore, a further simplified model with constant decay rate factors was
used. A total of six model parameters and a number of state variables were
estimated on-line based on assumed measurements from a continuous-
flow, single-sludge AS process with pre-denitrification during normal
operating conditions.

The estimates of the model converge for all tested cases even when steady-
state data are used. However, in order for all parameters to converge
globally some information with regard to the concentration of micro-
organisms is required. Otherwise, XB,A and YA cannot be uniquely deter-
mined – instead the ratio of the two variables converges globally. The rate
of convergence of the extended Kalman filter is also significantly higher
when measurements of the organism concentrations are available.

Even when a significant amount of noise is added to the measurements and
the simulated process, the estimated parameters for all cases converge
towards approximately the same values as when no noise was added. Also
when the real process is exposed to both internal and external disturbances,
the on-line parameter tracking system still produces reasonable and fairly
accurate results.
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PART  III

Modelling the Settling Process
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Chapter 5

____________________________________________________________

Modelling Approaches – a Review

In this chapter we focus on the mathematical modelling of the secondary
clarifier. A historical perspective is provided and the traditional modelling
concepts based on one-dimensional layer models are described. The solids
flux theory by Kynch (1952) and the continuity equation, both fundamental
for settler modelling, are discussed. Finally, a new robust settler model
introduced by Diehl (1995a) is presented. This chapter covers material
from [90], [95], [186], [188] and [189].

5.1 Fundamentals

The separation and concentration of the active biomass in an activated
sludge (AS) process is performed in a settling basin, often referred to as the
secondary clarifier, secondary settler or secondary thickener. The force that
makes the sedimentation of the particles in the liquid possible, originates
from gravity and the density differences between the particles and the
liquid. From the bioreactor the mixed liquor enters the secondary clarifier
where it should be sufficiently clarified in order to produce an effluent of
acceptable quality. The sludge should also be adequately thickened so that
the desired solids level in the bioreactors can be maintained through the
sludge recirculation and enhance an effective treatment of the wasted
activated sludge. This means that the settler combines the functions of
clarification and thickening into one unit. Should the settling tank fail with
respect to either of these functions, the result would be a rapid increase of
suspended solids in the effluent or a deterioration of the AS process.
Practical experience has shown that the secondary clarifier is often the
main bottleneck of the entire AS process.



The mixed liquor is a flocculent suspension in which larger particles can be
formed by the coalescing of particles which have collided. These larger
particles generally enhance settling characteristics. The particle distribution
is bimodal with primary particles (microflocs) in the 0.5 to 5 µm range and
flocs (macroflocs) in the 10 to 5000 µm range (Billmeier, 1978; Parker
1983), as illustrated in Figure 5.1. The settling properties of a particular
sludge depends both on the distribution of primary and floc particles and
on how easily the primary particles are entrapped into larger flocs. Other
factors that influence the settling behaviour are the hydraulic regime,
temperature, basin design, flow and feed variations, sludge characteristics,
predators consuming dispersed bacteria, etc.
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Figure 5.1 Particle diameter distribution in activated sludge according
to Billmeier (1978).

The complex behaviour of the secondary clarifier and its great importance
for the successful operation of the activated sludge process have made the
settling process a major issue for researchers working within the field of
mathematical modelling. An excellent review of the historical development
of models for the secondary clarifier is given in Lumley (1985), of which a
short summary is presented here. The foundation of sedimentation theory
can be traced back to the work of Hazen (1904). Hazen developed a theory
for the continuous sedimentation of discrete particles having an identical
settling velocity. The models were developed for both quiescent (non-
turbulent) and turbulent conditions. For quiescent settling, Hazen found the
fraction removal to be a discontinuous function of the relative overflow
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rate (settling velocity/hydraulic loading rate) with an inflection point where
the settling velocity equals the hydraulic loading rate. To model the
removal under turbulent conditions he used a series of equally sized com-
pletely mixed cells.

Camp (1936) modified Hazen’s quiescent settling theory to include
discrete particles that have a distributed settling velocity. Camp assumed
an ideal basin with homogeneous horizontal flow, even inlet distribution,
free settling and particle removal when they reached the bottom of the
basin. The effluent concentration then depends only on the overflow rate
and the particle settling velocity distribution, and is independent of depth
and detention time (Camp, 1946). Within this framework the earlier work
of Hazen for quiescent flow becomes a special case of Camp’s generali-
zation.

Dobbins (1944) developed a model for predicting concentrations in a
settler for single velocity particles under isotropic turbulence with no
bottom scour and starting from a constant inlet concentration. He found
good agreement with lab scale tests using Lucite moulding powder as
suspended material. In a later work (Cordoba-Molina et al., 1978) it was
shown that the model equations by Dobbins could for the limiting case be
reduced to Hazen’s model for both quiescent and turbulent flow. Cordoba-
Molina et al. also extended Dobbins’ model to include a settling velocity
distribution that is a property only of the sediment concentration and inde-
pendent of the turbulence.

The models of Hazen, Camp and Dobbins have the disadvantages of many
assumptions such as ideal flow conditions, ideal basin design, no turbu-
lence or infinite turbulence, no bottom scour, no tank depth effects, only
discrete sedimentation, no cohesion between particles and no hysteresis
effects. Note that many of these assumptions still apply in models currently
used. A major criticism was that the early models only focused on the
removal of solids from the liquid (and not vice versa), that is, they did not
consider any phenomena occurring within the part of the settler with high
solids concentrations (Dick, 1970).

The above continuous sedimentation theory as a basis for settler design and
operation ignores the thickening phenomenon prevalent in activated sludge
systems. A settler used to separate flocculent, compressible particles, as
those found in activated sludge systems, is usually divided into four zones,
referred to as the discrete particle, flocculent, hindered settling and com-
pression zones, see Figure 5.2.
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Figure 5.2 Settling zones for activated sludge.

The compression phase begins when the critical concentration, a charac-
teristic of the suspension, is reached (Eckenfelder and Melbinger, 1957). In
this region, the settling velocity is drastically reduced due to the high
concentration of solids.

The thickening of the sludge is in turn influenced by a number of factors
(Ingersoll et al., 1955), such as:

• nature of the mixed liquor particles (density, shape, floc struc-
ture, type of microorganisms, electrostatic charges, etc.);

• dissolved substances in the substrate;
• temperature;
• depth of the sludge blanket;
• surface area of the sludge blanket;
• effects due to mechanical actions, vibrations, pressure, etc.;
• concentration of settleable solids in the mixed liquor.

The concentration at the bottom of the settler is also affected by the time
allowed for compaction.

In a fundamental work by Kynch (1952) a theoretical analysis of sedimen-
tation was made, based on the theory of Coe and Clevenger (1916). Kynch
concluded that the concentration of settleable solids in the mixed liquor
was of the utmost importance when describing the settling process, that is,
he focused on only one of the many factors listed above. The settling in
batch reactors was analysed as a process where levels of constant concen-
trations moved upwards due to the downward movement of particles.
Kynch’s theory for batch reactors was later extended for continuous reac-
tors by Yoshioka et al. (1957). The main four assumptions of Kynch’s
theory are that
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• the settling velocity of a particle depends only on the local con-
centration of particles;

• all the particles have the same shape, size and density;
• the particle concentration is constant within each horizontal cross-

section of the settler;
• in continuous sedimentation the total settling velocity is a function

of both the settling rate of particles relative to the liquid and of the
downward flow of the suspension due to the underflow withdrawn
from the bottom of the thickener.

The first assumption is the fundamental one. This means that all other
forces acting on a particle are in equilibrium. Dixon et al. (1976) found
that inertial effects cannot be ignored by comparing simulation models of
Kynch’s continuum theory and discrete settling theory and thus questioned
the validity of Kynch’s assumptions. Another study (Hultman and Hult-
gren, 1980) showed how flocculent suspensions did not strictly follow
Kynch’s assumptions. In a work by Dick and Ewing (1967) it is stated that
Kynch’s theory is highly idealized and requires an ‘ideal slurry’ to be
directly applicable – which activated sludge cannot be said to be. However,
in Dick (1970) and Dick and Young (1972) it was concluded that the mass-
flow concept could be applied to a flocculent suspension, such as activated
sludge, as a reasonable approximation. Some more recent references
dealing with the analysis and possible extension of the solids flux theory
(primarily for batch sedimentation) are, e.g., Fitch (1983), Concha and
Bustos (1987), Font (1988) and Fitch (1993).

Based on the solids flux theory a number of methods have been developed
to determine the steady-state behaviour of the secondary clarifier which
could be used for design purposes. Yoshioka et al. (1957) presented a
simple geometric technique to find the limiting values from solids flux
curves and Keinath et al. (1976) introduced the concept of a state point
applied to the solids flux theory to define a safe operational zone for the
settler. Another design method is the Coe and Clevenger method described
by Dick (1970). From a mass balance over the settler the limiting flux
could be determined and a required cross-sectional area of the settler
calculated. It should be noted that many of the methods above were
developed prior to the widespread use of computers.

Vesilind (1968a) reviewed the different solids flux methods and found that
all were sensitive to the accuracy of the solids flux curve which must be
determined empirically. He also assumed that the initial settling velocities
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measured in batch settling tests are representative of the settling charac-
teristics of a large settler and that the initial settling velocity is dependent
on concentration, test-cylinder diameter, stirring and flocculation charac-
teristics of the sludge.

Even though the solids flux theory by Kynch contains idealized assump-
tions and generalizations that are not fully applicable to the type of solids
present in an activated sludge process, its simplicity and deterministic
background have attracted a lot of researchers to continue working with it.
As computers have become available, a number of simulation models
based on the continuity equation and Kynch’s theory have been presented.
This type of model is today the most commonly used. Due to its great
importance and the fact that the new settler model by Diehl (1995a),
presented and investigated later in this work, is based on the same concept,
a more complete description of the theory is given in Section 5.2.

Novel Modelling Approaches

The very simple empirical models describing the behaviour of the
secondary clarifier (e.g., Pflanz, 1966) based on extensive experimental
work are today replaced by more sophisticated models. With the develop-
ment of high speed computers, other types of mechanistic and numerical
models have been developed to describe the behaviour of the secondary
clarifier. One approach is to use regression models based on empirical data
(e.g., Olsson and Chapman, 1985). Olsson and Chapman conducted
research to examine the transient performance of the settler and developed
a dynamic model of minimal order based on effluent data. A second-order
structured model could satisfactorily explain a large number of different
types of behaviour found in the tested sedimentation tank. The basic pro-
blem with this type of ‘black-box’ model is that it seldom explains or
increase the understanding of the underlying phenomena. However, such
models may be useful for investigating correlations between different
process variables and for practical implementation at specific WWT plants.
Due to the non-linear behaviour of the settler, the data used for identifica-
tion of the models must include much process dynamics. Otherwise, extra-
polation of model results for situations not included in the data used for
calibration may produce highly erroneous results. This type of model must
also be recalibrated on a regular basis in order to account for changing
conditions, such as the time varying properties of the sludge.
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A fairly recent model extension is to include biological processes within
the settler model in order to explain effects such as additional denitrifi-
cation and rising sludge, which appear in the settler (Henze et al., 1993).
For example, a settler model included in the WWT plant simulator
program GPS-X (Hydromantis, 1992), uses a modified IAWQ model
within every single concentration layer of the settler. This makes it
possible to predict the dissolved oxygen and nitrate concentration profiles
in the settler as well as the amount of nitrogen gas generated (which in turn
may lead to problems with rising sludge).

Another promising approach seems to be the inclusion of hydrodynamic
phenomena into traditional models and the extension to two or even three
dimensions. Effects such as turbulent dispersion and mixing, bottom
density currents, buoyant density currents, short circuiting, density water-
fall and recirculation within the settler can then be described more accur-
ately.

The suspended solids transport through an area in a settling tank is
governed by the processes of advection, diffusion and settling (Vitasovic et
al., 1994). Since the former two effects are much determined by the turbu-
lence of the flow, it is obvious that the hydrodynamics play an important
role for the behaviour of a settler, especially during transient conditions.
Hydrodynamic models make it possible to investigate effects of baffle
sizes, skirt radius, inlet zone design and other details in the design of the
settler.

The study of flow patterns in settling tanks was initiated by Anderson
(1945), and extensive field and laboratory investigations on the hydro-
dynamics and sedimentation in clarifiers were presented by Larsen and
Gotthardsson (1976) and Larsen (1977). Larsen (1977) and Imam et al.
(1983) separately developed similar numerical models to describe the
settling process in rectangular clarifiers. Recent studies of hydrodynamic
effects within the settler are numerous, for example, Krebs (1991a; 1991b),
Bretscher et al. (1992), Lyn et al. (1992), Samstag et al. (1992a), Samstag
et al. (1992b), Zhou and McCorquodale (1992a), Zhou and McCorquodale
(1992b), Zhou et al. (1992) and Szalai et al. (1994). The models often
require sophisticated finite element or finite difference methods in order to
solve the numerics, require very powerful computers and are still restricted
to simulating the behaviour of the clarifier decoupled from the rest of the
wastewater treatment plant. Although promising results have been
presented, the hydrodynamic models are still too complex to be imple-
mented in commonly used simulation programs (time-consuming identifi-
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cation and simulation, difficult to verify, etc.) and a further description of
these models lies beyond the scope of this work. For practical reasons, the
most widely used models of the secondary clarifier are one-dimensional
layer models.

5.2 Introduction to the Conservation Law

Practically all one-dimensional layer models are based on the solids flux
theory developed by Kynch (1952) and later advanced by Dick (1970) and
Shin and Dick (1980). It states that the solid flux of particles due to gravity
sedimentation Js depends on the sludge concentration X and its settling
velocity vs

Js X( ) = v s X( )X (5.1)

In order to apply this assumption we need to put (5.1) into a mathematical
framework. Many physical phenomena obey the conservation law. This
basic law states that the change of the total amount of some physical entity
(mass, momentum, etc.) in a region of space is equal to the inward net flux
across the boundary of that region (provided no sources or sinks are
present). Such conservation laws are used to model phenomena in, for
example, gas and fluid dynamics and traffic-flow analysis. They also apply
to sedimentation of solid particles in a liquid.

The discussion below will be restricted to one-dimensional problems.
Consider a settler performing batch sedimentation and define the z-axis
along its vertical side and let X(z,t) denote the concentration of particles at
depth z at time t. Let f denote the flux of particles, that is, the mass of
particles per unit time passing a point z at time t. We define (z1, z2) as an
arbitrary interval of the z-axis. The conservation law written in mathe-
matical terms in integral form is

d

dt
X z, t( )

z1

z 2

∫ dz = f z=z1
− f z=z 2

(5.2)

which means

increase of mass per unit time = flux in per unit time – flux out per unit time
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If we assume that the concentration X(z,t) is differentiable, then the left-
hand side of (5.2) can be written

∂X

∂tz1

z 2

∫ dz (5.3)

If the right-hand side of (5.2) is written

− ∂f

∂zz1

z 2

∫ dz (5.4)

then we get

∂X

∂t
+ ∂f

∂z




z1

z 2

∫ dz = 0 (5.5)

Since this holds for every interval (z1, z2) (and assuming that the integrand
is continuous) it follows that

∂X

∂t
+ ∂f

∂z
= 0   ⇔    X t + fz = 0 (5.6)

This partial differential equation is called the continuity equation or the
conservation law.

A common dependence on z and t of the flux function f is of the form

f = f X z, t( )( ) (5.7)

where f(X) is assumed to be a smooth function. For the settling problem it
is according to Kynch’s theory reasonable to assume that the settling
velocity is dependent only on the local concentration of particles at the
point z at time t, that is, vs= v(X), and we can use any continuous function
to describe the relationship between vs and X. The most common function
used to define the settling velocity is the exponential settling velocity
function (Thomas, 1963; Vesilind, 1968b)

v s = ke−nX (5.8)

where k and n are parameters used for calibrating the function to experi-
mental data. Other types of settling velocity functions are discussed in
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Section 5.3. The total particle-flux function is thus

f X( ) = v X( )X = ke−nX X (5.9)

The graphs of (5.8) and (5.9) are shown in Figure 5.3.
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Figure 5.3 Graphs of the settling velocity and the corresponding settling
flux function.

Using (5.7) we can write equation (5.6) as

X t + f X( )z = 0   ⇔    X t + ′f X( )X z = 0 (5.10)

This equation is called quasi-linear, since it is linear in the derivatives but
the coefficient of Xz depends on X.

Characteristics

To be able to solve the partial differential equation (5.10) some initial
concentration distribution must be given at t = 0. Then we get the initial
value problem

X t + f X( )z = 0     z ∈ℜ , t > 0

X z,0( ) = X 0 z( )    z ∈ℜ
(5.11)

Let z = z(t) be a level curve in the z–t plane, i.e., 

X z t( ), t( ) = constant = X 0 (5.12)
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Differentiating with respect to t and using X t = − ′f X( )X z gives

0 = X z ′z t( ) + X t = X z ′z t( ) − ′f X 0( )( ) (5.13)

Generally it must hold that ′z t( ) = ′f X 0( ), which means that the level
curve is a straight line with slope =1 ′f X 0( ) in the z–t plane. Such a line is
called a characteristic. (If X z ≡ 0 in some region, then the conservation
law implies that X t ≡ 0 too, hence the solution is constant, say ≡ X 0 , and
we can still define the level curves to be straight lines by the equation

′z t( ) = ′f X 0( )). The value ′f X 0( ) is called the signal speed, since a
wavefront or a disturbance will propagate with this speed. Note that the
non-linearity consists in that the signal speed is dependent on the solution
X. A geometrical construction of a solution for given initial data
X z,0( ) = X 0 z( ) can be done as follows: Through each point X0 on the z-
axis, draw a straight line with speed ′f X 0 z 0( )( ) in the z–t plane. Along
this line the solution has the value X0(z0). Analytically we can write the
solution in implicit form: The connection between the value X, the point z
and time t is

z = ′f X 0 z 0( )( )t + z 0

X = X 0 z 0( )




(5.14)

Shock Waves and the Jump Condition

If the characteristics intercept at time t it is not possible to define a con-
tinuous solution after this time. Even for differentiable initial data, discon-
tinuous solutions may appear after a finite time. This can be seen in the
following way. A differentiable solution is obtained if we can solve the
first equation of (5.14) for z0, thus formally z 0 = z 0 z, t( ) , and then sub-
stitute this expression into the second equation of (5.14). According to the
implicit function theorem this can be done if

dz

dz 0
= ′′f X z 0( )( ) ′X 0 z 0( )t +1 ≠ 0 (5.15)

This is true for small t > 0, which proves that if the function X0(z) is
smooth, then there exists a smooth solution X(z,t) for small t > 0. The
smallest time for which dz dz 0 = 0 holds is called the critical time.
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To be able to continue the solution after a discontinuity appears, one has to
generalize the concept of solution. The conservation law in (5.10) is multi-
plied by a special test function ϕ and after partial integration one arrives at
the condition

Xϕ t + f X( )ϕ z( )
−∞

∞
∫

0

∞
∫ dzdt + X z,0( )ϕ z,0( )

−∞

∞
∫ dz = 0 (5.16)

A function X that satisfies (5.16) is called a weak solution of the conser-
vation law (5.10).

The conservation law also states how a discontinuity moves. Let X be a
piecewise differentiable solution of the conservation law, with a discon-
tinuity curve z= z(t) in the z-t plane. Let X ± = X z t( ) ± 0, t( ) denote the
values of the solution on the left and right side of the discontinuity curve. It
can then be shown that the speed of the discontinuity satisfies

′z t( ) =
f X +( ) − f X −( )

X + − X −
(5.17)

(5.17) is the so called jump condition or Rankine-Hugoniot condition. Note
that the speed is actually the slope of the straight line through the points
X − , f X −( )( ) and X + , f X +( )( ) on the graph of f. It can also be shown that if

X(z,t) is a piecewise smooth function, which satisfies the initial data
X z,0( ) = X 0 z( ), then X(z,t) is a weak solution of (5.16) if and only if

• the conservation law is satisfied at points where X is differen-
tiable;

• the jump condition is satisfied at discontinuities.

Viscous Waves and the Entropy Condition

The problem by introducing general solutions (weak solutions) is that we
may obtain different solutions for the same initial data. In order to select a
unique, physically relevant solution, an additional condition must be
imposed, a so called entropy condition. This condition will pick out the
physically correct shocks and discard others and can be motivated by
studying what happens when diffusion or viscosity is also taken into
account. Use f := f X( ) − εX z in the derivation instead of (5.7). The term
− εX z , with ε > 0, comes from Fick’s law of diffusion. Then we obtain the
viscous equation
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X t + f X( )z = εX zz (5.18)

Generally, solutions of (5.18) are smooth for ε > 0. If ε is small we get
approximately the same solutions as of the conservation law (5.10), but the
shocks are now slightly smoothed. Consider a solution of (5.10) with a
single discontinuity moving with the speed defined by (5.17). Such a shock
is allowed if the solution of (5.10) can be obtained as a limit solution of
(5.18) as ε → 0. It can be shown (Diehl, 1995a) that such an admissible
shock from X– to X+ satisfies the entropy condition

f X +( ) − f X −( )
X + − X − ≤

f x( ) − f X −( )
x − X −

for all x between X − and X +

(5.19)

Hereby we can use the generalized solutions of the conservation law, select
a unique, physically relevant solution and allowing shock waves to propa-
gate through the settler. The speed of a shock wave is given by the jump
condition (5.17), which follows directly from the conservation law. A
remaining problem is how to define the numerical flux terms when the
model is discretized as well as how to introduce source and sink terms
necessary to describe continuous sedimentation. This is discussed in
Section 5.4.

Graphical Representation of Sedimentation

To establish the gravity settling flux curve, a number of batch sedimen-
tation tests are usually performed at different initial concentrations. It is
then possible to plot the hindered settling velocity as a function of the
initial concentration. From such a graph, the solids flux curve due to
gravitational forces is directly obtained (see Figure 5.3). An example of a
solids flux curve is illustrated in Figure 5.4. 

Assume a cylinder of depth D with an initial concentration of particles, Xm,
in the entire volume. A point of inflection, Xinfl, can often be found on the
batch sedimentation curve. As a consequence of the shape of the curve in
Figure 5.4, a batch settling test results in two shock waves, one moving
downwards from the top and one moving upwards from the bottom of the
test cylinder.
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Figure 5.4 Batch sedimentation curve, f(X), and graphical determination
of limiting (Xtan) and final (Xmax) sludge concentration.

Note that if the settling velocity curve is of the form (5.8), that is, there is
no defined value Xmax where the settling velocity is zero, the conservation
law will yield an infinite concentration at the bottom of the settler in steady
state, which is not realistic. Therefore, the curve in Figure 5.4 has been
modified slightly when compared with (5.8).

By constructing the characteristics of a batch settling test in the z–t plane
we can interpret Figure 5.4 better. This has been done in Figure 5.5. The
speed of the shock wave moving downwards from z = 0 is determined by
equation (5.17), that is, the slope of the line OP in Figure 5.4. The speed of
the characteristics above this discontinuity is ′f 0( ) since the concentration
is zero, and below, the speed of the characteristics is ′f X m( ) and the
concentration equals Xm. The second shock wave is moving upwards from
z= D with the speed determined by the expression ′f X tan( ), i.e., the slope
of the line PQ (see Figure 5.4). The concentration immediately below this
discontinuity is Xtan and is continuously increasing towards Xmax at the
bottom of the cylinder. At a certain time the two shock waves will meet
and the resulting discontinuity will continue to move downwards with a
speed that is f(x) /x where x is continuously increasing from Xtan to Xmax
until the concentration in the entire region below the shock wave is equal
to Xmax and the concentration is zero above the discontinuity. In Figure 5.5,
the boundary below which the concentration is constant (= Xmax) is plotted
with a thick solid line. Note that this is not a discontinuity, since the
concentration is increasing continuously from Xtan to Xmax.
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Figure 5.5 Characteristics of a batch sedimentation test showing the
propagation of the shock waves.

If the batch sedimentation curve is concave, that is, there is no inflection
point, then the characteristics will be similar to the ones shown in Figure
5.5. The only difference is that when the two initial shock waves intercept,
a final stationary discontinuity is formed with the concentration X = 0
above and X= Xmax below it.

For continuous sedimentation, the downward bulk flux is added to the
batch settling curve yielding f(X) +QuX /A. The limiting flux, Jlim, that is,
the maximum mass-flux capacity of the thickening zone at steady state, can
in this case be determined graphically as the point on the curve tangent to
the horizontal line. This is shown in Figure 5.6 for a critically loaded
settler, that is, when the incoming flux equals the limiting flux and a stable
discontinuity (the sludge blanket) is maintained. In this case Xtan is equal to
the solids concentration between the sludge blanket and the bottom of the
settler, and the concentration where the limiting flux and the bulk flux line
intercept is equal to the settler underflow concentration Xu.
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Figure 5.6  Continuous-flow sedimentation flux curve (critical loading).

In this case it is not critical whether Xmax is finite or not. If the bulk flux is
too large, then the settler will be underloaded and no stable discontinuity
can be sustained. This situation can also be graphically represented using
the same principle as described above. Similar plots can also be con-
structed for the clarification zone.

5.3 Traditional One-Dimensional Layer Models

Using the solids flux theory as the constitutive assumption and formulating
the conservation law, yield equation (5.10). From this equation a dynamic
model can be developed. Tracy and Keinath (1973) produced one of the
first dynamical models using a mass balance and Kynch’s sedimentation
law to obtain a partial differential equation (PDE) which was then solved
numerically by finite differences. Though their work solved the problem
from a conceptual point of view, the resulting model was too complex and
suffered from typical numerical shortcomings in terms of stability and
boundary condition specifications. Stehfest (1984) proposed a numerical
method to solve some of the problems by reducing the original PDE into a
single ordinary differential equation by the so called method of lines
solution technique (e.g., Schiesser, 1991).
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General Model Description

The principles of the one-dimensional layer model used today are primarily
based on the continuing work of Bryant (1972), Stenstrom (1975), Hill
(1985) and Vitasovic (1985). Initially the work was focused on the thicken-
ing process. Bryant (1972) based the work on the continuity equation
formulated as

∂X

∂t
=

∂ D∂X( )
∂z 2 − ∂ vX( )

∂z
− RX (5.20)

where X is the solids concentration, D is the dispersion coefficient, v is the
settling velocity and R is a reaction rate affecting the solids concentration.
Various simplifying assumptions, based on conditions known to exist in a
continuous thickener, were applied to facilitate a solution, and initial and
boundary conditions were established. The main assumptions were (Sten-
strom, 1975):

• the continuous thickener does not exhibit vertical dispersion;
• the concentration of suspended solids is completely uniform

within any horizontal plane within the settler;
• the bottom of the solids-liquid separator represents a physical

boundary to separation and the solids flux due to gravitational
settling is zero at the bottom;

• there is no significant biological reaction affecting the solids
mass concentration within the separator;

• the mass flux into a differential volume cannot exceed the mass
flux the volume is capable of passing, nor can it exceed the mass
flux which the volume immediately below it is capable of
passing;

• the gravitational settling velocity is a function only of the sus-
pended solids concentration except when the assumption imme-
diately above is violated.

It should be noted that the assumption concerning the largest possible mass
flux into a differential volume is an assumption on the solution of (5.20).
Instead, the numerical algorithm used to solve the continuity equation
should deal with the possible mass flux into a specific layer.

Stenstrom divided the settler (only the thickening zone) into a number of
horizontal layers and formulated a mass balance for each layer assuming
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complete mixing within each layer. Based on (5.20) and the above assump-
tions, the following expression was obtained

∂X i

∂t
=

v dn X i−1 − X i( ) + min Js,i ,Js,i−1( ) − min Js,i ,Js,i+1( )
z i

(5.21)

where Js is the settling flux defined in (5.1), zi is the height of layer i. The
downward bulk fluid velocity is

v dn = Qu

A
(5.22)

where Qu is the underflow volumetric flow rate and A is the cross-sectional
area of the settler. Finally, the boundary conditions for the top and bottom
layers were established to permit simultaneous solution of the equations
represented by (5.21). The upper boundary condition was obtained by the
rate of addition of solids to the settler (because only the thickening zone
was modelled) and the lower boundary condition by the rate of removal of
thickened sludge. The equation for the top layer was

dX 1

dt
=

Q f X f

A
− v dnX 1 − min Js,1 ,Js,2( )

z1

(5.23)

and for the bottom layer

dX n

dt
=

v dn X n−1 − X n( ) − min Js,n−1 ,Js,n( )
z n

(5.24)

where Qf is the feed volumetric flow rate to the settler, Xf is the suspended
solids concentration of the feed and the subscript n denotes the bottom
layer. The underflow concentration was defined to equal Xn, whereas no
material escaped from the top layer as no upward bulk flow was modelled.

A major drawback of the thickening model was its inability to predict the
behaviour in the zone above the feed layer. Due to the upper boundary
condition, the model could only be applied to the regions below the feed.
Therefore, the model was extended to include the clarification zone
(Vitasovic, 1985). The settler was divided into n layers with the feed
entering in layer m, as shown in Figure 5.7. It was assumed that the feed
was instantaneously and completely distributed throughout the feed layer.
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Fluid flows upward from the feed layer at the rate determined by the
overflow and downward at the rate at which the thickened underflow is
removed.
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Figure 5.7  Schematic view of a settler.

The region below the feed level was modelled according to Stenstrom’s
approach. In the region above layer m, the solids were assumed to have a
gravitational settling velocity greater than the upward movement of fluid in
order to be separated from the overflow. An empirical threshold concen-
tration, Xt, was defined in order to describe the behaviour in the upper
section of the settler. Whenever the solids concentration is greater than Xt,
it was assumed that the settling flux in that layer will affect the rate of
settling within adjacent layers. It was presumed that the threshold concen-
tration corresponded to the onset of hindered settling behaviour. The top of
the sludge blanket was determined by the highest layer with a solids
concentration equal to or greater than Xt.
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The full set of equations constituting a traditional one-dimensional layer
model of the secondary clarifier is presented below. In the clarification
zone (layer 2 to m – 1) the following equations are given

dX i

dt
=

Jup,i+1 + Jclar,i−1 − Jup,i − Jclar,i

z i

(5.25)

where

Jup,i = v upX i (5.26)

v up = Qe

A
(5.27)

(we assume that the cross-sectional area of the clarifier, A, is the same) and
the solids flux in the clarification zone is defined as

Jclar,i =
Js,i if X i+1 ≤ X t

min Js,i ,Js,i+1( ) if X i+1 > X t





(5.28)

In the feed layer (layer m) there is a bulk fluid movement upward at
velocity vup and downward with velocity vdn. The resulting equation is

dX m

dt
=

Q f X f

A
+ Jclar,m−1 − v up − v dn( )X m − min Js,m ,Js,m+1( )

z m

(5.29)

For the layers below the feed level (layer m +1 to n – 1), equation (5.21)
still holds. The equation for the bottom layer is still described by (5.24)
and the underflow concentration is defined to be equal to Xn. The modified
equation describing the top layer becomes

∂X 1

∂t
=

Jup,2 − Jup,1 − Jclar,1

z1
(5.30)

where the effluent concentration is defined to be equal to X1. A complete
description of Vitasovic’s layer model is shown in Figure 5.8.
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Figure 5.8 General description of the traditional one-dimensional layer
model by Vitasovic (1985) with equidistant layers and a
constant cross-sectional area (Takács et al., 1991).

Settling Velocity Functions

The model description shown in Figure 5.8 have set the framework for
practically all layer models today. However, in its original form it deals
mainly with the underflow concentration, leaving realistic effluent suspen-
ded solids predictions to empirical or statistical models (e.g., Pflanz, 1966;
Busby and Andrews, 1975; Chapman, 1984; Dupont and Henze, 1992).

Chapter 5.  Modelling Approaches – a Review 211



This was partly because the settling velocity function used in the original
model was of a type that could not predict a reasonable settling velocity for
low concentrations of solids (usually found in the clarification zone).
Vitasovic used the traditional exponential settling velocity function pro-
posed by Thomas (1963) and Vesilind (1968b)

v s = ke−nX (5.31)

which predicts unreasonably high settling velocities for low concentrations
of solids. The determination of an appropriate settling velocity model is
indispensable for modelling the secondary clarifier using the solids flux
theory. Therefore, a number of empirical functions of the settling velocity
have been proposed. The majority of the functions are based either on the
exponential function of (5.31) or the power function (Yoshioka et al.,
1955; Dick and Young, 1972)

v s = kX −n (5.32)

Usually, the exponential function is considered to be more accurate but is
sometimes considered to require more complex numerical procedures for
the mathematical analysis (Smollen and Ekama, 1984). A few examples of
different settling velocity functions found in the literature are given in
Table 5.1.

A major difficulty is to calibrate the settling velocity function to the actual
settling characteristics of the sludge. A common and practical approach is
to correlate measurements of the Sludge Volume Index (SVI) to the para-
meters of the settling function. The SVI is achieved by a simple test and
provides a rough estimate of the settleability of the sludge. Several
attempts to incorporate the SVI in the settling velocity function can be
found in the literature, e.g., Pitman (1985), Daigger and Roper (1985),
Wahlberg and Keinath (1988), Sekine et al. (1989) and Härtel and Pöpel
(1992). For example, the following empirical exponential settling velocity
function was proposed by Härtel and Pöpel

v s = 17.4e−0.0113⋅SVI + 3.931( )e− −0.9834e−0.00581⋅SVI +1.043( )X (5.33)

Less satisfactory attempts have also been made to describe the settling
velocity as a function of the organic loading rate (F/M ratio) or solely of
the mixed-liquor suspended solids concentration (MLSS) (Härtel, 1990).
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vs = k 1 − nX( )4.65 Richardson et al.  (1954)

vs = k
1 − nX( )3

X
Scott (1966)

vs = k
1 − nX( )4

X
Cho et al.  (1993)

vs = k
e−nX

X
Cho et al.  (1993)

vs = kX 1 − X( ) Scott (1968)

vs = k
1 − n1X( )4

X
e−n2X Cho et al.  (1993)

vs = k 1 − nX( )2 e−4.19X Steinour (1944)

vs = k 1 − n1X + n2X 2 + n3X 3 + n4X 4( ) Shannon et al.  (1963)

vs = k1 1 − n1X( )n2 + k 2 Vaerenbergh (1980)

vs = k 1 − n1X( )n2 Vaerenbergh (1980)

Table 5.1  Proposed settling velocity functions for activated sludge.

It should be recognized that none of the traditional settling velocity func-
tions accounts for compression effects and channelling effects at the
bottom of the clarifier, as described by Vesilind (1979). In order to partly
compensate for this, Härtel and Pöpel (1992) imposed an empirical Ω-
function which is a function of the settler depth, SVI, influent depth and
influent solids concentration. By multiplying the settling flux with the
correcting Ω-function during the numerical calculations, more accurate
solids profiles were reported, especially in the transition and compression
zones of the settler.

In order for the layer model to predict the effluent suspended solids
concentration realistically, the settling velocity function must be modified
further. According to Figure 5.1, the sludge can be divided into two
distinct fractions, where the primary particles have a very low settling
velocity (Li and Ganczarczyk, 1987) and the flocs settle according to
gravity and concentration of solids. To compensate for this, Otterpohl and
Freund (1992) extended the velocity function of Härtel–Pöpel to include a
separate settling velocity for primary particles (set to a constant value of
0.01 m/h). The fraction of primary particles versus flocs was empirically
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determined as a function of the solids concentration in the settler influent
and an exponential function was calibrated to the data. A similar approach
was proposed by Dupont and Dahl (1995), who defined the concentration
of primary particles (Xpp) in the settler influent as a function of the effluent
flow rate

X pp = X pp,min + k1
Qe

A






k 2

(5.34)

where Xpp,min is the minimum possible concentration of primary particles.
This fraction was then assumed to have zero settling velocity, that is, the
primary particles simply follow the upward and downward bulk flows.
Furthermore, a different settling velocity model for gravity settling was
suggested by Dupont and Dahl (1995)

v s = v 0e
−0.5

ln X n1( )
n2







2

(5.35)

where v0 is the maximum settling velocity of flocs. A first attempt to
compensate for density currents and short-circuiting in the settler was also
proposed (usually only found in complex hydraulic models). Density
currents will cause a vertical transport of the influent through the settling
tank, up or down to the layer where the suspended solids concentration is
closest to the concentration of the influent (Larsen, 1977). This effect is
modelled by dynamically changing the inlet layer of the model to the layer
where the solids concentration is closest to the influent concentration.
Short-circuiting in the settler means that a part of the influent flow is trans-
ported directly to the return sludge pit without taking part in the actual
settling process and correspondingly leading to a lower concentration of
the sludge in the settler underflow than a traditional model will predict.
This behaviour is modelled by introducing a constant empirical short-
circuiting factor, Ω, and simply diverting the fraction Ω of the settler
influent flow directly to the recirculation stream. Further research is carried
out to determine a suitable model for dynamically updating the short-
circuiting factor. (Note that the Ω-factor of Dupont and Dahl is not related
to the Ω-function of Härtel and Pöpel.)

Another settling velocity function was proposed by Takács et al. (1991).
This was the double-exponential settling velocity function defined as

v s = max 0,min ′v 0 ,v 0 e−rh X −X min( ) − e−rp X −X min( )( )









 (5.36)

214 Modelling Aspects of Wastewater Treatment Processes



where ′v 0 and v0 is the maximum practical and theoretical settling velocity,
respectively, rh is a settling parameter characteristic of the hindered settling
zone and rp is a parameter associated with the settling behaviour at low
solids concentrations. Xmin is the minimum attainable concentration of sus-
pended solids in the effluent and is in turn a function of the settler influent
concentration of solids

X min = fnsX f (5.37)

where fns is the non-settleable fraction of Xf . The inclusion of (5.37) will
directly influence the behaviour of the settler, especially within the
clarification zone. The function (5.36) divides the settling velocity into
four regions, schematically illustrated in Figure 5.9, in order to describe the
behaviour of the different fractions of the sludge, i.e., the

• unsettleable fraction;
• slowly settling fraction;
• rapidly settling fraction.
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Figure 5.9 Schematic description of the double-exponential settling velo-
city model (5.39) suggested by Takács et al. (1991).

For X < Xmin the settling velocity is zero, see (5.36). When Xmin< X < Xlow,
the settling velocity is dominated by the slowly settling particles. For low
concentrations of suspended solids, Patry and Takács (1992) showed that
the mean particle diameter increases as the solids concentration in the free
settling zone of the clarifier gets higher. According to Li and Ganczarczyk
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(1987), an increasing particle diameter implies a higher settling velocity
and this effect is reflected in the behaviour of (5.36) within the region
Xmin < X <Xlow. When Xlow < X <Xhigh (typically for concentrations ranging
from 200 to 2000 g/m3), the settling velocity is considered to be indepen-
dent of the concentration as the flocs reach their maximum size. Finally,
when X >Xhigh, the model reduces to the traditional exponential velocity
function (5.31) describing the effects of hindered settling.

A recent evaluation (Grijspeerdt et al., 1995) of six one-dimensional settler
models (Laikari, 1989; Takács et al., 1991; Otterpohl and Freund, 1992;
Dupont and Henze, 1992; Hamilton et al., 1992; a combination of Takács
et al., 1991 and Otterpohl and Freund, 1992), based on the solids flux
theory, concluded that the model of Takács et al. (1991) provided the most
realistic results when compared with ten sets of experimental data, both for
steady-state and dynamic conditions. Therefore, the evaluation presented in
Chapter 6 of the robust settler model proposed by Diehl (1996b) and Diehl
and Jeppsson (1996), described in Section 5.4, will be performed using the
Takács model as the reference model capturing the behaviour of traditional
layer-model approaches. It should be noted that the Takács’ model is
actually identical to the model by Vitasovic (1985) but with the special
settling velocity function (5.36) introduced by Takács et al. (1991).

5.4 Robust Modelling of the Settler

The behaviour of the secondary clarifier is very complex and exhibits very
non-linear phenomena. Therefore, it is difficult to obtain a mathematical
model that captures the behaviour in a satisfactory way. The aim of many
papers presented in wastewater journals has been to obtain a good model
fit to some set of experimental data, and to acquire this, empirical reason-
ing and ad hoc assumptions have been used. However, a model becomes
more reliable if some of the ad hoc assumptions can be replaced by
conditions that are derived rigorously from basic physical principles. In
this section, a settler model that is derived using the knowledge of the
analytical solution of the continuity equation (see Section 5.2) and Kynch’s
constitutive assumption only, will be presented. The continuity equation is
a universal equation that must always be satisfied and the robust model
guarantees this based on the mathematics from which the numerical solu-
tion technique is derived. 
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The conceptual approach of modelling the settler by dividing the settler
into a fixed number of layers, was described in the previous section.
Within each layer the concentration is assumed to be constant and the
dynamical update is performed by imposing a mass balance for each layer.
The numerical fluxes are defined by empirical reasoning and sometimes
contain ad hoc assumptions. Often further ad hoc conditions are imposed
in the layers at the inlet and outlets. Then the solution will depend on the
number of layers and there is no guarantee that the method produces
physically relevant solutions satisfying the continuity equation. Of course,
any numerical method must divide the settler into a finite number of layers,
but as the number of layers increases a natural claim is that the method
should produce better and better approximations of the ‘physically correct’
solution (under the given assumptions). The proposed robust settler model
uses numerical fluxes and formulae for the prediction of the effluent and
underflow concentrations that are derived from basic physical principles
without applying any ad hoc assumptions. The approach is based on the
continuity equation written as a non-linear partial differential equation with
a source term and a discontinuous flux function, modelling the inlet and
outlets. The model is based on new mathematical results presented for this
type of equation by Diehl (1995b, 1996b). The only assumption that needs
to be specified is the batch settling flux curve.

Away from the inlet and outlets, that is, within the clarification and thick-
ening zones, a numerical scheme converging to the ‘physically correct’
solution (under Kynch’s assumption) was introduced by Godunov (1959).
The application of the scheme to the thickening zone of the settler was
introduced to the field of wastewater treatment by Diehl et al. (1990). The
method of Godunov has then been generalized by Diehl to apply to the
entire settler, including the prediction of the effluent and underflow
concentrations. Barton et al. (1992) suggests a multi-step method to obtain
even more accurate solutions within the thickening zone. 

The settler model described below should be regarded as a ‘first-order’
model that captures the wave behaviour and the conservation of mass. The
number of layers used in the model does not affect the actual results of the
numerical solution, but only enhances the spatial resolution. Effects such
as compression, hydrodynamics and biological activity in the settler are not
modelled. Moreover, the cross-sectional area of the settler is assumed to be
constant, though current research has provided theoretical results for
extending the settler model to include a varying cross-sectional area as
well (Diehl, 1996c).
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It should be noted that the numerical results of the proposed model do not
necessarily provide a better fit to real data than traditional layer models do.
The model is more of an attempt to focus on the importance of model
consistency. Possible discrepancies with real data are therefore an indica-
tion that the model assumptions are too rough and that the model assump-
tions should be extended in order to explain the true behaviour, rather than
that the model is not basically correct. For example, phenomena due to
compression and hydrodynamics will certainly have an effect on the true
settler behaviour and, consequently, these effects need to be included in a
mathematical model. However, the strict mathematical basis of the pro-
posed model makes it a more reliable platform for future model refine-
ments than a model using ad hoc and possibly erroneous assumptions in
order to fit the model predictions to real data.

General Model Description

The mass per unit time entering the settler is QfXf, and the feed inlet is
modelled by the source function

s t( ) = Q f t( )X f t( )
A

≥ 0 (5.38)

The only constitutive assumption used in the model is the one by Kynch,
that is, the settling velocity of the particles is assumed to depend only on
the local concentration; vs(X). The batch settling flux is then defined as
Js(X) = vs(X)X and is assumed to satisfy Js(X) ≥0 and to have one point of
inflection with ′′Js X( ) > 0 for X> Xinfl (cf. Figure 5.4). These conditions
hold for most traditional settling velocity functions, for example, the
exponential velocity function (5.31). In continuous sedimentation the volu-
metric flows Qu and Qe also influence the flux of particles downwards.
Thus, the total flux functions are defined as

f X( ) = vs X( )X + QuX

A  
= Js X( ) + Jdn X( ) in the thickening zone

g X( ) = vs X( )X − QeX  

A
= Js X( ) − Jup X( ) in the clarification zone

(5.39)

where X is a function of the settler depth z and time t. In order to obtain a
mathematical model of the settler enabling the prediction of the outlet
concentrations Xe and Xu, one can introduce fictitious flux terms in the
regions z< –H and z > D, where H is the height of the settler above the feed
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point, D is the depth below the feed point and the z-axis is defined posi-
tively in the downward direction. The mass per unit time leaving the settler
through the outlets is the sum of Qe Xe and QuXu. Assuming there is no
sedimentation outside the settler, the conservation of mass at the outlet
yields

Ag X H( ) = −QeX e

Af X D( ) = QuX u





(5.40)

where XH and XD are the boundary concentrations at the top and bottom
within the settler, respectively. The second equation of (5.40) is equivalent
to the conclusions drawn from Figure 5.6 (XD is equal to Xtan) following
the discussion in Section 5.2. The full extended flux function including the
modelling of the outlets is, consequently,

Ψ X ,z( ) =

 − Jup X( ), z ≤ −H

 g X( ), −H < z < 0

 f X( ), 0 < z < D

 Jdn X( ), z ≥ D










(5.41)

with the expressions defined in (5.39). The conservation of mass can be
used to derive the partial differential equation

∂X z, t( )
∂t

+ ∂
∂z

Ψ X z, t( ),z( )( ) = s t( )δ z( ) (5.42)

The source term on the right-hand side models the feed inlet (δ is the delta
function). For example, in the thickening zone (0 < z< D) the concentration
is governed by the equation

∂X z, t( )
∂t

+ ∂
∂z

f X z, t( )( )( ) = 0 (5.43)

This type of equation has been studied much and, generally, solutions
contain discontinuities, as discussed in Section 5.2, see Oleinik (1959).
Equation (5.42) is analysed in a general sense in Diehl (1995b) and speci-
fically for the continuous-sedimentation case in Diehl (1996b). The main
feature of this class of continuity equations is that for given initial data
there are generally infinitely many possible solutions, which all satisfy the
conservation of mass. In order to obtain a unique physically relevant
solution an extra condition, called the entropy condition, must be imposed,
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which picks out the stable discontinuities, see Section 5.2. One way to
derive this entropy condition is to include some diffusion or viscosity in
the model. For example, equation (5.43) then becomes 

∂X z, t( )
∂t

+ ∂
∂z

f X z, t( )( )( ) = ε ∂ 2X z, t( )
∂z 2

(5.44)

where ε is a small positive parameter (cf. equation (5.18)). This equation
has a unique smooth solution for given initial data. Letting ε → 0 we get a
limit solution with discontinuities solving (5.43) in the weak sense (cf.
(5.16)). The method has been verified in several applications, see for
example, Auzerais et al. (1988) and Davis and Russel (1989) in the case of
batch sedimentation. The discontinuities of the total flux function Ψ(· ,z)
(at z = –H, z = 0 and z= D) make equation (5.42) even more difficult to
solve. To handle these discontinuities, a generalized entropy condition is
presented by Diehl (1995b), and its connection with the introduction of a
diffusion term is analysed by Diehl (1996a) and Diehl and Wallin (1996).

The Numerical Algorithm

By using the theory of analytical solutions of the continuity equation
(5.43), one can derive numerical algorithms that automatically take the
entropy condition into account. Since the batch settling flux function Js is
non-convex (and thereby also f and g), the algorithms must work for this
theoretically more complicated case as well. One such algorithm is the
Godunov method. A proof of convergence of this method is presented by
Le Roux (1976). The numerical implementation used in this work uses a
generalization of Godunov’s method to the case of point source and dis-
continuous flux function, that is, equation (5.42). The scheme is derived by
averaging analytical solutions of the partial differential equations, see
Diehl (1995b).

The numerical method is based on the division of the z-axis by n grid
points equally distributed, such that z = –H and z= D are located half-way
between the first two and the last two grid points, respectively, as shown in
Figure 5.10. Let the index i stand for the space grid point (or, equivalently,
layer), j for the time step and X i

j for the corresponding concentration of
suspended solids. The feed source is assumed to be located at the grid point
closest to z = 0, denoted with the index m. The distance between two grid
points is thus ∆= (H + D) / ( n – 2) and the grid point m = round ( H/ ∆+ 3 / 2)
is closest to the feed level. The length of the time step is denoted by τ .
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Figure 5.10 Locations of the grid points in the case n =10.

Given data at time jτ , first the grid points i = 2,…,n–1 are updated accord-
ing to

  

X i
j+1 = X i

j + τ
∆

G i−1 2
j − G i+1 2

j( ) i = 2,K , m −1

X m
j+1 = X m

j + τ
∆

G m−1 2
j − Fm+1 2

j + s j( ) i = m

X i
j+1 = X i

j + τ
∆

Fi−1 2
j − Fi+1 2

j( ) i = m +1,K , n −1

(5.45)

where Godunov’s numerical flux term for the clarification zone is

G i−1 2
j =

min
X ∈ X i−1

j ,X i
j[ ]

g X( )  if  X i−1
j ≤ X i

j

max
X ∈ X i

j ,X i−1
j[ ]

g X( )  if  X i−1
j > X i

j









(5.46)

and the flux term for the thickening zone is defined as 

Fi−1 2
j =

min
X ∈ X i−1

j ,X i
j[ ]

f X( )  if  X i−1
j ≤ X i

j

max
X ∈ X i

j ,X i−1
j[ ]

f X( )  if  X i−1
j > X i

j









(5.47)

and, finally, the source term is calculated as

s j =
Q f

j X f
j

A
(5.48)

with values at time t = jτ . In order to guarantee stable and correct num-
erical solutions, the time step τ must be chosen so that

τ
∆

< min
1

max
X ∈ 0,X max[ ]

′f X( )
 ,  

1
max

X ∈ 0,X max[ ]
′g X( )















(5.49)
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where Xmax denotes the maximum possible packing concentration of parti-
culate material. In wastewater applications Xmax is normally not defined
and should then be considered to be infinite.

The boundary values (grid points 1 and n) are then updated according to

X1
j+1 =

X 2
j+1  if g X 2

j+1( ) ≤ 0

0  if g X 2
j+1( ) > 0







X n
j+1 =

X n−1
j+1  if X n−1

j+1 ∈ 0,X m[ ) ∪ X M ,X max( ]
X M  if X n−1

j+1 ∈ X m ,X M[ ]






(5.50)

and the outputs Xe and Xu are calculated as

X e
j+1 = X 1

j+1 −
Js X 1

j+1( )A

Q e
j

X u
j+1 = X n

j+1 +
Js X n

j+1( )A

Q u
j

(5.51)

where XM is the local minimizer of f. The constant Xm is the value strictly
less than XM satisfying f(Xm) = f(XM), see Figure 5.11. For stricter defini-
tions see Diehl (1996d). The value f(XM) is the previously discussed limit-
ing flux. This terminology is in good agreement with the algorithm above,
where the updates of the boundary values are derived from the generalized
entropy condition (Diehl, 1996b). For example, the most common steady-
state solution has a discontinuity, the sludge blanket, in the thickening zone
with the concentration Xm above and XM below it.

The presented numerical method is stable and non-oscillatory near discon-
tinuities and it is mass preserving. This implies that even if a discontinuity
is smeared out by numerical diffusion (due to the discretization), it is
located at the right position, that is, it will have the same speed as the
discontinuity of the analytical solution of (5.42).
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Figure 5.11 The constant XM is the local minimizer of f(X). The slope of
the dashed line is Qu /A.

As discussed in the previous section, the double-exponential settling velo-
city function (5.36) by Takács et al. (1991) is considered to provide the
most realistic results of the various models presented. Therefore, this
function was selected to be used in the presented settler model. For the
Takács model, vs(X) is zero for concentrations 0 ≤ X≤ Xmin (see Figure 5.9),
although for higher concentrations the batch settling flux has the same
qualitative shape as for the traditional exponential settling velocity model
(5.31). This implies that g(X) will have a local minimizer (when Qe /A> 0)
located somewhere in the neighbourhood of Xmin. Takács et al. suggest that
Xmin is proportional to the concentration entering the settler (5.37) and
hence the batch settling flux will be a function of Xf as well. This can be
included in the robust model by taking into account that the characteristic
concentrations Xm and XM will then depend on Xf and hence vary from one
time step to another. For simplicity, Xmin will be considered to be constant
(set to 10 mg/l) in the simulations presented in Chapter 6 and, conse-
quently, the dependence of Xf on the settling velocity will be neglected.
Nevertheless, the local minimum of g(X) must be taken into account. This
is done in a very similar way as we defined the local minimizer XM of f(X)
and the corresponding concentration Xm. Let us denote the local minimizer
of g(X) by XG and then define Xg to be the strictly greater value satisfying
g(Xg) = g(XG), as illustrated in Figure 5.12.
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Figure 5.12 The constant XG is the local minimizer of g(X). Note that the
plot only shows the flux curve for very low concentrations of
solids. The concentration Xg is outside the range of this plot.

This leads to the following modification. The dynamic calculation of the
first grid point (5.50), should be replaced by

X 1
j+1 =

X 2
j+1  if X 2

j+1 ∈ 0,X G[ ) ∪ X g ,X max( ]
X G  if X 2

j+1 ∈ X G ,X g[ ]





(5.52)

The soluble material is not influenced by gravity settling but simply
accompanies the bulk flow upward and downward from the feed point. For
one-dimensional layer models there are basically four different approaches
found in the literature of how to model the propagation of soluble material
in the settler. The simplest is instantaneous propagation, that is, the con-
centration at the outlets is set identical to the current influent concentration.
The second approach is to regard the whole settler volume as a completely
mixed reactor with regard to the soluble material. Thirdly, delay variables
can be used for modelling the propagation from the inlet to the outlets. The
values of these delay variables are usually based on the hydraulic detention
time of the settler, and can be either static (based on average flow rates) or,
preferably, dynamically updated as the volumetric flow rates change. The
last approach, and probably the most common today, is to use the basic
layer structure already defined for the modelling of the particulate material
for the soluble material as well. Every layer is then considered to be
completely mixed and the transport between the layers is calculated
dynamically based on the current volumetric flow rates. 
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For the robust settler model, the same numerical method as previously
described for the particulate material can also be used for the soluble
material if the batch settling flux is set to zero. This means that the updates
become particularly simple. The scheme can be written as

 

S i
j+1 = S i

j + τ
∆

Q e
j

A  
S i+1

j − S i
j( ) i = 2,K , m −1

S m
j+1 = S m

j + τ
∆

−
Q e

j + Q u
j

A









 S m

j +
Q f

j S f
j

A









 i = m

S i
j+1 = S i

j + τ
∆

Q u
j

A
S i−1

j − S i
j( ) i = m +1,K , n −1

(5.53)

where S is the concentration of soluble material (cf. equation (5.45)). The
soluble concentrations at the outlets are calculated as

S e
j+1 = S 2  

j+1

S u
j+1 = S n−1

j+1
(5.54)

Note that grid points 1 and n are not used in the case of soluble material.
They are only used to define the boundary conditions and, consequently,
for the prediction of analytically correct particulate concentrations at the
outlets. The algorithm (5.53) is identical to the fourth approach discussed
above (every layer regarded as a completely mixed volume) combined with
an Euler algorithm for the numerical updating.

Dynamic Propagation of the Biological Components

From a modelling point of view, the components of the wastewater are
described differently for the biological reactor and the settler unit. For
example, the IAWQ model differentiates between thirteen types of material
in the water (six particulate, six soluble and alkalinity), whereas the robust
settler model only divides the material into particulate and soluble matter.
Therefore, all soluble components of the IAWQ model are lumped together
into a single variable when entering the settler and the reversed process is
performed at the outlets. The particulate material is treated analogously but
the components are simultaneously transformed from mg COD/l into
mg SS/l by individual transformation coefficients. The settler model must
then be extended with a material propagation algorithm in order to unravel
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the composite variables (soluble and particulate material) into their bio-
logical equivalents as they reach the outlets. Such an algorithm, especially
designed for the robust settler model, is described below (Diehl, 1996d;
Diehl and Jeppsson, 1996; Jeppsson and Diehl, 1996b). The algorithm is
evaluated in Chapter 6.

Let p(z,t) denote the vector of percentages of a floc at depth z and time t in
the settler. Since the concentration of suspended solids is denoted by X(z,t),
the vector pX contains the concentration of the different COD components
in the unit mg SS/l. These values can then be retransformed into mg COD/l
by dividing them by the conversion coefficients given in Table 6.1.

In order to obtain a numerical algorithm for the update of the percentage
vector, we start by considering the thickening zone. If we denote the
particle/floc velocity, vfloc,dn, where

v floc,dn X( ) = v s X( ) + Qu

A
(5.55)

then we can describe the flux of the biological components by the vector
vfloc,dn(X)pX = pf (x). The conservation law in differential form is the
system of partial differential equations

∂ pX( )
∂t

+
∂ pf X( )( )

∂z
= 0 (5.56)

Since the sum of all components of the vector p is one, the sum of all equa-
tions in (5.56) gives back the conservation law for the total concentration
(5.43), which can be solved numerically by the method in the previous
subsection. It is not straightforward to turn a partial differential equation
into a numerical algorithm. In the case of the conservation law the main
difficulty is to find a numerical flux that is consistent with the analytical
one. It is, however, possible to derive a numerical algorithm for the update
of the percentage vector in a very similar way as the method in the
previous subsection was derived. Since the analytical solution X is known,
it is possible to combine equations (5.56) and (5.43) to obtain the following
equation for p(z,t)

∂p
∂t

+ v floc,dn X( ) ∂p
∂z

= 0 (5.57)
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This is a simple wave equation, which says that a floc with a certain per-
centage vector propagates with the speed vfloc,dn(X(z,t)) at the point (z,t).
Without going into the details of the mathematics (see Diehl (1996d) for
the full mathematical description) we can obtain the numerical updates for
the percentage vector for the grid points in the thickening zone, that is,
i = m + 1,…,n – 1, according to

p i
j+1 = p i

jX i
j + τ

∆
p i−1

j Fi−1 2
j − p i

jFi+1 2
j( )



 X i

j+1 (5.58)

Equation (5.58) holds as long as X i
j+1 > 0. If X i

j+1 = 0, then there are no
flocs and the percentage vector is not interesting. F is defined according to
(5.47). Similarly, the updates in the clarification zone (i = 2,…,m – 1) and
at the feed level (layer m) are

p i
j+1 = p i

jX i
j + τ

∆
p i−1 2

j G i−1 2
j − p i+1 2

j G i+1 2
j( )



 X i

j+1 (5.59)

pm
j+1 = pm

j X m
j + τ

∆
pm−1 2

j G m−1 2
j − pm

j Fm+1 2
j + p f

j s j( )



 X m

j+1 (5.60)

where

p i−1 2
j =

p i
j if G i-1 2

j ≤ 0

p i−1
j if G i-1 2

j > 0






(5.61)

and pf is the percentage vector associated with the suspended solids
entering the settler. G and s are defined according to (5.46) and (5.48), res-
pectively. The reason for the slightly more complicated scheme in these
cases is that the total velocity of a floc in the clarification zone may be
directed both upwards and downwards, depending on the concentrations
and the flow conditions. Finally, the percentage vectors at the outlets are
defined as

p e
j+1 = p2  

j+1

pu
j+1 = p n−1

j+1
(5.62)

Once again, note that grid points 1 and n are not explicitly used for these
calculations. They are only used to define the boundary conditions when
determining the concentration of the total suspended solids at the outlets.
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The definition of G will guarantee that a value for p1 will never be required
when using the above algorithms as G2−1 2

j will always be ≤ 0 with equality
only when the effluent concentration equals 0.

For the soluble material the same percentage propagation algorithm can be
directly applied, though in a much simpler form as the soluble material will
always follow the bulk flows (upwards and downwards) in the settler. The
following equations are obtained

ri
j+1 = ri

jSi
j + τ

∆
Qe

j

A
ri+1

j Si+1
j − ri

jSi
j( )





Si
j+1 i = 2,..,m −1

ri
j+1 = ri

jSi
j − τ

∆
Qe

j + Qu
j

A
ri

jSi
j − rf

j Qf
jSf

j

A













Si

j+1 i = m            (5.63)

ri
j+1 = ri

jSi
j + τ

∆
Qu

j

A
ri−1

j Si−1
j − ri

jSi
j( )





Si
j+1 i = m +1,.., n −1

where r is the percentage vector for the soluble components. Finally, at the
outlets the percentage vectors are defined in the same way as in (5.62), i.e.,

re
j+1 = r2  

j+1

ru
j+1 = rn−1

j+1
(5.64)

This algorithm will produce identical results as if each soluble component
were applied to (5.53) separately, that is, it models the transport of soluble
material as a flow through a series of completely mixed layers upwards and
downwards from the feed layer.

The presented algorithm for describing the propagation of the individual
components in the settler while maintaining the physically relevant basis
for the settler model, that is, the settling velocity and numerical flux terms
are defined from the true concentration of suspended solids, is considered
to be more robust than other methods based on various ad hoc assump-
tions. The way the algorithm can be derived from a stringent mathematical
analysis further emphasizes this fact.
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Chapter 6

____________________________________________________________

Model Evaluation

In this chapter we will examine the behaviour of the robust settler model
and compare the results to those obtained by a well-known traditional
model by means of numerical simulations. The models are investigated
both with regard to their steady-state and dynamic behaviour. Moreover,
the models are investigated both as stand-alone models and when coupled
to a biological reactor model, that is, as an integrated part of the activated
sludge process. Some aspects concerning the coupling of the settler model
and the bioreactor model are also discussed together with a method for
obtaining steady-state solutions for such an integrated process. Finally,
some possible future extensions of the robust settler model is presented.
The chapter covers material from [90], [95], [186], [188] and [189].

6.1 Bioreactor–Settler Interactions

A mathematical model describing the settler behaviour is useful as a stand-
alone model in many applications, for example, in chemical and mineral
applications. However, within the field of wastewater treatment there is
usually a need to combine the settler model with other models (for
example, bioreactor models) in order to describe and predict the behaviour
of an entire WWT process. In Chapter 3, the most commonly used model
describing the behaviour of the bioreactor, that is, the IAWQ Activated
Sludge Model No. 1 (Henze et al., 1987), was thoroughly described. In this
section, we will discuss some important aspects when combining this bio-
reactor model with a model of the secondary clarifier. 



A general problem is that settler models and bioreactor models appear to
be developed by different people. In scientific papers usually only one or
the other is discussed and the interactions are seldom commented upon.
Moreover, simulations of the entire AS process are often presented without
any description of how the settler and bioreactor models have been inte-
grated. Of the quite extensive number of papers listed in the Bibliography,
the only papers (disregarding those by Jeppsson and Diehl) that provide a
slightly more detailed description of how the interactions have been
modelled are Dupont and Henze (1992) and Otterpohl and Freund (1992).

Propagation of Individual Components

From a modelling point of view, the components of the wastewater are
described differently for the biological reactor and the settler unit. The
IAWQ model differentiates between thirteen types of material in the water,
whereas a ‘normal’ settler model only divides the material into particulate
and soluble matter. This was discussed in Section 5.4. In order to separate
the composite variables of the settler (soluble and particulate material) into
their biological equivalents at the outlets, it is necessary to keep track of
the individual flocs as they move through the settler or model the propa-
gation of the different fractions of the material making up the sludge. Such
an algorithm was described for the robust settler model in Section 5.4.

Attempts have been made to avoid the above problem arising from the
different description of the components in the IAWQ model and settler
models. In Otterpohl and Freund (1992), the settler was described as a tra-
ditional one-dimensional layer model (see Section 5.3), and they modelled
the flux of each single particulate component of the IAWQ model
separately, thereby avoiding many problems. The structure of the model is
exemplified by the following equation for a layer i below the feed level

dX i, j

dt
=

v dn X i−1, j − X i, j( )
z i

+
min v s,i−1X i−1, j ,  v s,iX i, j( )Ω i−1

z i

−
min v s,iX i, j ,  v s,i+1X i+1, j( )Ω i

z i

(6.1)

The basic model structure is identical to (5.21). One difference is the inclu-
sion of the earlier discussed Ω-function (see Section 5.3), but more
importantly in this context is the extra subscript j, which means that Xi,j

represents the specific particulate component j of the IAWQ model, that is,
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XS, XI, XP, XB,H, XB,A and XND, in a specific layer i. On the other hand, the
settling velocity is a function of the true suspended solids concentration,
which means that a conversion is still performed to transform COD into
SS. Otterpohl and Freund also claim that the above approach is more com-
putationally efficient than keeping track of delay variables and fractions for
the separate components. However, applying Otterpohl and Freund’s full
model to a settler with 50 layers connected to an IAWQ model will require
950 non-linear differential equations (19 equations for each layer) to be
solved on each time step in the settler alone. This can hardly be considered
to be very efficient.

At first, the above approach may appear to be wise (disregarding the
computational complexity). However, there are some obvious drawbacks.
Firstly, the coefficients for transforming the COD components of the
IAWQ model into a total suspended solids concentration must still be
determined in order to define the settling velocity function. Secondly,
trying to apply the above approach to the Vitasovic model (see Figure 5.8)
means that the empirical threshold parameter in the clarification zone is no
longer valid as it is based on the solids flux of suspended solids and not on
individual particulate components. For the layers above the feed level,
Otterpohl and Freund have in fact assumed that Xi+1 is always smaller than
Xt and modified their model accordingly, see equation (5.28). This will
lead to somewhat different results when compared with those of the origi-
nal Vitasovic model, especially when the system approaches a sludge
overflow and the concentration in the clarification zone is high. However,
Xt may still be applicable if the COD components in every layer are
transformed dynamically into a suspended solids concentration and then
used to determine the correct flux term for the individual components.
Thirdly, the ad hoc formulation of the numerical flux terms in the
Vitasovic model becomes even more heuristic when applied to each indivi-
dual particulate component of the IAWQ model as in (6.1). For example, at
a specific time and a specific layer, the downward flux of one particulate
component (a) from that layer may be limited by the flux term in that layer
(the first part of the last min-term in (6.1), i.e., vs,iXi,a), whereas another
component (b) may be limited by the flux term of the layer below (the
second part of the min-term, i.e., vs,i+1Xi+1,b). This is not physically rele-
vant as all the different components are assumed to be present as uniform
flocs (made up of all the particulate components) and the solid flux of the
individual components should consequently be that of the flocs and not
differ for separate components. Numerical simulations in Section 6.3 will
demonstrate a non-physical oscillating behaviour, especially in the layers
from the feed level and down to the sludge blanket. It should be noted that

Chapter 6.  Model Evaluation 231



the above approach works perfectly well for the soluble components, as
they simply follow the upward or downward bulk flows in the settler and
do not require any complex numerical flux terms to describe the transport
between the layers.

The principal analytical model available today, and hence a reliable nume-
rical algorithm, is built on Kynch’s assumption that the particles in the
settler are uniform in size and density, that is, it is a method for predicting
only the total concentration of suspended solids. In order to follow the
propagation of the different COD components of the wastewater through
the settler, the algorithm used in the robust model makes use of the reason-
able assumption that the components are lumped together into larger
particles or flocs. When the system is in a perfect steady state, the relative
amount of each component is identical at the settler inlet, outlets and
throughout the entire settler (though the absolute concentrations will be
different). During dynamic conditions the relative amount of each COD
component entering the settler is a function of time due to several factors,
for example, changing influent wastewater characteristics and changing
behaviour of the bioreactors. Consequently, the percentages of the com-
ponents of the suspended solids entering the settler must be updated
dynamically as the flocs are transported through the settler. This approach
(described in Section 5.4) will also be evaluated in Section 6.3 and com-
pared with the behaviour of the Otterpohl-Freund approach. 

Unit Transformations

A problem when integrating the bioreactor model (i.e., the IAWQ model)
and the settler model is due to the different units used. The soluble material
can be added together in a straightforward way with no regard to the
different units used (mg COD/l and mg N/l) as the soluble material only
follows the bulk flows, and no biological reactions are assumed to take
place in the settler. However, the particulate components of the IAWQ
model should be converted into one variable with the unit mg SS/l, since
gravity settling models are based on the actual mass when defining the
settling velocity and the solids flux function. A set of transformation
coefficients suggested by Henze et al. (1995) are given in Section 6.2
(Table 6.1), and will be used in this chapter. These values are based on
averages from measurements of many municipal WWT plants. However,
when applied to real data, the values should be confirmed by laboratory
experiments on the actual sludge. The conversion means that the true sus-
pended solids concentration is calculated according to the expression
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X = X S + X P + X I( ) ⋅ 0.75 + X B,H + X B,A( ) ⋅ 0.9 (6.2)

Note that XND, which is expressed as mg N/l, should not be included in the
transformation into SS concentration although it is a particulate material.
This is because it is a subset of the other particulate components, expressed
as mg COD/l, and is already included in their concentrations (Henze et al.,
1987). Because of this special feature we run into a non-invertible pro-
blem, that is, we can calculate the suspended solids concentration from the
particulate components of the IAWQ model according to (6.2) but we
cannot recalculate the XND concentration at the outlets even if we know
how large the fraction of each COD component of the SS are. Some possi-
bilities, in order to get reasonable XND concentrations in the settler under-
flow are to assume that the

• proportion of XND to total COD is the same in the last bioreactor
and at the settler outlets;

• proportion of XND to biomass COD is the same in the last
bioreactor and at the settler outlets;

• XND concentration is in steady state at the outlets, that is, apply
the IAWQ differential equation (3.16) with all other variables
defined by the concentrations at the outlets and the parameters set
to the same values as in the last bioreactor;

• dynamic state of XND is the same as in the last bioreactor, that is,
apply the above method but set dXND/dt equal to the value in the
last bioreactor.

For the simulations presented in this chapter, the third approach have been
applied. It should, however, be noted that the concentration of XND is
usually small and will only affect the behaviour of the activated sludge
process simulations to a very small extent, regardless of which approach is
applied. It is much more important to use a good algorithm for describing
the dynamic propagation of the various components of the IAWQ model
through the settler. This is necessary to describe the delay and change in
composition of the suspended solids from the time when the particulate
material enters the settler until it reaches the outlets.

Obtaining Steady-State Solutions

When working with complex mathematical models it is always a great
advantage if steady-state solutions can be calculated fairly easily. Steady-
state solutions can reveal a great deal of information about the general
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model structure, robustness and validity. Moreover, it is important to be
able to initiate dynamic simulations from a well-defined steady-state situa-
tion in order to investigate the impact of individual dynamic variations. In
this section, a straightforward scheme to determine the steady state of the
bioreactor model combined with the robust settler model, is outlined.

A steady-state solution means that all concentrations and flow rates are
constant as functions of time. Many commercial tools for WWT modelling
and simulation provide no special means for easily determining a steady-
state solution. Instead they often rely on fast computers and determine the
steady state by letting the dynamic algorithm run for a long time, applying
different methods of relaxation. As the model complexity increases this is
not the most efficient way to proceed.

In this work a different approach has been used. Since the IAWQ model,
which describes the behaviour of the bioreactor, consists of ordinary diffe-
rential equations, stationary concentrations are obtained by solving a
system of non-linear equations. This is accomplished by a routine for con-
strained optimization which restricts the state derivatives to zero and solves
a minimax problem. The underlying method is sequential quadratic
programming (MathWorks, 1995). Other methods could also be applied,
for example, the simplex search method. The input variables to this com-
putation (with connection to the settler model) are the concentration of
suspended solids in the underflow Xu, the concentration of soluble material
Su and all the percentages (both for particulate and soluble components)
used to unravel the lumped variables into the individual biological compo-
nents, which are stored in the vectors pu and ru (see Figure 6.1) Analog-
ously, the output variables from the bioreactor are Xf, Sf, pf and rf .

For the settler, the concentrations of soluble material at the inlet and outlets
(and throughout the entire settler) are identical when the system is in
steady state, that is, Sf = Su, and the same holds for the percentage vectors;
pf= pu and rf= ru. For the total particulate concentration there are several
different steady-state solutions depending on the actual values of Qf , Qu ,
Qe and Xf . All possible cases for a settler with a constant cross-sectional
area have been thoroughly investigated by Diehl (1996b). The steady-state
solution we are primarily aiming for has a very low or zero concentration
in the clarification zone (depending on the applied settling velocity func-
tion) and a sludge blanket (discontinuity) in the thickening zone with the
constant concentrations Xm above and XM below it, see Figure 5.11. 
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Using a Simple Settling Velocity Function

Assume at first that we are using a simple settling velocity function such as
the exponential one (5.31). Then the following relations must hold for such
a steady-state solution (Diehl, 1996b)

X e = 0
Q f X f

A
= f X m( ) = f X M( ) = QuX u

A
Q f = Qu + Qe

X M = M Qu( )
X m ≤ X f ≤ X M

(6.3)

where M denotes a function that computes the local minimizer of f(X)
given Qu. When XM is known, Xm can be calculated as shown in Figure
5.11. Naturally, the conditions in (6.3) are not always satisfied for any
given values of Xf, Qf and Qu. Therefore, Qu is considered to be a variable
that can be manipulated in order to find a suitable steady state. The values
of Qin, Qintr, Qf and Qr are assumed to be fixed by the initial settings (Q intr

represents the internal recirculation from the last aerobic reactor to the
anoxic reactor). Since Qw≥ 0 and Qe≥ 0, the bounds on Qu are obviously

Q r ≤ Q r + Qw = Qu ≤ Qu + Qe = Q f (6.4)

A steady-state solution for the combined bioreactor-settler system can be
obtained by an iterative process with regard to the equations of the IAWQ
model and the equations for the settler. The iterations are schematically
outlined in Figure 6.1 where the equations of the settler are described by

Qu
k = Q f X f

k

X u  

k

Qe
k = Q f − Qu

k

X M
k = M Qu

k( )
X u

k +1 =
Af X M

k( )
Qu

k

(6.5)
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IAWQ model settler model
equations (6.5)

Su:= Sk

X u
k

pu:= pk

ru:= rk

X f
k

X u
k +1

Sk +1:= Sf rk +1:= rf

pk +1:= pf

Figure 6.1 Schematic description of the iterative process to obtain a
steady-state solution with a sludge blanket for the combined
bioreactor-settler model.

The iterations terminate when the differences X u
k +1 − X u

k , Su
k +1 − Su

k ,
pk +1 − pk and rk +1 − rk are sufficiently small. Because of the large

non-linear system of equations in the IAWQ model, it is difficult to
analyse the convergence of the algorithm. However, computer simulations
show convergence for a very wide range of initial values.

Using the Takács Double-Exponential Settling Velocity Function

If instead the Takács double-exponential settling velocity function (5.36) is
used in the settler model, the iterative procedure above must be modified
slightly to account for the fact that the flux function in the clarification
zone, g(X), then has a local minimizer, as illustrated in Figure 5.12. In the
thickening zone, the steady-state solution is the same as discussed above,
but the concentration of suspended solids in the clarification zone is now
equal to XG (> 0). The equations (6.3) should in this case be replaced by

Q f X f

A
+ g X G( ) = f X m( ) = f X M( ) = QuX u

A
Q f = Qu + Qe

X M = M Qu( )
X G = Z Qe( )

X e = X G −
Js X G( )A

Qe

X m ≤ X f ≤ X M

(6.6)
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where Z is a function that computes XG given Qe. Consequently, the itera-
tive equations (6.5) given above should be replaced by

Qu
k =

Q f X f
k + Ag X G

k( )
X u  

k

Qe
k = Q f − Qu

k

X G
k +1 = Z Qe

k( )
X M

k = M Qu
k( )

X u
k +1 =

Af X M
k( )

Qu
k

(6.7)

The procedure above yields steady-state values of Xf, Xu, Xe, Sf = Su= Se,
XM, XG, pf= pu, rf= ru and the control variable Qu. Then the bounds (6.4)
must be checked. For a given Xu the bioreactor model produces a settler
feed concentration that is much lower than Xu under normal operating
conditions. Since g(XG) is a very small number we assume that

X f +
Ag X G( )

Q f

≤ X u (6.8)

is fulfilled. Note that g(XG) will be zero if a traditional exponential settling
velocity function is used, and is of interest only for the Takács velocity
function. Furthermore, all steady-state solutions in the settler also satisfy
(6.8), because

Q f X f = QeX e + QuX u = −Ag X G( ) + QuX u

Qu ≤ Q f

(6.9)

(6.8) says that the right inequality of (6.4) is satisfied. In other words, Qe is
always ≥ 0 during the iteration. The left inequality of (6.4) is equivalent to
Qw≥ 0.

If (6.4) and (6.6) are fulfilled (set XG to zero if not using the Takács
velocity function), then there exists a steady-state solution with a sludge
blanket somewhere in the thickening zone. The depth of the sludge blanket
is arbitrary, because the cross-sectional area is constant as function of
depth and should be defined by the user. If the area was decreasing, then
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the depth of the sludge blanket would be uniquely determined by the value
of QfXf (Diehl, 1996c).

If either (6.4) or (6.6) is violated then there exists no steady-state solution
with a well-defined sludge blanket level in the thickening zone. In this case
we suggest some alternative ways to proceed. However, there is no theore-
tical guarantee that a satisfactory steady-state solution will be found.

1. Assume that the variables satisfying (6.6) have been found, but that
Qw= Qu–Qr < 0 holds. This is a clear indicator of an erroneous solu-
tion and means that Qu is too low (< Qr), i.e., the IAWQ model pro-
bably cannot produce a value of Xf large enough for a steady-state
solution with a sludge blanket. Two possible ways to proceed are

A. To obtain another steady-state solution in the thickening zone,
which then simply consists of a constant concentration profile
with the value Xc, Qu is kept fixed (≥ Qr) and the iterations (6.7)
are replaced by

Qu
k =

Q f X f
k + Ag X G

k( )
X u  

k

Qe
k = Q f − Qu

k

X G
k +1 = Z Qe

k( )
X u

k +1 =
Q f X f

k + Ag X G
k +1( )

Qu
k

(6.10)

At termination we have a new pair of Xf and Xu that will give a
steady state in the bioreactor, and the steady-state constant
concentration Xc in the entire thickening zone is uniquely deter-
mined by

f X c( ) = Q f X f

A
+ g X G( ) (6.11)

provided that QfXf /A+ g(XG) < f(Xm). Then Xc < Xm.

B. Modify Qr and restart the iterative procedure according to
Figure 6.1. However, a suitable size of the change in Qr is diffi-
cult to anticipate.
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2. If (6.4) and (6.6) are satisfied except that Xf < Xm, then Qe is large.
To prevent a steady-state solution with a sludge overflow, try find-
ing a constant Xc according to procedure 1A.

3. If (6.4) and (6.6) are satisfied except that Xf> XM, then a constant Xc

could be found by the procedure outlined in 1A, but now with the
requirement QfXf / A+g(XG) > f( Xm) instead. Then XM ≤ Xc≤ Xf holds.

4. A special case of 2 and 3 occurs if Qu is so large that f(X) is strictly
increasing. Then Xm= XM = Xinfl and the procedure of 1 applies, and
Xc is determined by (6.11) without any further restrictions.

It is often of interest to find a steady state that fulfils a requirement on the
sludge age of the system, θX, as the sludge age is the most important
control variable for WWT plants in practice and has a major impact on the
behaviour of the plant. This can be included in the above algorithm by an
additional requirement on Qw. The sludge age is defined as the ratio of the
sludge mass in the bioreactor and the rate of the wasted sludge, i.e.,

θX = X f Vbioreactor

X uQw + X eQe
(6.12)

Using the steady-state mass balance XfQf= XuQu+XeQe of the settler and
the plant flow conditions (6.14), (6.12) can be rewritten as

θX = Vbioreactor

Q in − X u X f −1( )Q r
(6.13)

see Olsson and Andrews (1978). Since the reactor volume and Qin are
considered to be constants, it is the compaction ratio Xu /Xf and Qr that
influence the sludge age in steady state. By including the above equation in
the iteration routine for finding a steady-state solution, it may be possible
to determine a value of Qr corresponding to a required sludge age. The
procedure will become more complicated as Qr and, consequently, Qf will
have to be updated on every iteration, cf. equation (6.7).

The method for finding a steady-state solution demonstrates one of the
advantages of using a model that is founded on a stringent mathematical
analysis. Fairly easily, it allows us to define analytical conditions that must
hold for a specific type of solution and use them in a procedure for calcu-
lating a steady-state solution of an integrated bioreactor-settler system. The
advantage of this two-step algorithm is that first an optimization algorithm
is used to find a steady state for the bioreactor, which is quite easy when
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the recirculated sludge concentration is constant. The steady-state output is
then fed into the analytical equations describing the settler in steady state
and a new return sludge concentration is defined. This iteration is then
repeated until a perfect steady state is achieved. Practical experience have
shown that usually only 5–10 such iterations are required to find a steady
state with a tolerance in the state variables of 10–7 mg/l. Moreover, the
complexity of finding a steady-state solution is not affected at all whether
we want to use a settler model with 10 or 100 layers. The traditional layer
models in combination with a bioreactor have to rely on either lengthy
numerical simulations (relaxation) or complex optimization algorithms (as
the settler and bioreactor models must be coupled during the calculations,
i.e., there is an active, changing feedback within the system) to determine a
steady state. The major drawbacks of such optimization routines are the
rapidly increasing computational effort as the systems increase in com-
plexity and the fact that a possibly successful outcome often depends
heavily on the initial conditions.

6.2 Steady-State Behaviour

To demonstrate the behaviour of the integrated bioreactor-settler system
(coupled case), a number of numerical simulations will be performed
where the results when using the robust settler model is compared with
results of the traditional Vitasovic layer model. Both models use the same
Takács double-exponential settling velocity function (5.36). Apart from the
basic structure of the settler model all other conditions are identical for the
simulated process. The simulations will demonstrate the importance of a
good settler model when it is included as a part of an entire activated
sludge process. Later in this section we will also study the behaviour of the
two settler models when simulated as separate units without any bioreactor
interactions (decoupled case).

Plant Configuration and Simulation Conditions

For the simulations presented in this and the next section, we assume the
plant configuration schematically outlined in Figure 6.2. The simulated
plant is a low-loaded predenitrification-nitrification AS system with one
anoxic reactor and two aerobic reactors in series. All reactors are assumed
to be completely mixed and the biological mechanisms are modelled using
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the default set of parameters for the IAWQ model for 20 ˚C, suggested by
Henze et al. (1987), see Table 3.1. Note that effects due to alkalinity
changes have been removed from the original model. The influent waste-
water characteristics describe a typical presettled wastewater in Sweden,
see Aspegren (1995). The entire influent flow, Qin, is directed to the anoxic
zone (i.e., no step feed) and the wastage sludge flow, Qw, is withdrawn
from the settler underflow. Data describing the details of the simulated
WWT plant including the influent wastewater characteristics are given in
Table 6.1.

Qin

Qintr

Qf

Qe

QwQr
Qu

secondary
clarifier

anoxic
reactor

aerobic
reactor 1

ae
ro

bi
c 

re
ac

to
r 2

Figure 6.2 Schematic view of the simulated activated sludge plant
showing the principal volumetric flows.

The obvious flow relations in Figure 6.2 are

Q in = Qe + Qw

Q f = Qe + Qu

Qu = Q r + Qw









(6.14)

This means, for example, that a change of Qin will instantaneously result in
a similar change of Qf and Qe (if no special control action in the recycle
flow is imposed). In reality, a change of flow will be delayed in time and
smeared out as it propagates through the system (Olsson et al., 1986). It
should be noted that no attempt has been made to model this type of flow
propagation in the system. 
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Wastewater characteristics
SS = 80 mg COD/l
XS = 105 mg COD/l
SI = 35 mg COD/l
XI = 40 mg COD/l
SNO = 0 mg N/l
SNH = 20 mg N/l
SND = 2 mg N/l
XND = 6 mg N/l
SO = 0 mg (-COD)/l
XB,H = 25 mg COD/l   
XB,A = 0 mg COD/l

Settling parameters

v0 = 145 m/d 

= 100 m/d  

rp = 0.005 m3/g
rh = 0.00042 m3/g
Xmin = 10 mg/l 

Threshold value
Xt = 3000 mg/l

Design and operational variables

anoxic reactor volume = 1000 m3

aerobic reactor 1 volume = 1000 m3

aerobic reactor 2 volume = 500 m3

settler surface area = 500 m2

settler volume = 2000 m3

settler depth = 4 m 

settler inlet depth = 1.8 m 

influent flow rate = 250 m3/h
recycle flow rate = 200 m3/h
internal recycle flow rate = 1000 m3/h
wastage flow rate = 1.163 m3/h
hydraulic load to settler = 0.5 m/h 

sludge load to settler = 4 kg SS/(h m2)
anoxic sludge retention time = 13.5 days 

aerobic sludge retention time = 20.2 days 

hydraulic retention time = 10 hours 

aerobic oxygen conc. = 2.0 mg/l 

Transformation coefficients
SS to XS ratio = 0.75 gSS/gCOD 
SS to XI ratio = 0.75 gSS/gCOD

SS to XP ratio = 0.75 gSS/gCOD

SS to biomass ratio = 0.90 gSS/gCOD

′v0

Table 6.1 The simulated WWT plant.

A significant problem in the evaluation of the entire activated sludge
process is the difficulty of separating the dynamics of the biological
reactors from the settler, due to the recycle flow, Qr, from the clarifier to
the bioreactor. As the main purpose of this chapter is to demonstrate the
behaviour of the robust settler model and to compare it with traditional
layer models, the simulated plant is deliberately operated with a very high
sludge age. This implies that differences that appear as a result of which
settler model is currently being tested will mainly affect the concentration
of inert solids in the system and, consequently, only have a limited effect
on the biological mechanisms in the bioreactors. Moreover, the simulations
have been performed with the oxygen concentration in the anoxic zone
fixed at 0 mg/l (i.e., perfectly anoxic) during the whole duration of the
simulations. This is mainly done to speed up the simulations and will only
have a limited influence on the results. For a comparative study of various
settler models this simplification is of no importance. However, when cali-
brating an AS model to real data, such an assumption should not be used.
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Coupled Case

A steady state of a WWT plant can be defined by different criteria. For
example, a steady-state solution can be based on certain flow rates, a
required sludge retention time (SRT), a specific sludge blanket level, etc.
In this section, the flow rates of the plant are set to values based on an
analytical solution of the continuity equation that has a well-defined sludge
blanket in the thickening zone. Recall from the previous section that if
certain conditions are fulfilled then the sludge blanket can be positioned
anywhere in the thickening zone (if the cross-sectional area of the settler is
constant). In the simulations below, we have defined the sludge blanket
level to be one meter below the feed level.

The steady state of the entire activated sludge plant, based on the defined
flow conditions and influent wastewater characteristics, presented in Table
6.1, are calculated for the IAWQ model coupled to the robust settler model
and the traditional Vitasovic model, respectively, using the procedure
described in the previous section. The solutions are determined for
different number of layers in the settler, to demonstrate the most important
differences between the two models. In Figures 6.3 and 6.4, the obtained
steady-state concentrations profiles in the settler are shown for the two
models. It is evident that the robust model provides results closest to the
analytical solution. Moreover, the number of layers has a significantly
larger effect on the solution of the traditional model than on the robust
model, where the differences depend on the spatial resolution only. Note
once again that, apart from the basic structure of the two settler models and
the number of layers used, all plant conditions and model parameters are
identical during the simulations.

The results in Table 6.2 confirm the consistency of the robust model with
respect to the number of layers used. Only the mass of solids in the settler
differs from the analytical solution, and it is clear that the model prediction
is approaching the analytical result as the number of layers increases. Note
that the underflow and effluent SS concentrations of the robust model are
not the same as the concentrations in the bottom and top layers, as is the
case for the traditional model. Instead they are calculated according to the
analytically derived expression (5.51). The underflow and effluent concen-
trations of the traditional model appear to be approaching a solution close
to the analytically calculated concentrations. However, even the small
difference for the 50-layer case has a dramatic influence on the steady-state
solution with regard to the mass of solids in the settler and level of the
sludge blanket.
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Figure 6.3 Settler concentration profiles of the suspended solids in
steady state for the robust model. The solutions for different
number of layers are compared with the analytical solution.
The positions of the layer’s midpoints are marked (o) only for
the 10-layer case.
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Figure 6.4 Settler concentration profiles of the suspended solids in
steady state for the traditional Vitasovic model. The solutions
for different number of layers are compared with the analy-
tical solution. The positions of the layer’s midpoints are
marked (o) only for the 10-layer case.
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Traditional model Analytical
solution

Robust model

Variables 10 layers 30 layers 50 layers 10 layers 30 layers 50 layers

Xu [g/l] 10.5 11.9 12.0 12.1 12.1 12.1 12.1

Xe [mg/l] 20.7 12.0 11.4 10.9 10.9 10.9 10.9

Xf [g/l] 4.70 5.34 5.38 5.41 5.41 5.41 5.41

mass [ton] 6.58 10.0 10.6 5.91 6.03 5.95 5.94

SRT [d] 28.3 33.0 33.4 33.6 33.6 33.6 33.6

Table 6.2 The key variables for the settler in the coupled case.

A particularly interesting observation of the traditional model is the
significant difference between the 10 and 30/50-layer solution. A com-
parison to the analytical solution shows that a 10-layer model is too crude.
Note that 10-layer models are the most common ones used in simulation
programs of WWT plants available today. The dependence of the nume-
rical solution on the number of used layers is really a problem for almost
all one-dimensional layer models as they are all based on the same concept
as the traditional Vitasovic model. The problem has in most cases been
overlooked and many publications dealing with settler modelling do not
even mention the number of layers used in the presented modelling
approaches although the impact is significant. A few recent publications
have begun to realize the problem. For example, in Krebs (1995) the
importance of investigating the sensitivity of settler models to the number
of layers is briefly discussed, and in Vanrolleghem et al. (1995) a 50-layer
settler model was suggested as a good trade-off between prediction
accuracy and computational burden. Sometimes it is suggested that the
number of layers could be used as a tool for calibrating the model to real
data. However, a reliable model should naturally predict more accurate
solutions as the number of layers increases, and the idea to use the number
of layers for calibration purposes, that is, use a built-in error of the model
to fit the model predictions to real data, is not a good way to proceed. Such
an approach is more of an indication that there are fundamental problems
with the traditional layer models that are not fully understood. The robust
settler model eliminates many of these problems.

The extremely long sludge age of the simulated process was deliberately
chosen so that the behaviour of the bioreactors has a limited influence on
the results shown above. The differences that can be observed depending
on which settler model is used, are mainly due to different concentrations
of inert material in the system. In Table 6.3, the steady-state values of all
the state variables in the IAWQ model are shown for the analytically
calculated case. Apart from the inert material concentration (and conse-
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quently the suspended solids concentration), the steady-state concentra-
tions for all the tested cases above are within a few percent of these values.
Therefore, the discrepancies and effects of the traditional Vitasovic model
on the entire AS process would be even more dramatic for an AS system
with a low sludge age (as the relative amount of active biomass in the
recycled sludge would be higher).

Variables Anoxic zone Aerobic zone 1 Aerobic zone 2

SS [mg COD/l] 3.965 2.960 2.413

SNO [mg N/l] 0.634 3.334 4.339

SNH [mg N/l] 4.332 1.662 0.894

SND [mg N/l] 0.529 0.953 0.945

SO [mg (-COD)/l] 0.000 2.000 2.000

XS [mg COD/l] 45.91 25.77 19.30

XB,H [mg COD/l] 1346 1351 1351

XB,A [mg COD/l] 60.42 60.80 60.90

XI+XP [mg COD/l] 5499 5501 5502

XND [mg N/l] 3.404 2.030 1.576

SS [mg SS/l] 5425 5416 5412

Table 6.3 Steady-state values for the components of the bioreactor for
the analytical case. The suspended solids concentration is
calculated according to (6.2).

Decoupled Case

For a settler model integrated with an entire AS process, the simulated
bioreactor act as an ‘equalizer’, that is, many differences are smoothed and,
consequently, more difficult to detect and verify. A good model of the
settler should naturally produce reliable and consistent results when
simulated separately as well. Table 6.2 clearly shows that the robust settler
model is consistent with regard to the number of layers used and this will
be demonstrated even more thoroughly in the next section. The results
shown in the previous subsection clearly indicated that this is not the case
for the traditional settler model. In order to further demonstrate the
limitations of this model with regard to the number of layers used, its
behaviour is simulated for a decoupled case (no coupling to the bioreactor,
stand-alone model) and the largely different steady-state solutions are
shown in Figure 6.5. The conditions and parameters used for the simula-
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tions are identical to those given in Table 6.1 except that the settler feed
concentration of suspended solids is fixed at 5200 g SS/m3, that is, a value
within the same region as the Xf values found for the 10, 30 and 50-layer
traditional models seen in Table 6.2. Note that in the previous subsection
the settler feed concentration was determined as a result of the model equa-
tions and the settler-bioreactor interaction. Figure 6.5 clearly demonstrates
the highly different steady-state concentration profiles although all inputs
and parameters are identical, only the number of layers differ. The results
are a clear indication that the applied numerical fluxes and the prediction
of the concentrations at the outlets are not mathematically sound. The key
variables for the steady state of the Vitasovic model are given in Table 6.4.
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Figure 6.5 Settler concentration profiles of the suspended solids in
steady state for the decoupled traditional Vitasovic model for
different number of layers using identical model inputs and
parameters.

Traditional model

Variables 10 layers 30 layers 50 layers

Xu [g/l] 11.3 11.7 11.7

Xe [mg/l] 309 11.9 11.3

mass [ton] 13.3 6.29 4.28

Table 6.4 The key variables for the settler in the decoupled case.
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Figure 6.6 demonstrates the problem of using ad hoc conditions in models.
The threshold value (Xt) included in the traditional Vitasovic model is an
attempt to describe the different behaviour of hindered and non-hindered
settling in the clarification zone, as discussed in Section 5.3 (see equation
(5.28)). Such a description should instead be included in the constitutive
assumptions of the model. Xt has a direct influence on the behaviour of the
numerical algorithm used for solving the model equations. A suitable value
of Xt has to be determined empirically or estimated and varies with time
and quality of the sludge. Therefore, an erroneous choice may have signi-
ficant effects both when calculating a steady-state solution and especially
during dynamic simulations, as Xt will affect the velocity of a shock wave
moving through the clarification zone (when approaching a sludge over-
flow). In Figure 6.6, the previous simulation for the 10-layer traditional
model is repeated using different values of Xt. Note that because of the set
of parameters used in the settling velocity function, the value of Xt must be
increased significantly to show any major differences between the steady-
state solutions (Xt must be larger than the steady state solution in the
clarification zone, i.e., Xt> 6 g SS/l, see Figure 6.5). In the dynamic case,
however, a fairly small change in Xt will also have significant effects when
the settler process is approaching a sludge overflow. The key variables for
this simulation is given in Table 6.5.
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Figure 6.6 Settler concentration profiles of the suspended solids in
steady state for the decoupled traditional 10-layer Vitasovic
model for different values of the threshold coefficient Xt.
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Traditional model, 10 layers

Variables Xt=3 g/l Xt=7 g/l Xt=10 g/l

Xu [g/l] 11.3 11.4 11.5

Xe [mg/l] 309 205 133

mass [ton] 13.3 13.5 13.6

Table 6.5 The key variables for the settler in the uncoupled case. 

It is clear that the prediction of mass in the settler is almost the same for all
cases but the effluent solids concentration and the profile in the clarifi-
cation zone are quite different. In the example above it should also be
noted that for a certain set of values of Xt (≈6–8 g/l, in these simulations)
there exists no perfect steady-state solution. Instead, the solution in some
layers in the clarification zone oscillates around the value of Xt as the
numerical flux terms change when the concentration in a layer is slightly
above or below the value Xt (cf. Figure 5.8). In this case an optimization
algorithm cannot be used to determine the steady-state solution (as it does
not exist). The graph in Figure 6.6 for Xt = 7 g/l was instead determined by
relaxation and is not a real steady state (although the oscillations are
small). Moreover, for large values of Xt (> 8 g/l), the calculated steady-
state solution depends on the chosen initial concentration profile in the
settler and is not unique with regard to the inputs. Such a large value of Xt
implies that the numerical flux expressions will be controlled by the condi-
tions in the actual layer, regardless of the situation in the receiving layer
below (Xi will always be smaller than Xt, see Figure 5.8). Figure 6.7 shows
two possible steady-states profiles for Xt= 10 g/l. The solid one is identical
to the one in Figure 6.6 when the initial concentration profile was set to the
steady-state profile found for Xt= 3 g/l. The other steady-state solution was
found when setting the initial concentration profile to a more normal one,
with a well-defined sludge blanket in the thickening zone and only a very
low concentration of solids in the clarification zone.

Note that the specific values of Xt discussed above only hold for the
conditions used in this specific simulation. The same type of behaviour
can, however, be found for any set of model parameters and conditions. In
this subsection only a few examples were given to demonstrate the influ-
ence of the threshold parameter on the predictions given by the traditional
layer model. It appears that Xt has been included to provide more reason-
able predictions when compared with real data and as a tool for model cali-
bration without fully investigating the physical violations it may lead to. It

Chapter 6.  Model Evaluation 249



is recommendable to remove this threshold value (together with the ad hoc
flux terms) from the model and instead apply the analytically derived
Godunov flux terms discussed in Section 5.4.
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Figure 6.7 Different steady-state concentration profiles for the decoupled
traditional Vitasovic model depending on the initial concen-
tration profile.

6.3 Dynamic Behaviour

By imposing a number of disturbances on the process, the behaviour of an
entire AS plant will be investigated, both when using the robust settler
model and also with a traditional layer model. The importance of a proper
algorithm for describing the propagation of the individual biological
components in the settler will also be demonstrated. However, to demon-
strate the consistency of the robust settler model with regard to the number
of layers used we will first present results of simulations of a decoupled
robust settler during dynamic conditions. A similar study is not carried out
for the traditional layer model, as we have already shown that this model is
not even consistent for steady-state conditions (see Section 6.2).
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Decoupled Case

In order to exemplify the behaviour of the robust settler model, a number
of simulations are demonstrated in Figures 6.8–6.11. In this case the settler
model is used as a separate unit (no coupling to a biological reactor) and
the robustness with regard to the number of grid points and the mass
preservation is demonstrated. The applied settling velocity model is also in
this case the one by Takács (5.36) with the parameters given in Table 6.6.
The settler design variables and the initial conditions are also presented in
Table 6.6.

A 500 m2 Xf 5390 g/m3

H 1.8 m v0 145 m/d
D 2.2 m ′v0 100 m/d

Qf 450 m3/h rp 0.005 m3/g
Qe 250 m3/h rh 0.00042 m3/g
Qu 200 m3/h Xmin 10 g/m3

Table 6.6  Parameters for settler model simulations.

The simulations are performed for four different cases – 12, 32, 52 and 72
grid points (note that the first and last grid point are only used to define the
boundary conditions, see Figure 5.10). For the initial data a steady-state
solution is calculated with a sludge blanket level one meter below the feed
level. After half an hour the settler feed concentration, Xf, is increased to
7000 g/m3 and at t = 2 h, Qf is increased to 600 m3/h (which directly affects
Qe as Qu is constant). At t = 2.5 h, Qf and Xf are set back to the values given
in Table 6.6 and the simulation is continued until t = 5 h.

The three-dimensional plots presented in Figures 6.8–6.11 show how the
sludge blanket starts to move upwards from z= 1 m when Xf is increased.
The higher flow rate imposed at t = 2 h causes a shock wave to move
upwards in the clarification zone and at t = 5 h the system has almost
reached a new steady state. The courser the grid mesh is, the more the
shocks are smeared out and with only 12 grid points, see Figure 6.8, the
shocks can hardly be located at all. However, the predictions of mass in all
four simulations agree well, as shown in Table 6.7.
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n initial mass [kg] final mass [kg] |∆mass| [kg]

12 6042 8039 1997
32 5963 7961 1998
52 5947 7945 1998
72 5940 7938 1998

Table 6.7  Mass preservation for different number of grid points.

Although the initial steady state is identical for all four cases, it is clear that
there is a difference with regard to the initial amount of mass in the settler.
This is due to the distance between the grid points. Just above the feed
point (from grid point m to m – 1) the concentration drops sharply and since
the concentration is considered to be constant around each grid point (i.e.,
within each layer) this will lead to the prediction of a slightly larger mass
as the grid mesh becomes coarser. Apart from this initial difference, Table
6.7 shows that the preservation of mass during dynamic conditions is good
and independent of the grid mesh. Although not shown, the predictions of
the effluent and underflow concentrations agree perfectly for all cases.

A problem that may affect the prediction of mass slightly more may be
anticipated by reviewing Figure 5.10. Here it was stated that z= –H and
z = D are located exactly half-way between the first two and the last two
grid points, respectively. Depending on the values of H and D and the
number of grid points used, it is impossible to guarantee that one grid point
can be positioned exactly at z= 0. The small round-off error produced will
be more prominent when the number of grid points is small and insigni-
ficant for a narrow grid mesh. For the cases shown in Figure 6.8–6.11, the
size of the settler (H and D) and the number of grid points were chosen in
such a way that the above problem did not occur, that is, the value of
(H/∆ + 3 /2) is an integer for all cases shown.
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Figure 6.8 A dynamic simulation of the robust settler model starting at
steady state according to Table 6.6. The number of grid points
n =12. The initial mass of solids in the settler is 6042 kg and
at the end of the simulation the mass in the settler is 8039 kg.
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Figure 6.9 A dynamic simulation of the robust settler model starting at
steady state according to Table 6.6. The number of grid points
n =32. The initial mass of solids in the settler is 5963 kg and
at the end of the simulation the mass in the settler is 7961 kg.
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Figure 6.10 A dynamic simulation of the robust settler model starting at
steady state according to Table 6.6. The number of grid
points n= 52. The initial mass of solids in the settler is 5947
kg and at the end of the simulation the mass in the settler is
7945 kg.
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Figure 6.11 A dynamic simulation of the robust settler model starting at
steady state according to Table 6.6. The number of grid
points n = 72. The initial mass of solids in the settler is 5940
kg and at the end of the simulation the mass in the settler is
7938 kg.
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Coupled Case

By imposing a number of disturbances on the process, the behaviour of an
entire AS plant will be demonstrated, both when using the robust settler
model and the traditional layer model. All conditions and model para-
meters are identical to those used in the coupled case, described in Section
6.2, with the exception of a few necessary modifications. In order to make
a fair comparison of the different models it is important that the initial
conditions are as similar as possible. Figure 6.4 showed the very different
steady states for the traditional Vitasovic model depending on the number
of layers used. In order to compensate for this, the wastage flow rate (Qw)
is slightly changed for the 30 and 50-layer cases to allow for an initial
steady state with almost the same amount of mass in the settler and the
same sludge blanket height as for the 10-layer case. These solutions are
also similar to the steady state of the robust model. For the 30-layer case,
Qw is increased from 1.163 m3/h to 1.20 m3/h and for the 50-layer case the
new Qw is set to 1.183 m3/h (Qe is modified accordingly). Note that the
settling process is very sensitive to Qw, although the observable effects
may be slow. For example, starting from the steady state defined in Figure
6.4 for the 50-layer case and setting Qw to the new value given above, will
require the process to be simulated several years (simulated time, not CPU
time) before a new steady state is obtained. This further emphasizes the
need for good algorithms to calculate a steady-state solution. The above
modifications lead to new steady-state concentration profiles using the
traditional settler model, which are shown in Figure 6.12, and the new key
variables are given in Table 6.8.

The second modification deals with the propagation of the individual
components of the biological model through the settler. As discussed in
Section 6.1, this is not an important issue when investigating the steady-
state behaviour of the settler, since the relative amounts of all soluble and
particulate components in this case are the same throughout the settler
(identical to the relative amounts in the last bioreactor since we assume
that no biological reactions occur in the settler). However, during dynamic
conditions we must be able to calculate how the relative amounts of the
components vary (especially in the settler underflow). For the robust settler
model this is done in a straightforward manner by applying the equations
(5.58)–(5.65) in Section 5.4, and it is assumed that the concentration of
XND is always in steady state in the settler underflow. In the traditional
model we describe the propagation of the various soluble components in a
similar way as in the robust model, that is, the propagation of each soluble
component is modelled separately and every layer is completely mixed. 
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Figure 6.12 Initial steady-state concentration profiles for the coupled
traditional Vitasovic model used for investigating the
dynamic behaviour.

Traditional model

Variables 10 layers 30 layers 50 layers

Xu [g/l] 10.5 11.7 11.9

Xe [mg/l] 20.7 11.8 11.3

Xf [g/l] 4.70 5.22 5.32

mass [ton] 6.58 6.20 6.05

SRT [d] 28.3 32.1 32.9

Table 6.8 The key variables for the initial steady state.

For the particulate components there is no easy way to model the material
propagation. We will apply the method described in Otterpohl and Freund
(1992), which was discussed in Section 6.1, see equation (6.1). This means
that the traditional Vitasovic model has to be modified slightly. The basic
structure illustrated in Figure 5.8 is still valid but all the flux terms are now
calculated for each particulate component of the IAWQ model, that is, all
symbols Xi in Figure 5.8 are replaced by Xi,j, except in the if-conditions for
the clarification zone. Consequently, the flux terms are no longer defined
as g SS/(h m2) but instead as g COD/(h m2) and g N/(h m2). We maintain the
threshold coefficient based on the total suspended solids concentration in
the clarification zone, as discussed in Section 6.1, calculated according to
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(6.2). Note that the settling velocity is also based on the total concentration
of suspended solids (also calculated according to (6.2)) and not defined for
each individual particulate component. We are neither applying the Ω-
function of Otterpohl and Freund nor their special modelling of primary
particles, but only the method for material propagation in the settler. Some
numerical drawbacks of the approach will be demonstrated in the next
subsection. It should also be observed that the steady-state solutions pre-
sented earlier are not affected by the above model modifications, as the
propagation algorithm only influences the dynamic behaviour.

The dynamic behaviour of the robust settler model is investigated and
compared with the behaviour of the modified Vitasovic model (still refer-
red to as the traditional model) by imposing some disturbances during a
20-hour simulation of the entire AS process. This is done so that an
extreme situation is obtained where the settler becomes overloaded. All
disturbances are imposed as step functions since the purpose is to test the
models and not to describe a true situation. Moreover, step changes
produce more rapid model responses and model discrepancies are easier to
detect than if more realistic smooth variations are used. The simulations
are initiated to the steady-state conditions described in the previous section
combined with the small modifications discussed above. At time t = 1 h,
Qin is increased from 250 to 750 m3/h and the influent SS is increased from
80 to 160 mg COD/l. The hydraulic shock leads to a high load of solids
leaving the bioreactor and increases the load on the settler. At t = 6 h, Qr is
doubled to 400 m3/h in an attempt to lower the amount of solids in the
settler. At t = 10 h, Qin and SS are set back to their initial values (250 m3/h
and 80 mg COD/l) and, finally, at t = 16 h, Qr is reduced to 200 m3/h in
order to return the process to a situation similar to the initial one. The
imposed flow disturbances are shown in Figure 6.13. The disturbances will
naturally also cause a smooth variation of the suspended solids concen-
tration entering the settler. The flow-rate disturbances are deliberately
chosen to create a troublesome situation with a discontinuity at the very top
of the settler. Note that all simulations are performed with so small time
steps that the numerical errors in this respect are negligible, that is, per-
forming simulations with even smaller time steps will produce results that
cannot be distinguished from those shown in this subsection.
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Figure 6.13 The imposed flow disturbances of Qin and Qr for the
dynamic simulations and the resulting disturbance of Qf.

In Figures 6.14 and 6.15, the dynamics of the SS concentration profile is
shown for the two settler models, respectively. The SS concentration is
calculated according to (6.2) for the modified Vitasovic model. Again, the
consistency of the robust model is apparent, whereas the result of the 10-
layer Vitasovic model is quite different from the 30 and 50-layer results.
The speeds of the shock waves (for 30 and 50 layers) seem to be quite
similar for both models. For example, the shock wave in the clarification
zone rises with the same speed in both models between t ≈ 1 and t ≈ 3 h.
This is because the numerical fluxes for the two models produce the same
values in this particular case. However, the Vitasovic model makes the
rising shock wave in the clarification zone stop before the effluent level.
This is observed in more severe overflow situations as well. There is no
physical reason why a rising shock wave should not reach the effluent
level. When this happens (at t ≈4 h), the mass in the settler predicted by the
Vitasovic model becomes lower than the one by the robust model, which is
seen in Figure 6.16. A similar effect is seen for the 10-layer robust model.
In this case, however, it is a result of the rough discretization, which leads
to poor prediction of the effluent concentration of SS.
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Figure 6.14 (This and the previous page)  The suspended solids concen-
tration in the settler as a function of time and depth for the
robust model (first plot: 10 layers; second: 30 layers; third:
50 layers).
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Figure 6.15 (This and the previous page)  The suspended solids concen-
tration in the settler as a function of time and depth for the
modified Vitasovic model (first plot: 10 layers; second: 30
layers; third: 50 layers).
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Figure 6.16 The mass of solids in the settler when using the robust and
the modified Vitasovic settler models with different number
of layers during a dynamic 20-hour simulation.

The settler feed and underflow concentrations predicted by the robust
model and shown in Figures 6.17 and 6.18, are quite similar, especially for
the 30 and 50-layer cases. The results of the modified Vitasovic model are
more scattered (taking the different initial concentrations into account).
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Figure 6.17 The settler feed concentration of SS when using the robust
and the modified Vitasovic settler models with different
number of layers during a dynamic 20-hour simulation. 
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Figure 6.18 The settler underflow concentration of SS when using the
robust and the modified Vitasovic settler models with diffe-
rent number of layers during a dynamic 20-hour simulation.

For the effluent concentration the differences between the models are espe-
cially prominent, which is a result of the troublesome conditions chosen for
the simulations. This is shown in Figures 6.19 and 6.20 (the results of the
two models have been separated to improve the readability). The large
differences between the two models come from the different predictions of
the effluent concentration discussed above. The large differences within the
respective model come from the fact that there is a discontinuity at the very
top of the settler between t ≈ 4 and t ≈ 10 h. To resolve the dynamics of the
effluent solids concentration for such a difficult situation, one needs to use
an even larger number of layers. Therefore, the result when using a 70-
layer robust model has been included in Figure 6.19, which makes it easier
to see the convergence of the numerical solution.
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Figure 6.19 The settler effluent concentration of SS when using the
robust settler model with different number of layers during a
dynamic 20-hour simulation. Note the different time scale in
the plot.
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Figure 6.20 The settler effluent concentration of SS when using the
modified Vitasovic model with different number of layers
during a dynamic 20-hour simulation. Note the different
time scale in the plot.
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In order to provide a complete description of the process, the dynamic
behaviour of the biological reactor is illustrated in Figures 6.21 and 6.22.
Figure 6.21 shows the concentrations of the soluble components in the
bioreactor and Figure 6.22 shows the variations of the major particulate
components. Note that the concentration of the inert particulate material is
the sum of XP and XI. The shown graphs are from the case where the bio-
reactor is simulated in combination with the 50-layer robust settler model.
However, the qualitative behaviour of the variations in the bioreactor is the
same for all cases presented in this subsection.
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Figure 6.21 Behaviour of the soluble components in the bioreactors
during a dynamic 20-hour simulation using the 50-layer
robust settler model.

Chapter 6.  Model Evaluation 267



 anoxic reactor   
 aerobic reactor 1
 aerobic reactor 2

0 5 10 15 20
10

20

30

40

50

60

70

80

90

100

110

time [h]

sl
ow

ly
 b

io
de

g.
 s

ub
st

ra
te

 [
m

g(
C

O
D

)/
l]

 anoxic reactor   
 aerobic reactor 1
 aerobic reactor 2

0 5 10 15 20
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

time [h]

he
te

ro
tr

op
hi

c 
bi

om
as

s 
[g

(C
O

D
)/

l]

 anoxic reactor   
 aerobic reactor 1
 aerobic reactor 2

0 5 10 15 20
30

35

40

45

50

55

60

65

time [h]

au
to

tr
op

hi
c 

bi
om

as
s 

[m
g(

C
O

D
)/

l]

 anoxic reactor   
 aerobic reactor 1
 aerobic reactor 2

0 5 10 15 20
2.5

3

3.5

4

4.5

5

5.5

6

time [h]

pa
rt

ic
ul

at
e 

in
er

t o
rg

an
ic

 m
at

te
r 

[g
(C

O
D

)/
l]

Figure 6.22 Behaviour of the major particulate components in the
bioreactors during a dynamic 20-hour simulation using the
50-layer robust settler model.

Dynamic Propagation of Biological Components

In this subsection we will demonstrate the behaviour of the two different
algorithms for the dynamical update of the concentrations of the individual
biological components as the solids are transported through the settler. All
simulations are identical to those shown in the previous subsection except
that the simulations are continued for another 10 hours (with constant
model inputs), that is, a total simulation period of 30 hours.

The positive effects of the material propagation algorithm used by the
robust settler model (see Section 5.4) are difficult to observe in the graphs
shown in the last subsection. A percentage vector, which describes how
many percent of the suspended solids are actually XS, XB,H, XB,A and
XI + XP, is kept for each layer in the settler and is updated on every time
step. As this update is based on the analytically correct concentration of SS
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and the Godunov flux terms, the percentage vectors are also analytically
correct. This means that we can easily calculate the concentration of the
particulate components used in the biological model for every layer of the
settler at every time instance. For the simulations in this section it is only
of importance to know the different concentrations in the settler underflow,
as we are recycling sludge to the bioreactor. However, if we want to extend
the settler model by taking into account various biological reactions within
the settler, it is almost of equal importance to know the composition of the
sludge within every separate layer. This is accomplished by using the
material propagation algorithm in Section 5.4. The algorithm is stable and
computationally efficient in the sense that the extra required CPU time is
hardly noticeable when compared with the time required to solve the basic
robust model equations discussed in Section 5.4 numerically.

To exemplify the algorithm, Figure 6.23 shows the percentages of the
suspended solids which constitute the heterotrophic biomass in the effluent
and underflow as well as in the feed layer, a layer in the middle of the
clarification zone and a layer in the middle of the thickening zone for the
same dynamic simulation as described earlier in this section, using the 10,
30 and 50-layer robust settler model.
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Figure 6.23 (This and the previous page)  The fraction of heterotrophic
biomass of the suspended solids in different layers of the
settler when using the robust model during a 30-hour dyna-
mic simulation (first plot: 10 layers; second: 30 layers; third:
50 layers).

It is clear that the results are practically independent of the number of
layers. We also see how the fraction of XB,H increases rapidly in the feed
layer as an effect of the higher influent flow rate and the extra added SS (at
t = 1 h), and how this ‘dynamic’ sludge with a different composition than
the initial steady state rapidly propagates downwards in the settler. The
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upward propagation of sludge from the feed layer looks quite differently
and it is apparent that practically no part of the new sludge reaches the
effluent, as the fraction of XB,H is almost constant here until t ≈ 17 h. This
means that the high concentration of SS in the effluent seen in Figure 6.19
is actually made up of the sludge that was in the clarification zone from the
initial steady state and this has propagated upwards. At t ≈ 13 h most of the
sludge, which had accumulated in the clarification zone during the first
hydraulic shock, has moved downwards into the thickening zone and new
sludge (of very low concentration) starts to move upwards according to the
double-exponential settling velocity function. It reaches the middle of the
clarification zone at t ≈ 15 h and the effluent at t ≈ 17 h. At t ≈ 23 h, the
fraction of heterotrophic biomass is almost constant within the entire settler
but it is not a perfect steady state. We see how the fraction of XB,H is
slowly decreasing and after a few days the system will have returned to the
initial steady state in every respect. The reason for this slow variation is,
naturally, that it is controlled by the decay processes in the bioreactor,
which gradually transform the additional fraction of XB,H created by the
dynamic disturbances into inert material. 

In a similar way we can construct three-dimensional graphs that show the
fraction of any biological component as a function of settler depth and
time. Such a graph is given in Figure 6.24, showing the fraction of
heterotrophic biomass of the suspended solids in the settler using the 50-
layer robust settler model.

By multiplying the percentage vectors for each layer with the corre-
sponding concentration of SS and transforming the result into g COD/l (by
dividing the result with the appropriate transformation coefficient from
Table 6.1) we can obtain dynamic concentration profiles for every parti-
culate component of the IAWQ model within the settler. In Figure 6.25,
this is illustrated by the concentration profile for the heterotrophic biomass
using the 50-layer robust settler model (only shown for the first 20 hours of
the simulation). Naturally, the plot is qualitatively very similar to the one
in Figure 6.14 showing the SS concentration, but detailed studies reveal
some small differences.
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Figure 6.24 The fraction of heterotrophic biomass of the suspended
solids in the settler when using the 50-layer robust model
during a 30-hour dynamic simulation as a function of settler
depth and time.
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Figure 6.25 The concentration of heterotrophic biomass in the settler
when using the 50-layer robust model during a 30-hour
dynamic simulation as a function of settler depth and time
(only shown for the first 20 hours).
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The results for the other particulate components of the SS are similar and
not shown here. No example is given for the propagation of the different
soluble components. This algorithm is quite simple and straightforward, as
the soluble material only follows the bulk flows (upwards in the clarifica-
tion zone and downwards in the thickening zone). The particulate material
propagation algorithm is believed to improve the dynamic behaviour of the
robust settler model. However, it is possible that a one-dimensional model
may be too rough an approximation to describe this type of detailed behav-
iour in reality, since other effects such as hydrodynamic phenomena may
have a significant impact on the true behaviour.

The alternative method for modelling the propagation of individual
particulate components in the settler (Otterpohl and Freund, 1992), applied
to the traditional Vitasovic model in this work, was discussed in Section
6.1 and some drawbacks were pointed out. Although the method is quite
straightforward, detailed studies of its behaviour reveal some drawbacks.
The algorithm calculates the flux of each particulate component instead of
combining the components into one variable describing the suspended
solids concentration. We can easily transform the individual concentration
for each layer into a SS concentration by equation (6.2) and, consequently,
determine the percentage of each component of the total SS concentration
and compare the results with the ones shown in Figure 6.23 when using the
robust settler model. In Figure 6.26 the results are presented, showing the
fraction of XB,H in the settler (for the same layers as in Figure 6.23) using a
10, 30 and 50-layer modified Vitasovic model. When comparing the results
to those in Figure 6.23, the drawbacks of the algorithm become apparent.
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Figure 6.26 (This and the previous page)  The fraction of heterotrophic
biomass of the suspended solids in different layers of the
settler when using the modified Vitasovic model during a
30-hour dynamic simulation (first plot: 10 layers; second: 30
layers; third: 50 layers).

The same type of oscillation is found for all the particulate components.
For the fractions in the effluent, underflow and above the feed layer the
results are not that much different from the ones in Figure 6.23 (qualita-
tively). From the feed layer and downwards the oscillating behaviour is
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much more prominent. The problem is only to a small part a numerical
one. Otterpohl and Freund (1992) suggest that the volume of a layer must
be at least one order of magnitude larger than the flow in one time interval,
to avoid numerical problems, but this does not suffice. The oscillations can
be somewhat reduced by decreasing the tolerance of the numerical algo-
rithm. In the case above, a Gear algorithm with a low error tolerance was
used, that is, an accurate numerical solution was obtained (e.g., Kahaner et
al., 1989). Other algorithms (Euler, Runge-Kutta and Adams) with diffe-
rent error tolerances and time steps have been tested with similar results.
An advantage of an analytically derived model (such as the robust settler
model) is that an exact upper bound of the time-volume ratio can be given
(see equation (5.49)).

The basic problem lies within the model structure itself. First of all, the
numerical flux terms of the Vitasovic model are not the analytically correct
ones, as discussed in previous sections. However, the oscillating behaviour
is only apparent when the numerical flux terms are defined for the indivi-
dual particulate components and not when we model all the particulate
material as one variable. To explain this we look at the boundary between
the feed layer and the layer below it (layer m and m + 1) and consider only
the heterotrophic biomass (index a) and the inert material (index b), as
these two components make up approximately 99% of the suspended solids
in the simulated case. The downward settling flux from layer m to layer
m + 1 is calculated for the two components as

Js,m ,a = min v s,m X m( )X m ,a ,  v s,m+1 X m+1( )X m+1,a( )
Js,m ,b

 = min v s,m X m( )X m ,b  ,  v s,m+1 X m+1( )X m+1,b( )
(6.15)

according to the algorithm by Otterpohl and Freund (1992). From t = 0 to
t = 1 h, the system is in steady state and all concentrations in the layers
from the feed level down to the beginning of the sludge discontinuity are
identical. At t = 1 h, disturbances are imposed on the system and the settler
feed concentrations and flow conditions start to change. At some time
instances the first part of the min-terms will determine the settling flux and
at other times the second part will be the minimum. There is no guarantee
that both flux terms in (6.15) will change at the same time, that is, at some
time the settling flux of heterotrophic biomass will be controlled by the
situation in layer m whereas the settling flux of the inert material will be
controlled by the current situation in layer m + 1. This means that the
particulate material is no longer modelled to settle as a uniform floc but as
individual components, which contradicts the fundamental assumption that
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the biological components are present as flocs. Figure 6.27 illustrates this
by showing which part of the min-terms in (6.15) that are active during the
first 15 hours of the simulation at the boundary between layers m and
m + 1. A value of 1 means that it is the conditions in layer m that determine
the settling flux and a value of 0 implies that the conditions in layer m+1
are controlling the flux at the specific time instance. On several occasions,
the settling flux of the biomass and the inert material are determined by
conditions in different layers. Even during steady-state conditions (t < 1 h)
some small variations can be detected as a result of the limited numerical
tolerance. This implies that oscillations can never be avoided completely
when the above algorithm is used.
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Figure 6.27 Graphs showing which parts of the min-terms in (6.15) are
controlling the settling fluxes of XB,H and XI+XP at the
boundary between the feed layer (m) and the layer below
when using the 30-layer modified Vitasovic model (1 =first
part; 0 =second part).

The system does not seem to become completely unstable, and as the
external disturbances cease, the oscillations are reduced. It should also be
noted that the oscillations are correlated so that an increasing concentration
of heterotrophic biomass in one layer coincides with a decreasing concen-
tration of inert material and vice versa. The bulk flows will in most cases
also have a smoothing effect on the oscillations as it will transport compo-
nents between the layers regardless of the settling fluxes. Therefore, the SS
concentration in a layer does not oscillate as much as the concentrations of
the individual components. This is illustrated in Figure 6.28, showing the
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concentration of heterotrophic biomass, inert material and suspended solids
in a layer 0.4 m below the feed level when using the 30-layer modified
Vitasovic model (that is, the traditional layer model combined with the
Otterpohl-Freund algorithm).
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Figure 6.28 The concentrations of heterotrophic biomass, inert material
and suspended solids in a layer 0.4 m below the feed level
using the 30-layer modified Vitasovic model during a 30-
hour dynamic simulation.

This is not a physically relevant situation unless there are oscillations in the
settler feed concentrations. In the case shown here, the variations of the
settler feed concentrations are smooth and change according to Figure
6.22. Note that oscillations in the clarification zone often occur as secon-
dary effects of the oscillations in the feed layer caused by the upward bulk
movement from the feed layer carrying sludge into this zone. Only when
the SS concentration in the clarification zone reaches above the value of
the threshold coefficient (3 g SS/l in our case) will the settling fluxes not be
uniquely determined. This is one reason why no oscillations occur in the
effluent in Figure 6.26. Oscillations may also occur in layers below the
beginning of the sludge discontinuity, though most of them are also due to
secondary effects from the layers above. The reason why the oscillations
are reduced in this region is because of the large concentration differences
between adjacent layers, which increase the probability (but does not
guarantee) that the settling fluxes will be uniquely defined, that is,
determined by the situation in the same layer for the different components.
Therefore, the oscillating behaviour is mainly a problem in the layers
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between the feed layer and the beginning of the sludge discontinuity,
where the concentrations are similar. However, secondary effects will
influence the behaviour in other layers as well. The model is also more
sensitive to the oscillations as the number of layers increases (see Figure
6.26). It is quite difficult to detect any oscillations for the 10-layer
modified Vitasovic model during the dynamic simulation in this section.
However, it is advantageous to use a large number of layers, as this will
improve the reliability and resolution of the solution. Therefore, we require
a settler model where this can be accomplished without producing results
that exhibit the above type of undesired behaviour.

A complete investigation of the oscillating behaviour discussed above is
beyond the scope of this work. However, we can easily demonstrate that
the oscillations are due to the switching of the flux terms. In Figure 6.29,
the simulations of Figure 6.26 are repeated for the 30-layer model, but with
a slight model modification. During this simulation the settler model is
modified so that the flux terms in every layer are always defined by the
situation in the current layer, that is, the first part of the min-terms (see
equation (6.15)). All oscillations are removed by such a model modifi-
cation.
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Figure 6.29 The fraction of heterotrophic biomass of the suspended
solids in different layers of the settler when using the 30-
layer modified Vitasovic model with modified numerical
flux terms during a 30-hour dynamic simulation.
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The above model modification will, naturally, influence the complete
behaviour of the model and it is therefore not relevant to make any detailed
comparisons with the previous results. Another possible approach to
reduce the oscillations is to use low-pass filters, but this will also alter the
dynamic behaviour of the model. A better method is to apply the material
propagation algorithm presented in Section 5.4 in combination with the
robust settler model.

6.4 Future Model Development

The future potential of the robust settler model is believed to be good,
primarily for operational applications. The model is easily combined with
other types of models, such as the IAWQ model, and is a useful tool when
developing control strategies for the AS process. However, the model must
be refined further to describe the behaviour of a real settler.

In this chapter, the behaviour of the robust settler model was compared
with an established one-dimensional layer model. It must be emphasized
that this comparison only reveals various modelling and numerical pro-
blems based on a mathematical analysis. Although the numerical solution
of the model has the ability to approximate the analytical solution of the
conservation law, this does not guarantee that the model will predict reality
well. For example, the steady-state concentration profiles do not look like a
‘normal’ profile found in a real settler. The reason for this is, naturally, that
the model is a simplification because several effects are not included in the
constitutive assumptions. On the other hand, the model is consistent and
the previously used ad hoc conditions are in the robust model replaced by
formulae that are derived with a strict mathematical analysis by using basic
physical principles and Kynch’s assumption. This means that it is a reliable
platform for future model refinements.

One obvious improvement is to extend the model so that a settler with a
varying cross-sectional area can be described. The theory for this has been
developed by Diehl (1996c). If the settler area is decreasing towards the
bottom then the height of the steady-state sludge blanket level is uniquely
defined within the thickening zone (if there exists a discontinuity in the
thickening zone) based on the feed concentration and the bulk flow rates in
the settler. Moreover, the predicted concentration profile will assume a
more realistic appearance, as illustrated in Figure 6.30.
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Figure 6.30 A steady-state concentration profile in a conical settler using the
robust settler model, from (Diehl, 1996c). The simulated condi-
tions are: A(0) = 1 2 5 0 m2, A(D) =1 0 0 m2, H= 1 m, D= 3 m,
Qf =1300 m3/h, Qu =500 m3/h, Qe =800 m3/h and Xf =3.08 g SS/l.

A second improvement, which can be implemented, is to include some
biological reactions in the settler. In principle, a complete IAWQ model
(preferably including the production of nitrogen gas) can be used to model
the biological behaviour within every layer of the settler. The inclusion of
biological reactions in the settler model stresses the need for a good
material propagation algorithm as discussed earlier in Sections 5.4 and 6.3.
In particular, extensive denitrification in the settler has been reported in the
literature (e.g., Siegrist et al., 1995), which may also give rise to secondary
problems, for example, rising sludge. These types of secondary effects are,
however, much more difficult to model accurately.

Hydrodynamic phenomena, such as turbulence, short-ciruiting, density
currents and horizontal flow conditions are obviously impossible to include
correctly in a one-dimensional model. However, it is possible to include
some of the effects of these phenomena in the model, for example, as
suggested by Dupont and Dahl (1995). The approach was discussed in
Section 5.3. On the other hand, this would mean imposing a number of ad
hoc conditions on an otherwise analytically derived model, which is
something that should be avoided if possible. Flocculation and compaction
are other important processes that affect the behaviour of a real settler but
are difficult to model in an accurate and fairly simple manner, without
imposing new ad hoc and empirical conditions.
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In order to improve the computational efficiency of the robust model, it is
possible to allow for larger time steps in the numerical algorithm. The time
step is currently defined by equation (5.49) and calculated when a dynamic
simulation is initiated and then fixed to this value, based on a worst case
scenario. Instead the time step could be adjusted on-line by an adaptive
algorithm based on the actual conditions in the settler. In this way the com-
putational effort would be reduced, especially when the process is not
exposed to large dynamic disturbances.

Finally, the model must naturally be verified with real data. However, the
purpose of this primary investigation was to investigate what a mathe-
matical analysis of the settler model might reveal.
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Chapter 7

____________________________________________________________

Modelling Principles – a Review

In this chapter we describe the basic principles of biofilm processes.
Various process configurations are introduced together with a description
of the fundamental process mechanisms. The influence of higher order
organisms on biofilm systems is discussed. A short review of recent pro-
gress within the field of biofilm modelling is also provided. The principles
applied in a state-of-the-art biofilm model are presented in greater detail
(especially the transport mechanisms) together with a numerical algorithm
for solving the resulting system of stiff non-linear partial differential
equations. Parts of the material in this chapter are covered in [187].

7.1 Fundamentals

A thin layer of microorganisms attached to a solid surface is called a
biofilm. Biofilms can develop on almost any kind of surface exposed to an
aqueous environment. In wastewater treatment they are used to eliminate
and oxidize organic and inorganic components from the wastewater. The
basic feature of the biofilm reactor is the heterogeneous nature of the
processes. The reactor involves a solid medium to which the bacteria are
fixed as a matrix, the surface of which is exposed to water passing through
the reactor. The essential feature of this configuration is the need for the
substrates and the resulting products to diffuse through the biofilm. This
purely physical phenomenon has turned out to be crucial to the under-
standing of the performance of water purification in biofilm reactors. The
biological mechanisms occurring within the biofilm are quite similar to the
ones described for the activated sludge process in Chapter 3. 



Process Configurations

Biofilm techniques are generally used in small sewage works, serving
populations of less than 20000 (Halling-Sørensen and Jørgensen, 1993).
They tend to be higher in capital costs but lower in running costs than
activated sludge plants.

Many different types of reactors have been developed over the years (see
e.g., Arvin and Harremoës, 1990). The oldest is the traditional filter, which
was employed already before the turn of the century – initially as a
screening device, but it was soon realized that the dominating mechanism
was biological degradation more than simple screening. That led to the
development of the trickling filter, where the wastewater flows by gravity
as a free surface stream over a porous medium (today usually a plastic
material) packed in a reactor. The rotating biological contactor process can
be dated back to the turn of the century. In this process the rotating discs,
covered with biofilm, are partially submerged in wastewater. More recent
process types include submerged filters with either upflow or downflow
and the so called fluidized beds, where spherical particles coated with a
biofilm are fluidized by upflowing wastewater. The sizes of the particles
used in fluidized beds typically range from 0.1 to 1 mm and the carrier
material can be sand, glass beads, coal, activated carbon, etc. The different
process configurations are schematically described in Figure 7.1.

The main advantage of the fixed film processes is that high volumetric
densities of microorganisms can be accumulated by natural attachment as
biofilms. This high density of biomass accumulation allows excellent
treatment performance in fairly small reactor volumes, which is economi-
cally beneficial. Other important factors are that – for most processes – the
need for sedimentation is very limited, normally there is no need for sludge
recirculation (Henze et al., 1992) and sometimes there is no need for
recirculation of the effluent (Rittmann, 1989a). Moreover, the traditional
trickling filter process is practically self-controlled and may in some cases
also have an ability to survive shock loads of toxic wastes due to the
relatively short retention time of the wastewater in the reactor, which
means that only organisms on the surface of the film will be affected
(Grady and Lim, 1980). This only holds if the duration of the toxic shock
load is very limited. However, the limited flexibility and controllability of
the process may also be regarded as a disadvantage. The more recent
process configuration, for example fluidized beds, are more sensitive to
short-term changes in the influent concentrations due to the extremely
short hydraulic retention times (a few minutes). Therefore, effluent recircu-
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lation is usually practised to control the flow velocity, the degree of bed
expansion and the inlet substrate concentration (Rittmann, 1989a).

Trickling filter

Fluidized filterSubmerged filters

down-flowup-flow

Rotating disc unit

Figure 7.1 Biofilm reactors used in wastewater treatment.

Applications for most biofilm processes extend far beyond the traditional
aerobic treatment of sewage and industrial wastewaters. Some of the most
interesting applications include methanogenic treatment of wastewaters,
nitrification and denitrification of many wastewaters and drinking waters
and detoxification of waters containing hazardous organic chemicals. The
excellent biomass retention and relatively short hydraulic detention times
of biofilm processes make them attractive when bacterial growth rates are
slow or when the compounds are inhibitory or slowly degraded.

Process Mechanisms

Typical biofilms are only a fraction of a millimeter thick. Over this short
distance the physical and chemical conditions in the biofilm may drasti-
cally change, for example, from aerobic to anoxic conditions. These
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changes lead to the formation of microenvironments, which may house
completely different types of microbial species. Different zones may
develop as a function of the loading of substrate to the biofilm. According
to Kinner (1983) the most varied biofilm induced by a heavily loaded
wastewater can have four dramatically different layers, composed as
follows:

• an outer layer with heterotrophic oxidation of organic carbons,
nitrification, denitrification and sulphide oxidation;

• a second microaerophilic layer with denitrification and fermen-
tation;

• an anaerobic layer with sulphate respiration and fermentation;
• an anaerobic layer adjacent to the support material with methano-

genesis and fermentation.

If the wastewater becomes less heavily loaded, or possibly acquires a
different composition, the biofilm will be built up of the two upper layers
or consist of the top layer only.

The behaviour of a biofilm is determined by a variety of biological,
chemical and physical processes internal to the biofilm as well as by
interactions between the biofilm and its environment. The biofilm and its
environment form a very complex system, which is often difficult to
analyse experimentally due to its heterogeneity and small dimensions.
Thus, mathematical models represent important tools in biofilm research
and applications. Models aid the researcher to state and test hypotheses, as
well as represent and interpret data. In practical applications, models
provide means for prediction of biofilm behaviour and for failure analysis.

The major difference when modelling biofilm processes compared with
suspended-growth processes (e.g., the AS process) is the necessity to
include equations describing some of the material transport processes in
the biofilm and at the interface between the film and the liquid phase, e.g.,
molecular diffusion, turbulent diffusion, advection, attachment and
detachment. The biological reactions within the biofilm can on the other
hand be modelled in a similar manner as in a suspended-growth bioreactor,
thoroughly described in Chapter 3, although concentrations may vary
significantly as a function of the biofilm depth. Therefore, biofilm models
are generally more complex and contain a very large number of model
parameters compared with activated sludge models, which often only deal
with the biological reaction mechanisms.
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Molecular diffusion is driven by a potential energy gradient related to
Brownian motion (Gujer and Wanner, 1989). Within the biofilm, two
forms of potential energy are of prime importance: (1) the chemical poten-
tial and (2) an electrical potential for electrically charged particles. The
molecular diffusion is governed by three forces:

• a concentration gradient expressed in the form of Fick’s first law
of diffusion;

• a gradient of the so called activity coefficient, which depends on
the local chemical environment, usually considered negligible in
biofilms;

• a gradient in the electrostatic potential, which may be due to
electrical interactions between charges in the solution or between
charges in solution and charges fixed to the solids matrix.

Moreover, the diffusion is usually considered to be affected by a stagnant
liquid layer adjacent to the biofilm, through which the soluble matter must
diffuse before reaching the actual biofilm. A method for determining the
thickness of this boundary diffusion layer is described by Bouwer and
McCarty (1985). An example of a typical oxygen concentration profile in a
biofilm is shown in Figure 7.2. 
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Figure 7.2 Example of an oxygen concentration profile in a biofilm
including boundary layer diffusion.

Turbulent (or eddy) diffusion is driven by eddies of different scale and
results in a net transport of matter in the direction of the negative concen-
tration gradient. If the scale of the eddies are considerably smaller than the
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scale of the biofilm system over which these gradients are of interest,
turbulent diffusion is described in analogy to Fick’s first law.

All solid biofilm phases are subject to a common advection process. If any
one attached particle moves, this causes displacement of its neighbouring
particles. Therefore, the advection velocity is identical for all solid mate-
rials due to their production (e.g., biomass growth) or of a volume change
of the liquid phase. This process may cause local change in biomass
composition.

The so called interfacial transfer processes are those specific for the
interface between the two bulk compartments in a biofilm system; bulk
water and biofilm matrix. These processes include attachment (deposition
of particles on the biofilm) and detachment, which may be separated into
four different mechanisms: erosion, grazing, abrasion and sloughing
(Rittmann, 1989b). They are physical processes, but still no generally
accepted rate expressions are available (Gujer and Wanner, 1989). Accord-
ing to Arvin and Harremoës (1990), the removal of particulate matter from
the bulk water phase depends on aspects such as the

• size and the charge of the particulate matter;
• size, shape and chemical composition of the support media;
• surface configuration of the biofilm;
• hydraulic flow regime.

Bouwer (1987) suggests an attachment model based on Stoke’s law to
predict the flux of particulate material towards the surface of the film and a
sticking efficiency parameter to describe the fraction of collisions between
suspended particles and the biofilm interface that result in particle attach-
ment. Erosion has been studied by Trulear and Characklis (1982), who
indicate that nutrient supply, biofilm thickness and hydraulic shear are
important factors. Furthermore, the shear stress history of the biofilm
apparently influences the rate and extent of erosion. Grazing results from
protozoa and other higher order organisms feeding on the outer surface of
the film and abrasion is caused by the collision or rubbing together of
particles (e.g., in fluidized beds), some of which are covered with biofilm.
The cause of biofilm sloughing, that is, the periodic loss of large patches of
biofilm, is also poorly understood. Harremoës et al. (1980) report that
sloughing is due to the development of nitrogen gas bubbles in the lower
layers of a denitrifying biofilm. Other researchers speculate that sloughing
occurs as a consequence of nutrient deficiency in the depth of the biofilm.
No single mechanism for this process has been accepted (Gujer and
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Wanner, 1989). Some of the most essential phenomena occurring in a
biofilm process are illustrated in Figure 7.3. 
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Figure 7.3 Illustration of some essential phenomena in a biofilm process.

The density and thickness of the biofilm are other important factors when
modelling attached-growth systems. There is generally very little even
qualitative information available on the mechanisms affecting the density
and internal structure of the biofilm  (Arvin and Harremoës, 1990). There-
fore, it is common to assume a homogeneous biofilm with a constant
density. Arvin and Harremoës also report that the thickness of the biofilm
is primarily controlled by the following factors:

• growth of active biomass as a result of influx of substrate;
• decay of active biomass;
• accumulation of inert organic material from the decay of active

bacteria;
• accumulation of polymers from the metabolism of the substrate;
• attachment of suspended particles from the bulk liquid;
• erosion of small particles from the surface of the biofilm;
• sloughing of large patches of the biofilm.

The influence of higher order organism through grazing will also affect the
thickness of the film although the mechanisms are not well understood.
Due to the large number of involved processes the ability to predict the
thickness of a biofilm is relatively poor (Halling-Sørensen and Jørgensen,
1993).
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Most theories for substrate removal in biofilm reactors suffer from the fact
that they deal with soluble substrate alone. As most wastewaters contain a
significant fraction of non-diffusible matter, this is a major drawback. The
difficulties of modelling the attachment process was discussed above, but
also the degradation mechanisms for the attached particulate matter is not
known in detail (Arvin and Harremoës, 1990). There are two primary
hypotheses for the hydrolysis process affecting attached particulate matter.

1) The degradation takes place by hydrolysis through the action of extra-
cellular enzymes, either on the membranes of the bacteria (Banerji et
al., 1968) or released to the water (Larsen and Harremoës, 1994). This
may lead to the release of soluble products to the liquid phase, which is
then transported into the biofilm by diffusion.

2) The hydrolysing enzymes are attached to the surface of the bacteria and
the products are absorbed directly by the bacteria as the hydrolysis
takes place (Takahashi et al., 1969; Sprouse and Rittmann, 1990).

In AS systems, the hydrolysis mechanism is often found to be the rate
limiting process of the system and it is an important feature of the IAWQ
model. Consequently, it is not unrealistic to assume that the fundamental
function of the hydrolysis process is equally important in biofilm systems
as well. The fate of the particulate organic material will also influence how
to model the decay mechanism of microorganisms within the biofilm.

Higher Order Organisms

The complexity of the biofilm process was clearly indicated in the previous
subsection. However, one important factor, which was not discussed in
detail, deals with the influence of predators on the behaviour of the biofilm
process. Protozoa and microscopic metazoa – in this work, for simplicity,
defined as microfauna – as well as fungi and algae are normally found in
large numbers in biofilm processes (Bishop and Kinner, 1986). Although
their specific role when describing the mechanisms of the biofilm is
usually neglected, it is often suggested that they strongly affect the overall
process result (Stahl et al., 1989; Arvin and Harremoës, 1990). High
grazing pressure may increase the turnover rate of biomass, affect nutrient
recycling and growth rate, significantly shorten the cell retention time, and
influence the structure of the biofilm. Moreover, the grazing may be either
selective (i.e., only affect certain types of organisms) or non-selective.
Curds (1992) gives an excellent description of the higher order organisms
found in wastewater treatment plants and their role in the processes. In this
subsection, a short review of Curds (1992) is provided.
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The most common group of higher organisms found in wastewater treat-
ment plants are probably protozoa. They are normally single-celled
eucaryotic (i.e., have a nucleus bounded by a nuclear envelope and are
elaborately differentiated by a series of membrane systems) organisms.
Protozoa are capable of reproduction, feeding, movement, excretion and
respiration. The majority of protozoa are within the size range of 5 and 250
µm in diameter. At present more than 65000 protozoan species have been
described and they are found in all moist habitats.

Protozoa are more abundant in aerobic sewage-treatment processes than in
anaerobic processes. For example, it is common to find numbers in the
order of 50000 cells per millilitre in the mixed liquor of an AS plant.
Calculations based on such numbers indicate that protozoa can constitute
approximately 5 % of the dry weight of the suspended solids in the aeration
tank. According to Curds (1992) the most important protozoa found in both
biofilm and AS processes are ciliates. Most of them are sedentary,
attaching themselves directly to the microbial films by means of a stalk. A
few are crawling forms and all the ciliates are known to feed on bacteria.
Some of the most commonly found ciliates in sewage-treatment processes
are shown in Figure 7.4.

In processes where the microbial film is held in a static position with
respect to the flow of liquid (e.g., trickling filters and rotating biological
contactors) different organisms thrive in different positions. For example,
as sewage passes through the depth of a biological filter it is purified by
microbial actions so that conditions at the top are very different from those
at the bottom. This leads to different protozoan populations at the top of
the filter compared with those below. This vertical stratification of orga-
nisms in a filter depends on many interrelated factors which are extremely
difficult to unravel. However, generally there is a change from those
species in the surface layers which utilize soluble organic substrates, to
those in the middle which feed on bacteria, to those at the bottom which
feed upon ciliates.

In an activated sludge plant the situation is different. Both the sewage and
the microbial film or sludge floc flow down the aeration tank together and
the organisms live in an ever-changing environment. After a period of low
dissolved oxygen concentration in the settling tank, they are recirculated to
be mixed with raw influent wastewater in the aeration tank. If a fixed
medium is introduced into the aeration tank at various intervals along its
length different protozoa colonise the medium and some of them are
different to those growing upon the sludge floc.
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Note! No figure available.

Figure 7.4 Some ciliates commonly found in wastewater treatment
processes, from (Curds, 1992). A: Trachelophyllum pusillum;
B: Chilodonella uncinata; C: Cinetochilum margaritaceum;
D: Aspidisca cicada (vental and rear views); E: Euplotes
affinis; F: Vorticella convallaria (extended and contracted);
G: Carchesium polypinum; H: Opercularia coarctata.

While there is a significant amount of information concerning the role of
protozoa in the AS process, little work has been carried out on the role of
these organisms in biofilm systems. However, as there is a great deal of
similarity between these aerobic processes it is reasonable to assume that
the protozoa play a similar role in each. To the author’s knowledge no
studies have been made on anaerobic processes.

Protozoa were originally thought to be harmful to the AS process. It was
argued that, as they feed on the bacterial populations, they inhibit micro-
bial degradation processes. This has been shown to be untrue. Today, most
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authorities agree that protozoa play a secondary but nonetheless important
role in wastewater treatment processes. During protozoa-free conditions,
AS plants produce highly turbid effluents of inferior quality and the
turbidity is significantly related to the presence of very large numbers of
bacteria suspended in the effluent (hundreds of millions per millilitre) and,
consequently, the suspended solids concentration in the effluent is very
high. By adding cultures of ciliated protozoa a dramatic improvement in
the effluent quality can be detected within a few days (when the protozoan
populations become properly established). 

There are at least two ways in which protozoa might cause the improve-
ment in effluent quality; either by flocculation or by predation. There is a
considerable amount of published evidence showing that pure cultures of
protozoa can flocculate suspended particulate matter and bacteria. In many
species flocculation is thought to be brought about by the secretion of
certain substances by the organisms. It is evident that the vast majority of
ciliates found in AS processes can feed upon a whole variety of bacteria
likely to be present in the process. Studies using batch and continuous-
culture methods have supplied sufficient data to be able to assess the
quantities of bacteria likely to be removed by protozoa. It seems that
protozoa could, by predation alone, easily account for the removal of
dispersed bacteria in the activated sludge of the experiments. It is therefore
likely that the major role of the ciliated protozoa in aerobic wastewater
treatment processes is the removal of dispersed growths of bacteria by
predation and that protozoa-induced flocculation is not of any real
importance. Flagellated protozoa and amoebae also feed upon bacteria and
they play a similar role. Furthermore, the amoebae may also have the
ability to ingest flocculated bacteria, which would have the effect of
reducing sludge production.

Obviously, protozoa play a favourable role in the AS process. However, it
is questionable how much of the above description is applicable to biofilm
systems. In the next chapter, the results of an experimental investigation on
the influence of higher order organisms on the behaviour of an aerobic,
nitrifying biofilm system is presented. These results indicate that the higher
order organisms may also have a significant negative effect on the overall
performance of the biofilm process.
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Model Development

The modelling of biofilm processes has been an on-going and advancing
enterprise since the early 1970s. Early work (e.g., Vaughan et al., 1973;
Atkinson and Davies, 1974; Williamson and McCarty, 1976, Harremoës,
1976; La Motta, 1976; Harremoës, 1978) focused on the most fundamental
phenomena of soluble substrate utilization and transport into and within the
biofilm (mainly due to molecular diffusion). These investigations have
shown that the removal of soluble substances is governed by diffusion
resistance to the movement of the substrate into the biofilm, before
degradation in the interior of the biofilm. The models were either simple
steady-state models or a dynamic model was used to describe the soluble
components whereas a steady-state model was used to describe the
biomass. The rate of reaction in a biofilm was based on the concept of
limiting substrate. If the wastewater is aerobic, the limiting substrate will
consist of oxygen, organic carbon or ammonia. The intrinsic reaction rate
of a limiting substrate is described, depending on the authors, as a Monod-
type, first or zero-order equation (see Section 3.2). Subsequent work
(Rittmann and McCarty, 1980; Rittmann, 1982) addressed the growth and
loss of the biofilm and the establishment of a steady-state biofilm, or one in
which biomass growth just balanced the losses to yield a biofilm with no
net change of biomass over time.

In the mid 1980s, the first models appeared, which allowed for transient-
state modelling of biofilms (Rittmann and Brunner, 1984; Chang and
Rittmann, 1987a; Chang and Rittmann, 1987b). At the same time the first
dynamic models to describe the distribution of different competing or com-
plementary bacterial species were presented (Kissel et al., 1984; Wanner
and Gujer, 1984; Wanner and Gujer, 1986).

The model of Wanner and Gujer is based on the continuum approach, that
is, a particulate component is not characterized by the shape, size and
location of its cells in the biofilm, but by quantities which are spatial
averages over a small biofilm volume element. It is also a one-dimensional
description, i.e., only the space coordinate perpendicular to the substratum
is considered. These two concepts are still the basis of practically all bio-
film models used today (Wanner, 1996). During the last decade the model
has been further refined and is today the most generally accepted mathe-
matical model for describing the behaviour of the biofilm process. It is
further discussed in Section 7.2.
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Until recently, it was believed that all biofilms consist of a continuous, gel-
like matrix in which microbial cells are embedded at random. New sophis-
ticated experimental observations (Costerton et al., 1994) have now
revealed that biofilms exist in which there are clusters of microbial cells
and pore channels of the size of a hundred micrometers, which form more
or less independently. A hypothetical biofilm structure is shown in Figure
7.5. Modelling this type of structure may require two or three-dimensional
models though this is not feasible today, as the mechanisms are not known.

Note! No figure available.

Figure 7.5 Structure of a hypothetical biofilm drawn from a large
number of Confocal Scanning Laser Microscopy (CSLM)
examinations of different biofilms (Lewandowski et al.,
1995). The arrows indicate convective flow within the water
channels.

The effects of the biofilm structure and porosity on the microbial distribu-
tion, mass transport and biodegradation are today some of the most
interesting fields of biofilm research (e.g., Fu et al., 1994; Zhang and
Bishop, 1994a; Zhang and Bishop, 1994b; Bishop et al., 1995; De Beer
and Stoodley, 1996; Lewandowski and Stoodley, 1996). New methods for
investigating the biofilm structure have also been proposed (e.g., Gibbs
and Bishop, 1996) and even methods based on fractal analysis are
suggested (Hermanowicz et al., 1996). As more knowledge and data about
the biofilm structure become available, it may be possible to include these
new concepts in a general biofilm model.

The importance of hydraulic phenomena on the biofilm process is also
acknowledged. New methods are being developed to investigate the
hydrodynamic conditions at the biofilm-water interface (e.g., Schindler et
al., 1995). Some initial attempts have also been made to couple biofilm
models to models describing detailed microscopic hydrodynamic pheno-
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mena in two dimensions (Chen et al., 1994; Cunningham et al., 1996).
These types of models require extremely powerful computers for perform-
ing simulations and the approach is definitely not yet applicable for general
biofilm modelling.

The influence of higher order organisms on the behaviour of biofilm
systems is practically always neglected in available mathematical models.
Several attempts have been made to include protozoa into biological
models, but only in models describing suspended-growth systems (e.g.,
Curds, 1973; Curds, 1992; Ratsak et al., 1993; Ratsak et al., 1994). It is
also realized that problems may occur when modelling ‘predator-prey’
systems, e.g., models of Volterra, Leslie-Gower, Holling-Tanner and
Lotka-Volterra, which often lead to chaotic solutions. Such systems can be
studied in, e.g., Renshaw (1993) and Sabin and Summers (1993).

7.2 A State-of-the-Art Biofilm Model

The model we will discuss in this section is based on the formulation by
Wanner and Gujer (1984; 1986) and further extended in Wanner and
Reichert (1996). The model is included in the simulation program
AQUASIM (Reichert, 1994a; Reichert, 1994b; Reichert and Ruchti, 1994;
Reichert et al., 1995) developed at the Swiss Federal Institute for
Environmental Science and Technology (EAWAG). AQUASIM is a
general simulation and data analysis tool for laboratory, technical and
natural aquatic systems (the current version contains models for mixed
reactors, biofilm reactors and river sections), although we will only discuss
it in connection with biofilm modelling (see also Appendix F). The
program allows the user to define an arbitrary number of substances to be
modelled and it is extremely flexible in the formulation of transformation
processes. It not only offers the possibility of performing simulations but it
also provides methods for system identification (sensitivity analysis and
automatic parameter estimation) and for estimation of the uncertainty of
calculated results. In this section we will primarily discuss the major
modifications of the original model by Wanner and Gujer (1986).
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Model Concepts

The biofilm model is basically a ‘mixed’ model, which includes a mecha-
nistic core (e.g., mass balance equations) and empirical expressions (e.g.,
mathematical functions to describe attachment and detachment). The
extensions of the original biofilm model is primarily due to several recent
experimental findings (Wanner, 1996):

• transport of dissolved components in the biofilm is not always
due to molecular diffusion only;

• transport of particulate components cannot be exclusively related
to the net growth rates of the microbial species in the biofilm;

• the liquid phase volume fraction (porosity) of the biofilm is not
constant;

• simultaneous detachment and attachment of cells and particles at
the biofilm surface is an essential process.

As a consequence of applying the continuum concept, information about
the biofilm structure at a micrometer scale is lost. However, this is not a
problem unless the objective of the modelling is to investigate biofilm
processes at the scale of individual cells, in which case the continuum
approach is not applicable. In a similar way, some features of the biofilm
structure are lost due to fact that the model only considers one spatial
dimension, perpendicular to the substratum.

Model Structure

The biofilm model is based on the conservation law, written as a partial
differential equation (cf. Sections 5.2 and 5.4) 

∂ρ̂ z, t( )
∂t

+ ∂Ĵ z, t( )
∂z

= r̂ z, t( ) (7.1)

where         ¤̂¤ is an array of one-dimensional densities describing the quantities
of the properties per unit length, Ĵ is an array of one-dimensional fluxes
describing the quantities of the properties transported per unit time relative
to the resting frame of reference and r̂ are defined as the production rates
of the properties per unit time and unit length of the system. The symbol
‘^’ is used to distinguish one-dimensional variables from variables with
traditional dimensions. The space coordinate z, defined perpendicular to
the substratum, is calculated positively from the substratum and z = 0 at the
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film-substratum interface (see Figure 7.3). Note that the mathematical
model in  AQUASIM is actually based on (7.1) written in the integral form
(Reichert, 1994b), cf. equation (5.2).

The dynamic state variables are naturally divided into various particulate
(Xj) and dissolved substances (Sj). They are represented by concentrations
averaged over planes parallel to the substratum. For Xj, the concentration is
defined as mass per unit of total volume (including both water and par-
ticles) and for Sj as mass per unit water phase volume (excluding the
volume of the particles). If ρj denotes the density of particles of type j (as
mass per unit of particle volume, defined to be constant over time and
space in AQUASIM), then the volume fraction of the water phase (εl) of
the total reactor volume is given by 

ε l =1 − X k

ρkk =1

nX

∑ (7.2)

where nX is the number of modelled particulate variables. Note that the
soluble concentrations per unit of total volume instead of concentration per
unit water phase volume, are easily calculated by multiplying εl by Sj.

While the particulate substances are suspended in the bulk water volume,
they form the solid matrix of the biofilm. Therefore, growth of particles in
the depth of a biofilm leads to an advective displacement of the biofilm, if
the additional particulate volume is not increased only at the expense of the
volume of the water phase in the biofilm. The displacement velocity, vF, at
the location z is given as the total volume production between the
subtratum-biofilm interface at z = 0 and the position z

v F = 1
A

rX ,k

ρk

+ rε l,F
k =1

nX

∑




0

z

∫  Adz (7.3)

where A is the surface area of the biofilm and rX,j is the net production rate
of the particulate substance of type j.The first term in the integrand is the
volume production due to growth of particulate substances and the second
term is the volume production of free water volume between the particles
(subscript ‘F’ implies within the biofilm). It is a common assumption that
the volume fraction of the water phase within the film remains constant. In
this case, free water volume production is proportional to particulate
volume production. The volume production term is therefore described as a
sum of this generic term and an excess rate
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rε l,F
=

ε l,F

1 − ε l,F

rX ,k

ρk

+ ′rε l,F
k =1

nX

∑ (7.4)

If the last term is zero then the volume fraction of the water phase in the
biofilm is constant, as in the original model (Wanner and Gujer, 1986). On
the other hand, ′rε l,F

may now be defined as a mathematical function of
time, distance from the substratum, growth rate or any other variable in the
model and can consequently be used to model the fact that the water
volume fraction of the film may not be constant. This is one of the four
important improvements of the modified biofilm model, listed at the
beginning of this section. By combining (7.3) and (7.4), the advective
velocity of the biofilm solid matrix can be rewritten as

v F = 1
A

1
1 − ε l,F

rX ,k

ρk

+ ′rε l,F
k =1

nX

∑





0

z

∫  Adz (7.5)

The flux due to diffusion of soluble material is modelled according to
Fick’s first law, i.e., 

Jdiff ,S, j = −ε l,FDS, j

∂S j

∂z
(7.6)

where DS,j is the diffusion coefficient for the soluble substance of type j.
However, to describe some of the recently found phenomena where the
molecular diffusion appears to be influenced by other processes as well
(e.g., tortuosity and turbulence into the film), the diffusivity (DS) is
regarded as an effective diffusivity. It may be modelled as a function of
biofilm density, thickness, depth, time or any other model variable, instead
of describing DS as being directly proportional to the molecular diffusivity
in pure water in the traditional manner. This is the second important
modification of the new biofilm model. In a similar way the boundary
layer resistance, which makes it possible to limit the mass transfer between
the film and the bulk water phase, is included in the model.

In order to account for transport of cells and particles in the direction
opposite to that of the displacement velocity vF, the original model is
extended by an additional transport process, which is independent of
microbial growth and is described as an effective diffusion process of
particulate substances according to
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Jdiff ,X , j = −DX , j

∂X j

∂z
(7.7)

Note that DX,j is not the molecular diffusion of particles in water but a way
of modelling changes of the biofilm due to detachment and attachment of
particles within the film. In AQUASIM this process is only active when a
so called diffusive biofilm is modelled. When using a rigid biofilm,
changes of biofilm structure at a given distance from the substratum is only
due to advection caused by growth or decay in the layers below or at the
actual location, as in the original model (Wanner and Gujer, 1986). The
effective diffusion of particulate material is a purely empirical description
and there are still experimental observations that remain unexplained by
this model extension (Wanner, 1996).

The biological reaction mechanisms are in AQUASIM provided by the
user, depending on the type of process which is to be modelled. In a
normal case with normal influent wastewater, these mechanisms are often
modelled in a similar fashion as suggested in the IAWQ model (e.g., Gujer
and Boller, 1990). Throughout this section we only describe the trans-
formations by rS,j and rX,j, which are the net production rates for a specific
soluble and particulate substance, respectively.

We can now define the three functions in (7.1) in order to derive a
complete model of the biofilm process. The one-dimensional densities of
the conservation law are given by

ρ̂ =
X F, j

ε l,FSF, j

ε l,F
















⋅ A (7.8)

The fluxes corresponding to the above densities are

Ĵ =

v FX F,j − DX ,j

∂X F,j

∂z

− 1 − ε l,F( )v FSF,j − ε l,FDS, j

∂SF,j

∂z

ε l,Fv F +
DX ,j

ρ j

∂X F,j

∂zj=1

nX

∑



























⋅ A (7.9)
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The first element of (7.9) represents the flux of particulate substances
within the biofilm. The first term of this element describes the advective
motion of the biofilm matrix due to growth processes, cf. (7.5). The second
term describes changes in a diffusive biofilm solids matrix by an effective
diffusion process, see (7.7). The second element of (7.9) represents the flux
of dissolved substances within the biofilm. The first term describes advec-
tive transport due to water flowing into the film to compensate for volume
changes produced by growth processes. It can often be neglected due to the
slowness of microbial growth compared with diffusive processes. The
second term describes the diffusive flux of dissolved substances in the
film, see (7.6). The last element in (7.9) represents the flux of free water
volume (not the water flux) within the biofilm. The first term describes
advective motion and the second describes volume changes due to the
effective diffusion process of particulate substances. To complete the
definition of the conservation law (7.1), the transformation rates are simply

r̂ = rX ,j rS, j rε l,F[ ] T
⋅ A (7.10)

The actual transformation rates will be defined by the biological processes
included in the model by the user. All these rates specify transformation of
mass (or volume) per unit of total biofilm volume including the volume of
the particles. Based on (7.8), (7.9) and (7.10), we can expand (7.1) and
rewrite the equations by using (7.4) and (7.5) into the form given below.
The conservation of the different particulate substances is given as

        

∂X F,j

∂t
= −v F

∂X F,j

∂z
+ 1

A

∂
∂z

AD X ,j

∂X F,j

∂z







  − ′rε l,F
X F,j + rX ,j −

X F,j

1 − ε l,F

rX ,k

ρkk =1

nX

∑







(7.11)

the conservation of the different soluble substances as

        

∂SF,j

∂t
=

1 − ε l,F

ε l,F

v F

∂SF,j

∂z
+ 1

ε l,F

rX ,k

ρk

SF,j
k =1

nX

∑

  + 1
ε l,F

1
A

∂
∂z

A
DX ,k

ρkk =1

nX

∑
∂X F,k

∂z







  + 1
ε l,F

1
A

∂
∂z

ε l,FDS, j

∂SF,j

∂z







+ 1
ε l,F

rS, j

(7.12)
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and for the conservation of the free water volume as

∂ε l,F

∂t
= −v F

∂ε l,F

∂z
− 1

A

∂
∂z

A
DX ,k

ρkk =1

nX

∑
∂X F,k

∂z







+ 1 − ε l,F( ) ′rε l,F
(7.13)

Equation (7.11) describes the time evolution of the concentrations of
particulate substances at a fixed position in the biofilm. The first term on
the right hand side is the change in concentration due to advective motion
of the biofilm matrix, the second term corresponds to changes due to a
possible effective diffusion process of particulate material in the biofilm,
the third term models dilution of particles caused by growth of free water
volume and the last term describes concentration changes due to growth
processes of particulate components. Equation (7.12) describes the time
evolution of the concentration of soluble substances at a fixed position in
the biofilm. The first term corresponds to the advective flux of water
transported into the biofilm to compensate for volume changes produced
by growth. The second term describes growth of concentration due to
growth of particulate species (movement of a cell membrane due to growth
increases the concentration of a dissolved substance not consumed in the
growth process, i.e., not crossing the membrane). The next two terms
describe changes in concentration of dissolved substances due to water
flow caused by effective solid matrix diffusion of particles and due to
diffusion of dissolved substances in the water phase, respectively. The last
term is due to transformation processes consuming or producing the
dissolved substance under consideration. Equation (7.13) describes the
changes of free volume within the biofilm solid matrix. The first term is
due to advection of the solid matrix, the second term is due to effective
diffusion of particles and the last term is due to a user-defined empirical
expression of how changes occur in the free volume.

In order to completely define equations (7.11), (7.12) and (7.13), the
geometry of the biofilm must be defined by specifying the surface area of
the film. The area (A) is described as a function of the distance from the
substratum, z, which means that many different geometries can be
modelled (e.g., plane film, film on a cylinder, film inside a cylinder, film
on spheres).

Time evolution of the biofilm thickness, LF, is given by

dL F

dt
= v L (7.14)
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where due to attachment and detachment processes, the interface velocity
vL is not exactly the same as vF(LF). Instead the relationship between the
two velocities are

v L = v F L F( ) − v de + vat (7.15)

where vde and vat are the detachment and attachment velocities,
respectively. In AQUASIM, the detachment velocity can be defined as a
global velocity equal for all particulate components. In this case it may be
a function of any model variable (e.g., biofilm thickness, time, growth
velocity). The second possibility is to define individual detachment coeffi-
cients (kde,j) for each variable Xj. In this case the detachment velocity is
given by 

v de = 1
1 − ε l,F

k de,k X F,k

ρkk =1

nX

∑ (7.16)

The attachment velocity is modelled in a similar fashion as

vat = 1
1 − ε l,F

k at,k X L ,k

ρkk =1

nX

∑ (7.17)

where kat,j is the attachment coefficient for the variable Xj. The subscript
‘L’ indicates that XL,j is the concentration of a specific particulate sub-
stance at the interface between the biofilm and the liquid boundary layer.

In order to successfully model simultaneous attachment and detachment, a
diffusive biofilm must be assumed. Otherwise, the attached cells would
form the outer layer of the biofilm and would consequently be removed by
the detachment process, instead of allowing attached cells to migrate
through the biofilm. This is achieved by the effective diffusion process for
particulate material, see equation (7.7).

Furthermore, in AQUASIM the biological reactions in the bulk phase are
simulated in parallel with the reactions within the biofilm, if the user
requests it. This makes it easy to model situations where the hydraulic
retention time is so large that reactions in the bulk phase cannot be
neglected. The equations governing the dynamic behaviour of bulk water
concentrations of particulate and dissolved substances outside the biofilm
is modelled as a mixed reactor. The only complication is that the factor εl
has to be introduced into the equations for dissolved variables to correct for
the water phase volume. Also note that the model describing the biological
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transformations within the biofilm may be completely different from the
model describing the reactions in the bulk phase.

Numerical Algorithm

In order to numerically solve the stiff and non-linear system of partial
differential equations (PDE), AQUASIM uses the method of lines solution
technique (e.g., Schiesser, 1991), as described in Reichert (1994b). This
means that the PDEs are converted into a set of ordinary differential
equations (ODE) and algebraic equations (due to the boundary conditions)
by discretization in space only. Based on this discretization, consistent
initial conditions must be defined for the model (as close as possible to the
conditions specified by the user). This is done by a modified Newton
algorithm, where the global convergence behaviour is improved by a
flexible step-reduction mechanism guaranteeing monotonic decrease of the
error term of the equations, and also the calculation of the matrix of partial
derivatives at each iteration is simplified by a special updating algorithm,
compared with the original Newton algorithm.

The numerical flux terms at the boundaries are calculated either by a first-
order approximation, which leads to smooth solutions due to numerical
diffusion, or a second-order approximation, which must be combined with
a flux-limiter method to avoid oscillations in the numerical solution close
to sharp density changes or discontinuities (cf. the Godunov algorithm
described in Section 5.4), see LeVeque (1990). The new set of ODEs and
algebraic equations are then numerically solved by a modified Gear
algorithm (Petzold, 1983). This algorithm is a variable-step, variable-order
method with a special error control criterion suited for solving stiff
systems. Moreover, the positions of the grid points are modified dynami-
cally as the biofilm thickness varies, although the relative distances
between the grid points are maintained. The algorithm could be modified
to dynamically resolve areas of high curvature of the solutions, by shorten-
ing the distances between the grid points in such regions, thereby
improving the numerical results (Reichert, 1994b). Finally, steady-state
solutions for biofilm processes in AQUASIM are obtained by simulating
the system forward in time with constant boundary conditions (relaxation).

The description of a state-of-the-art biofilm model given in this section is
primarily a review of Reichert (1994b), where more details can be found.
The complete set of necessary boundary conditions for numerically solving
the system is also provided by Reichert.
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Chapter 8

____________________________________________________________

Modelling Microfauna Influence

In this chapter the results from an experimental study are presented. The
effects of microfauna influence on the nitrification capacity of an aerobic
suspended-carrier biofilm system were investigated. From the experimental
results a few hypotheses on the role of microfauna are formulated. A
number of different modelling approaches and model extensions are
suggested, based on these hypotheses. The capability of the models to
predict the influence of the higher order organisms is investigated,
focusing on the steady-state behaviour of the models. The numerical
results are validated against the experimental data and various problems
are discussed. Parts of the material in this chapter are covered in [187].

8.1 Experimental Study

In this section, the results from an experimental study are presented. The
purpose of the experiment was to determine the influence of higher order
organisms on the behaviour of an aerobic, nitrifying biofilm in a
suspended-carrier system. More details about the study can be found in Lee
and Welander (1994).

Hybrid Systems

A process scheme tested at many municipal WWT plants during the late
1980s was based on a combination of a biofilm system and a suspended-
sludge system (Schlegel, 1988; Middeldorf, 1989; Andersson, 1990;
Bonhomme et al., 1990). The reasons for combining the processes were to



• increase the reactor capacity;
• increase the biomass content in the system without an additional

loading of the unit process;
• achieve a better and more stable nitrification in existing AS plants.

The principle was to immerse a biofilm carrier material into the aerobic
reactor. Based on this the idea was that removal of organic material
primarily was to be accomplished by the suspended biomass. This in turn
would enable the slow-growing nitrifying bacteria to dominate the biofilm
developing on the carrier material, thus securing a stable nitrification
capacity. However, it could not be shown that the hybrid process had a
higher nitrification capacity in comparison to a conventional AS system.
Furthermore, the observed sludge yield in the hybrid process was
significantly lower than usually found in an AS system. Microscopic
examination of the biofilm (Andersson, 1990) revealed that several species
of microfauna were present in large numbers. Although it could not be
shown to what extent the microfauna had affected the process, it was
suspected that the higher order organisms were responsible for both the
limited nitrification capacity and the low sludge yield.

A reduced nitrifying capacity has also been ascribed to grazing organisms
in other types of nitrifying biofilm processes, such as trickling filter
reactors (Boller and Gujer, 1986; Parker et al., 1989). On the other hand,
protozoa and metazoa have generally been considered to play a beneficial
role in aerobic treatment processes. In the AS process by making the
effluent water clear by consuming dispersed bacteria and by improving
flocculation (Curds, 1975; WPCF, 1990; Curds, 1992), and in trickling
filters by preventing excessive growth of biofilms, as well as facilitating
the recycling of nutrients and improving the transport of substrates (Gray,
1989), see Section 7.1. However, these studies dealt primarily with systems
aimed at BOD removal and not with nitrifying systems. Theoretically, non-
selective grazing should have a more negative effect on the slow-growing
nitrifiers than on the fast-growing heterotrophs in a homogeneous biofilm
due to the slower recovery of the nitrifying population. However, the
interactions between predator and prey in a microbial population are
extremely complex and the mechanisms are not very well known, as
discussed in the previous section.
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Nitrification in Aerobic Biofilms

The capacity of an aerobic biofilm process to nitrify is determined by the
amount of nitrifying bacteria in the system and the activity of these
bacteria. Thus, to increase nitrification, measures must be taken to increase
either the nitrifying population, the activity of the nitrifiers, or both. The
amount of nitrifiers can be increased either by increasing the total amount
of biomass in the system or by increasing the fraction of nitrifying bacteria
in this biomass. The above naturally also holds for nitrification in sus-
pended sludge systems.

The total amount of biomass retained in a biofilm process depends largely
on the reactor design and the hydraulic conditions in the process, while the
fraction of nitrifiers in the biomass is known to be strongly affected by the
biochemical oxygen demand (BOD) to nitrogen ratio in the influent waste-
water (Barnes and Bliss, 1983). The activity of the nitrifiers can be affected
by a large number of factors, such as temperature, pH, substrate limitation
(oxygen or ammonium), and inhibitory substances. In addition to being
influenced by these abiotic factors, the capacity of a biofilm process to
nitrify may also be affected by biological factors, as exemplified by graz-
ing of predators on the nitrifying bacteria in the biofilm. Although many
factors may influence nitrification in biofilm systems, it is often unclear
which are the main factors limiting the capacity of the processes. There-
fore, in order to maximize the nitrification capacity in aerobic biofilm
processes, it is important to identify factors limiting nitrification in such
systems under different operating conditions. While much attention has
been focused on the effects of abiotic parameters on nitrification, biolo-
gical factors have been much less studied.

The experimental study discussed in this section was carried out to
determine whether predators have a negative effect on nitrification in
aerobic biofilm processes, and if so, to what extent nitrification can be
enhanced by suppressing these organisms. The experiment was performed
under controlled conditions in a laboratory model system, using a synthetic
wastewater and employing inhibitors specific to eucaryotic cells, to make
sure that no factors affecting nitrification other than the amount of
microfauna would vary.
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Experimental Set-Up

The laboratory model system consisted of two aerobic 800 ml continuous-
flow suspended-carrier biofilm reactors, operating in parallel on the same
sterilized synthetic wastewater based on acetate and peptone (300 mg/l
total COD, 44 mg/l total N, 6 mg/l total P and all essential trace metals).
The double-walled glass reactors were filled to 50 % (volume/volume)
with polyethylene carrier particles (10 x 7 mm), possessing a surface area
for microbial growth of 400 m2/m3, see Figure 8.1. The carrier particles
were kept suspended in the reactors by aeration and mechanical stirring,
ensuring good contact between the biofilm and the bulk water. The temp-
erature in the reactors was maintained at 15 ˚C and the pH at 7, by
automatic controllers. The bulk water phase was kept saturated with regard
to dissolved oxygen (≈ 9 mg O2/l).

10 mm

cross-section

7 mm

sideview

Figure 8.1 Schematic view of the carrier particles.

The experiment was carried out over a period of 450 days. Initially, the
reactors were inoculated with activated sludge from the Sjölunda muni-
cipal treatment plant, Malmö, Sweden, and started up at a hydraulic
retention time (HRT) of 7 hours. After 75 days, the HRT was shortened in
small steps to 3 hours during a period of another 75 days. This was the
HRT at which the inhibition study was carried out. After 50 days more, a
good nitrification was established in both reactors and stable operating
conditions were attained. In order to selectively inhibit the microfauna,
nystatin and cycloheximide (8 mg of each added once every 8 h),
substances specifically inhibitory to eucaryotic cells, were added to one of
the reactors. The other reactor was operated as a reference system. After
approximately 80 days, the addition of inhibitors was switched between the
reactors (the previous reference reactor became the test reactor and vice
versa) and the experiment was repeated for another 110 days. Then another
switch of the addition of the inhibitors between the reactors was carried out
for 60 days. At the end of the experiment (for a period of 14 days), the pH
in both reactors was increased from 7 to 8.
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Measurements and Analyses

The performance of the reactors was followed by daily analyses of
ammonium, nitrite and nitrate concentrations in the bulk water phase
according to standard methods (DIN, 1993). The COD concentrations –
filtered and unfiltered samples – in the influent and effluent were measured
regularly and analysed according to standard methods (APHA et al.,
1985a). Total suspended solids (TSS) concentration and volatile suspended
solids concentration were determined in the reactor effluent, using methods
described in APHA et al. (1985b). At the end of the experiment, the total
amount of attached biomass in the reactors was estimated by determination
of TSS and VSS on ten randomly picked carrier particles from each
reactor. Moreover, in order to follow changes in the composition of the
microbial populations, microscopical analyses of randomly picked carrier
particles were carried out regularly. This made it possible to qualitatively
study (very roughly) the fraction of protozoa and metazoa in relation to the
fraction of bacteria in the biofilm.

Process Performance

The results from one of the reactors, for two consecutive periods (including
the 50 day start-up period, i.e., period I-III for reactor B as defined below),
are summarized in Table 8.1 as average effluent values and standard
deviations. Note that the transient values during the first week, as the
system is changed from a non-inhibited to an inhibited one, are excluded
when calculating the average values for the inhibited case. Although not
shown, the results from the second reactor are very similar.

duration
[days]

NH4-N
[mg N/l]

NO2-N
[mg N/l]

NO3-N
[mg N/l]

filt. COD
[mg COD/l]

TSS
[mg COD/l]

inhibition

126 21.4±2.5 0.6 ±0.2 11.5 ±2.0 47 ±10 76 ±8 no

109 10.7±1.8 0.5 ±0.1 21.2 ±2.2 40 ±16 120 ±15 yes

Table 8.1 Summary of the experimental results during two consecutive
periods (measurements in the bulk water phase). The HRT is 3
hours and the pH is 7 during these periods.

As the microfauna was inhibited, the nitrification rate and concentration of
TSS increased significantly, whereas the biofilm mass decreased. The total
dry mass of the biofilm at the end of the experiment was found to be 1.67 g
(i.e., 2.09 g/l) in the reactor currently operating without addition of inhi-
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bitors and 1.11 g (i.e., 1.39 g/l) in the inhibited reactor (multiply by 1.5 to
roughly transform the values into g COD). Both within the biofilm and the
reactor effluent biomass, the VSS was approximately 95 % of the TSS
throughout the experiment. The first addition of inhibitors resulted in a
rapid increase in the nitrate production rate from 4 to 7 mg N/(l h) and in a
corresponding increase in the ammonium removal rate. When the inhibi-
tion was stopped the nitrification slowly decreased to a minimum of 2
mg N/(l h) within a month. During the rest of the non-inhibited period the
nitrate production recovered slowly, rising to approximately 4 mg N/(l h).
Figures 8.2 and 8.3 show the nitrate production rates and the ammonium
removal rates for the two reactors during the full duration of the experi-
ment. The different periods are defined as follows:

• period I: start-up period after the decrease of the HRT to 3 h;
• period II: addition of inhibitors to reactor A, reactor B used as

reference;
• period III: addition of inhibitors to reactor B, reactor A used as

reference;
• period IV: addition of inhibitors to reactor A, reactor B used as

reference;
• period V: same as period IV, except that the pH was increased

from 7 to 8 in both reactors.
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Figure 8.2 Measured nitrate production rates in the two reactors during
the different test periods (I-V) of the experiment (Lee and
Welander, 1994).
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Figure 8.3 Measured ammonium removal rates in the two reactors
during the different test periods (I-V) of the experiment (Lee
and Welander, 1994).

The second switch of the addition of inhibitors between the two reactors
(period IV) resulted in an increased nitrification in reactor A and a
decreased nitrification in reactor B, although the response of reactor B was
slower than the corresponding response of reactor A at the beginning of
period III. The change of the pH from 7 to 8 at the end of the experiment
did not influence the nitrification in either of the two reactors significantly.
The nitrite production rate was low during the entire experiment and the
removal of COD was not affected by the addition of inhibitors and
remained fairly constant at approximately 85 % in both reactors throughout
the experiment. The nitrification rate per carrier particle surface area,
calculated from the nitrate production rate and the known surface area of
the carriers, was on an average 0.46 g N/(m2 d) and 0.85 g N/(m2 d) for the
non-inhibited and inhibited cases, respectively. These values are compar-
ably low, which is mainly due to the low biomass concentration. The
specific nitrification rate in the system operated with inhibition can be
calculated to be 5.4 g N/(kg VSS h), which is higher than the specific
nitrification rates generally found in trickling filters or activated sludge
plants (Barnes and Bliss, 1983; Halling-Sørensen and Jørgensen, 1993).
However, such a comparison is not relevant due to different characteristics
of the wastewater, different operating conditions, etc.

Visual observations of the carrier particles in the two reactors gave the
impression of the biofilm being significantly thicker in whichever reactor

Chapter 8.  Modelling Microfauna Influence 313



was currently being operated without addition of inhibitors than in the
current test reactor. This observation was in agreement with the measure-
ments of total biofilm mass at the end of the experiment. Finally, as the
inhibitors were added to a reactor, an initial temporary increase of up to
100 % could be detected in the effluent TSS.

The microscopical observations revealed a very diverse microflora/fauna in
both reactors during the start-up period. The microbial population was
composed of different kinds of adhering and polymer-forming bacteria,
filamentous bacteria, dispersed bacteria, fungi, flagellates, ciliates, rotifers
and nematodes. The most common higher order organisms were attached
ciliates, rotifers and nematodes. The protozoa and metazoa together were
roughly estimated to comprise approximately 30 % of the attached bio-
mass. Addition of the specific eucaryotic inhibitors caused a significant
change of the biofilm community. Certain species, such as rotifers and
nematodes, appeared to be most strongly affected whereas the number of
attached ciliates and flagellates were not reduced to the same extent. At the
end of an inhibition period, the predators were estimated to make up about
5 % of the attached biomass. Moreover, the number of dense bacterial
clusters in the biofilm, identified as agglomerates of nitrifying bacteria,
increased considerably during the inhibition period. The colour of the
biofilm also changed from dark brown to orange – a colour typical for
many nitrifying bacteria (Watson et al., 1989) – indicating an increase of
the amount of nitrifiers in the biofilm. When the inhibition was stopped, a
gradual recovery of the microfauna could be observed. The quantity of
rotifers increased to their initial level, whereas the quantity of nematodes
never reached the same level as prior to the addition of inhibitors.

The inhibitors could not be found to have any effect on the bacteria in the
biofilm. It should also be noted that growth of biomass primarily took
place on the inside walls of the carrier particles. Due to mechanical tear, no
biofilm growth could be observed on the outer surface of the particles
during the experiment.

Discussion

Protozoa and metazoa have generally been considered to influence the
performance of aerobic treatment processes in a positive way. The studies
described here indicate, however, that vigorous grazing of these organisms
on the bacterial population can be harmful to bacterial transformations
crucial to process performance. The positive response that nitrification
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showed to the addition of inhibitors occurred rapidly and was accompanied
by a rapid decrease in the quantity of predators, mainly the rotifers,
whereas stopping the addition of inhibitors resulted in a slow recovery of
the rotifer population, accompanied by a gradual decrease in nitrification
capacity. This correlation suggests that the predators may affect the nitri-
fication in biofilms in a negative way.

The nematodes, which are known to thrive within biofilms (e.g., Gray,
1989), never really recovered after the initial addition of inhibitors and
were not abundant during the rest of the experiment. The flagellates and
the attached ciliates, apparently less affected by the inhibitors, can
probably only consume dispersed and loosely attached bacteria. Thus, the
results indicate that the rotifers may play an important role in the biofilm
turnover. This is of particular interest since the ecological niche, which the
rotifers occupy in trickling filters, has not been adequately elucidated
(Doohan, 1975; Gray, 1989). It should be emphasized that the difference in
nitrification capacity between the reactors, cannot have been due to the
occurrence of dispersed nitrifiers in the reactor to which inhibitors were
added, since dispersed nitrifiers would not be able to grow fast enough to
remain in the process at 3 hours HRT and 15 ˚C.

The dramatic increase in the effluent TSS during a transient period after
the addition of inhibitors had been initiated was probably due to wash-out
of predators, since a rapid decrease of the predator population in the
biofilm was observed during the same period by means of microscopical
observations. The difference in total biomass in the two reactors appeared
comparable to the qualitatively estimated difference in predator biomass.
Thus, the amount of attached bacterial biomass may have been approxi-
mately the same during the entire experiment. If this was the case then the
increased nitrification capacity was not due to an increase of total biomass
but to an increase in the fraction of nitrifiers in the biofilm. It should also
be noted that the net biomass production on an average (TSS in the
effluent) was 50 % higher for the system operated with addition of
inhibitors than for the reference system (see Table 8.1). The lower sludge
production demonstrates one positive effect of grazing predators in waste-
water treatment processes.

The fact that predation limited nitrification but not the removal of readily
biodegradable organic matter, indicates that the effects of grazing are more
severe for slow-growing than for fast-growing bacteria. The latter are more
readily able to keep up with the consumption of the active biomass and
replace it with new. Theoretically, predation could lead to a complete loss
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of nitrification in the biofilm process through a reduction in the actual
mean cell residence time (MCRT) within the system to a value lower than
that of the critical MCRT needed to maintain a population of nitrifying
bacteria. The impact of selective grazing could further complicate this
situation. The influence of predators on nitrification and indeed the entire
biofilm behaviour can also be expected to be even more detrimental in, for
example, trickling filters than in the type of biofilm process used in this
study, since the trickling filter fauna includes larger metazoa, such as
larvae, worms, flies and snails (e.g., Gray, 1989). Such organisms have a
greater capacity for ingesting bacterial biofilm than the predators that
dominated this study. In the discussed experiment, the establishment of
larger metazoa in the biofilm was probably disfavoured by the use of
submerged carrier particles in combination with the high turbulence in the
reactors.

The ammonium removal rate was generally somewhat lower than the
nitrate production rate (see Figures 8.2 and 8.3). This can be explained in
terms of the conservation to nitrate not being the only ammonium
transformation that occurred in the system. In addition to ammonium being
consumed through nitrification, it was consumed through assimilation by
heterotrophs and nitrifiers and was also produced by release from the
organic nitrogen compounds of peptone and yeast extracts in the influent
synthetic wastewater.

This study emphasized the importance of investigating the influence of
biological – and not only abiotic – factors on nitrification. The two-fold
increase in nitrification capacity achieved through inhibition of the
predators is comparable to the increase that might be expected from an
increase in temperature of 10 ˚C (Gujer and Boller, 1986). The results
indicate that there may be a potential for increasing the nitrification
capacity of trickling filters and other biofilm processes. However, efficient
methods for selectively suppressing the microfauna under practical condi-
tions remain to be developed. The full-scale use of the inhibitors employed
in this study is unrealistic, both from an economical and an environmental
point of view. Before applying selective suppression of predators on a full
scale process, it is also important to consider the benefits of having these
organisms in the system, for example, reduced sludge production and
possibly improved transport of substrates within the biofilm.
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8.2 Hypotheses on the Role of Microfauna

When discussing the effects of different species of microfauna in biofilm
processes, it is necessary to consider their complex and different life strate-
gies. Different influence patterns on the biofilm structure and activity may
be possible depending on the type of protozoa or metazoa that dominates
the biofilm and on the type of process that is used. The life strategies of
different predators vary significantly and in terms of feeding behaviour, the
microfauna may in a simplified manner be divided into three main groups.

• Filter feeders: organisms that feed on suspended particles by
means of ciliary activity, either attached or in a free-swimming
stage.

• Burrowers (or crawlers): organisms that feed on bacteria within a
biofilm or a sludge floc.

• Carnivorous and cannibalistic organisms: organisms that feed on
other protozoa and metazoa, either inside or outside the biofilm.

Due to the complexity of the interactions between the microfauna and
other organisms, such as bacteria, both negative and positive effects on the
biofilm activity and structure as a whole may occur (Stal, 1989; WPCF,
1990). The hypotheses discussed below may therefore be limited to the
specific experiment discussed in the previous section and the conditions
applied there. In other experiments different results may be achieved.
However, the hypotheses may be regarded as a first attempt to describe one
aspect of microfauna influence, which may be used as a basis for future
investigations.

The dominating species of the microfauna in this experimental study were,
as earlier discussed, rotifers and stalked ciliates, in this case filter feeders
that to a large part do not feed on particles larger than 10–20 µm (Fenchel,
1986; Arndt, 1993). However, since the majority of the nitrifying flocs
were larger than 10 µm, questions about the influence of the filter feeders
on the biofilm structure and activity in this particular experiment arose. It
appeared unlikely that the nitrifiers could serve as the main food source for
the predators in the non-inhibited case, thereby leading to a reduced nitri-
fying capacity.

Suspended particles constitute the primary food web for the filter feeders.
By means of ciliary movements, detached particles from the biofilm may
be captured by these organisms. This detachment may occur both at the
main biofilm-bulk interface but also within the biofilm where the porous
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structure form channels (see Figure 7.5). Based on visual inspections of the
biofilm, the boundary between the biofilm and the bulk water phase was
very unclear, especially for the non-inhibited case, where the outer part of
the biofilm assumed a somewhat ‘forest-like’ appearance. However, the
filter feeders naturally require oxygen for their respiration and, conse-
quently, the activity of the filter feeders may affect the amount of oxygen
available for the nitrifiers deeper down within the biofilm. Based on this
possible oxygen limitation in the biofilm due to the large amount of
microfauna, differences in the nitrification capacity could be postulated.

A second effect of the filter feeders is seen in Table 8.1 as a lower
concentration of TSS in the bulk water phase when the system was not
inhibited, that is, when the filter feeders were active. This is an expected
effect of their feeding behaviour. A way to model this is to assume a higher
attachment rate for the non-inhibited biofilm. Part of the attached
suspended particles will certainly be consumed by the predators. However,
it is also likely that the ciliary movements of a large number of filter
feeders attached to the surface of the biofilm, will result in a higher
turbulence in the water close to the biofilm surface and thereby increase
the number of suspended particles that are incorporated into the biofilm,
without being consumed. It has been shown that protozoa can cause micro-
turbulence by the ciliary movements (Nisbet, 1984). This effect may be
further accentuated by the ‘forest-like’ structure of the biofilm in the non-
inhibited case, creating micro-eddies close to the surface of the biofilm.

Some other possible scenarios may also be considered. For example, the
ciliary movements of the filter feeders could actually increase the oxygen
flux into the biofilm. Depending on the amount of predators consuming
oxygen, the oxygen transfer within the biofilm may be improved and,
consequently, lead to an improved nitrification capacity. Another possibi-
lity is that the rotifers produce excretory and secretory substances, which
may affect the structure and density of the biofilm (Doohan, 1975). Finally,
some of the observed effects may occur as a consequence of changes in the
hydraulic flow conditions over and within the film (the convective flow),
due to a different biofilm structure when the microfauna is active com-
pared to when it is not. However, such effects are complicated to verify
experimentally.

Based on the above hypotheses with regard to the oxygen consumption of
the microfauna and its effect on the attachment rate, attempts will be made
to develop a mathematical model that may roughly explain and predict the
behaviour of the experimental biofilm system discussed in Section 8.1.
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8.3 Model Development

In order to investigate the above hypotheses and the possibility of
modelling biofilm systems including effects due to microfauna, computer
simulations of the suspended-carrier system will be performed. Three
different model modifications will be presented and validated against
experimental data. All models are developed and simulated with the
AQUASIM software and the transport mechanisms are consequently based
on the concepts described in Section 7.2.

Defining the Physical Properties of the System

The hydraulic retention time of the experimental system was 3 hours. The
influent volumetric flow rate of the model was consequently set to
0.8 /3 ≈ 0.27 l/h, as the volume of each reactor was 0.8 l. Of the influent
COD concentration (300 mg COD/l), 96.5% was modelled as readily
biodegradable substrate (SS) and the remaining 3.5 % was considered to be
soluble inert material (SI). No particulate COD was present in the influent
synthetic wastewater. All influent nitrogen (44 mg N/l) was modelled as
ammonia (SNH). No measurements of the biofilm density and the fraction
of water in the biofilm were available from the experiment. However, the
density of the different particulate components were set to 75 000 g/m3 (as
mass per unit of particle volume) and the water fraction of the biofilm was
fixed at 80 %. These values were chosen for two reasons. Firstly, similar
values were found in experimental investigations by Gujer and Boller
(1990), when modelling a nitrifying biofilm process and, secondly, the
values are reasonable in the sense that the mass of a modelled biofilm of
one millimeter thickness, will be approximately equivalent to the amount
of biomass measured at the end of the experiment (see Section 8.1). The
thickness of the biofilm on the carrier particles measured during the
experiment was close to the above value. Since no measurements of the
water fraction of the biofilm were available, the possibility of modelling
the water fraction of the biofilm as a varying dynamic variable provided in
AQUASIM, was not used, that is, ′rε l,F

in equation (7.4) was set to zero.

The combination of attachment and detachment processes determines the
steady-state thickness of the biofilm (Gujer and Boller, 1990). Although
both the detachment coefficient in equation (7.16) and attachment
coefficient in equation (7.17) may be modelled individually for each type
of particulate material in AQUASIM, global detachment and attachment
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rates were used, as the experimental measurements were not detailed
enough to allow for individual rates to be modelled with any relevance.
Instead the attachment coefficient was assumed to be constant, whereas the
detachment coefficient was described as a function of the biofilm thickness
according to

k de = k shearL F (8.1)

where kshear was chosen to be constant. This implies that a thick biofilm is
more sensitive to detachment than a thin film, which is a realistic assump-
tion. In order to allow for simultaneous attachment and detachment in the
model, an effective diffusion process, see equation (7.7), was assumed for
the particulate material. The diffusion coefficients were considered to be
constants and equal for all different particulate materials The effective
diffusion coefficient was set to 10–10 m2/d, that is, a considerably slower
diffusion rate than the ones used for the soluble components.

The diffusion of soluble material was modelled according to equation
(7.6). The used diffusion coefficients for the different soluble model com-
ponents are given in Table 8.2.

Soluble COD (SS) 75·10–6 m2/d

Soluble inert COD (SI) 75·10–6 m2/d

Ammonia (SNH) 170·10–6 m2/d

Nitrate (SNO) 160·10–6 m2/d

Soluble organic nitrogen (SND) 75·10–6 m2/d

Dissolved oxygen (SO) 290·10–6 m2/d 

Table 8.2 Diffusion coefficients used in the simulations.

The values for the diffusion coefficients are similar to what is commonly
found in the literature (e.g., Henze et al., 1992). Only the diffusion rate for
the dissolved oxygen is somewhat high. However, the diffusion is highly
dependent on the structure of the biofilm and no attempt was made to
measure the actual diffusion rates during the experiment. Instead the
oxygen diffusion coefficient was used for calibrating the model to the
experimental data (within reasonable limits). Furthermore, a number of
different processes may influence the molecular diffusion as previously
discussed in Section 7.2. This implies that the diffusion coefficients should
be regarded as effective diffusion rates including effects from other types
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of processes and may consequently differ somewhat from values found in
reference tables for molecular diffusion in pure water. It should also be
noted that possible effects due to a liquid boundary layer (see Figure 7.2)
was excluded from the model, in order to minimize the number of
parameters and keep the model somewhat simpler.

In the experimental study, the growth of the biofilm took place on the
inside walls of carrier particles with a special geometry (see Figure 8.1).
The geometry leads to that the surface area of the biofilm will change as
the film thickness varies. It is important to model a changing biofilm area
correctly both for the calculation of fluxes into and out from the biofilm
and for dynamically determining the biofilm volume and, consequently,
the mass of attached biomass. The surface area of the biofilm was
modelled as a function of the biofilm depth (z) according to the geometry
of the carrier particles as

A z( ) = 4nc 2πlc rc − z( ) + 2π 2rcz − z 2( )( ) (8.2)

where nc (= 400) is the number of carrier particles in each reactor and lc
(= 7 mm) and rc (= 2.25 mm) are the length and radius of each carrier
particle, respectively. Note that rc is the radius of each cross-sectional
quadrant of the carrier particle, approximated by a circle (cf. Figure 8.1).
This means that the first term of (8.2) models the inside area of a cylinder
and the second term describes the biofilm area of the edges of such a
cylinder. The factor 4 is due to the fact that each carrier particle is made up
of four such imaginary cylinders. The total surface area of the biofilm as a
function of the biofilm depth (8.2) is illustrated in Figure 8.4. The graph
shows that the modelled total surface area of the carrier particles without
any biofilm (i.e., z = 0) in a reactor is 0.16 m2, which is equivalent to the
theoretical area of the particles (specified as 400 m2/m3, filling 50 % of a
0.8 l reactor). When z = 2.25 mm, the imaginary cylinders making up the
carrier particles are completely clogged and the surface area of the biofilm
is limited to the top and bottom areas of the cylinders, which equals an area
of 0.05 m2. The thickness of the modelled biofilm cannot exceed the radius
of the cylinders making up the carrier particles, that is, 2.25 mm.
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Figure 8.4 The biofilm surface area as a function of biofilm thickness
according to equation (8.2).

Modelling the Biological Processes

When the physical description and the variables determining the funda-
mental mechanisms in the biofilm have been defined (e.g., attachment,
detachment, diffusion, surface area variations), the biological mechanisms
and processes must be described. AQUASIM only defines the physical
structure and transport processes of the biofilm, whereas the biological
processes must be included by the user.

As the hypotheses discussed in the previous section are mainly based on
oxygen balances and oxygen consumption, it is natural to use a biological
model that is based on maintaining an oxygen balance on a COD basis.
The most widely used model of this type is the IAWQ AS Model No. 1
(Henze et al., 1987), thoroughly described in Chapter 3. In this study, the
processes both within the biofilm and in the bulk water phase was to be
modelled. Due to the comparably high HRT (3 hours), it was decided that
the reactions in the bulk phase could not be neglected. The IAWQ model
has in numerous applications proven to be a reliable tool for modelling the
mechanisms in suspended-growth systems and it would naturally be a great
advantage if the same model could be used to model the biological
processes within a biofilm as well. A difficulty when applying the IAWQ
model to a biofilm process is the fact that it is not clear how the transport
of slowly biodegradable particulate substrate (XS) within the film takes
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place (Gujer and Boller, 1990) and whether XS is hydrolysed within the
film or in the bulk phase, as discussed in Section 7.1. In this work, we
assume that hydrolysis occurs within the biofilm and the IAWQ model
may consequently be used in its original form. However, as there is no XS
present in the influent synthetic wastewater, the effects due to this assump-
tion will be comparably small, although a certain amount of readily bio-
degradable substrate will be produced within the biofilm as a result of
hydrolysis and reused for growth of biomass according to the death-
regeneration principle (Dold et al., 1980) as stipulated in the IAWQ model.
Note that all internal processes of the model are equally active in the bulk
phase and within the biofilm (using the same set of model parameters). The
major difference is simply the concentration of biomass in the bulk phase
and the biofilm.

In order to model the influence of microfauna on the behaviour of the
biofilm, three different modelling approaches will be investigated. The
main goal is to include the effects of the microfauna behaviour in a simpli-
fied way. In theory, it would be possible to introduce a detailed description
of the growth and feeding behaviour of various higher organisms into a
biological model. However, as a systematic knowledge of these organisms
in biofilm systems is scarce (as discussed in Section 7.1), a simplified
approach is chosen where certain observable effects – which may be
influenced by the life strategy of the organisms and estimated by direct
measurements in the bulk phase – are included in the model without any
detailed description of the microfauna itself. The three different models are
schematically outlined in Figure 8.5 using the notation earlier defined for
the IAWQ model.

Model A

The first attempt is simply to use the original IAWQ model (not including
alkalinity) and investigate if the influence of microfauna found in the
experimental study may be described by a few simple changes of some
model parameters according to the hypotheses in Section 8.3, that is, para-
meters influencing the oxygen consumption in the biofilm and rate of
attachment. This model will be referred to as Model A.
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Figure 8.5 Schematic view of the differences of the three tested
biological models (models A, B and C) used to describe
the effects of microfauna behaviour in the investigated
experimental biofilm system.
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Model B

In order to more exactly be able to model the oxygen consumption in the
biofilm due to microfauna activity, a slightly modified IAWQ model is
proposed (referred to as Model B), see Figure 8.5. In this model, decay of
bacteria is both due to traditional decay processes and to microfauna
activity, where the consumption of bacteria by microfauna results in an
immediate consumption of oxygen, that is, the process can only occur in an
aerobic environment. However, no state variables are introduced to expli-
citly describe the microfauna. Instead a coefficient, γ, is used to describe
the fraction of the biomass that is consumed by the microfauna. It is
defined so that if γ= 0 then model B is identical to model A and if γ= 1
then the same amount of biomass that is lost through the traditional decay
process is considered to be consumed by microfauna (under aerobic
conditions), and so on. A switching function is used to avoid numerical
problems with negative oxygen concentrations and the half-saturation
coefficient KO,Z is set to 0.5 mg/l. Two new processes are included in the
original model and the actual equations are described in Table 8.3 (cf. the
IAWQ model in Appendix B). Note that the processes of traditional decay
and consumption by microfauna may be written as a combined process but
only the consumption part is given in Table 8.3 to simplify the description.
The traditional decay processes are not affected by this extension due to
microfauna activity but modelled exactly as in the IAWQ model, including
death-regeneration.

Process XB,H XB,A SO Process rate 

Aerobic consumption
of heterotrophs

–1 –1 γbH
SO

KO,Z + SO







X B,H

Aerobic consumption
of autotrophs

–1 –1 γbA
SO

KO,Z + SO







X B,A

Table 8.3 Imposed extensions of the original IAWQ model, resulting in
the proposed model B.

Model C

The third model proposed (Model C), is a further extension of model B,
where the microfauna is introduced into the model as an explicit state
variable and, consequently, growth and decay of microfauna can be
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included in a traditional way, see Figure 8.5. In Table 8.4 the growth and
decay processes are introduced. These equations are added to the original
IAWQ model.

Process XS XZ XB,H XB,A XP SO XND Process rate 

Aerobic growth
of microfauna
on heterotrophs

1
− 1

YZ
−1 − YZ

YZ
ν1

Aerobic growth
of microfauna
on autotrophs

1 − 1
YZ

−1 − YZ

YZ
ν2

Decay of
microfauna

1–fP –1 fP iXB–fP iXP bZXZ

ν1 = µ̂Z
X B,H

K B,H + X B,H







SO

KO,Z + SO







X Z ν2 = µ̂Z

X B,A

K B,A + X B,A







SO

KO,Z + SO







X Z

Table 8.4 The simplified growth and decay processes for higher order
organisms (XZ), included in model C.

The model described in Table 8.4 is still a very rough approximation of the
true processes. Firstly, we are lumping all types of higher organisms into
one variable, XZ, although it is clear that different organisms have quite
different life strategies. Secondly, the decay process is modelled equivalent
to the decay processes of heterotrophs and autotrophs, that is, a constant
decay rate coefficient, bZ, is assumed and the microfauna is considered to
decay into the same proportions of XS, XP and XND as the bacteria. The
concept of death-regeneration is also applied.

The growth process is modelled as a Monod-type reaction (see Section 3.2)
that only occurs when oxygen is available (although protozoa that thrive
during anaerobic conditions exist, such organisms are neglected in the
model). For simplicity we use switching functions to limit the growth rate
if no heterotrophs or autotrophs are present. However, these functions are
added mainly to avoid numerical problems (i.e., negative concentrations).
We set the values of both the heterotrophic and autotrophic half-saturation
coefficient (KB,H and KB,A) to 100 mg COD/l, which means that the growth
of microfauna will primarily be limited by the amount of oxygen available
within the biofilm, as the biomass concentrations are generally much
higher. The growth of microfauna is also accompanied by a direct
consumption of oxygen. The oxygen half-saturation coefficient, KO,Z, is set

326 Modelling Aspects of Wastewater Treatment Processes



to a value of 0.5 mg COD/l (same value as used for model B), that is,
assuming the higher order organisms to be slightly more sensitive to
oxygen limitation than the bacteria, since no information is available to
determine the true value in the experimental study.

Some investigations have been performed to determine growth, yield and
decay coefficients for various higher order organisms in suspended-growth
systems (e.g., Sherr and Sherr, 1984; Ratsak et al., 1994; Ratsak et al.,
1996). These results show significant spreading depending on the specific
type of organism investigated and on the type of bacteria available as food
source (e.g., Curds, 1977; Bloem et al., 1988; Glaser, 1988). Generally the
found values appear to be lower than for the heterotrophic organisms.
Values for µ̂Z , YZ and bZ are not known for the microfauna present in the
experimental study, however, it is a reasonable assumption that they are
lower than for the bacteria. Therefore, YZ and bZ are fixed to values that are
20% of the values used for the heterotrophs. The growth rate coefficient
will be used to investigate the behaviour of the model when trying to
mimic the effects of the microfauna in the experimental system. Note that
the parameter values (µ̂Z , YZ and bZ) are identical whether the microfauna
growth is based on consumption of heterotrophs or autotrophs, as no
detailed knowledge of these processes is available.

However, initial simulations using model C indicated some severe
problems. In a simulated dynamic biofilm system the different organisms
are competing for space, as well as for substrate, oxygen, etc., and less
favoured species will simply be outgrown and removed from the system
when it has reached a steady state. A main reason why heterotrophs and
autotrophs can coexist in a simulated biofilm process during steady-state
conditions (see Figure 8.8) is that they are both competing for one resource
(oxygen) but are also dependent on one more component independently of
each other (heterotrophs need readily biodegradable substrate and auto-
trophs require ammonia). This means that the slow-growing autotrophs can
compete with the heterotrophs in the deeper layers of the biofilm if the
concentration of readily biodegradable substrate is sufficiently low
(because it has been consumed in the upper layers) and there is still some
oxygen available.

The situation is different for the microfauna, modelled according to Table
8.4, especially when the half-saturation coefficients influencing the micro-
fauna are set to values comparable to those used for the bacteria. In simple
terms this means that the microfauna is only competing for oxygen with
the bacteria and, consequently, there exist three different steady-state

Chapter 8.  Modelling Microfauna Influence 327



solutions. If the growth rate of the microfauna is set too low then no
microfauna will exist within the biofilm, and if the growth rate is set
somewhat higher then the slow-growing autotrophs will be completely
consumed by the higher order organisms, while the heterotrophs are hardly
affected. The third case occurs when the growth rate for the microfauna is
high and the organisms can outgrow the heterotrophic bacteria as well. In
this case the microfauna dominates the entire biofilm and the whole system
collapses (the microfauna consumes everything). If the half-saturation
coefficients affecting the microfauna are set to extremely large values, it is
possible to find some other possible solutions where the microfauna may
inhabit certain regions of the biofilm. For example, if KO,Z is set to a value
of 100 mg O2/l, this would imply that the growth of microfauna is very
sensitive to the dissolved oxygen concentration available in the biofilm
(< 10 mg O2/l) and growth may be limited to the outmost region of the
biofilm (due to the behaviour of the switching function). However, such
high values are unreasonable if the coefficient is to be regarded as a half-
saturation coefficient in the traditional sense. Using the more reasonable
parameter values discussed above and setting the specific growth rate of
the microfauna to 20% of the specific growth rate for heterotrophs leads to
a situation where all autotrophic bacteria are consumed by the microfauna
and no nitrification can occur.

However, the microscopical investigations of the experimental study had
suggested that the higher order organisms present in the system primarily
appeared to be dominating the outmost region of the biofilm. In order to
achieve such a situation in the simulated system an empirical function was
added to the model. This function may be regarded as a rough way of
including information of the life strategy of the higher order organisms
present in the experimental system. The predators present were to a large
extent filter feeders which attach themselves to the surface of the biofilm,
as earlier discussed in Section 8.1. The chosen empirical function is
defined as

y z L F( ) = e
α z

L F





 −1

eα −1

(8.3)

where z is the space coordinate of the biofilm perpendicular to the
substratum (z = 0 at the substratum) and LF is the thickness of the biofilm.
Note that LF is not a constant but a dynamic variable. The parameter α
determines how rapidly the function is rising and was set to 7, which
implies that the function equals 0.5 when the ratio of z and LF equals 0.9.
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By multiplying the two growth rate expressions in Table 8.4 with equation
(8.3), we can describe a system in which the microfauna is very active at
the outer regions of the biofilm (i.e., z /LF close to 1) and inactive in the
deeper regions of the film, that is, in principle the same behaviour as found
in the experimental system. In Figure 8.6 the behaviour of equation (8.3) is
demonstrated.
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Figure 8.6 Behaviour of the empirical function (8.3) used to describe the
life strategy of the microfauna in model C (α= 7).

If possible, empirical functions, such as equation (8.3), should be avoided
in mathematical models that are based on an understanding (or at least a
hypothesis) of the processes involved. However, there is no way to include
information of the life strategies of higher order organisms in models
available today. Therefore, an empirical function is used in model C, in
order to obtain a description that can produce a situation similar to what
was observed in the true process.

Another problem occurs when equation (8.3) is included in the growth rate
expressions of model C. The specific growth rate of the microfauna must
be set to a large value, which will allow the higher order organisms to
dominate the outer region of the biofilm. Furthermore, the modelled
biofilm is always influenced by a detachment process according to equa-
tions (7.16) and (8.1). The combination of bacteria consumption by the
microfauna and detachment will lead to a shrinking biofilm because the
growth of bacteria within the biofilm is not sufficiently high to compensate
for this. Therefore, the attachment rate must also be increased in order to
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sustain the biofilm when the microfauna is active. However, an increased
attachment rate due to microfauna influence was discussed in Section 8.2
as one probable effect of filter feeders in a biofilm process. The model
behaviour appears to strengthen this hypothesis.

An advantage of model C is the fact that the changing amount of micro-
fauna can be followed during simulations, whereas its effect can only be
observed as an increased oxygen consumption, when using model B.
However, the higher model complexity and the necessary inclusion of an
empirical function are significant drawbacks of model C. Note that all
physical parameters affecting the microfauna in model C (for example,
density, effective diffusion rate, attachment and detachment rate) are iden-
tical to the ones used for the other particulate components in the model.

The model complexity could be even further extended by, for example,
including several types of higher order organisms, separating the growth
process of microfauna depending on the food source by using different sets
of parameters for the consumption of heterotrophs and autotrophs, and
modelling the mobility of the microfauna. However, as there is no detailed
knowledge of the microfauna influence and no experimental data to model
the processes in any further details, such an approach would have no
relevance even though it might improve the model fit to the experimental
data from this specific experiment.

Model Calibration

The calibration of highly complex models as the ones described above is
always an awkward task. Not only the parameters of the biological model
must be adjusted but also the parameters controlling diffusion and other
transport mechanisms, and the structure of the biofilm must be considered.
Several parameter combinations may explain the experimental results
equally well. The biofilm models are definitely not globally identifiable. In
order to keep the calibration procedure as simple as possible, only a limited
number of parameters were modified, whereas most parameters were kept
fixed. The models were calibrated against the steady-state values for the
inhibited case. The reason for this was that the majority of higher order
organisms did not affect the process in this case and the mechanisms of the
IAWQ model would be directly applicable. The default set of parameters
for the IAWQ model (see Table 3.1), proposed by Henze et al. (1987), was
applied independently of any calibration, only adjusted to the temperature
of 15˚C by the traditional Arrhenius formula, i.e.,
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k

ToC
= k

20oC
eζ k T−20( ) (8.4)

where T is the temperature in ˚C, k20˚C is the parameter value for 20˚C and
ζk is a correction coefficient specific to every individual kinetic parameter
k. The chosen values of ζk were also the default ones (Henze et al., 1987)
except that the coefficient for the heterotrophic growth rate was set equal
to the coefficient for the autotrophic growth rate. The same value was also
used for the correction factor of the autotrophic decay rate, since Henze et
al. do not provide any suggestion for this coefficient. Only two of the
default parameters had to be further modified. The heterotrophic yield, YH,
was adjusted to 0.52 g COD/g COD (the default value is 0.67). This was an
anticipated adjustment, firstly because some predators were still active in
the biofilm in spite of the inhibition and, secondly, due to the type of
organic substrate in the influent synthetic wastewater. Several investi-
gations have revealed low yield values when a system is fed with a pure
and very easily biodegradable substrate, such as acetate, methanol and
ethanol (Nyberg, 1994). Moreover, the correction factor for anoxic growth
of heterotrophs, ηg, was adjusted to 0.4 (default value 0.8). This modifica-
tion was also an expected one, since a nitrogen mass balance based on the
data from the experimental study indicated that very little denitrification
occurred. Most of the physical parameters were also kept fixed during the
calibration. As earlier discussed, the oxygen diffusion coefficient was used
as a tuning parameter within reasonable limits. According to the hypo-
theses, the attachment rate was expected to be high when the system was
not inhibited and lower for the inhibited system. For simplicity the attach-
ment coefficient (kat) was set to zero for the inhibited case, i.e., no attach-
ment was assumed to occur. Instead the detachment coefficient (kshear) was
used to calibrate the model and a value of 0.37 d-1 was found to be appro-
priate. The above parameter modifications produced a model that well
described the steady state of the experimental system during inhibition.
This means that the entire model A (with approximately 50 parameters)
could be calibrated by tuning only four parameters (the correction factor
for anoxic growth of heterotrophs, the heterotrophic yield, the oxygen
diffusion rate and the detachment rate coefficient) and using default values,
and intelligent guesses based on various assumptions for the values of all
other parameters.

In order to calibrate models B and C exactly the same set of parameters as
for model A was used. This is possible by setting the parameter controlling
the proportion of biomass (γ) that is consumed by the microfauna to zero
in model B and the microfauna growth rate ( µ̂Z ) to zero in model C, that
is, models A, B and C are identical for the inhibited case. The reason for
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this is to simplify the comparison of the three models, although it is clear
that some predators are active also during the inhibited period.

When the models have been calibrated for the inhibited case (i.e., limited
microfauna influence), the idea is that the models will predict the behav-
iour of the non-inhibited system by modifying a few model parameters
according to the proposed hypotheses. Firstly, the larger mass of the
biofilm and lower TSS concentration in the bulk water phase for the non-
inhibited case is modelled as an increased attachment rate. Secondly, the
consumption of oxygen and bacteria by microfauna, both on the surface
and within the biofilm, must be modelled. One possible way to achieve this
in model A, would be to increase the decay rates (bH and bA) of the micro-
organisms. However, as most of the decay material is transformed into XS
in the IAWQ model and only indirectly affects the oxygen consumption
(unless the death-regeneration principle is rejected) and the fate of XS
within the biofilm is uncertain, this approach was rejected. Instead,
lowering the yield coefficients (YH and YA) is considered to be a more
direct modelling approach. Such a change will more directly affect the
oxygen and substrate balance within the biofilm, that is, more oxygen and
substrate is required per unit of formed biomass to mimic that a part of the
biomass is consumed by microfauna.

For model B the increased oxygen consumption by the microfauna can be
modelled directly by increasing the fraction of biomass (γ) that does not
decay according to the death-regeneration principle but is simply removed
from the system, while oxygen is consumed. The reduced amount of oxy-
gen available within the biofilm will in turn affect the growth rate of new
biomass.

For model C a similar approach is used, although here we define explicit
growth and decay rate expressions to describe the amount of microfauna
available in the biofilm and the transformation of higher order organisms
into inert and degradable substrate by decay. Table 8.5 qualitatively
describes how the most important model variables are affected by changing
the yield coefficient values, the attachment rate and the fraction of biomass
consumed by the microfauna. The parameter changes are imposed one at a
time and are made in the vicinity of the values found during the initial
calibration of the inhibited process.
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decrease YH and YA increase kat increase γ

soluble COD conc. – + o

TSS conc. – o –

ammonia conc. – + +

nitrate conc. + – –

biofilm mass – + –

Table 8.5 Effects of parameter changes on some important model
variables (+: increase; –: decrease; o: insignificant effect).

It is noticeable that an increased attachment rate has almost no effect on
the TSS concentration in the bulk phase. This is because the detachment
rate is defined as a function of the biofilm thickness (8.1), that is, it will
also increase and when new steady-state conditions are established the net
detachment from the biofilm will be almost the same as before the
attachment rate was increased. The effect of single parameter changes
when using model C are not provided because in this model the microfauna
growth rate and attachment rate must be modified simultaneously when the
microfauna at the upper region of the biofilm becomes active. The effects
will be demonstrated in the next section. Furthermore, some of the varia-
tions shown in Table 8.5 are also due to secondary effects of a changing
biofilm surface area, for example the change in nitrification capacity when
the attachment rate is increased. The surface area is modelled according to
equation (8.2) and will consequently influence processes such as diffusion.
Therefore, simulations with a different surface area model (e.g., a constant
surface area) may exhibit somewhat different results. Note that the model
extensions in models B and C are naturally only active within the actual
biofilm, whereas the processes in the bulk water phase are in all cases
described by the original IAWQ model.

8.4 Model Simulations and Validation

The simulations presented in this section are performed in  AQUASIM
using 25 grid points (2 for the bulk water phase and 23 for the biofilm
itself) and a second-order approximation of the numerical flux terms (cf.
Section 7.2). This means that the simulations require a significant amount
of computer capacity. However, using 10 grid points and a first-order
approximation of the flux terms will produce results that may differ 10 t o
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20% from the ones presented here. Increasing the accuracy even further
(e.g., 50 grid points) will produce results that can hardly be distinguished
from the ones achieved with 25 grid points. Therefore, 25 grid points and a
second-order approximation of the flux terms were considered a good com-
promise between numerical accuracy and computational effort.

It should be noted that no optimization algorithms have been applied in
order to minimize the differences between the measured variables and the
simulated data. Such an approach would certainly improve the results in
the sense that the simulated data would fit the measured data better.
However, the purpose of the simulations presented below are more focused
on demonstrating the principal behaviour of the models and their ability to
describe some effects of microfauna influence on biofilm systems by fairly
simple model modifications. The primary aim when modifying the models
to describe a situation where the microfauna is fully active, have been to
achieve models that predict the limited nitrification capacity of the
experimental process. Not until the ammonia and nitrate concentrations
could be accurately predicted by the model, the other measured variables
were considered for calibration.

Inhibited Case

As discussed in the previous section, models A, B and C all produce
identical solutions when no microfauna are active within the biofilm. The
steady-state results for the inhibited case are presented in Table 8.6 and
compared with the measured average values from the experimental study.
Note that ‘steady state’ here means results obtained from dynamic simula-
tions with constant operating conditions running for 400 days.

measured simulated

soluble COD [mg COD/l] 40 40

TSS [mg COD/l] 120 118

ammonia [mg N/l] 10.7 10.5

nitrate and nitrite [mg N/l] 21.7 21.4

biofilm mass [g] 1.11 1.10

biofilm surface area [m2] NA 0.13

biofilm thickness [mm] NA 0.86

Table 8.6 Measured and simulated steady-state values for the calibrated
model describing the inhibited case (NA: not available).
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Table 8.6 clearly shows that it is possible to obtain a mathematical model,
which is capable of mimicking the average experimental results with good
accuracy. In Figures 8.7 and 8.8, the corresponding simulated steady-state
concentration profiles in the biofilm are shown for the most important
soluble and particulate variables, respectively.
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Figure 8.7 Steady-state concentration profiles of the soluble components
within the biofilm for the inhibited case.
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Figure 8.8 Steady-state concentration profiles of the particulate com-
ponents within the biofilm for the inhibited case.
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In both figures, the concentrations are presented as mass per total volume
of biofilm, i.e., including the water fraction of the biofilm. The substratum-
biofilm interface is positioned at z= 0 and the solid line at z= 0.86 indicates
the interface between the biofilm and the bulk water phase (that is, the
steady-state biofilm thickness).

Non-Inhibited Case

The first attempt to model the influence of the higher order organisms on
the biofilm in general and on the nitrification capacity in particular is
performed by using the original IAWQ model, describing the effects of the
microfauna as an increased oxygen consumption (model A). By increasing
the attachment rate, the behaviour of the filter feeding organisms on the
surface of the biofilm can be described. The attachment rate parameter (kat)
is set to 0.055 m/d, identical for all different particulate matter (the value
was zero for the inhibited case), see equation (7.17). Lowering the yield
coefficients for both the heterotrophs and the autotrophs result in a
situation where more oxygen and substrate are required to form the same
amount of biomass. This effect will to some extent be similar to predators
consuming bacteria and oxygen in the biofilm. For simplicity, the values of
both yield coefficients are reduced in the same way although we have no
information if both types of bacteria are affected by the microfauna to the
same extent. The yield coefficients are set to values that are 30% lower
than the calibrated values used for the inhibited case (YH changed from
0.52 to 0.37 and YA from 0.24 to 0.17). Apart from the parameter changes
described above, the model is exactly the same as the one used for the
inhibited case.

In Table 8.7, the steady-state results for the non-inhibited case are
presented and compared with the measured average values from the experi-
mental study. The reduced nitrification capacity of the non-inhibited
system is reflected by the model simulations. This is due to the more
severe oxygen limitation within the biofilm which in turn is a combined
effect of the lower yield values and of the reduced biofilm surface area,
which affects the diffusion process. The other measured variables are also
close to the values predicted by the model.
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measured simulated

soluble COD [mg COD/l] 47 45

TSS [mg COD/l] 76 78

ammonia [mg N/l] 21.4 22.2

nitrate and nitrite [mg N/l] 12.1 12.5

biofilm mass [g] 1.67 1.61

biofilm surface area [m2] NA 0.095

biofilm thickness [mm] NA 1.56

Table 8.7 Measured and simulated steady-state values for model A
describing the non-inhibited case (NA: not available).

In Figures 8.9 and 8.10, the corresponding simulated steady-state concen-
tration profiles in the biofilm are presented for the main soluble and parti-
culate components. The substratum-biofilm interface is positioned at z= 0
and the solid line at z = 1.56 indicates the interface between the biofilm and
the bulk water phase.
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Figure 8.9 Steady-state concentration profiles of the soluble components
within the biofilm for the non-inhibited case using model A.
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Figure 8.10 Steady-state concentration profiles of the particulate compo-
nents within the biofilm for the non-inhibited case using
model A.

One drawback of model A is that in order to describe the effects of
microfauna influence, the yield coefficients for the bacteria are modified.
There is no reason to assume that the yield values for the heterotrophs and
autotrophs are actually affected by the higher order organisms. Moreover,
the primary hypothesis discussed in Section 8.2 was that the oxygen con-
sumption of the microfauna could have a major impact on the nitrification
capacity of the biofilm. Although the change of the yield values will
influence the oxygen consumption within the biofilm it will also affect the
amount of substrate required for growth of the bacteria, which is not
realistic. Especially, a lower autotrophic yield value will improve the
nitrification capacity per mass unit of autotrophic biomass, which is
contradictory to the purpose of decreasing the yield value in terms of an
increased oxygen consumption. A better method is to apply the basic
IAWQ model in its original form to model the behaviour of the bacteria
and add on processes that will only occur due to the presence of micro-
fauna in the system. Model B represents a simple approach to achieve this.

In model B two new processes are added to the IAWQ model to describe
the consumption of bacteria by the predators, as shown in Table 8.3. The
consumption of bacteria results in an immediate oxygen consumption. The
process is modelled as a traditional decay process in order to keep the
model simple and the factor γ describes the amount of bacteria that is
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consumed by microfauna compared with the amount that is removed by the
normal decay process. The rate of consumption is set directly proportional
to the bacteria concentration, that is, the predators are more active in
regions of the biofilm where there is more ‘prey’ available. To simulate the
non-inhibited process we assume a value of γ= 1 and determine a suitable
corresponding value of the attachment rate to be 0.032 m/d. The steady-
state values for the non-inhibited system using model B are presented in
Table 8.8.

measured simulated

soluble COD [mg COD/l] 47 46

TSS [mg COD/l] 76 84

ammonia [mg N/l] 21.4 20.2

nitrate and nitrite [mg N/l] 12.1 11.9

biofilm mass [g] 1.67 1.40

biofilm surface area [m2] NA 0.11

biofilm thickness [mm] NA 1.22

Table 8.8 Measured and simulated steady-state values for model B
describing the non-inhibited case (NA: not available).

Most of the simulated values correspond well to the measured ones, only
the biofilm mass is somewhat different. However, this is easy to accept if
we consider the fact that the consumption of bacteria by microfauna is
modelled simply as an oxygen consumption and the bacteria are removed
from the process. The normal decay process of bacteria results in
production of inert material and substrate that may be used for new
biomass growth. The sum of the steady-state ammonia and nitrate concen-
trations is also lower in model B than in model A. This is an effect of the
removal of biomass when using model B, as the biomass contain nitrogen.
The corresponding simulated steady-state concentration profiles of the
soluble and particulate variables are shown in Figures 8.11 and 8.12.

The structure of model B allows us to describe the increased oxygen
consumption in the biofilm due to the respiration of the microfauna – but
only as a function of the bacteria concentration in the biofilm. Moreover,
the mass of bacteria that is consumed by the predators are lost from the
process.
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Figure 8.11 Steady-state concentration profiles of the soluble compo-
nents within the biofilm for the non-inhibited case using
model B.
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Figure 8.12 Steady-state concentration profiles of the particulate compo-
nents within the biofilm for the non-inhibited case using
model B.

In model C an attempt is made to directly include the growth and decay
processes of microfauna into the model, see Table 8.4. The necessity to
include an empirical function, i.e., equation (8.3), in the growth processes
to describe some rudimentary information of the life strategy of the micro-
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fauna dominating the experimental system, was discussed in the previous
section. By setting the specific growth rate of the microfauna to a high
value (3 d–1), the higher order organisms will be able to dominate the outer
region of the biofilm in steady state, which is in agreement with the micro-
scopical examinations of the experimental system during the non-inhibited
periods. The growth rate will rapidly decrease as a function of biofilm
depth due to the exponential behaviour of the empirical function (see
Figure 8.6).

However, if certain precautions are not taken then the microfauna in the
biofilm will continue to consume bacteria within the biofilm while the
outmost layer of the film is lost due to the detachment process. Over a
short period, the simulated biofilm will get thinner and finally the system
will collapse when all bacteria have been consumed. To balance this
decrease of the biofilm thickness, the attachment rate coefficient is
increased. A suitable value of kat for the non-inhibited case was found to be
0.32 m/d, which is considerably higher than the values used for models A
and B. This is a direct consequence of having a layer of active predators at
the surface of the biofilm with a high growth rate (in order to outgrow the
heterotrophs in this region). Any biomass in the bulk water phase that is
attached to biofilm will be consumed immediately and only to a small part
increase the thickness of the film because of the low yield value for the
microfauna. Moreover, the growth of the most active bacteria (heterotrophs
just below the region where the microfauna is dominating) will also be
consumed by the microfauna and result in a limited increase of the biofilm
thickness. In models A and B the attachment process is a more passive
process, where attached biomass is simply incorporated into the biofilm,
which in turn leads to a thicker biofilm. The active predators at the biofilm-
bulk water interface dramatically affect this process and, consequently, the
attachment rate has to be increased. The values of the other model para-
meters in model C are the ones that were discussed in Section 8.3.

In Table 8.9, the simulated steady-state results for the non-inhibited case
using model C are presented and compared with the measured average
values from the experimental study. The reduced nitrification capacity is
correctly described by the model as an effect of the more severe oxygen
limitations within the biofilm due to the growth of microfauna at the outer
region of the biofilm. However, the predicted biofilm mass is more than
25 % lower than the measured biofilm mass at the end of the experimental
study. 
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measured simulated

soluble COD [mg COD/l] 47 55

TSS [mg COD/l] 76 15

ammonia [mg N/l] 21.4 20.6

nitrate and nitrite [mg N/l] 12.1 11.6

biofilm mass [g] 1.67 1.25

biofilm surface area [m2] NA 0.12

biofilm thickness [mm] NA 1.02

Table 8.9 Measured and simulated steady-state values for model C
describing the non-inhibited case (NA: not available).

The simulated steady-state biofilm mass could be increased by increasing
the attachment rate even further. However, this would reduce the surface
area of the biofilm, see Figure 8.4, and, consequently, limit the diffusion of
oxygen into the biofilm. This would in turn severely affect the nitrification
process. The large difference between the measured and simulated TSS
concentration in the bulk phase is due to a combination of the high attach-
ment rate and the high consumption of biomass by the microfauna at the
biofilm-bulk interface. Both these discrepancies indicate that the growth
rate (and, consequently, the oxygen consumption) of the microfauna is too
high in the model.  However, in order to reach a steady-state solution
where the microfauna is dominating the outer region of the biofilm, the
growth rate of the microfauna must be sufficiently high so that the hetero-
trophs in this region cannot compete. For example, reducing the specific
growth rate of the microfauna to 2 d–1 will result in a steady-state solution,
where there is no microfauna at all in the biofilm. In reality, ‘predator-
prey’ systems are probably never in steady state (cf. the famous Volterra
cycle). In this early stage of the modelling work it is, however, necessary
to focus on steady-state solutions. The dynamics of biofilm systems
including higher order organisms are so complex that it would be imposs-
ible to start the investigation by looking at the dynamic behaviour. First the
processes and mechanisms affecting the various predators in a biofilm need
to be investigated and more knowledge gained.

The simulated steady-state concentration profiles of the soluble and parti-
culate variables corresponding to Table 8.9 are shown in Figures 8.13 and
8.14.
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Figure 8.13 Steady-state concentration profiles of the soluble compo-
nents within the biofilm for the non-inhibited case using
model C.
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Figure 8.14 Steady-state concentration profiles of the particulate compo-
nents within the biofilm for the non-inhibited case using
model C.
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Dynamic Behaviour

The discrepancies between the measured average values and the simulated
steady-state results can partially be a consequence of the fact that the
experimental process is not in steady state, as discussed above. There are
long-term effects that influence the experimental study, which means that
some of the measured average values used for the model validations are
somewhat misleading. In Figures 8.15 and 8.16, the time series for the
concentrations of nitrate and total suspended solids in the bulk phase are
shown for the full experimental duration, i.e., periods I-V (cf. Section 8.1,
reactor B). These graphs indicate that there are some slow dynamics
involved in the process.
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Figure 8.15 Measured values of the total suspended solids concentration
in the bulk water phase during the full experimental duration.
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Figure 8.16 Measured values of the total suspended solids concentration
in the bulk water phase during the full experimental duration.

The time series for the TSS concentration shows that the concentration
seems to decrease with time during the inhibited period and that the
concentration at day 385 (end of the inhibited period) is approximately the
same as the one that was measured during the initial non-inhibited period.
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The corresponding time series for the nitrate concentration remains
unaffected by the strange behaviour of the TSS concentration. When the
addition of inhibitors is stopped, the concentration of TSS continues to
decrease whereas the nitrate concentration remains at a high level for
almost 50 days. After this time, the concentration of nitrate decreases to a
level which is slightly higher than what was measured during the initial
non-inhibited period. Simultaneously with the decrease of the nitrate
concentration, the concentration of TSS again returns to the level which
was observed towards the end of the inhibited period.

No attempts have been made to model the dynamics of the experimental
system in this work. Instead we have focused on explaining the observed
effects based on steady-state reasoning. However, in order to demonstrate
the dynamic behaviour of the models, a simulation is performed using
model C, for the full experimental duration. The results of such a simula-
tion are shown in Figures 8.17–8.20, and compared with the measured
values from the real experiment. Note that no attempts have been made to
introduce the parameter changes in a smooth manner, as the system
changes from a non-inhibited system into an inhibited system and back
again. The parameter variations of the specific growth rate of the micro-
fauna and the attachment rate are simply imposed as step functions. The
only special condition compared with the previously performed simula-
tions is that during the inhibited period not all of the microfauna within the
biofilm are considered to decay. Instead a small fraction of the predators
(0.5 % of the biomass) is modelled to remain in a dormant state. This is a
necessary modification, otherwise it is impossible to model the recovery of
the microfauna when the inhibition is stopped. Moreover, the attachment
rate is modelled to increase as a linear function of time during the first five
days when the inhibition is stopped, as the increased attachment rate is
assumed to coincide with the recovery of the filter feeding organisms at the
outer region of the biofilm.

The simulations indicate that the model performs reasonably well when the
inhibition is initiated, in spite of the fact that no special calibration has
been carried out to model this dynamic situation. The slow dynamics of the
TSS concentration during the inhibited case is not predicted by the model
(see Figure 8.20). These dynamics may indicate that the detachment and
attachment of biomass are not uniformly constant over time. The effect
may be due to the slow forming of a more dense biofilm when the micro-
fauna is not active, which would be less exposed to detachment processes
than the non-inhibited biofilm.
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Figure 8.17 Measured (o) and simulated (solid) values of the nitrate+
nitrite concentration in the bulk water phase during the full
length of the experimental study.
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Figure 8.18 Measured (o) and simulated (solid) values of the ammonia
concentration in the bulk water phase during the full length
of the experimental study.
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Figure 8.19 Measured (o) and simulated (solid) values of the soluble
COD concentration in the bulk water phase during the full
length of the experimental study.
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Figure 8.20 Measured (o) and simulated (solid) values of the TSS
concentration in the bulk water phase during the full length
of the experimental study.

It also seems reasonable to assume that the inhibited biofilm system and its
bioscenosis will change over time due to effects from the long-term
exposure to the inhibitory substances. Moreover, the inhibition of certain
higher order organisms may encourage other species, occupying a similar
ecological niche, to flourish.

The observed delayed reaction in the experimental system, both with
regard to the nitrification process and the concentration of TSS when the
inhibition is stopped, may be an indication of a gradual recovery of those
higher order organisms that were present in the system prior to the inhibi-
tion. The model predicts this recovery to be significantly faster, primarily
due to the necessary high growth rate of microfauna at the outer region of
the biofilm, discussed earlier. A number of other processes are probably
involved in the real system. In order to be able to evaluate and dynamically
model these effects, a better understanding and a more elaborate experi-
mental program – including future modelling aspects – will be required.

8.5 Future Model Development

Predators, such as rotifers and ciliates, can have a strong negative effect on
nitrification in aerobic biofilm processes. However, in the literature the
effects of microfauna are often neglected and there are no established
mathematical models available for the prediction of the behaviour of
biofilm processes exposed to predator influence. This is believed to be an
important drawback of current biofilm models. As a first approximation,
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the effects of microfauna can, during steady-state conditions, be modelled
in a fairly simple way by adjusting the oxygen balance of the system, as
demonstrated in this work. Model predictions show reasonable agreement
with experimental results and appear to partially verify the postulated
hypotheses on the effect of filter feeding organisms based on their oxygen
consumption.

In order to describe the microfauna influence in a more mechanistic
manner, a first attempt to incorporate the microfauna as an explicit state
variable was investigated. This approach increases the model complexity
and gives rise to a number of questions with regard to growth and decay of
microfauna, for example,

• can the growth rate of microfauna be adequately described as a
Monod-type expression;

• is the decay process of microfauna similar to the decay of
bacteria;

• what are the appropriate parameter values for these processes;
• is the growth of microfauna limited by other factors than oxygen;
• how does the microfauna affect the structure and density of the

biofilm;
• do microfauna and bacteria coexist in steady state or is the

system inherently dynamic;
• how should information about the life strategies for different

types of microfauna be included into a model;
• how should the mobility of higher order organisms be modelled;
• what type of defence mechanisms against predators do different

bacteria exhibit and how should this be included in a model?

The above and many other questions need to be answered before the
influence of microfauna in biofilm systems can be modelled accurately.
There is also a great deal of uncertainty concerning the basic modelling of
biofilm systems, neglecting the higher order organisms. These questions
involve, for example, the existence of a hydrolysis process within the
biofilm, various transport mechanisms within the film, hydraulic pheno-
mena on the surface of the film, and the changing structure, porosity and
density of the biofilm. Another important issue is the question if a one-
dimensional biofilm model is at all capable of accurately describing the
significant heterogeneity found within biofilm systems.
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The future modelling work of biofilm systems will continue in the
direction pointed out in this section. However, it is obvious that a large
number of questions remain to be answered. There exist both a lack of
fundamental knowledge of predator-bacteria interactions and how such
knowledge should be incorporated into mathematical models. In order to
model the details of microfauna behaviour, much more detailed experi-
mental studies of such systems must be carried out (compared with the
study described in this section), where molecular probes for bacteria are
used to measure variables within the biofilm and not only in the bulk water
phase. An important problem is due to the already extreme complexity of
biofilm models and great effort must be made to avoid including a large
number of new complex processes. Overly complex models can be fitted to
almost any type of data and such models will not be operationally useful.
Instead we must focus on keeping the models as simple as possible. It
appears unrealistic to include different types of predators as different state
variables and allowing them to be active simultaneously. Instead the domi-
nating type of higher order organism in a specific process must be deter-
mined and a model should focus on describing the behaviour of only this
organism (directly or indirectly), at least with regard to the limited know-
ledge that exists of predator-bacteria interactions today.

It is important to maintain an engineering approach with regard to
modelling of biofilm systems. Researchers within the field of microbiology
tend to describe processes at the individual cell level but this approach is
completely unrealistic if the models are to be used for any practical
operational purposes. In the work presented here, the model extensions
suggested are reduced into one basic assumption, namely the possible
oxygen limitation within the biofilm due to the respiration of higher order
organisms. Other model modifications would also be possible, for
example, modifying the diffusion rates, but somehow they will all be
related to the amount of available oxygen within the biofilm. Based on the
necessity for simple models and the limited available knowledge of
microfauna influence on biofilms, we would recommend models where the
microfauna is described in an indirect manner, that is, the use of model B.

Finally, the process of describing an experimental study and a mental
model in an entity, encompassed within the framework of a mathematical
model, is an efficient way of analysing experimental data, as areas that
require further attention are highlighted. The modelling approach that was
adapted in this work regarding the microfauna influence, should only be
considered as a first attempt with serious limitations. However, it appears
as if the basic hypotheses on the role of filter feeding organisms (i.e.,
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increased oxygen consumption in the biofilm and a higher attachment rate)
seem to provide a modelling direction that may be further explored to
attain a better understanding of the effects of microfauna in different
biofilm systems. However, it should be noted that biofilm systems domi-
nated by other types of higher order organisms with different life strategies
may require a different modelling approach. Some of the effects observed
in this experimental study may also be influenced by the type of carrier
material used, which may affect both the structure and the microbial
population of the developed biofilm.
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Chapter 9

____________________________________________________________

Conclusions

Wastewater treatment processes can be considered the largest industry in
terms of volumes of raw material treated. The large treatment plants that
have been built to perform this task are generally operated with only
elementary control systems that are often fed only with off-line data; this
situation is rather irrational. It is believed that a more efficient use should
and could be made of the large investments in construction and equipment
for wastewater treatment by means of process control.

The biological behaviour of biotechnological processes occurring in a
bioreactor has a complexity unparalleled in the chemical industry. As a
consequence, to predict its behaviour from information about the environ-
mental conditions is extremely difficult. The number of reactions and
species that are involved in the system may be very large. An accurate
description of such complex systems can therefore result in very involved
models, which may not be useful from a control engineering viewpoint.

Modern control systems rely heavily on adequate process models. Design
of advanced controllers is based on a mathematical description of the
process. Since the involved biological processes are highly non-linear, time
varying and subject to significant disturbances, the models require adjust-
ment on-line, based on available data from various sensors. Partly due to
the lack of available sensors and the complexity of the processes, a com-
promise must be made between the complexity and the accuracy of the
used models.



9.1 Summary of Results

In this work the problem of over-parametrization in complex models
describing the activated sludge process has been approached. Existing
complex models of the AS system dynamics do not have a unique set of
parameters which can explain a certain behaviour, that is, the models are
not identifiable. An attempt has been made to develop reduced order
models with a smaller number of states and parameters, which are capable
of adequately describing the major dynamical behaviour of both the
carbonaceous and nitrogenous activities of the AS process. Still, the
mechanistic structure of the modelled reactions has been retained when
possible. Furthermore, the lack of available on-line sensors emphasizes the
need for a more realistic complexity of models for operational purposes.

A thorough investigation of the identifiability of the proposed reduced
order models has been performed using both off-line and on-line algo-
rithms. Results have been presented for a large number of different cases
depending on which variables are assumed to be measurable. Under certain
conditions the simplified models have been shown to be globally identi-
fiable, even when the data are corrupted by a significant amount of noise.
Comparisons between the IAWQ model and the reduced models based on
numerical simulations have verified that the main features of the dynamics
are retained. 

Correlations between different model parameters under various conditions
have also been investigated. One such correlation exists between the reac-
tion rate factor and the decay rate factor. The difficulty of estimating these
parameters separately in a global sense compared with estimating the com-
bined net reaction rate was demonstrated. Finally, a sensitivity analysis of
the reduced model to various parameter changes has been performed. 

The primary objective of the reduced order models is to apply them as an
on-line tool for supervision and control in a hierarchical control structure.
Since the model parameters can be updated from on-line measurements,
any deviation between the real plant and the model predictions may be
used in an early warning system for process diagnosis purposes. 

The major contribution related to the work on modelling the settling
process was a detailed evaluation of the behaviour of a new robust settler
model compared with other one-dimensional layer models available. It has
also been demonstrated how the model is integrated with models of the
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biological reactors. The settler model should be regarded as a ‘first-order’
model that captures the wave behaviour and the conservation of mass for
any type of loading. The only calibration needed for the model is the estab-
lishment, via batch settling tests, of the batch settling flux function for the
sludge under consideration. The robust settler model includes a new algo-
rithm for describing the dynamic propagation of the individual biological
components of the particulate material through the settler.

The evaluation, which was performed by numerical simulations, focused
on the consistency of the model rather than its ability to predict a specific
set of experimental data. A main advantage was that the numerical results
of the robust model converged to the analytical solution as the number of
layers increases. Traditional layer models are highly sensitive to the
number of used layers because of the ad hoc flux terms commonly applied.
Significant differences between the robust and the traditional settler
models were observed both for the concentration profile in the settler and
in the prediction of the effluent and underflow concentrations. It could also
be concluded that a 10-layer model was too crude to resolve the detailed
behaviour of the settler. At least 30 layers (preferably 50 layers) are
recommended for producing more reliable results during normal operating
conditions.

The new material propagation algorithm was compared with another
commonly used procedure. Several advantages of the new method were
demonstrated. This type of algorithm is of importance when simulating the
settler in combination with the bioreactor if sludge is recirculated in the
process, and it is even more crucial if biological reactions within the settler
are to be modelled.

The robust settler model illustrates the importance of using a sound mathe-
matical model structure and a consistent numerical algorithm. It does not
suffer from the many numerical drawbacks commonly found in other
settler models. Consequently, the robust model is a reliable platform for
future model refinements.

Predators, such as rotifers and ciliates, can have a strong negative effect on
the nitrification capacity in aerobic biofilm processes. In this work, it was
demonstrated that the effects of the microfauna could, as a first approxima-
tion, be modelled in a fairly simple way by considering the oxygen balance
of the system. By focusing on describing the effects due to microfauna
influence rather than the detailed behaviour of the predators, it was
possible to extend existing biofilm models in a way that hardly increased
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the overall model complexity. Three different modelling approaches were
discussed for describing the quasi steady-state behaviour of an experi-
mental system where the influence of predators was studied in detail by
alternately inhibiting the higher order organisms. Model predictions
showed fair agreement with the experimental results and appeared to
strengthen the postulated hypotheses on the effect of filter feeding orga-
nisms based on their oxygen consumption. These results were achieved by
modifying a very limited number of model parameters, whereas the
majority of the used parameter values were the default ones taken from the
available literature.

However, over longer periods of time (months), the microfauna (or the
effect of the inhibitory substances) appeared to influence the behaviour of
the biofilm in a more complex way, which was not captured by the simp-
lified modelling approach. These phenomena will require more detailed
understanding if they are to be described by means of a mathematical
model.

9.2 Topics for Future Research

In the course of the work presented in this thesis, several types of problems
and questions that deserve future attention have been encountered. In rela-
tion to the results that have been presented, we can define a number of
important issues and extensions that need to be focused upon. Some of
them are summarized below.

An interesting approach would be to apply various mathematical methods
for model reduction (e.g., perturbation methods) to the IAWQ model and
compare the results with the reduced order models developed in this work
(based on logical reasoning). If similar results are achieved, this would
strengthen the possible applicability of the models. It may even be possible
to simplify the models further. From an identifiability point of view, the
simplest models should be based on net reaction rates, and the explicit
description of active heterotrophic and autotrophic biomass as state
variables ought to be eliminated.
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A more detailed measurement strategy to be used in combination with the
reduced order AS models must also be defined. Exactly what measure-
ments – with what accuracy, how often, and carried out at which positions
in a plant – are the minimum requirements to guarantee global identifia-
bility of the reduced order models? How could other easily available
measurements, such as redox potential or suspended solids, or more
sophisticated measurements of the respiration rate, short-term BOD or
sludge activity affect the structure of the models and improve the identi-
fiability? In this context it is also important to investigate how the process
(in full scale) should be perturbed in order to gain the most informative
data to be used for on-line model identification without affecting the
quality of the effluent water. The possibilities of temporarily changing
flow rates and flow schemes, adding supernatant (from the sludge treat-
ment) of high concentrations at specific locations, apply step-feed control
for the largest natural variations of the influent wastewater, modify the
control of the dissolved oxygen concentration, etc., in order to achieve
more information from the transient behaviour of the process need to be
further explored.

The reduced order AS models must naturally be evaluated for their true
purpose, that is, model-based control. It is important to define rather direct
links between the on-line measurements, the model predictions and the
control actions. The possibility to develop control algorithms based on
feed-forward and adaptive control principles should be investigated once
the simple, identifiable AS models are available. Due to the large time
constants of the AS process an optimal control scheme ought to be based
on measurements of the influent wastewater, and control actions should be
imposed before any problems actually occur (i.e., feed-forward control).
On the other hand, adaptive control is the proper way of controlling
processes that significantly change their behaviour over time, such as the
AS system. Traditional feed-back control is not the best solution for waste-
water treatment processes, especially as the process inputs can only be
manipulated to a limited degree. In this context, a question regarding
hierarchical control structures must also be addressed. The different low-
level control modules need to be synchronized and the partly contradictory
control criteria of an overall control strategy have to be formulated to allow
for optimal plant performance.

With regard to the robust settler model evaluated in this work, there is a
need to further refine the model. Natural extensions of the model are to
take into account a decreasing cross-sectional area of the settler as a
function of depth and also to include various biological processes occur-
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ring in the settler. A varying cross-sectional area will uniquely define the
height of the sludge blanket in the thickening zone (if it exists) based on
the feed concentration and bulk flow rates in the settler. As for biological
reactions in the settler, especially the denitrification process is of impor-
tance as extensive denitrification has been reported to occur in the settler.
Another improvement to enhance the applicability of the model is to allow
for larger time steps in the numerical algorithm. The time step is currently
defined by equation (5.49) and calculated when a dynamic simulation is
initiated and then fixed to this value, based on a worst case scenario.
Instead the time step could be adjusted on-line by an adaptive algorithm
based on the actual conditions in the settler. This way the computational
effort would be greatly reduced, especially when the process is not exposed
to large dynamic disturbances.

A fundamental question is whether one-dimensional settler models based
on the solids flux theory are accurate enough to predict the behaviour of
the settler. It is clear that hydrodynamic effects play an important role for
the settling process in real wastewater treatment plants. It is theoretically
possible to extend the robust settler model into a two-dimensional model
although the computational effort to simulate such a model would be
dramatically increased. Including hydrodynamic equations into the model
would of course have a similar effect. It may be possible to include some
of the observed phenomena in a simplified way. The ultimate purpose of
the model will determine how accurate it needs to be. However, indepen-
dently of which way we choose to proceed, it is believed that the robust
settler model is a good platform for future model refinements due to its
mathematically sound structure.

For both the reduced order AS models and the robust settler model there is
a great need to evaluate the models using real data from pilot-scale or
preferably full-scale WWT plants.

The work concerning modelling of biofilm processes including higher
order organisms is still at such an early stage that it is difficult to define
specific topics for future research. There is a great need for more funda-
mental knowledge of the processes and mechanisms occurring in such a
system, especially regarding the dynamics. The need for simplified biofilm
models is even more apparent than reduced order models for the AS
process. A fundamental question with regard to biofilm modelling con-
cerns the heterogeneity and the varying internal structure of biofilms. In
this perspective it may be virtually impossible to describe biofilm systems
accurately by one-dimensional models. With regard to the modelling work
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presented in this thesis, a necessary extension is to carry out a number of
experiments (using different influent wastewaters, other carrier materials,
different operating conditions, etc.) in combination with more detailed
analyses of the system performance (including measurements within the
biofilm) in order to investigate the generality of the results as well as pro-
viding data for a more elaborate modelling study.

Some important areas for future research within the general field of
modelling and control of wastewater treatment plants are suggested below.
Many of these areas require an interdisciplinary approach, that is, joint
efforts of many experts within different disciplines are needed to solve the
fundamental problems.

• Sewer system – WWT plant – receiving water interactions: It is
not sufficient to consider the operation of the WWT plants as a
separate problem. The entire chain from the source of the waste-
water to the receiving water must be taken into account in order
to meet the demands of cost-effectiveness, good water quality
and sustainable solutions in the future by utilizing all means of
control and flexibility of the processes.

• Performance indices: An overall objective index would make it
possible to evaluate the combined effects of both design and
operation during the planning phase of new WWT plants, as well
as allowing an objective comparison and evaluation of different
operational strategies vs traditional expansion of plants already in
operation. This could serve as an incentive for a higher degree of
ICA at WWT plants and promote flexibility built into a plant.

• New modelling approaches: Grey-box models, neural networks
and fuzzy logic are new approaches that need to be investigated.

• Better overall control strategies: The most important control
aspect is not to optimize unit processes within a WWT plant but
to optimize the performance of the entire plant.

• Sensor development: On-line sensors that are both robust and
accurate, either in-situ (operating within the process) or in-line
(operating in a side stream), are a necessity for any successful
control of WWT processes.

• Experimental design: Any methods for identification and esti-
mation require informative data to work well. Data quality can be
improved dramatically by proper experimental design (equally
important for both off-line and on-line methods).
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• Characterization problems: Characterization of the active bac-
teria, flocs, biopolymers, phosphorus forms, dewatering proper-
ties, settling properties, floc-forming properties, etc., with respect
to interactions with various wastewater components need to be
improved in order to better understand the basic processes. Once
we fully understand the processes, the performance of our waste-
water treatment plants can be greatly improved.
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Appendix A

____________________________________________________________

Notation and Abbreviations

A Cross-sectional area of a settler or surface area of a biofilm

AIC The Akaike information criterion

AS Activated sludge

BIC The B information criterion

BOD Biochemical oxygen demand

b General decay rate coefficient

bA Decay rate coefficient for autotrophic organisms

bH Decay rate coefficient for heterotrophic organisms based on
the death-regeneration hypothesis

′bH Traditional endogenous decay rate coefficient for hetero-
trophic organisms

bZ Decay rate coefficient for higher order organisms

C General matrix describing the model outputs

C Carbon

COD Chemical oxygen demand

D Dispersion coefficient or height of settler above feed point
or diffusion coefficient

DO Dissolved oxygen

EBPR Enhanced biological phosphorus removal

EKF Extended Kalman filter

F, f General non-linear vector functions

F Godunov’s flux term for the thickening zone

F/M Ratio of substrate to biomass



f(X) Total flux function in thickening zone

fns Non-settleable fraction of the influent suspended solids
concentration to the settler

fP Fraction of biomass yielding (inert) particulate products
based on the death-regeneration hypothesis

′fP Fraction of biomass yielding (inert) particulate products
based on the process of endogenous decay

G, g General non-linear vector functions

G Godunov’s flux term for the clarification zone

GN The Gauss-Newton optimization algorithm

g(X) Total flux function in clarification zone

H, h General non-linear vector functions

H Hydrogen

H Depth of settler below feed point

HRT Hydraulic retention time

IAWQ International Association on Water Quality (formerly
IAWPRC)

ICA Instrumentation, control and automation

iXB Mass N/mass COD in biomass

iXP Mass N/mass COD in products from biomass decay

Ĵ General one-dimensional flux term

J Loss function

Jclar Special flux function for the clarification zone of the settler

Jdiff Flux due to an effective diffusion process

Jdn Downward flux of SS due to downward bulk flow

Jlim Limiting solids flux

Js Solids flux due to gravity settling

Jup Upward flux of SS due to upward bulk flow

K General observer gain matrix or Kalman filter gain matrix

KB,A Half-saturation coefficient for consumption of autotrophs by
higher order organisms
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KB,H Half-saturation coefficient for consumption of heterotrophs
by higher order organisms

KNH Ammonia half-saturation coefficient for autotrophs

KNO Nitrate half-saturation coefficient for denitrifying hetero-
trophs

KO,A Oxygen half-saturation coefficient for autotrophs

KO,H Oxygen half-saturation coefficient for heterotrophs

KO,Z Oxygen half-saturation coefficient for higher organisms

KS Half-saturation coefficient for heterotrophic organisms

KX Half-saturation coefficient for hydrolysis of slowly bio-
degradable substrate

k, k1, k2 Parameters used to exemplify settling velocity functions

ka Ammonification rate

kat Attachment rate coefficient

kde Detachment rate coefficient

kh Maximum specific hydrolysis rate

kshear Coefficient for modelling of the biofilm detachment rate

kT˚C Any kinetic model parameter at temperature T ˚C

L Likelihood function

LF Biofilm thickness

lc Length of carrier particles for biofilm growth

MCRT Mean cell residence time

MLSS Mixed-liquor suspended solids

M(·) Function that computes the local minimizer of f(X)

m Number of model parameters

max(a, b) Maximum value of a and b

min(a, b) Minimum value of a and b

mumax Maximum specific growth rate, identical to µ̂
N Nitrogen

NM The Nelder-Mead modified simplex optimization algorithm

n Number of measured data points
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n, n1, n2,
n3, n4 Parameters used to exemplify settling velocity function

nc Number of carrier particles in a biofilm reactor

nX Number of modelled particulate substances

O Oxygen

ODE Ordinary differential equation

OUR Oxygen uptake rate

PDE Partial differential equation

p Percentage vector describing the proportions of different
COD components of the suspended solids in the settler

Q Volumetric flow rate
Qin Influent volumetric flow rate to the WWT plant

Qintr Internal recirculation volumetric flow rate from the last
aerobic reactor to the first anoxic reactor

Qr Recycled volumetric flow rate from the settler underflow to
the first anoxic reactor

Qw Wastage volumetric flow rate from the settler underflow

P Variance vector of the estimator error

P Stationary variance vector of the estimator error

P Phosphorus

PHA Poly-hydroxyalkanoate

p(·) Probability density

R1, R2, R12 Covariance matrices

R Reaction rate affecting the solids concentration

RAS Return activated sludge (recycled from settler underflow)

r Percentage vector describing the proportions of the different
soluble components in the settler

r̂ Net production rates per unit time and unit length

r General reaction rate factor or net production rate per unit
time and unit volume (in biofilms)

rA Reaction rate factor for autotrophic bacteria

rc Radius of carrier particles for biofilm growth
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rH Reaction rate factor for heterotrophic bacteria

rh Settler model parameter for hindered settling

rp Settler model parameter for low solids concentrations

rε l
Volume production of free water volume

round(a) Closest integer value of a

S Concentration of soluble material (sometimes mass per unit
water phase volume)

SBR Sequencing batch reactor

SRT Sludge retention time

SS Suspended solids

SVI Sludge volume index

SALK Molar concentration of alkalinity

SI Concentration of soluble inert organic matter

SND Concentration of soluble biodegradable organic nitrogen

SNI Concentration of inert soluble nitrogen

SNH Concentration of ammonia nitrogen

SNO Concentration of nitrate and nitrite nitrogen

SO Concentration of dissolved oxygen

SS Concentration of readily biodegradable substrate

Ssat Growth saturation concentration

s Source function for settler feed inlet

T Temperature

TCA Tricarboxylic acid

TKN Total Kjeldahl nitrogen

TOC Total organic carbon

TSS Total suspended solids

t Time

UCT University of Cape Town

u General vector of model or process inputs

V Volume

VFA Volatile fatty acids
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VSS Volatile suspended solids

v Velocity

v0 Maximum (theoretical) settling velocity

′v 0 Maximum (practical) settling velocity

vat Attachment velocity

vde Detachment velocity

vdn Downward bulk fluid velocity

vF Displacement velocity of a biofilm due to growth

vfloc,dn Total particle velocity in the thickening zone

vL Interface velocity of a biofilm

vs Settling velocity of suspended solids

vup Upward bulk fluid velocity

W Weight matrix for defining the loss function J

WAS Wastage activated sludge (removed from settler underflow)

WWT Wastewater treatment

X Concentration of particulate material

XB,A Concentration of active autotrophic biomass

XB,H Concentration of active heterotrophic biomass

XCOD Concentration of biodegradable organic substrate

Xc Steady-state constant concentration of suspended solids in
settler thickening zone

XD Concentration of SS at the bottom of the settler

XG Local minimizer of g(X)

Xg Concentration larger than XG satisfying g(Xg) = g(XG)

XH Concentration of SS at the top of the settler

Xhigh Upper limit concentration for maximum settling velocity

XI Concentration of particulate inert organic matter

Xinfl Concentration of suspended solids where the batch settling
curve has an inflection point

Xlow Lower limit concentration for maximum settling velocity

XM Local minimizer of f(X)
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Xm Concentration less than XM satisfying f(Xm) = f(XM) or the
concentration of SS in the feed layer of the settler

Xmax Maximum packing concentration of particulate material

Xmin Minimum concentration of suspended solids

XNB Concentration of active biomass nitrogen

XND Concentration of particulate biodegradable organic nitrogen

XNI Concentration of nitrogen associated with inert organic par-
ticulate matter

XNP Concentration of nitrogen associated with inert organic par-
ticulate products

XP Concentration of particulate products from biomass decay

Xpp Concentration of primary particles

Xpp,min Minimum concentration of primary particles

XS Concentration of slowly biodegradable substrate

Xt Threshold concentration of suspended solids for onset of
hindered settling behaviour

Xtan Concentration of suspended solids where the settling behav-
iour changes from discontinuous to continuous (= XM)

XZ Concentration of higher order organisms (microfauna)

x General vector of state variables

x̂ General vector of estimated state variables

x̃ Vector for the reconstruction error (x – x̂)

Y General yield coefficient

YA Yield coefficient for autotrophic organisms

YH Yield coefficient for heterotrophic organisms

YZ Yield coefficient for higher order organisms

y General vector of measurements or model outputs

y(z /LF) Empirical function for modelling growth of microfauna

Z(·) Function that computes the local minimizer of g(X)

z Space coordinate in a settler or a biofilm or height of a layer
within the settler
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Greek letters

α Arbitrary vector

α Parameter to describe the life strategy of microfauna

General matrix describing the model inputs

γ Sludge compaction ratio or proportion of biomass con-
sumed by microfauna compared to the biomass transformed
by traditional decay

∆ Distance between two grid points

δ The delta function

δa,a, δa,r,
δr,a, δr,r Model sensitivity functions

ε General vector describing measurement noise

ε Small positive parameter to include an entropy condition

εl Volume fraction of the water phase in a biofilm reactor

ζk Arrhenius correction coefficient for kinetic parameters

ηg Correction factor for anoxic growth of heterotrophs

ηh Correction factor for anoxic hydrolysis

θ General vector of model parameters

θX Sludge retention time, i.e., sludge age

µ General growth rate function

µ̂ General maximum specific growth rate

µ̂A Maximum specific growth rate for autotrophic organisms

µ̂H Maximum specific growth rate for heterotrophic organisms

µ̂Z Maximum specific growth rate for higher organisms

ρ Density

ρ̂ General one-dimensional density

σ Standard deviation

τ Length of a time step

υ General vector describing process noise

Φ General matrix describing the model states

Ψ Extended flux function including outlets
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Ω Short-circuiting factor

Ω-function Corrective function for effects of compression

Subscripts

B Refers to a variable in the bulk water phase

e Refers to a variable describing the settler effluent

F Refers to a variable within the biofilm

f Refers to a variable describing the settler influent (feed)

i Refers to the ith layer (or grid point) of a settler model start-
ing from the top

j Refers to the biological components of the IAWQ AS
Model No. 1 or other similar types of biological models

k Refers to a specific step

L Refers to a variable in the liquid boundary layer

m Refers to the feed layer (or grid point) of a settler model

n Refers to the bottom layer (or grid point) of a settler model

S Refers to a dissolved variable

u Refers to a variable describing the settler underflow

X Refers to a particulate variable

superscripts

j Refers to a specific time step

k Refers to a specific iteration

T Matrix transposition
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Appendix B

____________________________________________________________

The IAWQ AS Model No. 1

The most widely used model today, describing the biological processes in
wastewater treatment systems, is the IAWQ Activated Sludge Model No.1.
It was presented in 1987 (Henze et al., 1987) as a result of the work by the
‘Task Group on Mathematical Modelling for Design and Operation of
Biological Wastewater Treatment Systems’ formed by the International
Association on Water Quality (IAWQ) in 1983. The main goal was to
review existing models and reach a consensus concerning the simplest
model having the capability of realistic predictions of the performance of
single-sludge systems carrying out carbon oxidation, nitrification and
denitrification. Most alternative biological models available today are to a
large extent influenced by the IAWQ AS Model No. 1.

The model is a highly mechanistic model where the major components of
relevance and the most important biological processes have been identi-
fied. It is based on a COD balance of the system (oxygen is expressed as
negative COD) and is usually presented in the matrix format suggested by
Peterson (1965) using the notation recommended by Grau et al. (1982).
The matrix representation allows rapid and easy recognition of the fate of
each component. By moving down a column for a specific component, the
full differential equation with all the biological processes may immediately
be formulated and by moving across the matrix, the continuity of the
model can easily be checked by calculating the sum of the stoichiometric
coefficients.

Table B.1 (Next two pages)  Process kinetics and stoichiometry for carbon
oxidation, nitrification and denitrification, according to the
IAWQ AS Model No. 1 (Henze et al., 1987).
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Kinetic Parameters:
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Appendix C

____________________________________________________________

Reduced Order AS Models

In this appendix, two reduced order models for the activated sludge process
are presented. They are capable of roughly describing carbon oxidation,
nitrification and denitrification in a single-sludge system. The models are
presented in the same matrix format as used for the IAWQ AS Model No.1
(see Appendix B) and the same notation is applied, whenever possible.

The models completely separate the process behaviour during anoxic and
aerobic conditions in order to avoid using a large number of switching
functions. The number of state variables, parameters and processes have
been greatly reduced when compared with the IAWQ model. Model A
requires ten parameters to be estimated and model B is based on the
estimation of seven model parameters. The models do not provide
complete descriptions of the process mechanisms and should not be used
for detailed analyses of an AS process. For example, the total amount of
sludge in the system cannot be predicted because the models do not include
inert material. The models are assumed to be used for predictions with a
time horizon in the range of hours, which means that variations of the total
sludge mass are not important. For the same reason, the hydrolysis process
is not considered essential for the model behaviour. Moreover, dissolved
oxygen concentration is not included in the models as this parameter is
assumed to be controlled separately. The models have been developed for
the purpose of control and, therefore, one important aspect is that the
model parameters can be estimated from available on-line measurements.
Consequently, the models should be considered and evaluated as possible
tools for future control applications and not as models providing realistic
predictions of all internal mechanisms of the AS process.
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Table C.2 Matrix formulation of the reduced order model B. The para-
meters written in bold are assumed to be variable and should
be identified from available on-line measurements (b common
for both the anoxic and aerobic zone).
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Appendix D

____________________________________________________________

The Simplex Algorithm

Many early methods for optimization of algebraic functions are based on
rough ideas without much theoretical background, i.e., ad hoc methods.
One such possible method implies generating a number of points at
random within a certain region of the function space and selecting the one
which gives the best function value over a large number of trials. Unfor-
tunately, this type of method suffers from the ‘curse of dimensionality’
since the amount of effort required to solve actual problems goes up
rapidly (typically as 2n) as the number of degrees of freedom (n) increases.

The most successful of the methods, which merely compare function
values, is the simplex method. The algorithm is still widely used [Fletcher,
1987]. A regular simplex means a set of n + 1 equidistant points in Rn, such
as the triangle for n = 2 and tetrahedron for n = 3. The current information
kept in the method is the coordinates of the n + 1 points and their corre-
sponding function values, i.e., a very limited amount of data.

On the first iteration of the simplex method the vertex at which the
function value is largest is determined. The vertex is then reflected in the
centroid of the other n vertices, thus forming a new simplex. The function
value at this new vertex is evaluated and the process repeated. On
iterations after the first it might appear that the newest vertex still has the
largest function value in the new simplex, and to reflect this vertex would
cause oscillations. Hence, the largest function value other than that at the
newest vertex is subsequently used to decide which vertex to reflect.
Ultimately this iteration will fail to make further process, so an additional
rule has to be introduced. When a certain vertex i has been in the current
simplex for more than a fixed number of iterations (M), then the simplex
should be contracted by replacing the other vertices by new ones, half way
along the edge to the vertex i. A suitable value of M is normally
determined by the dimension of the problem.



The typical progress of the iterations is illustrated in Figure D.1 using a
two dimensional example. Vertices 1, 2 and 3 form the initial simplex and
increasing numbers indicate the new vertices added at each iteration. Note
that vertex 7 has the largest function value for the simplex (4, 6, 7) but is
not reflected immediately since it is the newest vertex in that simplex.
When simplex (6, 9, 10) is reached, vertex 6 has been in the current
simplex for four iterations and if M is assumed to equal 3.5, the simplex is
contracted at this stage to the new simplex (6, 11, 12) and the iteration
continues from this simplex. The algorithm will continue to reflect and
contract the simplex until the required tolerance has been achieved.

1

2

3

4

5

6

7

8

9

10

11

12

13

Figure D.1   The simplex algorithm for a two-dimensional problem.

The Nelder-Mead algorithm (Nelder and Mead, 1965) used in this work is
a slightly modified simplex method, which allows irregular simplexes.
Moreover, the distortions of the simplex are performed automatically in an
attempt to take into account the local geometry of the function to optimize.

Due to the problems with the computational effort there is a practical limit
to the size of systems which the method can be applied to. The conver-
gence rate is slow but the algorithm is very robust and quite insensitive to
noise. Often the method can be used in combination with more sophisti-
cated ones. The simplex method is then applied in an early stage of the
optimization in order to get the convergence going in the right direction
and thereby producing suitable initial values for methods that converge
faster. Such algorithms are usually less robust and likely to diverge if the
initial estimates are far from the true ones (for example, the Gauss-Newton
algorithm discussed in Section 2.6).
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Appendix E

____________________________________________________________

The Extended Kalman Filter

The technique of Kalman filters (Kalman, 1960) is a general filtering
technique which can be applied to such problems as optimal estimation,
prediction, noise filtering and stochastic control. Adaptive gain tuning
capability is the characteristic of the Kalman filter. The method can also be
applied to both stationary and non-stationary processes.

The following time-discrete linear system is assumed:

x t k +1( ) = Φx t k( ) + Γu t k( ) + υ t k( )
y t k( ) = Cx t k( ) + ε t k( )





(E.1)

where υ and ε are Gaussian white noise processes with zero mean and the
covariance matrices are given as

        

E υ t k( )  υ T t k( )[ ] = R1

E υ t k( )  ε T t k( )[ ] = R12

E ε t k( )  ε T t k( )[ ] = R2










(E.2)

Let the estimator have the form

x̂ t k +1 t k( ) = Φx̂ t k t k −1( ) + Γu t k( ) + K t k( ) y t k( ) − Cx̂ t k t k −1( )( ) (E.3)

The reconstruction error, x̃ = x − x̂ , is governed by

x̃ t k +1 t k( ) = Φx̃ t k t k −1( ) + υ t k( ) − K t k( ) y t k( ) − Cx̂ t k t k −1( )( )
                = Φ − K t k( )C( )x̃ t k( ) + υ t k( ) − K t k( )ε t k( ) (E.4)



The property of the noise is taken into account and the criterion is to
minimize the variance of the estimator error, P(tk), by determining the best
gain matrix, K(tk). P(tk) is defined as

P t k( ) = E x̃ t k( ) − E x̃ t k( )[ ]( ) x̃ t k( ) − E x̃ t k( )[ ]( )T[ ] (E.5)

The mean value of x̃ is obtained from equation (E.4) as

E x̃ t k +1( )[ ] = Φ − K t k( )C( )E x̃ t k( )[ ] (E.6)

If E x 0( )[ ] = m 0 then the mean value of the reconstruction error is zero for
times tk≥ 0, independent of K if E x̂ 0( )[ ] = m 0. This is assumed to be true
and equation (E.4) yields

P t k +1( ) = E x̃ t k +1( ) x̃T t k +1( )[ ] = Φ − K t k( )C( )P t k( ) Φ − K t k( )C( )T

              + R1 + K t k( )R2K t k( )T − 2K t k( )R12

(E.7)

The criterion is to minimize the scalar α TP(tk+1) α where α is an arbitrary
vector, by choosing the best possible K(tk). If the criterion is developed
using (E.7), two terms occur according to

                                          α T P t k +1( )α
= α T ΦP t k( )Φ T + R1 − ΦP t k( )CT R2 + CP t k( )CT( )−1

CP t k( )Φ T{ } α

  + α T K t k( ) − ΦP t k( )CT R2 + CP t k( )CT( )−1






R2 + CP t k( )CT[ ]

               K t k( ) − ΦP t k( )CT R2 + CP t k( )CT( )−1





T 


α                  E.8( )

The first term of (E.8) is independent of K(tk) whereas the second term is
determined by K(tk). If K(tk) is chosen such that the second part of (E.8) is
zero, a minimum is obtained. The following two equations result:

K t k( ) = ΦP t k( )CT + R12( ) CP t k( )CT + R2( )−1
(E.9)

P t k +1( ) = ΦP t k( )Φ T + R1 − K t k( ) CP t k( )CT + R2( )K T t k( ) (E.10)
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The reconstruction defined be equations (E.3), (E.9) and (E.10) is called
the Kalman filter. The main difficulty is usually to determine the proper
covariance matrices of (E.2) and to initially select a suitable variance
matrix P(0). Note that P(tk) does not depend on the observations. Thus, the
gain can be precomputed in forward time and stored in the computer. Other
methods with similar characteristics are the recursive instrumental variable
method and the recursive prediction error method (Söderström and Stoica,
1989).

Extended Kalman filters (EKF) are a logical generalisation of linear
Kalman filters for the case where the system dynamics vary with operating
and control points in non-linear systems. The first step of the
generalisation is to exchange the linear process model (E.1) for a non-
linear one:

        

x t k +1( ) = f x t k( ), u t k( )( ) +‹‹ t k( )
y t k( ) = h x t k( )( ) +«« t k( )






(E.11)

where f and h represent general non-linear vector functions.

The second step is to use a linearisation of the process dynamics in order to
minimize the effect of process and measurement noise. This linearisation is
performed around the current state estimates, x̂ t k( ) , on-line. The main
elements of an extended Kalman filter are thus a description of the process
dynamics (and a linearized version of it) and a noise model.

There are three different kinds of extended Kalman filters; discrete EKF,
continuous EKF and continuous-discrete EKF. The continuous-discrete
EKF uses a continuous time update of the non-linear observer while it
employs a discrete measurement update. Such a filter is often a good
approach because the model can be kept in the traditional continuous form
while the measurements are most conveniently digitized using a zero-order
hold network. A continuous-discrete EKF was used for the on-line
estimations in Chapter 4.

As was described in Section 4.2, the calculations are often divided in a
prediction and a correction phase. If R12 for simplicity is assumed to equal
zero, the EKF can be formulated in a straightforward way. The predictor
phase includes the following calculations:

x̂ t k +1 t k( ) = f x̂ t k t k( ),u t k( )( ) (E.12)
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P t k +1 t k( ) = F t k( )P t k t k( )FT t k( ) + R1 (E.13)

and the corrector phase calculations include

x̂ t k +1 t k +1( ) = x̂ t k +1 t k( ) + K t k +1( ) y t k +1( ) − h x̂ t k +1 t k( )( )[ ] (E.14)

P t k +1 t k +1( ) = P t k +1 t k( ) − K t k +1( )H t k +1( )P t k +1 t k( ) (E.15)

                                         K t k +1( )
= P t k +1 t k( )HT t k +1( ) H t k +1( )P t k +1 t k( )HT t k +1( ) + R 2[ ] −1 (E.16)

where F(tk) and H(tk) corresponds to the Jacobian matrices of f(·) and h(·),
respectively. The Jacobians are defined as

F t k( ) =
∂f x t k( ),u t k( )( )

∂x t k( )
x t k( )=x̂ t k( )

(E.17)

H t k( ) =
∂h x t k( )( )

∂x t k( )
x t k( )=x̂ t k( )

(E.18)

The significant real-time computational burden imposed by the use of
extended Kalman filters have motivated the search for more simple
estimators, which can retain the same robustness characteristics of the full
EKF. The constant gain EKF is one such simplification. In this case a
constant gain matrix is achieved for a selected operating point x0 of the
system according to

K = ΦPCT + R12( ) CPCT + R2[ ] −1
(E.19)

where P is obtained as the positive semi-definite solution of the stationary
Riccati equation:

P = ΦPΦ T + R1 − ΦPCT + R12( ) CPCT + R2[ ] −1
ΦPCT + R12( )T

(E.20)

Such a filter maintains its robust behaviour even when exposed to
significantly varying signals (Hendricks, 1992). For practical reasons this
approach was used in the study presented in Chapter 4.

384 Modelling Aspects of Wastewater Treatment Processes



The methods presented in this appendix not only hold for state estimation
but also for simultaneously state and parameter estimation. The equations
given are still valid although x̂ becomes a generalized state vector which
includes both the unknown state variables and the uncertain model
parameters. The parameter vector is modelled as a random walk or drift.
The difficulty of determining the proper covariance matrices (E.2) is,
however, more emphasized. R1 is used to describe how fast the different
components of the parameter vector are expected to vary.

In order to avoid various numerical problems (due to accumulation of
rounding errors in the covariance matrix) when applying the Kalman filter,
several modifications have been proposed. Bierman (1977) suggests
replacing the covariance matrix update with a stabilized one which will
enhance the numerical stability. However, the method does not guarantee
numerical stability and positive definiteness of P. Thus, methods for updat-
ing the square root of the covariance matrix have been proposed in order to
ensure that P is positive definite. These methods are often based on
Cholesky factorization (e.g., Ljung, 1987). One such algorithm is pre-
sented in Thornton and Bierman (1980). The above modifications will,
however, increase the computational requirements.

A more detailed and theoretical derivation of the Kalman filter and its
variants is given, for example, by Ljung and Söderström (1983) and Ogata
(1987).
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Appendix F

____________________________________________________________

Simulation Environment

When working with mathematical modelling, parameter identification and
model validation it is important to have access to a good simulation
environment – both hardware and software. All the computations included
in this work have been performed using a single-processor Sun™
SPARCstation 10 with the simulation programs Simnon™, Matlab/Simu-
link™ and AQUASIM.

Simnon (SSPA Systems, 1991) is designed for solving ordinary differen-
tial and difference equations and for simulating dynamic systems.
Numerical integration routines are used to simulate differential equations
and difference equations are solved by iteration. No symbolic analysis of
the systems is possible. The systems may be described as an inter-
connection of subsystems (promoting a hierarchical system description)
which may be either in continuous or discrete time. The user interacts with
the program by typing commands (a graphical interface is available as an
add-on product). Parameters, initial conditions and system descriptions can
be modified interactively and the results are graphically or numerically
displayed on the screen. A built-in macro facility allows the user to create
his own set of commands. The allowed complexity of the developed
models is limited, although this is seldom a problem (the maximum
number of state variables is 300). The program also has real-time capa-
bilities, i.e., data can be transferred on-line from and to a real process
connected to the I/O-devices of the computer. As an example, the straight-
forward text file for simulating the simple model (2.13) is illustrated in
Figure F.1.



CONTINUOUS SYSTEM  model_2_13

”Model of the Monod growth equation in a single-

”substrate (S)/single-organism (X) batch reactor

”with no other growth limitations.

STATE  S X

DER    dS dX

TIME   t

”Values for the model parameters

mumax : 6          ”maximum specific growth rate 

Ks    : 10         ”half-saturation coefficient

b     : 0.48       ”decay rate factor

Y     : 0.66       ”yield factor

”Initial values for the state variables

S : 100            ”substrate concentration

X : 2              ”organism concentration

”Dynamic equations

dS = -mu*X/Y

dX = (mu - b)*X

mu = mumax*S/(Ks + S)  ”Monod growth rate

END

Figure F.1 Simnon text file describing the simple model (2.13).

Simulink (MathWorks, 1995) is an interactive system for simulating
dynamic systems. It is a graphical, mouse-driven program that allows the
user to model a system by drawing a block diagram in a graphical editor
and manipulating it dynamically. It handles linear, non-linear, continuous-
time, discrete-time, multi-variable and multi-rate systems. A large number
of predefined building blocks is included in the program and it is easy for
the user to extend this library with blocks of his own. Hierarchical models
are recommended since blocks may include other blocks and allows for
graphical ‘information zooming’. Results are numerically and graphically
available in numerous ways. The block diagram for describing the small
model (2.13) is shown in Figure F.2. 

The major advantage of Simulink is the fact that it is an integrated part
(toolbox) of the complete Matlab™ (matrix laboratory) computing
environment (MathWorks, 1992). Matlab is an interactive system whose
basic data element is a matrix that does not require dimensioning. It
includes a large library of predefined functions and a simple way for the
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user to define functions of his own expressed as they are written mathe-
matically – without any traditional programming. However, it is possible
to include models written in C (using a special format) into the program, as
well as creating stand-alone applications. Moreover, data can be trans-
ferred on-line in and out of the program from a real process connected to
the I/O-devices of the computer, allowing for real-time analysis and on-
line control.

ORGANISM

6S

S+10

MONOD

SUBSTRATE

X, S, mu

save to file

Mux

form vector

Block diagram describing model (4.1)

X

S

mu

show X

show S

10

Ks

6

mumax

MATLAB
Function

invert

*

Monod
growth rate

*

mumax*S

+

+

Ks+S

1

output mu

1

input S

System describing the Monod growth equation
1

input X

1

output X

2

input mu

*

(mu-b)*X

-

+

mu-b

1/s

integrator

0.48

b

System describing the organism concentration

1/s

integrator

*

-mu*X/Y

*

mu*X

-1/Y

invert &
negate

0.66

Y

1

input mu

2

input X
1

output S

System describing the substrate concentration

Figure F.2 Simulink graphical block diagram of the simple model (2.13).

A large number of application-specific toolboxes that extend the Matlab
environment in order to solve particular classes of problems are available.
These toolboxes include signal processing, control system design, system
identification, optimization, neural networks, fuzzy logic, statistics, partial
differential equations, symbolic math, etc. Altogether this means that the
Simulink user not only has the possibility to perform simulations but an
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enormous capability to manipulate and further validate the results. All this
power is available at the user’s fingertips in one integrated environment.

AQUASIM (Reichert and Ruchti, 1994) is an interactive system for simu-
lating and analysing the dynamics of aquatic systems. It is a graphical,
mouse-driven program that includes a number of predefined compartment
models (at present: mixed reactors, biofilm reactors and river section). The
introduction of compartment models limits the generality of the program
but allows the selection of efficient numerical algorithms according to the
type of partial differential equation used to describe the transport
mechanisms. The internal dynamic processes within a compartment are
formulated by the user without any restrictions. Different compartments
can be combined by using different types of links. The program also
contains built-in tools for identifiability analysis (by sensitivity analysis),
parameter estimation and uncertainty analysis. Results are presented
graphically (though not on-line and only as traditional two-dimensional
plots) or saved as ASCII files. The program does not have any real-time
capabilities but is only intended for off-line use.

All three programs are available for a large number of computer platforms
(although Simnon is primarily aimed for systems running MS-Windows).
The compatibility between the programs is also quite good. It is easy to
exchange data files since all programs accept simple ASCII files in tabular
form. Linear, time-invariant models can also be directly exported from
Matlab into Simnon by a special translation script. Therefore, the user can
combine the three programs and take advantage of their respective strong-
points and use them as a combined model building, simulation, data
analysis and data manipulation software environment.
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