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A b s t r a c t .  The I /O  Automaton paradigm of Lynch and Tuttle mod- 
els asynchrony through an interleaving parallel composition and gener- 
alizes more common interleaving models based upon message-passing, 
such as Hoare's CSP. It is not generally recognized that  such interleav- 
ing models in fact can be viewed as a special cases of synchronous par- 
allel composition, in which components all move in lock-step. Let .A be 
any set of finite-state I /O  Automata  drawing actions from a fixed fi- 
nite set containing a subset A. In this article we establish a translation 
T : .,4 ~ P to a class of w-automata W closed under a synchronous 
parallel composition, for which T is monotonic with respect to imple- 
mentat ion relative to A, and linear with respect to composition. Thus, 
for A 1 , . . . , A  m , B 1 , . . . , B  '~ �9 A and A = A 11]...]] Am, B = B x] l . . . l l  B'` , 
if A is the set of actions common to both A and B, then A implements 
B (in the sense of I /O  Automata)  if and only if the w-automaton lan- 
guage containment f~(T(A ]) |  | T(Am)) C f~(T(B 1) |  | T(Bn)) 
obtains, where ]] denotes the interleaving parallel composition on .A and 
| denotes the synchronous parallel composition on ~ .  For the class T', 
we use the L-process model of w-automata. This result enables one to 
verify systems specified by I /O Automata  through model-checkers such 
as COSPAN or SMV, that  operate on models with synchronous parallel 
composition. The translation technique generalizes to other interleaving 
models, although in each case, the translation map must match the spe- 
cific model. Proofs have been eliminated on account of space limitations. 
A full version (with all proofs) is available upon request. 

1 I n t r o d u c t i o n  

T h e  I / O  A u t o m a t o n  p a r a d i g m  is used to mode l  discrete event  sys tems  con- 
s i s t ing  of  concur ren t ly  ope ra t i ng  componen t s  [9, 10]. Each sys t em c o m p o n e n t  is 
m o d e l l e d  as an "I/O A u t o m a t o n " ,  which is an ac t ion- labe l led  t r ans i t i on  s t ruc-  
ture .  A n  A u t o m a t o n ' s  ac t ions  are classified as " input" ,  "ou tpu t "  or " in te rna l" .  
A n  A u t o m a t o n  genera tes  o u t p u t  and in terna l  ac t ions  au tonomous ly ,  and  t r ans -  
m i t s  o u t p u t  ac t ions  in s t an taneous ly  to all  o ther  A u t o m a t a  having  the  s a m e  
ac t ion  des igna ted  as an input .  Al l  such componen t s  synchronize  on each given 
o u t p u t  ac t ion ,  and  take  a s tep s imul taneous ly  wi th  the  o u t p u t  s tep.  On ly  one 
o u t p u t  ac t ion  or in te rna l  ac t ion  m a y  occur at  any t ime.  This  res t r i c t ion  defines 
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the "interleaved" executions of component Automata,  used to model asynchrony. 
I /O Automata  can be composed to yield another I /O Automaton.  

An ezecution of a family of I /O Automata  consists of an alternating sequence 
of states and actions. An execution is fair if it satisfies a weak-fairness constraint 
(expressed in terms of actions). The behaviors of an Automaton are the respective 
subsequences of fair executions consisting of external (i.e., input or output)  
actions. The language/~(A) of an Automaton A is its set of behaviors. Two I /O  
Automata  A and B are considered equivalent if ~(A) = s A implements 
B, denoted A < B, if II~.(A) C I I s  w h e r e / / d e n o t e s  a projection of the 
language on the set of actions that are common to A and B (thi s concept will 
be made precise below). 

It is not generally recognized that interleaving models such as I /O  Automata  
in fact can be viewed as special (restricted) cases of synchronous parallel com- 
position [6], [7]. Let .4 be any set of finite-state I /O Automata  drawing actions 
from a fixed finite set containing a subset A. In the following we establish a 
translation T : .4 --~ 7 ~ to a class of w-automata :P closed under a synchronous 
parallel composition, for which T is monotonic with respect to < relative to the 
set of common actions A, and linear with respect to composition. Thus, for I /O  
A u t o m a t a A 1 , . . . , A r ' , B 1 , . . . , S  n e . 4  and A = Alll . . .I]A m, B = Bill  . . . l IB" ,  
if A is the set of actions common to A and B, we show that  A _< B if and 
only if the w-automaton language containment s  1) | . . .  | T ( A m ) )  C 
s174 .. . |  ~)) obtains. (Hence, T is a function of A.) Here [[ denotes the 
interleaving parallel composition on .4 and | denotes the synchronous parallel 
composition on P .  For the class P,  we use the L-process model of w-automata [2], 
[7]. This result enables one to verify systems specified by I /O Automata  through 
model-checkers such as COSPAN [4] or SMV [11], that  operate on models with 
synchronous parallel composition. The translation generalizes to other interleav- 
ing models, although in each case, the translation map must match the specific 
model. We have chosen the I /O Automaton model to illustrate this translation 
principle because it strictly subsumes more common interleaving models based 
upon message-passing, such as Hoare's CSP [5]. To some extent this translation 
is applicable to Milner's CCS as well (cf. [12]) although CCS on the one hand 
is based upon branching-time semantics (while w-automata have a linear-time 
semantics), and unlike w-automata, CCS has no notion of fairness, on the other 
hand. 

2 B a c k g r o u n d  

2.1 I / O  A u t o m a t a  

Although I /O Automata are defined without restrictions on cardinality [9, 
10], we henceforth restrict our consideration to those I /O Automata  whose state 
set and alphabet of actions are finite. 

2.1.1 D e f i n i t i o n  An I /O Automaton A is a quintuple A = ( Z  A , S A , I A, 6 A , R A) 
where: 
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- the signature ~A is a triple ~A _ ( E A N , ~ U T , ~ A N T ) ,  where ~uAN, ~AuT , 
~ANT are pairwise disjoint finite sets of elements, called input, output and 
internal actions, respectively. We denote by E ~ x  T = ~A N U ~ U T  the set 
of external actions, by ~ A o c  = ~AuT U E~N T the set of local actions, and 
we abuse notation,  denoting by ,U A also the set of all actions ~ A o c  U ~IV;  

- -  S A is a finite set of states; 
- I A C S A is a set of initial states; 
_ 5A C S A x ~.4 • SA is a transition relation which is complete in the sense tha t  

Ya E ~A N , s  E S a there exists s' E S A with ( s , a , s ' )  E 6 A. For a E Z A o c  
and s E S A such that  (s, a, s') E SA, we say that  a is enabled at s and enables 
the transition ( s, sJ); 

- R A is a part i t ion of Z'Aoc, each element of which is termed a fairness con- 
straint of A. 

2.1.2 D e f i n i t i o n  An execution of A is a finite string or infinite sequence of 
s tate-act ion pairs ((sllal), (S2, a2) , - ."  ), where sl E I A and for all i, si E S A, 
ai E z~ A and (si, ai, Si+l) E 5 A. 

2.1.3 D e f i n i t i o n  An execution x of A is fair if, for all C ERA:  

- if x is finite then no action in C is enabled in the final state in x; 
- if x is infinite then either some action in C occurs infinitely often in x or 

else infinitely many  states in x have no enabled action which is in (7. 

Thus,  an infinite execution x is fair if and only if whenever some suffix of x 
has an action of C enabled in every state, then some action of C in fact occurs 
infinitely often in x. 

2 .1 .4  D e f i n i t i o n  Given a set A C ~A, the projection of an execution x = 
((s~, ai)) of A or of a sequence x = (ai) of actions of A, onto A,  denoted/ /zx(x) ,  
is the sub-sequence of actions obtained by removing from the action sequence 
(ai) all actions ai ~_ A. The projection H a  is extended to sets of sequences, 
element-wise. 

2.1.5 D e f i n i t i o n  A behavior of A is the projection of a fair execution of A on 
the set ~ X T  (i.e., the fair execution, with states and internal actions removed).  
The language •(A) of A is the set of behaviors of A. 

2.1.6 D e f i n i t i o n  Of two I / 0  Au tomata  A and B, we say that  A implements 
B (denoted A < B) if, for A = ZAXT M Z~XT,  H a L ( A )  C / / a / : ( B ) .  

2 .1 .7  D e f i n i t i o n  For I / O  Automata  A 1, AS, . .  �9 , A ~, with respective pairwise 
disjoint sets of local actions, their interleaving parallel composition, denoted 
AII[A 2 . . .  IIA k, is an I / O  Automaton  A defined as follows. The set of inter- 
nal actions of A is the union of the respective sets of internal actions of the 
component  Automata ,  and likewise for the output  actions; the input actions of 
A are the remaining actions of the components not thus accounted for. The set 
of  s tates of  A, S A, is the Cartesian product of the component  state sets, and 
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likewise for the initial states I A . The transition relation 6A is defined as follows: 
for s = ( 8 1 ,  . 8 '  = ( 8 1 , . .  8'  �9 " , ", k ) , a n d a E Z  A , ( s , a , s ' )  E ~A if and only if 

J = R A for all i = 1 , . . . , k ,  (si,a,s~) E 6 A' or a r ~A' and s i si. is the union of 
the partit ion elements of the respective components. 

It easily is checked that (~A is complete, that  the elements of R A are pairwise 
disjoint and hence that  A thus defined indeed is an I /O Automaton.  It follows 
from this definition that  component I /O Automata  "synchronize" on common 
actions (changing state together), and only one action is enabled at a time (giving 
the composition its "interleaving" character). 

The following definition (and lamina) are non-standard in the theory of I /O  
Automata.  

2.1.8 D e f i n i t i o n  A sequence x = ((st ,  al),  (82, a 2 ) , ' "  ) of state-element pairs 
is a pseudo-execution of an I /O Automaton A if 81 E [A and for all i, si E S A, 
and either ai E ~A and (si,a, si+l) E 8A, or ai ~ s A  and si+l = si. W e s a y  x 
is fair if it satisfies the conditions of Definition 2.1.3. 

2.1.9 L a m i n a  The sequence ((sl, al), (s2, a2) , ' . .  ) of state-action pairs of the 
I / 0  Automaton AIIIA211 .. .IIA k is a (fair) execution if and only if  for all i -~ 
1 , . . . ,  k, (s/1, at), (si2, a2 ) , . "  ) is a (fair) pseudo-execution of m i, where for each 
j ,  sj - (8~, . . . ,82) .  

2 . 2  L - P r o c e s s e s  

B o o l e a n  A l g e b r a  

A Boolean algebra [3] is a set L with distinguished elements 0, 1 E L , closed 
under the Boolean operations: 

* - AND 
+ - OR 

- NOT 

with universal element 1 and its complement 0. A Boolean algebra L I C L is 
a subalgebra of L if U and L share the same 0, 1 and their operations agree. 
Every Boolean algebra contains the trivial 2-element Boolean algebra {0, 1} as 
a subalgebra. For x , y  E L, write x < y if and only if x * y -- x. S ( L ) - -  the 
atoms of L, are the nonzero elements of L, minimal with respect to _<. Every 
finite Boolean algebra is determined by its atoms, as every element is a sum of 
atoms (uniquely, up to permutation),  and it is easy to see that  any finite set is 
the set of atoms of a Boolean algebra. 

2.2.1 L e m m a  [7, 4.2.20] Any set of distinct elements of a Boolean algebra whose 
sum is 1, and all pairs of which have product O, is the set of atoms of a subalgebra. 
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2.2.2 D e f i n i t i o n  For subalgebras L1, . . . ,Lk  C L, their (interior) product is 
the subalgebra 

H Li = z~j , . . . * xkj zij ELi,  J f i n i t e  . 
i=1 jE 

In [13, w it is proved that  for any Boolean algebras L 1 , . . . ,  Lk, there exists 
a Boolean algebra L containing (isomorphic copies of) them as subalgebras, with 

1-I~=1 Li = L. This L is defined to be the exterior product of L 1 , . . . ,  L~. 

Trans i t ion  S truc ture  

2.2.3 D e f i n i t i o n  Let V be a nonempty set, and let M be a map  

M : V ~ --* L (V 2 = V• V, the Cartesian product).  

Say M is an L-matrix with state-space V(M) = V. M provides the (static) t ran- 
sition function for au tomata .  Note that  M(e) = ~,r  s<M(e)S (where each 
s is an "input letter").  For all v E V(M), define SM(V) = ~,~eV(M) M(v, w) .  

2.2.4 D e f i n i t i o n  For an L-matr ix  M, and sequences x E L ~ and v E V(M) ~, 
we say v is a run of x in M provided for all i, xi * M(vi, vi+l) # O. 

2.2.5 D e f i n i t i o n  The tensor product of L-matrices M and N is the L-mat r ix  
M | g with V(M | N) = V(M) • Y ( g )  and 

(M @ N)((v, v'), (w, w')) = M(v, w) �9 g(v ' ,  w') . 

A u t o m a t a  

2.2.6 D e f i n i t i o n  An L-process P is a 4-tuple 4 

P = (Lp,  Mp,  I(P), Z(P)) 

where Lp is a subalgebra of L (the output subalgebra), Mp is an arbi t rary  
L-matr ix ,  and 

I(P) c V(Mp) (initialstates) 

Z(P) C 2 v(Mp) (cycle sets) .  

For an L-process P,  write V(P) = V(Mp), P(v, w) = MR(v, w). 

2.2.7 D e f i n i t i o n  The selections of an L-process P at v E V(P) are the elements 
of the set 

Sp(v) = {s E S(Lp) I s* SMp(V) # 0} .  

4 The usual definition of an L-process includes an additional acceptance structure 
called "recur edges", not needed for our construction, and hence omitted here. 
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The intended interpretation of "selection" is a set of (nondeterministic) out- 
puts as a function of state. 

2.2.8 D e f i n i t i o n  Let M be an L-matrix and let v E V(M) ~. Set 

#(v)  = {v E V(M) [ vi = v infinitely often}. 

2.2.9 D e f i n i t i o n  Let P be an L-process. For x E L ~, a run v of x in Mp with 
Vl E I(P), satisfying 

VCEZ(P),  p(v) n ( V ( P ) \ C ) # r  

is called an accepting run of x in P. The language of P is the set 

Z ( P )  = {x E S(L) ~ I x admits of an accepting run in P}.  

2.2.10 D e f i n i t i o n  Let P1 . . . .  , Pk be L-processes. Then their tensor product is 
the L-process 

. (H Y ) @ P i =  Lp,, @MR, ,  Xil(Pi), II['Iz(Pi) 
i = 1  i 

where the inverse projection II[-1Z(Pi) =_ { I I [1CIC �9 Z(Pi)} and X is the 
Cartesian product. 

The following lemma is the crucial language intersection properly [7]. 

2.2.11 L e m m a  Let P1,...,Pk be L-processes. Then 

3 T r a n s l a t i o n  M a p  

Let .4 be any set of finite-state I / 0  Automata  drawing actions from a fixed 
finite set containing a subset A. We will construct a translation map T : .4 ---* 
into the class P of L-processes, such that, for A 1 , . . . A " ,  B 1 , . . . ,  B n E .4, A = 
AIII �9 �9 .IIA" and B = BII[ .- .  lIB n, if A is the set of actions common to A and 
B, 

A <_ B r s 1) |174 C s 1) | 174  

(The map T thus depends upon .4 and the set of actions A common to A and 
B.) We will say that  such a translation map T is linear-monotone. 

The translation A ---* T(A) is the composition of five steps. Although some of 
these steps change the language of A, this is done uniformly, preserving linear- 
monotonicity. 

The first step modifies the original I /O Automata,  creating new I /O Au- 
tomata  all of whose fair executions are infinite, while preserving the implemen- 
tation relation. With this transformation,, we may restrict our consideration to 
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infinite executions, consistent with w-automata. The second step associates with 
an I/O Automaton A, an L-process pA that preserves its transition structure; 
by adding self-loops in pA, the interleaving parallel composition can be replaced 
with the "synchronous" parallel composition implemented by the tensor prod- 
uct. Fairness constraints are handled in the third step, where for each constraint 
C we construct an L-process Qc, the tensor product over all C of which, denoted 
QA, constrains the behaviors of pA to correspond to the fair behaviors of A. 

The transform t(A) = pA | QA does only "half" the job, however, in the 
sense that ~(t(A)) C Z(t(B)) implies A < B, but not conversely (whereas we 
need the implication to hold in both directions). The reason for this is that 
implementation for I/O Automata is up to "stuttering-equivalence": projection 
onto external actions, whereas for ordinary automata, including L-processes, 
there is no such intrinsic equivalence relation. We deal with this in the fourth 
step, by expanding the set of executions of the image of t by taking a closure. 
This adds all those executions which are equivalent to the original ones from the 
perspective of the I/O Automaton. 

The fifth step abstracts all internal actions, by mapping them homomorphi- 
cally to a single symbol in a fashion which preserves language containment. This 
is needed in order to prevent the language containment test from distinguishing 
among internal actions. 

3.1 First Step: removal of  finite executions 

The first step is a technical modification, which translates all fair executions 
of an I/O Automaton A into corresponding fair infinite executions of an I/O 
Automaton A ~. This is accomplished by extending finite fair executions to infinite 
fair executions defining the same behavior. These extensions are implemented 
through the introduction into ~ANT of a new internal action for each state of A in 
which no local action is enabled. Henceforth, we assume that all I/O Automata 
have been thus modified. 

3.2 Second Step: basic conversion into L-processes 

Given a finite set `4 of I/O Automata, let L ~t be the Boolean algebra whose 
set of atoms S(L ~t) is the union of all actions of members of .4, i.e., S(L "4) -- 
UAe~t ~A. For each A E .4, let %A, the pause of A (relative to .4), denote 
%A -- ~aeS(L), a ~ o  c a, and let LA denote the subalgebra of L ~t whose atoms 

are S(LA) -- L'~O c U {%n}- Note that L ~t - 1--[AeA LA. The Boolean algebra 
L ~t provides the basis to represent actions of A. However, in order to deal with 
the fairness constraints of A, we also represent the states of A in the selections 
of the associated L-process pA. For each A E .4, let LSA be the Boolean algebra 
whose set of atoms S(Ls A) = S A. Through a representation of the state of pA 
in the selection of pA, another L-process, QA, will be able to track a succession 
of state transitions of pA, and exclude the unfair ones. We assume without loss 
of generality that distinct I/O Automata in .4 have no states in common. Define 
the Boolean algebra L to be the exterior product L = L "4 �9 1-IA~A Ls~. 
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Given an I /O  Automaton A E `4, define the L-process pA as follows: 

L p a  "-- LA �9 Lsa; V(P A) = sA; I (P A) = In; Z(P  A) = r 

for all v, w E S A 

~ % * " ~ (  A ~(~,~,~)e~A a + ~(,,~,,)e6A a )*  v if v = w 

The L-process pA is obtained by interpreting each local action together with 
the resulting next state of A, as the respective selections of pA. The "self- 
loop" at each state v E V(P A) is enabled by its "pause" selection %A * v, 
which corresponds to the conjunction with v of the disjunction of all input 
actions, or local actions of other Automata  in `4. This definition corresponds 
to an interpretation in which the L-process pA "pauses" in its current state 
whenever another process exercises one of its local actions (unless that  local 
action entails a transition of A). Indeed, a * b = 0 for any a, b E S(L), a ~ b, 
and thus simultaneous external selections in distinct L-processes corresponds to 
a "null" event, enabling no transition, whereas %A * b ~ 0 for any b E SBoc ,  
S p A .  

3.2.1 L e m m a  The sequence ((st, al), (s2, a2) ," .  ) is a pseudo-execution of the 
I / 0  Automaton A E ,4 if and only if (sa,s2, . . .  ) is an accepting run in the 
L-process pa  of (at,  a2 , . . .  ). 

3.2.2 C o r o l l a r y  The sequence ((st,aO, (s~,au),.. .  ) 4 state-action pairs of 
the I / 0  Automaton A = AXlIA2II . . . I IA k is an execution of A if  and only if  
(S l ,SZ , . . . )  is an accepting run of (al ,a2, . . .  ) in the L-process P = pA'  | 
p A ~ Q . . . |  Ak. 

For any sequence x = ((sl,  al),  (s2, a2 ) , . . .  ) of state-action pairs of A, let 
x* = (sl *at, su *a~,. . .  ) E S(L "a �9 Lsa) ~. By Lemma 3.2.1, x is an execution of 
A if and only if x* E s  for pa  considered as an L "a- Lsa-process. Likewise, 
for A and P as in Corollary 3.2.2, x is an execution of A if and only if x* ~ s  
for P considered an L "4 k �9 I-Ii=x Lsa'-pr~ 

3.3 Third Step: fairness constraints  

In this step we incorporate the fairness constraints of each A E .4 into the 
corresponding L-process pA, by constraining p a  through a product with an 
L-process QA. The result will be that  the fair executions of A correspond to the 
elements of s  pa  | QA ). 

For each fairness constraint C E R A, we construct a two-state L-process Q c ,  
as follows. Denote by crc the set of states of the I /O Automaton A in which 
some action in C is enabled. Let V(Qc) = {fair, unfair}. The behavior we define 
in Qc  is that  it moves to fair whenever either the process pA has selected an 
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action in C, or makes a transition to a state not in (rc, and Qc moves to unfair 
whenever the opposite is the case. Executions of A unfair with respect to C 
are those which cause Qc ult imately to remain in its state unfair. These are 
el iminated in pA | Qc by defining {unfair} to be a cycle set of Qc. 

Set = v ( P  A) \ 
Formally, Qc is the L-process defined by 

Qc(unfair, fair) = Qc(fair, fair) = E a 4- E v, 
aEC vEa~ 

Qc(fa i r ,  unfair) = Qc(unfa i r ,  unfair) = ,-- Qc( fa i r ,  fair); 

Lqc  = {0, 1}; I ( Q c )  = {unfair}; Z(Qc)= {{unfair}}. 

Define QA _ ~ c e R  A Qc, and set t(A) - pA | QA. Note tha t  t(A), like pA, 
is an L A �9 Lsa-process.  

Once the product  t(A) is formed, we remove the state information through 
an abstract ion t ransformation of a type called a support map. 

Define L --~ L ~t by x --* } for x E S(L), where a"~s = a for x = a * s, 
a E S(L'a), s E S(I] A LsA); and extend it linearly to all of L, with 0 - 0. 

Any map  x --* a(x)  of an arbi trary Boolean algebra, such as the above m a p  
L --* L A, defined on the a toms of one Boolean algebra to the a toms of another,  
and extended to the entire Boolean algebra by linearity, with 0 = 0, is called a 
support map.  Note that  the image of a Boolean algebra under a support  map,  
is a Boolean algebra. (A support  map  L --* L' is dual to a Boolean algebra 
homomorph i sm L p ~ L and preserves language containment [7].) 

For any string or sequence x = (xi) and any support map  a,  define a (x)  = 
(.~(xi)). Likewise, for any set S C L, define a(S)  = {a(x) I x  E S}. Thus,  

L =  L .a. 
For any Boolean algebra L and any support  map (r : L --* a(L) ,  and for any L- 

process P,  let a ( P )  be the a(L)-process whose output subalgebra Lo(p) satisfies 
S(L~(p)) = S(a(Lp)), with Mo(p)(v,w) = ~,(Mp(v,w)) for all v, w E Y(P), 
and I(a(P)) = I(P), Z(er(P)) = Z(P). 

For the remainder of this section, we refer to the specific support  map  L --* 
L A = L, as defined above. Let t 'be  the map t ' :  A -~ 7 ) where :P is the class of L "a- 

processes, defined by t'(A) = t("A-). Note, for example, that  for A 1 , . . . ,  A ~ E .A 
and P = @t(Ai), P = @t(Ai). 

3.3.1 L e m m a  There is a fair pseudo-execution ((sl, al), (s2, a2),." ) of A E .4 
if and only if (hi) E/:( t ' (A)) .  

3 .3.2 C o r o l l a r y  For any parallel compositions of I/O Automata from ,4: 

A = AXIIA2ll...IIA r", B = BalIB2ll...liB", 

and the L "4-processes 

P = t ( A  1)| 2)|174 Q = t ( B  1)| 2) |174 

s C s ~ A <_ S. 
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The converse to (3.3.2) fails, on account of problems illustrated in the fol- 
lowing example. 

3.3.3 E x a m p l e  The map t" is not in general linear-monotone. If A is an I /O 
Automaton with a single fair execution whose action sequence is ab '~ for an in- 
ternal action a and external action b, and B is an I /O Automaton with the 
single fair execution whose action sequence is b ~, then / : (A)  = / : ( B )  so in par- 
ticular A < B. However, obviously ~(pA) and s  are incommensurate, so 
~.(t(A)) ~_ /:(t(B)). Likewise, if B gave rise to the single action sequence a'b '~ 
for and internal action a ~ r a, the same conclusion obtains. 

3.4 Fourth and Fifth Steps: closure; abstracting internal actions 

In the definition of the Boolean algebra L in Section 2.2, redefine each Lsa 
to be the Boolean algebra whose set of atoms is S(Lsa  ) = 2 (sau~i*nr), the set 
of all subsets of states and internal actions of A. We will denote these atoms by 
minterms, treating the elements of S A U z~IANT as Boolean variables. In order to 
distinguish an internal action or state r from the Boolean variable term denoted 
by the same symbol, the term will be denoted within square brackets, as [v]. 
Thus, for example, the atom consisting of all of the states and none of the 
internal actions is denoted by the minterm 

yES a eE ~'IANT 

In fact, we also may denote each such minterm by its characteristic function, 
defined by X. Thus, the minterm above also is denoted by x(SA) .  In this notation, 
for v E S a , the term [v] denotes the sum of minterms 

[v] = Z x(s) 
S C S a U ~ N  T, v6S  

and thus X({v}) _< [v]. 
Redefine the transition predicate pA(v,  w) in Section 2.2, by replacing the 

occurrences of the factors v and w in that  definition by X({v}) and X({W}), 
respectively. All the results of Section 2.2 trivially continue to hold. 

Likewise, in the definition of Qc in Section 2.3, replace the elements v by the 
terms [v] and add terms for the elements of C in the (newly defined) subMgebra 
Ls a . Thus, with the new definition, 

Qc(unfair, fair) = Qc(fair, fair) =- ~ ( a  + [a]) + ~ Iv] 
aEC vEa~ 

(the [hi terms being for use with the closure). It is trivial as before that  all the 
results of Section 2.3 continue to hold. 

Our last redefinition is the support map L ~ L = L x which we redefine 
accordingly (mapping a'%-'s = a as before, for the new definition of s). 
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3.4.1 D e f i n i t i o n  For x = (xi) E S(L) ~ and strings ei E S(L)* for all i, we say 
the sequence (eix~'), formed by the alternating interleaving of a string ei with 
an a tom xl, is an extension of x (by (ei)). For x = (xi) E S(L) ~, e E S(L) 
and a sequence of non-negative integers mi, let y = (em'xi)  e S(L) ~ denote 
the extension of x by (em~). In this case, we say y is an e-extension of x. Thus, 
y is obtained from x by inserting mi e's before xi, for all i. For notat ional  
convenience, if (xi) is finite, with last element xn, say, then we infer (tixi) = 
(tlXl �9 . .tnXtttn+Itn+ 2 �9 . .). 

We now define the closure. 

3 .4.2 D e f i n i t i o n  For any L-process P, and any t E L, define the closure E[d(P)  
of s (relative to t) recursively, by 

L:(P) C gtd(p); 

and, for any e E S(L), e < t, and any non-negative integers mi, 

(em'xi) E s  Ca (x~) e s  

Thus,  s  contains all sequences obtained from elements of I : (P)  by in- 
serting or deleting a toms e < t, arbitrarily. 

3.4.3 D e f i n i t i o n  Let P be an L-process, and let t E L. An t-path in P, from 
v E V(P) to w E V(P), is a string v = ( v l , . . . , v , )  E V(P) € for n > 1 such 
tha t  t*P(vi, vi+l) # 0 for i = 1 , . . . ,  n -  1, and vi = v, v ,  = w. For v, w E V(P), 
let r,(v, w) be the set of t-paths from v to w. 

3.4.4 D e f i n i t i o n  For each A E ,4, set tA = ~-~acZ~NT a and let t = ~Ar  tA. 

For A E , 4  and an t -path v = ( v l , . . . , v n )  in pA, define for all i = 1 , . . . , n -  1, 

tel(V) = {a E 2YAIVT I a * pA(vi, vi+l) # O} 

and set ~(v)  = X x ~ < ,  ~i(v).  For each a = ( 3 1 , . . . ,  a n - i )  E ,r define the 
content of v (relative to a )  to be 

= v , }  u 

3.4.5 D e f i n i t i o n  For a E ,4 define the closure of pA to be tile L-process p a  
given by 

L-Fx = npa ; V('P A) = v(pA);  I (P A) = I(pA); Z(P a) = r 

P a ( v ' w ) +  E pA(u 'w)* (  E E X ( t c ~ ( v ) ) ) i f v # w  
-fi~(v, w) = ,~vtv~) ,,e,(~,,),e,(,,) 

y (v, v) + t  �9 x ( { v } )  i fv  = 
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Thus, pA(v, w) is enabled by pA(v, w) and moreover by PA(u, w) (the non- 
LsA part  of pA(u,w))  together with the set(s) of internal actions and states 
along an b-path from v to u. The self-loops are enabled by t. As is customary, a 
sum over the empty  set is O. 

3.4 .6  T h e o r e m  For A E .4, 

EN(pa)  = ~.(pA). 

Let a : L ~t --~ L "4 be the support  map defined on S(L "4) by 

f t if z e UAE,,g~NT 6r(x) 
t x otherwise 

and extended linearly to L "4 (with o'(0) = 0). Now, extend tr to a support  m a p  
or: L --* cr(L "4) by defining for x E L, ~r(z) = r Set L'  = ~r(L) C L. 

If  at least two I /O  Au toma ta  in `4 have internal actions, then for every 
A E A, t �9 %A # 0. There is no loss of generality for our purposes to assume 
this (two "dummy" elements certainly could be added to .A), and it simplifies 
our constructions. Therefore, we now assume this. 

We assume without loss of generality that  the internal actions of each A E A 
are distinct from the actions of all other members  in `4. 

3.5 ~ a n s l a t i o n  T h e o r e m  

The translation map T : .4 --* IP now is defined for each A E ,4, as 

T(A) = o'(P - '~  | QA). 

Thus, T(A) is formed from t(A) = pA | QA by replacing pA with its closure, 
and associating all internal actions with a single abstract  internal action t. 

For the only if  part  of the Translation Theorem tha t  follows, we need to deal 
with the projection (2.1.6) onto common actions. The T defined above works in 
this part  of the theorem only when A and B share the same external actions. 
In general, we must  define T as a function of A = ZAxT ~ Z~XT: different 
A 's  require different T's .  For simplicity of  presentation, instead of defining T 
(actually, the L-processes pa  of Section 2.2) as a function of A, we redefine 
all actions not common to both I /O  Automata  A and B to be internal. This  
redefinition causes all such actions to be abstracted by t, giving the required T 
as defined above. Having made this transformation, A < B r162 C s  

3,5.1 T h e o r e m  Let A be a finite set of I /O Automata drawing actions from 
a fixed finite set containing a subset A I let L = L "4 �9 HAE.4 LSA and let T be 
the translation map T on A relative to A. For any parallel compositions of I /O 
Automata A x , . . . , A ' ~ , B 1 , . . . , B  '~ E.A: 

A = A1UA211 -. . t lA 'n, B = BIIIB21t.. . t tB '~, 
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and the corresponding L'-processes 

P = T(A 1) | T(A 2) | 1 7 4  T(gm), Q = T(B 1)| T(B 2) | 1 7 4  

if A is the set of actions common to A and B, then 

A < B r F~(P) C Z(Q). 

3.5.2 Coro l la ry  

A < B ca for all i F.(P) C s 

4 C o n c l u s i o n  

We have demonstrated an instance of a general transformation technique 
whereby an interleaving composition may be viewed as a special case of a syn- 
chronous (i.e., ordinary automaton) product, over conventional automata. The 
key to this transformation is the simple observation that in a synchronous prod- 
uct, in each step, all parallel components but one can be constrained to self-loop, 
remaining in their respective component states, thereby simulating interleav- 
ing. The choice of the one exception is nondeterministic. Fairness constraints, if 
any, can be added in terms of automata acceptance conditions. The main dif- 
ficulties of the transformation are associated with side conditions required by 
idiosyncrasies of the specific model. In the case of I/O Automata, the main dif- 
ficulty arises from its notion of "implementation", Definition 2.1.6, based upon 
projection and stuttering-equivalence. Unlike the generic basic transformation 
A --, t(A), the side conditions require the more ad hoc A ---, T(A) which, unlike 
t, is dependent upon the projection image ,5. 

Thus, application of the transformation technique depends in its details on 
the particular interleaving model. We have chosen for demonstration the I/O 
Automaton model of Lynch and Tuttle [9, 10], since it strictly subsumes more 
common interleaving models based upon message-passing, such as Hoare's CSP 
[5]. 

The meaning of the Translation Theorem, in terms of verification, is that, 
in order to check implementation for I//O Automata, the question can be trans- 
formed component-wise to a language containment check for L-processes. This 
gives a decision procedure with known complexity, for which existing tools (such 
as COSPAN and SMV) can be used to test implementation between I/O Au- 
tomata. The complexity of the language containment check s  C s of the 
Translation Theorem 3.5.1, is linear in the number of transitions of A [7], and 
in view of Corollary 3.5.2, it also is linear in the number n of components of B, 
although exponential in the number of fairness constraints of A and each B i. 
Furthermore, the support mapping of ta ---, t for each A E ,4 introduces nonde- 
terminism in P and Q, as does taking the closure. In the worst case, this makes 
the implementation check exponential in the size of the largest component of B i 
(essentially, each T(B i) must be determinized). 
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Application of this approach to the verification of systems and algori thms 
originally specified with I /O  Automata  has been successful [8]. T h a t  paper  re- 
ports on the formal verification of a fault-tolerant algorithm for shared memory.  
The  original algorithm as well as the task that  it has to perform (and a hand- 
written argument for its correctness) had been specified with I / O  A u t o m a t a  [1]. 
Through the above translation it was possible for the first t ime to formally verify 
the algori thm's correctness, in this case, using COSPAN. 
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