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We describe a boundary-element method used to model the hydrodynamics of a
bacterium propelled by a single helical flagellum. Using this model, we optimize the power
efficiency of swimming with respect to cell body and flagellum geometrical parameters,
and find that optima for swimming in unbounded fluid and near a no-slip plane boundary
are nearly indistinguishable. We also consider the novel optimization objective of torque
efficiency and find a very different optimal shape. Excluding effects such as Brownian
motion and electrostatic interactions, it is demonstrated that hydrodynamic forces may
trap the bacterium in a stable, circular orbit near the boundary, leading to the empirically
observable surface accumulation of bacteria. Furthermore, the details and even the
existence of this stable orbit depend on geometrical parameters of the bacterium, as
described in this article. These results shed some light on the phenomenon of surface
accumulation of micro-organisms and offer hydrodynamic explanations as to why some
bacteria may accumulate more readily than others based on morphology.

Keywords: bacteria; boundary-element method; optimization; surface accumulation; swimming

1. Introduction

Monotrichous bacteria, such as Rhodobacter sphaeroides and Vibrio alginolyticus,
have a single flagellum at one of the poles of the cell body. They are well
suited to mathematical modelling due to geometrical simplicity. The flagellum
is approximately helical and extends directly behind the cell body during
periods of steady swimming. Movies of R. sphaeroides (available from Howard
Berg’s laboratory website, http://www.rowland.harvard.edu/labs/bacteria/
index_movies.html) indicate that, to a good approximation, the flagellum
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1726 H. Shum et al.

appears rigid and simply rotates as the organism swims. However, flagella can
exhibit elastic properties, for example, undergoing conformational changes during
the reorientation phase of bacterial motility (Armitage et al. 1999).

When examining the fluid dynamics of bacterial propulsion, it is found
that the Reynolds number is very low (Re ≈ 10−5) and so fluid flow may be
described by the incompressible Stokes equations. Linearity of these equations
allows the superposition of singular solutions to construct flows that satisfy
the required boundary conditions, a technique widely used in studies to date.
However, the microscopic scale at which bacteria live also means that Brownian
motion is potentially an issue. Fortunately, the results of Dusenbery (1997)
suggest that neglecting Brownian motion is justified for bacteria as large as
R. sphaeroides, with a length of 1.73 mm (Slovak et al. 2005). This is also
evident from inspection of the bacterial swimming movies produced by Berg’s
laboratory.

The movement of such flagellated micro-organisms through bulk liquid is
well understood, both on a statistical level (where, for example, run-and-tumble
trajectories can be thought of as random walks) and on the individual level.
Mathematical modelling of swimming in low Reynolds numbers began with
Taylor (1951, 1952) and centred on slender-body theory (SBT; Burgers 1938;
Hancock 1953), as well as the closely related resistive-force theory (RFT),
first used by Gray & Hancock (1955) in their calculations for planar bending
waves propagating along flagella of sea-urchin spermatozoa. These theories
exploit the slenderness of flagella to reduce the problem to one dimension.
However, accuracy is compromised when the flagellum cannot reasonably be
treated as a series of locally straight, isolated filament sections in an infinite
body of fluid, for example, in near-surface swimming or if the flagellum is
tightly wound. Many analytical and numerical results have been presented
for spherical cell bodies and helical or sinusoidal, planar flagellar beats in
unbounded fluids (Chwang & Wu 1971; Keller & Rubinow 1976; Lighthill 1976;
Higdon 1979a,b).

While RFT is a simple local approximation to SBT, it agrees very well with
SBT analysis and adequately predicts the dynamics of swimming in unbounded
fluid, except where the cell body is large and has significant influence (Johnson &
Brokaw 1979). However, even SBT only approximately satisfies the boundary
conditions of the model and there are more accurate, though more sophisticated,
methods. Phan-Thien et al. (1987) used a boundary-element method (BEM) to
analyse the motion of an ellipsoidal cell body propelled by a rigidly rotating
helical flagellum. Good agreement was found when compared to the SBT results
of Higdon (1979b) for swimming in unbounded fluids. More recently, Fujita &
Kawai (2001) have drawn the same conclusions with quantitatively very similar
results in their own BEM study.

Authors, such as Higdon (1979b), Phan-Thien et al. (1987) and Fujita & Kawai
(2001), have addressed the question of optimizing swimming speed in bulk fluid
with respect to shape using power efficiency as the objective function. While this
may have some relevance, particularly in the design of artificial microswimmers,
there are a host of other factors that would affect biological fitness of bacteria
in nature (Young 2006). Even if the only aim was to make the fastest possible
swimmer, there would be several conditions to consider, such as the flagellar
motor capabilities, as well as the cell and flagellum shapes.
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Modelling bacteria close to a boundary 1727

In bacterial propulsion, the driving force comes from a rotary motor embedded
in the cell membrane and connected to the flagellar filament by a short, flexible
segment called the hook. The motor is normally situated at a pole of the body
on monotrichous bacteria. Studies have found that the torque produced by the
motor is relatively constant over a large range of rotational frequencies before it
drops roughly linearly to zero at higher frequencies (Berg & Turner 1993; Chen &
Berg 2000; Xing et al. 2006). The low-frequency torque, the frequency at which
the torque begins to decrease and the slope of decrease all vary between species,
and some properties depend on environmental conditions such as temperature
(Sowa & Berry 2008).

The motor clearly has an important role in determining swimming speeds and
the fastest swimmer powered by a given motor is not necessarily the most power
efficient. Given that the torque produced by motors is approximately constant
at lower rotation rates, we will examine torque efficiency as an alternative
optimization criterion. This finds the shape of the fastest swimmer for a given
motor torque, and may be relevant when the swimmer is limited by motor
output rather than available energy. It is known that motor frequencies are
within the approximately constant torque regime during swimming in some
species, though not all (Li & Tang 2006). Frequencies may also enter or
leave this regime depending on environmental conditions such as temperature
and viscosity (Lowe et al. 1987; Sowa et al. 2003). Our first aim will be to
contrast the result of torque optimization with the power optimum and with
examples from observation, allowing an exploration of whether optimization
studies are robust to the influence of additional biology in the choice of objective
functions.

There is a growing interest in developing our understanding of how micro-
organisms swim through confined environments, such as in narrow channels or
porous media (Biondi et al. 1998; Galajda et al. 2007). This is relevant in a wide
range of scenarios. Bacteria moving through a host organism or in microdevices
inevitably experience the effects of solid boundaries, which may even be exploited
to achieve certain aims, such as sorting cells by size (Hulme et al. 2008). Behaviour
near surfaces is also important for initiating biofilm formation (O’Toole et al.
2000) and modulating bacterial transport in bioremediation of contaminated
groundwater (Sherwood et al. 2003). It also affects the foraging patterns of
organisms that feed on nutrients diffusing from surfaces. In such cases, it would be
beneficial to remain close to the surface so these organisms may exhibit features
that encourage this. As an example, the marine bacterium V. alginolyticus adopts
a run-and-reverse swimming strategy rather than run-and-tumble when it is near
a large source of food. It has been found that backward swimming increases their
residence time near solid surfaces. On the other hand, tumbling could result in
the bacterium swimming away from the surface, which is potentially a source of
nutrients (Magariyama et al. 2005).

Swimming near no-slip plane boundaries was analysed as early as Reynolds
(1965), where the swimmer was an infinite waving sheet. RFT and SBT have
been extended to half-space domains (Blake 1974; Katz et al. 1975) and there
have also been SBT studies on flagellar motility near surfaces (Smith et al.
2009). Separations from the wall of the order of the slender-body length can be
accommodated (Barta & Liron 1988), but the fundamental assumptions of SBT
mean that the model has not been formally justified when a freely swimming
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organism is much closer than this. Nevertheless, post hoc testing typically shows
that the numerical residuals are relatively small, provided the wall separation is
greater than a few flagellum radii.

BEMs can model close surfaces more accurately and were used by Ramia
et al. (1993) to give a comparison of the kinematics of swimmers in unbounded
fluid, near a plane boundary, between two parallel-plane boundaries and near
another swimmer. The path followed by a swimmer near a single-plane boundary
was found to be circular, as is commonly observed under the microscope. This
effect has been explained (Lauga et al. 2006) and reported in a number of
numerical studies. However, any long-time-scale simulations have invariably had
to terminate as the swimmer approached and descended into the boundary (as
reported by Ramia et al. 1993, for example). Apart from curving the trajectory,
the boundary also seems to attract the swimmer (Berke et al. 2008).

Short-ranged forces between the swimmer and the boundary, such as van
der Waals, electrostatic and steric interactions, have been hypothesized to play
an important role in trapping microswimmers near surfaces (Frymier et al.
1995). Extra interaction potentials are necessary in simulations to account for
surface effects at these close distances, creating a finite preferred separation
from the boundary (Li et al. 2008). However, two different kinds of ‘trapping’
at surfaces have been documented (Vigeant et al. 2002): cells can swim freely
but at a fixed distance from the surface for extended periods of time or they
can actually adhere to the surface and become immobilized. Evidence suggests
that short-ranged forces are only responsible for the latter kind of entrapment,
whereas hydrodynamic interactions alone are sufficient to draw cells to swim
along surfaces. We will focus on the mobile type of entrapment, which Vigeant
et al. (2002) suggest occurs beyond the range of the additional surface forces.

As mentioned above, attraction of swimmers towards the boundary has already
been explained by hydrodynamics. Stable trajectories at a finite separation from
a boundary appear to be more elusive, but have been shown to exist purely as a
result of hydrodynamics. In the study by Smith et al. (2009), the swimmers were
spermatozoa and both planar and ‘elliptical helicoid’ beat patterns gave rise to
stable boundary accumulation.

Goto et al. (2005) deduced the possibility of motion at constant separation
from a wall for bacteria by showing that pitching motion is stable when swimming
forwards roughly parallel to the boundary. However, they did not seek a stable
combination of height and pitch angle, nor did they perform numerical tracking
of a swimmer to demonstrate stable motion. Thus, our second aim will be to
verify this surface accumulation for monotrichous bacteria and characterize the
geometrical aspects of swimmers that encourage or prevent stable surface motility.

We will develop a boundary-element model for a simple bacterial cell, assuming
that the surface of the body and flagellum is smooth (i.e. free of pili and other
irregularities). As motivated above in the context of R. sphaeroides, we neglect
Brownian motion, short-range surface forces and structural deformations. The
geometry of our bacterial model and the dynamics we consider will be explained
further in §2, along with some techniques for analysing the resulting behaviour.
Our simulation results will be described in §3 and some interpretations and
implications of our findings in the context of questions of bacterial boundary
accumulation and optimal bacterial swimming will be given in §4. We will then
summarize the investigation in §5.

Proc. R. Soc. A (2010)
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2. Methods

(a) The boundary-integral equation

BEMs are well established for numerical investigations of a range of physical
phenomena, including flagellar motility in viscous fluids (Phan-Thien et al. 1987;
Goto et al. 2001; Smith et al. 2009). The present work follows the approach in
Pozrikidis (2002).

The unforced, incompressible Stokes equations are

−Vp + mV2u = 0, V · u = 0, (2.1)

where p and u are the pressure and flow-velocity fields, respectively, and m is the
dynamic viscosity of the fluid.

The flow in a force-free fluid domain, V , due to a rigidly moving object or
collection of such objects with smooth boundary vV can be expressed as

uj(x0) = − 1
8pm

∫
vV

Gji(x0,x)fi(x) dS(x), (2.2)

where G is the Stokeslet Green function in the appropriate domain and f is the
traction distribution over the object’s boundary. Expressions for the Stokeslet are
given in §1 of the electronic supplementary material. From the boundary-integral
equation (2.2), we form a system of linear equations relating the velocity at
discrete collocation points on the boundary to the forces at those points. Gauss–
Legendre quadrature is used to integrate quantities over curved triangular surface
elements following suggestions from Pozrikidis (2002).

(b) Model geometry

The model for the bacterium consists of two rigid bodies: an ellipsoid
representing the cell body and a thin cylinder with hemispherical ends, curved
into a helical shape with an amplitude envelope suggested by Higdon (1979b) so
that the point of attachment is on the axis of the helix. The centre line of the
flagellum is given by

X1(x) = x,

X2(x) = a
(
1 − e−k2

Ex2
)

cos(kx)

and X3(x) = a
(
1 − e−k2

Ex2
)

sin(kx),

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.3)

x ∈ [0, L̄], where L̄ is the extent of the flagellum along the tail axis. The helical
amplitude and wavenumber are a and k, respectively, and kE is the amplitude
envelope factor. The helical amplitude grows from zero to its full value over a
region of length roughly 2/kE, which we refer to as the flagellum starting region.
Please refer to figure 1 and table 1 for an illustration of the model bacterium
and an explanation of geometrical parameters used throughout. This model is
similar to that used by Phan-Thien et al. (1987), but with a refinement of
the filament ends. Isoparametric, quadratic triangular elements are used for
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2a3
H

y

a

z
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2a1
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2aT fT

x~ 2/kE

2a2
H

Figure 1. Illustration of model bacterium in the body reference frame. Table 1 gives a description
of parameters appearing in this figure.

Table 1. Parameters related to geometry of the bacterium.

symbol interpretation further information

a amplitude of helical tail figure 1

aH
1 polar radius of cell body figure 1

aH
2 , aH

3 equatorial radius of cell body figure 1; only spheroidal cell
bodies considered (aH

2 = aH
3 )

ā radius of sphere with volume of cell body ≈ 0.7 mm for R. sphaeroides
(Slovak et al. 2005)

aT radius of cylindrical filament of tail figure 1

k wavenumber of helical tail k = 2p/l

kE tail amplitude envelope growth rate figure 1; §2b

L curvilinear length of flagellum

l wavelength of helical tail figure 1

Nl number of turns on tail

fT phase of flagellum relative to cell body

greater accuracy in approximating the curved surfaces and surface distributions.
Details of the bacterial surface mesh can be found in §2 of the electronic
supplementary material.

For all simulations reported here, the cell body–flagellum junction is at a
pole of the body (as depicted in figure 1). This is the normal configuration for
monotrichous bacteria. In the model, there is a small separation (of the order of
a flagellum radius) between the cell body and the flagellum to reduce numerical
errors that may arise when two nearby surfaces have different velocities. The
reference point of the bacterium is taken to be the starting tip of the flagellum,
which we call the junction position, xJ. Since the relative motion of the flagellum
with respect to the cell body is confined to rotations about its axis, the entire
configuration may be described in the stationary reference frame by the junction
position, xJ, the head orientation vector, eH, and the phase of the tail about
its axis, fT.

Proc. R. Soc. A (2010)
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(c) Solving instantaneous dynamics

This model supposes that the bacterium’s cell body has a certain translational
and rotational velocity, U and UH, respectively, with the rotational velocity taken
about the point xJ. The flagellum additionally rotates relative to the body at a
rate UT ≡ dfT/dt about the tail axis, eT, which is fixed in relation to the cell body,
such that eT = −eH. Writing the relative position of a point from the junction as
x̃ = x − xJ, the surface velocity distribution can be expressed as

u(x) =
{
U + UH ∧ x̃ , x ∈ H ,
U + (UH + UTeT) ∧ x̃ , x ∈ T ,

(2.4)

where H denotes the surface of the cell body and T denotes the surface of
the flagellum. Some additional equations are needed to determine the unknown
velocities, U , UH and UT.

Assuming that the bacterium is swimming in the absence of external forces,
such as gravity (valid for neutrally buoyant cells), the total force acting on
the combined surfaces of the cell body and flagellum is zero. Similarly, no net
torque acts on the bacterium. However, there will be a net torque acting on the
flagellum balanced out by an opposite torque acting on the body. Two of the
torque components cannot be predetermined, but the torque in the direction
of the tail axis can be specified (assuming this is mediated by the motor),
leading to an additional torque balance equation. These conditions are expressed
mathematically as ∫

H∪T
f dS = 0,

∫
H∪T

x̃ ∧ f dS = 0 (2.5)

and

eT ·
∫
T
x̃ ∧ f dS = −tM, (2.6)

where eT is the unit direction vector of the tail axis and tM is the magnitude of the
applied motor torque. In most simulations, we will prescribe a constant value to
tM, as bacterial motors produce constant torque over a large range of frequencies.
It is also possible to fix the rotation rate, UT, rather than the torque, as was
commonly done in past investigations.

After discretization, we have 3NN unknown force components on the mesh
nodes, where NN is the number of nodes on our surface mesh, and a further
seven unknown velocities (U , UH and UT). The boundary-integral equation (2.2)
leads to 3NN linear equations in these unknowns. Force and torque balance
considerations (2.5) give six further equations and the prescription of motor
torque (2.6) provides one more. We obtain a dense (3NN + 7)-dimensional linear
algebraic problem, which is solved using standard LU decomposition subroutines
(Press et al. 1996).

(d) Tracking bacterial trajectories

We implement a method similar to Smith et al. (2009) based on Heun’s second-
order predictor–corrector algorithm to perform time steps and track the motion
of the bacterium. The predictor step involves calculating the instantaneous
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velocities, U n , UH
n and UT

n at time step n. The tentative positions at time
step (n + 1) are found by translating all nodes by dx = U dt, rotating about
the junction by dq = UHdt and then rotating the flagellum through an angle
dfT = UTdt about its axis. The velocities at the next time step, Ũ n+1, ŨH

n+1

and ŨT
n+1 are then calculated assuming this tentative configuration, and the

corrected velocities are defined by Û n = 1
2(U n + Ũ n+1), Û

H
n = 1

2(U
H
n + ŨH

n+1) and
ÛT

n = 1
2(U

T
n + ŨT

n+1). The corrected positions are then found as before, using the
corrected velocities.

This time-stepping process is necessary to accurately predict the motion of the
model swimmer, but long-time-scale simulations require significant computational
power. We now describe more efficient alternatives for analysing the approximate
dynamics.

(e) Phase-averaged velocities

The bacterium experiences fluctuations in velocity as the flagellum progresses
through each revolution. Rather than considering an instantaneous velocity, which
depends on the phase of the flagellum, it is often more useful to find the net motion
over a cycle. To do this, we take an average from several computations using the
same approach as Ramia et al. (1993). For this, the tail rotation rate UT relative
to the head is fixed and the arithmetic mean of six instantaneous velocities is
calculated for the same head position but varying flagellum phases. This will
be denoted Ū . Other phase-averaged quantities, such as the cell-body rotation
Ū

H
and motor torque t̄M, may be computed similarly, and are used in our analyses

in place of their instantaneous values. If the kinematics for constant motor torque
are required, the computed average velocity can simply be scaled by the average
torque experienced under constant tail-rotation rate, since the swimming speed
depends linearly on UT, which depends linearly on the applied torque.

(f ) Swimming speed and optimization

Variations in power efficiency with the geometrical parameters dictating
the number of turns on the flagellum, Nl, helix pitch angle, ak, starting
region length k/kE, flagellum radius aT/ā, flagellum length L/ā and cell-
body aspect ratio aH

1 /aH
2 have been described in the past (Higdon 1979b;

Phan-Thien et al. 1987; Fujita & Kawai 2001; see table 1 for a description of
parameters). Phan-Thien et al. and Fujita & Kawai started with an initial choice
of parameters and successively optimized over each parameter in turn, which is
essentially one iteration of a direction set method for optimization. We aim to
extend the coverage of parameter space to find an improved estimate for the
optimal parameters. We also consider torque efficiency in the same way and
compare results.

The power efficiency is defined as a ratio of the power needed to push a sphere
of the same volume as the cell to the required mechanical power of the swimming
motion giving the same mean speed, i.e.

hP := 6pmāŪ 2

P̄
, (2.7)
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eH

eTq

e3
e2

e1

h

Figure 2. Bacterial configuration relative to a plane boundary (wall). Ignoring variations of tail
phase, the bacterium’s configuration is specified by the height above the wall, h, and the inclination
angle, q, of its axis relative to the wall.

where P̄ is the average value of the power, P = tMUT, required to produce
the motion and ā is the radius of a sphere of the same volume as the
bacterium’s head. As the definition indicates, power efficiency is a measure
of the square of the swimming speed that can be attained per unit power
consumption.

Motivated by the observation that bacterial motors produce relatively constant
torques over a wide range of frequencies, we can also look at torque efficiency,
defined as the ratio of the torque required to rotate a sphere to the motor torque
tM required to propel the organism with mean speed equal to the equatorial
surface speed of the sphere, i.e.

ht := 8pmā2Ū
t̄M

. (2.8)

This gives a measure of the swimming speed attained per unit torque exerted by
the motor.

Consider the problem of optimization over N geometrical parameters. The
strategy is to first evaluate the power or torque efficiency on a regular grid in
parameter space using the methods outlined in §2c and §2e. The Matlab function
interpn is used to produce an N -dimensional cubic interpolant of the sampled
efficiency data, which is then maximized with fmincon within the bounds of the
sampled parameter range.

(g) Phase-plane analysis

The trajectory of a swimming bacterium will clearly depend on its initial
state. It would be impractical to perform long simulations for enough different
initial configurations to claim an understanding of the complete picture. It is
not even clear a priori how long each simulation must be to show the long-term
behaviour. Instead, we simplify the analysis by examining just a few quantities
of interest. The phase-averaged velocity removes dependence on fT so it is only
necessary to specify two components of the bacterium’s state: the height h of the
junction position above the no-slip plane boundary and the angle of inclination
q of the bacterium with respect to this plane (see figure 2). By symmetry,
translations by a vector parallel to the plane and rotations about the plane’s
normal direction only change the perspective of the observer. For a spheroidal
cell body and coaxial flagellum, rotations about the axis eH also leave the
configuration unchanged. Hence, we can express the process of boundary-element
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modelling and phase-averaging symbolically with functions f and g, leading to
the autonomous system

q̇(t) = f (q(t), h(t))

and

ḣ(t) = g(q(t), h(t)).

⎫⎪⎬
⎪⎭ (2.9)

Here, q̇ ≡ ŪH
2 (assuming, without loss of generality, that the x2-direction is

the relevant axis of rotation for inclination, corresponding to e2 in figure 2)
and ḣ ≡ Ū 3 are the phase-averaged rates of change of inclination and height,
respectively. By sampling sufficiently many points in the phase plane, we
can predict the long-term behaviour starting from any configuration. More
specifically, we can predict whether the bacterium will collide with the wall, swim
at some steady height above the wall, enter a periodic limit cycle of dips and
climbs, or simply swim away from the wall. There may be regions of initial states
that give rise to different long-term outcomes and this would also be evident in
the phase-plane analysis. For such analyses, Matlab’s built-in functions are used
to produce quiver plots of the phase plane and find path lines. Results are given
in §3c.

Using this method, a lot of computation time is saved as fewer instances
need to be calculated. However, only an approximate agreement should be
expected between the predicted trajectory and that computed by tracking,
since the phase-averaging removes details of the short-time-scale fluctuations,
which inevitably perturb the exact path. Therefore, some tracking simulations
are carried out to support and verify results derived from phase-plane
analysis.

(h) Locating stable configurations

Trials with phase-plane analysis sometimes indicated the presence of
stable configurations, i.e. (q∗, h∗) satisfying q̇(q∗, h∗) = ḣ(q∗, h∗) = 0 with locally
attractive behaviour. The values for (q∗, h∗) can be estimated from phase-plane
analysis, but a quicker (quicker than collecting sufficient phase-plane data) and
more accurate alternative is to compute the fixed point directly with a two-
dimensional root-finding algorithm. We use Newton’s method with backtracking
(Press et al. 1996) for this. Once the stable point is obtained, we can calculate
the radius of curvature of the circular orbit from the formula

R = Ū
ŪH

3 + ŪH
1 tan q∗ , (2.10)

where ŪH
1 is the rotational velocity parallel to the wall, but in the vertical plane

containing the bacterial axis, and ŪH
3 is the rotational velocity in the direction

normal to the wall (directions e1 and e3, respectively, in figure 2). This formula
assumes that motion is purely parallel to the wall and is therefore only valid after
the swimmer has entered a stable orbit.

In order to evaluate the effects of geometrical parameters on boundary
accumulation, we track the dependence of h∗ on each parameter. For small
parameter adjustments, small changes in h∗ and q∗ are expected, so the current
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steady-state configuration is a good initial estimate for the next run. Typically,
two or three iterations of the Newton method are sufficient to accurately locate
successive stable configurations as a parameter is varied in small steps.

This scheme breaks down when the parameter passes some critical values. This
is either because the steady configuration approaches the boundary (causing the
bacterium to descend into the wall in tracking simulations) or the stable height
h∗ increases asympotically to infinity (representing escape from the surface), and
very small steps are required to follow the rapid changes.

A simple method for exploring parameter space is as follows. A coarse grid
is constructed to cover the parameter region of interest, which should contain
a point for which a stable configuration can be estimated from known data.
Starting at this estimate, the stable configuration is obtained and then the
stable configurations at each neighbouring grid node are found by branching
out. If the destination node is successfully reached and the corresponding stable
configuration is found, this is a ‘stable grid node’. For each stable grid node found,
the algorithm branches out towards all neighbouring nodes that have not already
been found to be stable. If this process fails at any stage, the grid is refined near
the point of failure to capture more detail about the boundary of the stable region.

A threshold of dmin = 0.05ā (35 nm in dimensional units) is imposed for
the separation between the wall and bacterium. Below this, the bacterium is
considered to have descended into a region characterized by wall–cell surface
nanoscale forces and the possibility of adhesion; this is not included in our
model. The length scale characterizing when these surface interactions are
important is highly variable, depending on the solutes and their concentrations
as well as the cell and wall surface properties. For experiments mimicking
physiological conditions, wall–cell surface nanoscale forces are observed to become
important for bacteria at separations of 10–60 nm (Klein et al. 2003). Thus, in
the presentation of our results, we have considered the average, 35 nm, as the
cut-off after which we no longer track the bacterium’s descent into the wall. This
distance is also consistent with estimates by Vigeant et al. (2002).

This procedure results in a representative set of parameter values for which
a finite stable separation height exists, and it would be possible to construct
the outline that divides the stable from the unstable region in parameter space.
Results are given for a two-parameter implementation of this method.

3. Results

(a) Validation of numerical code

Our code was validated by comparing simulations of a sphere translating in free
space and falling towards a no-slip boundary with exact solutions (Brenner 1961).
We also tested a wide range of discretization levels for both the cell body and
the flagellum to ensure that results were accurate to about 1 per cent compared
with much finer discretizations. Further details of testing are given in §3 of the
electronic supplementary material.

Simulation results were in excellent agreement with those published by other
authors such as Phan-Thien et al. (1987) and Higdon (1979b). Our results
tended to be slightly closer to Higdon’s than to Phan-Thien’s. A comparison
is shown in figure 3.
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Figure 3. Comparison of results with Phan-Thien et al. (1987) and Higdon (1979b). Ū /V is the
progressive speed non-dimensionalized by the linear wavespeed of the flagellum. A = ā is the
radius of the spherical cell body considered for this dataset. The solid curves are predictions from
Higdon’s slender-body analysis. On the curve labelled L/A = 5, the solutions by Phan-Thien et al.
are represented by open circles, while diamonds show the results of the present model. On the
curve labelled L/A = 10, the solutions by Phan-Thien are closed triangles, and the current model
predictions are open squares. (This figure is reproduced with permission from Phan-Thien et al.
(1987) with new data overlaid.)

(b) Optimization

Power efficiency appears to increase monotonically with decreasing flagellum
radius (Phan-Thien et al. 1987), so we will fix this parameter at a value
aT/ā = 0.05, where ā is the length scale used for non-dimensionalization (refer
to table 1 for a description of parameters). This is the right order of magnitude,
though larger than observed in most monotrichous bacteria (where aT/ā ≈ 0.01–
0.04, estimated from data in Brennen & Winet 1977), which allows greater
computational accuracy without excessive mesh refinement. In addition, we will
fix the value k/kE = 1 since efficiency is insensitive to the starting region length
within a realistic range applicable to a bacterial model. Finally, only axisymmetric
spheroids will be considered, i.e. aH

2 = aH
3 , since this is a good approximation

for rod-shaped bacteria. Thus, we will optimize swimming efficiency over four
parameters: number of turns on flagellum Nl, pitch angle ak, flagellar length L/ā
and cell-body aspect ratio aH

1 /aH
2 .

To begin with, consider the problem of optimization in free space over two
parameters: wavelength, l/ā, and flagellar length, L/ā. This is equivalent to
optimizing over Nl and L/ā since these parameters are inter-related. Figure 4a
shows the variation in power efficiency with these two parameters when we fix
ak = 1 and aH

1 /aH
2 = 2. We find that efficiency is within about 10 per cent of the

maximum value in the region 3.5 < l/ā < 5.5, 6 < L/ā < 11.
The results in figure 4b are for bacteria oriented parallel to the boundary at

a distance h/ā = 2, which is found to be a typical stable swimming height (see
§3d). The overall efficiency is reduced slightly near the boundary, but the location
of the optimum does not change significantly. Even upon inclusion of all four
geometrical parameters, the configurations optimized for free-space swimming
and those optimized for boundary swimming do not differ greatly and are almost
equally efficient.
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Figure 4. Contour plots of swimming efficiency as a function of flagellum wavelength, l/ā, and
total length, L/ā. (a,b) Power efficiency; (c,d) torque efficiency. (a,c) Swimming in unbounded
fluid; (b,d) swimming parallel to boundary at distance h/ā = 2, with the same grey scale as the
corresponding plot in an unbounded fluid. Dots indicate the optimal parameter values in each case.
Bacterium shapes are illustrated for the four corners of parameter space in (a).

However, the optimum shape is quite different if we consider torque efficiency,
ht. As figure 4c shows, there is a much greater preference for short, small-
wavelength helices. Considering only two parameters, the optimal region is
roughly 1 < l/ā < 2 and 1.5 < L/ā < 5. Again, the presence of the boundary
does not significantly affect the optimum in either the two- or four-parameter
case. Results of geometrical optimization in each case are listed in table 2 and
comparisons with experimental measurements are given in table 3. The power-
optimal parameters are very close to those previously reported for free-space
swimming (Phan-Thien et al. 1987).

(c) Phase-plane analysis of cell dynamics above a no-slip boundary

As one would expect, bacteria tilted too heavily towards the wall will descend
into the influence of the wall–cell surface nanoscale interactions, while those
initially tilted too much away from the wall will escape. Apart from such extremes,
the final state is insensitive to initial conditions and depends only on the bacterial
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Table 2. Optimal geometries and corresponding efficiencies. (Results of power (P) and torque
(T ) efficiency optimization for swimming in free space (F) and parallel to boundary (B) at
distance h/ā = 2. Optimizations were performed over two parameters (2) and four parameters (4).
Parameters marked with asterisks (*) were fixed at these values. hP

F and ht
F are the efficiencies in

free space, while hP
B and ht

B are the efficiencies for the same configuration near a boundary.)

case Nl l/ā L/ā ak aH
1 /aH

2 103hP
F 10ht

F 103hP
B 10ht

B

P-F -2 1.33 4.41 8.17 1.00* 2.00* 6.32 1.78 6.21 1.74
P-B-2 1.24 4.87 8.42 1.00* 2.00* 6.27 1.67 6.26 1.63
T -F -2 1.34 1.32 2.46 1.00* 2.00* 1.38 3.14 1.21 2.94
T -B-2 1.33 1.32 2.45 1.00* 2.00* 1.37 3.14 1.21 2.94
P-F -4 1.49 4.68 9.14 0.87 1.67 6.43 1.79 6.25 1.74
P-B-4 1.28 5.16 8.76 0.90 1.88 6.36 1.69 6.32 1.65
T -F -4 1.28 1.40 2.14 0.68 3.88 1.05 3.65 0.95 3.47
T -B-4 1.27 1.37 2.09 0.69 4.21 1.00 3.65 0.91 3.47

Table 3. Comparison of optimal with observed geometries. (Illustrations and computed efficiencies
of the four-parameter free-space optimal geometries and approximate geometries of experimentally
observed monotrichous bacteria. In all cases, the flagellum radius was fixed at aT = 0.05ā.)

species shape 103hP
F 10ht

F source of parameters

R. sphaeroides 3.18 2.36 Armitage et al. (1999)
Photobacterium phosphoreum 6.12 1.62 Brennen & Winet (1977)
P. aeruginosa 5.48 1.86 Brennen & Winet (1977)
Vibrio cholera 2.80 1.97 Brennen & Winet (1977)
Caulobacter crescentus 5.00 1.73 Li & Tang (2006)
V. alginolyticus 4.30 2.54 Magariyama et al. (1995)
power optimum 6.43 1.79
torque optimum 1.05 3.65

geometry. Some bacteria are deflected and swim away from the wall, others turn
and swim towards the wall while the rest settle at a stable configuration. As
described in previous analyses (Lauga et al. 2006), the swimmer must rotate about
the normal direction to the boundary in order to balance the torque induced by
the body and tail rotating axially near a boundary. This leads to a circular orbit
above the wall.

Figure 5 is an example of a phase-plane diagram that we find by evaluating
phase-averaged velocities of a bacterium as described in §2g. Here, there is a
stable fixed point in the phase plane corresponding to the bacterium swimming
(on average) at a constant height above the wall and constant tilt. This result
was verified by performing a tracking simulation (also shown in figure 5).

Generally, the predicted stable points are very close to the stable configuration
manifested in tracking simulations. For example, in figure 5, the predicted stable
point is at (q∗ = 2.60◦, h∗/ā = 1.37), while the simulated trajectory oscillates
around (q∗ = 2.50◦, h∗/ā = 1.33).

Proc. R. Soc. A (2010)

 on August 5, 2011rspa.royalsocietypublishing.orgDownloaded from 

http://rspa.royalsocietypublishing.org/


Modelling bacteria close to a boundary 1739

2.0

1.8

1.6

1.4h
/a–

1.2

1.0

0.8
–2 0 2 4

q (°)
6 8

Figure 5. Phase-plane diagram showing a stable swimming configuration above the plane boundary.
This bacterium had the following parameter values: aH

2 /aH
1 = 2, L/ā = 10, ak = 1, Nl = 2 (see

table 1 for a description of model parameters). Thin lines indicate path lines generated from
phase-plane data. The thick line is a smoothed plot of a trajectory found by a tracking simulation.
The actual trajectory exhibits oscillations in inclination angle of amplitude approximately 0.7◦
and oscillations of amplitude approximately 0.01ā in height. These oscillations are owing to
the revolutions of the flagellum and are at a correspondingly high frequency. The region below
the dashed line is excluded, as these configurations lead to intersections between the bacterium
and the wall.

(d) Boundary accumulation and variation of parameters

While stable spirals are often found, some bacterial geometries have phase
portraits in which all trajectories either approach or escape from the wall. To
understand why certain bacteria have a tendency to escape while others maintain
a stable separation from the wall, the variations in stable height with some key
geometrical parameters are plotted in figure 6. The stable inclination angle q∗ was
found to be positive (body pointing away from wall) in all tested cases and was
never more than about 5◦ from horizontal. Since inclination is not an indicator
of boundary accumulation, it will not be discussed in detail here.

We see from figure 6 that longer flagella, higher numbers of turns and thicker
filaments result in closer accumulation heights, while tightly wound or high-
amplitude helices (large ak) and long starting region lengths push the swimmer
further away from the wall. Body shape is also important, with elongated cells
swimming further from the wall than more oblate cells. Apart from variations in
helical pitch angle, the radius of curvature of the stable circular orbit tends to
follow the same trend as the accumulation height, i.e. the orbit radius generally
increases with h∗/ā. However, figure 6c shows that the radius achieves a maximum
near ak = 1, despite the fact that the stable height, h∗, increases monotonically
with ak throughout the tested range.

Figure 7 indicates a region of parameter space where boundary accumulation
is found to occur when the cell-body aspect ratio and the length of the flagellum
are allowed to vary. For most stable configurations, it was found that the
accumulation height, h∗, was in the range [ā, 2ā], where ā is the radius of a sphere
with the volume of the cell body. The wall separation distance is roughly ā less
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Figure 6. Variations in stable junction height (h∗/ā, solid lines) and radius of curvature of the
stable orbit (R/ā, dashed lines) with geometrical parameters: (a) number of turns on flagellum,
(b) cell-body aspect ratio, (c) helix-pitch angle, (d) flagellum length, (e) flagellum thickness, (f )
flagellum starting region length. These variations are made from the starting configuration: Nl = 2,
aH
2 /aH

1 = 2, ak = 1, L/ā = 10, aT/ā = 0.05, k/kE = 1. Some tail parameters are inter-related; l/ā
varies as necessary in (a) and (c), and Nl varies in (d) and (f ). Beyond the filled circles in (a) and
(b), the bacterium descends into the wall.

than the stable height, which is measured from the cell body–flagellum junction.
For a fixed flagellum length, increasing the aspect ratio of the cell body, aH

1 /aH
2 ,

results in an increased accumulation height. Above a critical value, which varies
with model parameters, the increase in h∗ becomes very rapid and continues to the
point where the cell may be considered to have escaped wall effects. Decreasing
the aspect ratio lowers the accumulation height until the bacterium descends into
the boundary.

The accumulation height generally increases as the flagellum length is reduced,
although there can be fluctuations as well. This is most noticeable at low
aspect ratios, leading to the complicated boundary contour on the left-hand side
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Figure 8. (a) Free-space power efficiency and (b) torque efficiency with varying flagellar length and
cell aspect ratio. The power-optimum is marked by a dot and thick lines separate approximate
regions of stable orbits, escape from the wall and descent into the wall, with the ensuing influence
of nanoscale surface forces. Parameter values used are the same as in figure 7.

of figure 7, but is also visible in figure 6d. In figure 7, we find that, at aspect
ratios greater than 1.4, the accumulation height increases very rapidly below a
critical flagellar length, which varies with the aspect ratio, and the cell effectively
escapes from the wall. Figure 8 shows the same regions of surface accumulation
behaviour laid over plots of power and torque efficiency. Figure 9 plots trajectories
illustrating the three types of long-term behaviour—descent, stable orbiting and
escape from the wall—as predicted in figure 7.

Proc. R. Soc. A (2010)

 on August 5, 2011rspa.royalsocietypublishing.orgDownloaded from 

http://rspa.royalsocietypublishing.org/


1742 H. Shum et al.

0

–50 –40 –30 –20 –10 0 10 20

10(a)

(b)

5

0

0

–10

–20

–30

–40

–50

–60

20 40 60
t/t

x/a–

y/
a–

h/
a–

80

(i)

(i)

(ii)

(ii)

(iii)

(iii)

100

Figure 9. (a) Junction height against time with microswimmers drawn to the scale of the junction-
height axis. (b) Top-down view of swimming trajectories. These are computed using tracking
simulations rather than phase-averaged data. Three cases are shown: (i) aH

2 /aH
1 = 1, L/ā = 5, which

descends into the wall; (ii) aH
2 /aH

1 = 2, L/ā = 10, which maintains a circular orbit close to the wall;
and (iii) aH

2 /aH
1 = 2, L/ā = 5, which escapes from the wall. Other parameters are the same as those

used in figure 5. Time is non-dimensionalized by t̄ := 16p2ā3m/tM. For comparison, the flagellum
rotation period in (ii) is approximately 0.25t̄.

4. Discussion and conclusions

(a) Optimization

The plots in figure 4 show rather broad optima in power and torque efficiencies
when considering variations in flagellum length and wavelength. Configurations
achieving at least 90 per cent of the optimal efficiency cover parameter ranges
spanning a factor of two. This suggests that biological fine tuning is not required
for efficient swimming; hence, efficient swimming is robust to biological variation.
There is also some freedom for the cell to deviate from the swimming optimum
in order to accommodate other criteria.

Both power and torque efficiency are relatively insensitive to the presence of
the boundary, at least up to separations of the order of ā. Thus, it is likely
that no special adaptation is required for efficient swimming near surfaces. In
other words, efficient free-space swimmers are also efficient near boundaries.
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This is consistent with the observation that parallel swimming speeds close
to a surface are indistinguishable from swimming speeds far from a surface
(Frymier & Ford 1997).

Given the marked difference between power-optimal and torque-optimal
shapes, we briefly consider the extent to which observed bacterial shapes
and speeds resemble the predicted power and torque optima. Flagellar bundle
frequencies for Escherichia coli are estimated to be around 100–200 Hz, depending
on experimental conditions (Darnton et al. 2007). For a frequency of 130 Hz, the
monotrichous power-optimized configuration is predicted to swim at a speed of
about 10 body lengths per second. This agrees roughly with observations for
bacterial swimming in media with viscosity similar to water (Darnton et al.
2007), whereas torque-optimized shapes are predicted to require rotation rates
10–15 times higher to achieve the same swimming speed. However, in E. coli
and a number of other species, the constant torque regime of motors holds
only up to speeds of around 100–200 Hz (Sowa & Berry 2008). Hence, we
observe that constant torque optima require rotation rates that are beyond the
approximately constant torque region of the torque–speed curve for bacterial
motors (except in sufficiently viscous media) if we are to achieve commonly
measured swimming speeds.

Table 3 illustrates the approximate shapes of several bacterial species, as well
as our predicted power and torque optima. Note that there is considerable
variation between species; Photobacterium phosphoreum closely resembles the
power optimum and V. cholera is reminiscent of the torque optimum, but other
bacteria have characteristics between or unlike either choice of optima. For
example, some bacteria have as many as four turns on their flagella, while all of
our computations for optimal shapes predict 1.5 or fewer turns. Thus, we observe
that elements associated with power and torque efficiency can be seen in some
monotrichous bacteria, but there is certainly no indication of universal efficiency
principles.

More generally, the results show that different, but plausible, objective
functions can give very different results in optimization. It is therefore necessary
to justify the choice of objective, as well as possible constraints in any
optimization study.

(b) Boundary accumulation

Consistent with the simulation study of spermatozoa by Smith et al. (2009),
we find that some, but not all, flagellated microswimmer shapes can lead to
accumulation at a finite separation from a wall, purely as a result of hydrodynamic
forces. When boundary accumulation is present, we observe a small, positive
stable tilt angle, q∗, also consistent with the previous study. Although a detailed
investigation has not been carried out, we suggest that pointing slightly away
from the wall is required to balance the attractive effect of near-wall swimming
discussed by Berke et al. (2008). Smith & Blake (2009) describe the same
phenomenon in more detail for simulated spermatozoa.

Accumulation separations predicted for spermatozoa (Smith et al. 2009) were
approximately half a flagellum length (≈ 5ā), while the present study finds typical
separations of about half a head radius (0.5ā) for bacteria. This is in line with
the estimate of 0–2 mm for E. coli by Frymier et al. (1995), but about an order of
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magnitude larger than more recent measurements by Vigeant et al. (2002). It is
worth noting that both of these experimental studies used E. coli, and it is not
clear how the dynamics might differ for a flagellar bundle compared with a single
flagellum.

The phase-plane plots suggest that the stable configuration has a large basin
of attraction, whereas the previous work on spermatozoa (Smith et al. 2009)
reported a somewhat sensitive dependence on the initial tilt angle, and observed
that the same cell could swim steadily parallel to the surface or ‘bounce’ off and
escape. This phenomenon has not been seen in the current bacterial model, which
may be accounted for by differences between spermatozoa and bacteria. Not only
are flagella of spermatozoa much longer and thicker in proportion to head size,
but the beat patterns are also different.

It was noted that previous simulations of bacteria swimming near solid
walls have generally descended into the wall rather than settling at some
stable configuration. This can be explained in light of the current findings,
such as those shown in figure 7. Cell bodies with low aspect ratio, such
as the commonly used sphere, have a strong tendency to descend into the
boundary. It would be interesting to ascertain experimentally whether spherical
bacteria indeed collide more often or remain closer to surfaces than rod-shaped
specimens.

This finding has implications for the representation of microswimmers by a
small collection of singularities. There have been studies that treat the organism
as a Stokes dipole, representing a thrust from the flagellum and a drag from the
cell body (e.g. Wolgemuth 2008). This kind of simplification gives reasonable far-
field behaviour and allows scaling up to investigate the dynamics of large numbers
of swimmers. However, it is not obvious how to form a simple representation
that still captures the near-field complexities of flagellar motility (Smith &
Blake 2009). The results described here reinforce the fact that bacterial shape
significantly affects locomotion near boundaries and any accurate representation
would have to accommodate these effects. Other numerical techniques, such as
the method of regularized Stokeslets, have been used to analyse flow patterns of
multiple swimmers (Cisneros et al. 2007), and it would be interesting to compare
the results of these different methods.

Figure 6a,c suggests that conformational changes in the flagellum could affect
boundary-accumulation behaviour. It is known that the flagella of R. sphaeroides
can take the normal helical form during swimming or a high-amplitude, short-
wavelength form typically when the motor stops or runs at low frequency
(Armitage et al. 1999). If multiple conformations can be used for propulsion, then
results indicate the possibility that some conformations lead to accumulation,
while others lead to escape from surfaces.

The radius of curvature of circular trajectories near surfaces is generally
between 10 and 50 mm (summarized by Lauga et al. 2006). Using a physiological
range of parameter values, we predict radii of curvature between 10 and 300 mm,
heavily dependent on certain parameters such as the aspect ratio of the cell body.
Different flagellar conformations would therefore lead to different path curvatures.
If flagellar conformations during forward and backward swimming are sufficiently
different, this effect may contribute to the factor of 10–20 difference in path
curvatures found by Kudo et al. (2005) between these two modes of swimming in
V. alginolyticus cells near surfaces.
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The influence of cell size and aspect ratio on the trajectories of bacteria near
surfaces has been observed before. Hulme et al. (2008) used the correlation
between cell length and trajectory curvature to design a device that could sort
populations of E. coli by cell length. As the cells mature, they become longer
without growing wider. In other words, the aspect ratio increases, and the present
model predicts that this will increase the separation distance from the channel
walls and the radius of curvature of the resulting circular path, which is consistent
with observation. By applying techniques described in this work to specific
bacterial species, it would be possible to improve the design of sorting devices.
However, it should be noted that the present model has only been developed for a
half-space domain and would require modifications to accurately describe motion
in narrow channels.

One of the key questions to ask at this point is how the requirements
for boundary accumulation relate to power and torque efficiency. As shown
in figure 8, the region of high-power efficiency coincides roughly with part of
the region of stable accumulation behaviour when considering variations in
the cell-body aspect ratio and flagellum length. Within the investigated range
of these parameters, all boundary-accumulating geometries were fairly power
efficient (greater than 70% of optimal power efficiency). In particular, the power
optimum exhibits boundary accumulation. However, for all but the highest power
efficiencies, it was possible to find geometries that descend into the wall and others
that escape from the wall. In other words, power-efficient cells can be formed
with any of the three near-surface swimming behaviours. In contrast, high torque
efficiency requires shorter flagella, which result in escape from the boundary.
Thus boundary-accumulating swimmers do not achieve optimal torque efficiency,
though some can reach up to 85 per cent of the optimum.

5. Summary

We have developed a boundary-element model for a flagellated bacterium
swimming in a quiescent Newtonian fluid and investigated the motion resulting
from rotation of the helical flagellum when the fluid is unbounded, as well as when
the bacterium is near a no-slip plane boundary. We have found body and flagellum
shapes that give optimal swimming efficiency in terms of power and torque. In the
case of power, this optimum agrees well with estimates from previous simulation
studies. Torque efficiency has not been considered before, yet it is biologically
interesting given that bacterial motors produce nearly constant torque over a
wide range of operating frequencies. High torque efficiency means fast swimming
under this constraint. Torque and power efficiency considerations lead to
different optima; hence optimization studies clearly need to justify optimization
objectives.

It is probable that a combination of factors determines biological fitness such
that most flagellated bacteria are of an intermediate design. Nonetheless, the
presence of broad optima suggests that biological fine tuning is not crucial for
efficient swimming. In addition, it was determined that, despite the dynamical
influence of no-slip surfaces, proximity to such a surface does not significantly
alter the optimal shape for swimming whether power or torque efficiency
is considered.
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This is the first in-depth numerical study of how bacteria morphology affects
boundary accumulation. We have shown that details of the bacterium’s shape
have a profound influence on the tendency for the cells to accumulate close to solid
surfaces; bacteria can be hydrodynamically attracted or repelled by walls simply
by modifying geometrical parameters of the body and flagellum. Using phase-
plane analysis techniques that have not been applied to microswimmer dynamics
before, we predict that bacteria with long, thick flagella and short bodies are
drawn closer to walls than those with short, thin flagella and elongated bodies.
For most of the parameter space explored, accumulation heights were between
ā and 2ā, where ā is the radius of a sphere with the volume of the cell body.
Furthermore, cells settle at a configuration with the body tilted a few degrees
away from the wall.
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John Blake of the School of Mathematics, University of Birmingham, Dr Jackson Kirkman-Brown
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