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Abstract

Motivation: Cancer progresses by accumulating genomic events, such as mutations and copy

number alterations, whose chronological order is key to understanding the disease but difficult to

observe. Instead, cancer progression models use co-occurrence patterns in cross-sectional data to

infer epistatic interactions between events and thereby uncover their most likely order of occur-

rence. State-of-the-art progression models, however, are limited by mathematical tractability and

only allow events to interact in directed acyclic graphs, to promote but not inhibit subsequent

events, or to be mutually exclusive in distinct groups that cannot overlap.

Results: Here we propose Mutual Hazard Networks (MHN), a new Machine Learning algorithm to

infer cyclic progression models from cross-sectional data. MHN model events by their spontan-

eous rate of fixation and by multiplicative effects they exert on the rates of successive events. MHN

compared favourably to acyclic models in cross-validated model fit on four datasets tested. In ap-

plication to the glioblastoma dataset from The Cancer Genome Atlas, MHN proposed a novel inter-

action in line with consecutive biopsies: IDH1 mutations are early events that promote subsequent

fixation of TP53mutations.

Availability and implementation: Implementation and data are available at https://github.com/

RudiSchill/MHN.

Contact: Rudolf.Schill@klinik.uni-regensburg.de or Rainer.Spang@klinik.uni-regensburg.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Tumours turn malignant in a Darwinian evolutionary process by

accumulating genetic mutations, copy number alterations, changes

in DNA methylation, gene expression and protein concentration.

Such progression events arise in individual tumour cells, but their ef-

fect on the reproductive fitness of this cell depends on earlier events

(Nowell, 1976), which makes some chronological sequences of

alterations more likely than others. These sequences and their driv-

ing dependencies are a priori unknown and inferring them from

data is the goal of cancer progression models. These roughly fall

into three classes: phylogenetic models, models of population dy-

namics and cross-sectional models (Beerenwinkel et al., 2015;

Schwartz and Schäffer, 2017). We focus on the latter.

While progression is a dynamic process, available genotype data

are cross-sectional and combine static snapshots from different

tumours at different stages of development. Nevertheless, assuming

that the tumour genomes are observations from the same stochastic

process, cancer progression models can infer dependencies between

events from their co-occurrence patterns. The dependencies are then

reported as a directed graph, where each node stands for an event

whose probability depends in some way on the events connected to

it by incoming edges (Fig. 1).

For example, one family of models [reviewed by Hainke et al.

(2012)] approximate tumour progression by deterministic depend-

encies: An event has a non-zero probability if and only if all its par-

ent events have occurred. These models were inspired by Fearon and
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Vogelstein (1990), who inferred that colorectal cancers progress

along a chain of mutations in the genes APC ! K-RAS ! TP53.

Desper et al. (1999) formalized and extended this concept to

Oncogenetic Trees, where a single event may be necessary for mul-

tiple successor events in parallel. Beerenwinkel et al. (2007) further

generalized these to Conjunctive Bayesian Networks (CBN), where

events may require multiple precursors, thus replacing trees by

directed acyclic graphs.

In this paper, we relax three assumptions of this model family:

1. Dependencies need not be deterministic. An event A can make

an event B more likely without being absolutely necessary for it.

In particular, events can occur with non-zero probability at all

times and all event patterns are possible.

2. A dependency graph need not be acyclic. Why should it? Clearly

an event A cannot be necessary for B if B is also necessary for A.

But it is certainly possible that A makes B more likely when it

occurs first, and vice versa.

3. Besides enabling dependencies, there are also inhibiting

dependencies.

Although there is, to the best our knowledge, no method that

addresses all three issues, there are methods that address one or two

of them. Stochastic dependencies (1) have been previously proposed

in Farahani and Lagergren (2013), Misra et al. (2014) and

Ramazzotti et al. (2015) for acyclic models. Moreover, stochasticity

at the point of observation has been addressed by Gerstung et al.

(2011) who allow for mislabeled events, and in Beerenwinkel et al.

(2005) and Montazeri et al. (2016) who treat tumour data as a mix-

ture from multiple stochastic processes. Network Aberration

Models (NAM) by Hjelm et al. (2006) have stochastic dependencies

(1) and allow cycles in their dependency graph (2).

Inhibition (3) is at the centre of mutual exclusivity, which is a

frequently observed phenomenon in cancer (Yeang et al., 2008).

Two events are considered mutually exclusive if they co-occur less

frequently than expected by chance. There are at least two mecha-

nisms that can cause this data pattern: (i) Synthetic lethality,

where cells carrying two mutations A and B are no longer vital.

(ii) The events disrupt the same molecular pathway such that

whichever event occurs first conveys most of the selective advantage

and decreases selective pressure for the others. Both mechanisms

can be described by a double edge A ‘a B (A inhibits B, and B inhib-

its A)

Gerstung et al. (2011) proposed to model pathways within a pro-

gression model from biological prior knowledge. They extracted

predefined sets of events from databases reflecting biological path-

ways which are considered affected if at least one of its constituent

events has occurred. Tumour progression is then modelled on the

level of pathways rather than events.

Alternatively pathways can be derived from data by detecting

patterns of mutual exclusivity (Constantinescu et al., 2015;

Leiserson et al., 2013; Miller et al., 2011; Szczurek and

Beerenwinkel, 2014) or by a combination of knowledge and data

(Ciriello et al., 2012; Kim et al., 2015), see (Vandin, 2017) for a re-

view. Raphael and Vandin (2015) pointed out that inferring path-

ways separately from their dependencies can lead to inconsistencies

in the presence of noise. They presented the first algorithm that sim-

ultaneously groups events into pathways and arranges the pathways

in a linear chain. PathTiMEx (Cristea et al., 2017) generalizes this

from linear chains to acyclic progression networks (CBN).

Building on both CBNs and NAMs, we propose Mutual Hazard

Networks (MHN). MHNs do not group events into pathways but

directly model the mechanisms behind mutual exclusivity. MHNs

have cyclic dependency networks, in particular allowing for bidirec-

tional and inhibiting edges.

MHN characterize events by a baseline rate and by multiplica-

tive effects they exert on the rates of successive events. These effects

can be greater or less than one, i.e. promoting or inhibiting. We pro-

vide formulas for the log-likelihood of MHN and its gradient, and

an implementation that is computationally tractable for systems

with up to 25 events on a standard workstation and for larger sys-

tems on an HPC infrastructure.

2 Materials and methods

2.1 Mutual Hazard Networks

We model tumour progression as a continuous time Markov process

X tð Þ; t � 0
� �

on all 2n combinations of a predefined set of n events.

Its state space is S ¼ 0; 1f gn, where X tð Þi ¼ 1 means that event i has

occurred in the tumour by age t, while X tð Þi ¼ 0 means that it has

not.

We assume that every progression trajectory starts at a normal

genome X 0ð Þ ¼ 0; . . . ;0ð ÞT , accumulates irreversible events one at a

time, and ends at a fully aberrant genome X 1ð Þ ¼ 1; . . . ;1ð ÞT .

(a)

(b)

(c)
(e)

(d)
(f)

(g)

Fig. 1. Overview of several types of cancer progression models. For models with deterministic dependencies (a-e) A ! B denotes that A is necessary for B, and

A a B denotes that A prevents B. For models with stochastic dependencies (f,g) A ! B denotes that A makes B more likely, and A a B denotes that A makes B

less likely. In (d-e) the arrows between groups of events denote that at least one of the events in the parent group is necessary for the events in the child group
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Observed tumour genomes correspond to states at unknown inter-

mediate ages 0 < t < 1 and typically hold both 0 and 1 entries.

Let Q 2 R2n�2n be the transition rate matrix of this process with

respect to a basis of S in lexicographic order (Fig. 2, left). An entry

Qy;x ¼ lim
Dt!0

Pr X t þ Dtð Þ ¼ yjX tð Þ ¼ x
� �

Dt
; y 6¼ x (1)

is the rate from state x 2 S to state y 2 S, and diagonal elements are

defined as Qx;x ¼ �
P

y 6¼x Qy;x so that columns sum to zero. Q is

lower triangular and has non-zero entries only for transitions be-

tween pairs of states x ¼ . . . ;xi�1;0; xiþ1; . . .ð ÞT and y ¼ xþi :¼

. . . ;xi�1;1; xiþ1; . . .ð ÞT that differ in a single entry i.

Our aim is to learn for each event i how its rate Qxþi ;x depends

on already present events in x as a function fi : 0; 1f gn ! R. A com-

mon choice in time-to-event analysis is the proportional hazards

model (Cox, 1972) which assumes that binary predictors have inde-

pendent and multiplicative effects on the rate of the event. We there-

fore specify the Markov process by a system of n functions

Qxþi ;x ¼ fi xð Þ ¼ exp hii þ
Xn

j¼1

hijxj

 !

¼ Hii

Y

xj¼1

Hij (2)

and collect their parameters in a matrix Hij

� �
:¼ ehijð Þ 2 Rn�n. We

call H a Mutual Hazard Network (MHN), where the baseline haz-

ard Hii is the rate of the event i before any other events are present

and the hazard ratio Hij is the multiplicative effect of event j on the

rate of event i (Fig. 2, right). Note that while the baseline hazard in

Cox (1972) is generally a function of time, here it must be constant

so that our model constitutes a Markov process.

2.2 Parameter estimation

A dataset D of tumours defines an empirical probability distribution

on S. It can be represented by a vector pD of size 2n, where an entry

pDð Þx is the relative frequency of observed tumours with state x

in D.

At t¼0 tumours are free of any events, so the Markov process X

starts with the initial distribution p1 :¼ 100%;0%; . . . ; 0%ð ÞT ,

which then evolves according to the parameterized rate matrix QH.

If all tumours had been observed at a common age t, pD could be

modelled as a sample from the transient distribution

etQH p1: (3)

Since the tumour age is usually unknown, we follow Gerstung

et al. (2009) and consider t to be an exponential random variable

with mean 1. Marginalizing over t yields

pH ¼

ð1

0

dt e�tetQH p1 ¼ I �QH½ �
|fflfflfflfflffl{zfflfflfflfflffl}

¼:RH

�1p1; (4)

and the marginal log-likelihood score ofH given D is

SD Hð Þ ¼ pTD logp
H
¼ pTD log R�1

H
p1

� �

; (5)

where the logarithm of a vector is taken component-wise.

When optimizing SD with respect to H we further add an L1

penalty in order to control for model complexity and to avoid over-

fitting. This promotes sparsity of the networks, such that many

events do not interact and off-diagonal entriesHij are exactly 1:

SD Hð Þ � k
X

i 6¼j

j logHijj; (6)

where k is a tuning parameter. We will optimize this expression

using the Orthant-Wise Limited-Memory Quasi-Newton algorithm

(Andrew and Gao, 2007). This general-purpose optimizer handles

the non-differentiable regularization term by approximating the ob-

jective at each iteration with a quadratic function that is valid within

an orthant of the current set of (logarithmic) parameters. It requires

only a closed form for the derivatives @SD=@Hij with respect to each

parameter.

Fig. 2. (Left) Transition rate matrix Q for the Markov process X with n¼4, where � is a zero entry and • is a non-zero entry. The states are depicted as squares with

four compartments as shown below. A white compartment denotes 0 and a black compartment denotes 1. The matrix is lower triangular because events are irre-

versible, and sparse because events accumulate one at a time. (Right) Parameterization QH of the Markov process by a Mutual Hazard Network

Mutual Hazard Networks 243
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From the chain rule of matrix calculus we have

@SD

@Hij
¼

@SD

@R�1
H

�
@R�1

H

@Hij

¼
pD
p
H

pT1 � �R�1
H

@RH

@Hij
R�1

H

	 


¼ � pD
pH

� �T
R�1

H

@RH

@Hij
R�1

H
p1 ;

(7)

where � is the Frobenius product and the ratio pD=pH is computed

component-wise.

In general this optimization converges to one local optimum out

of possibly several depending on the starting point. In this paper we

always report the optimum reached from an independence model,

where the baseline hazard Hii of each event was set to its empirical

odds and the hazard ratios were set to exactly 1.

2.3 Efficient implementation

To compute the score in equation (5) and its gradient in equation (7)

we must solve the exponentially sized linear systems I �QH½ ��1p1
and pD=pH

� �T
I �QH½ ��1. To this end, we employ the (left)

Kronecker product which is defined for matrices A 2 Rk�l and B 2

R
p�q as the block matrix

A� B ¼

b11A � � � b1lA

.

.

.
.
.

.
.
.
.

bk1A � � � bklA

2

6
4

3

7
5 2 Rkp�lq : (8)

We follow the literature on structured analysis of large Markov

chains (Amoia et al., 1981; Buchholz, 1999) and write the transition

rate matrixQH as a sum of n such Kronecker products,

QH ¼
Xn

i¼1

�
j< i

1 0
0 Hij

	 


�
�Hii 0
Hii 0

	 


��
j>i

1 0
0 Hij

	 
" #

: (9)

Here, the ith term in the sum is a sparse 2n � 2n matrix consist-

ing of all transitions that introduce event i to the genome. It corre-

sponds to a single subdiagonal of QH, together with a negative copy

on the diagonal to ensure that columns sum to zero (see

Supplementary Section S2). The benefit of this compact representa-

tion is that matrix-vector products can be computed in O n2n�1ð Þ ra-

ther than O 22nð Þ without holding the matrix explicitly in memory

(Buis and Dyksen, 1996). We split RH ¼ I �QH into a diagonal and

strictly lower triangular part,

RH ¼ Dþ L ¼ D I þD�1Lð Þ; (10)

and use the nilpotency ofD�1L to compute

R�1
H
p1 ¼ I þD�1Lð Þ�1

D�1p1

¼
Xn�1

k¼0

�D�1Lð Þk

0

@

1

AD�1p1:
(11)

3 Results

3.1 Simulations

We tested in simulation experiments how well an MHN of a given

size can learn a probability distribution on S when trained on a

given amount of data. We ran 50 simulations for each of several

sample sizes jDj 2 100; 250;500; 1000f g and number of events

n 2 10;15;20f g.

In each simulation run, we chose a ground truth model H with n

possible events. A random half of its off-diagonal entries were set to

1 (no dependency) and the remaining off-diagonal entries were

drawn from a standard log-normal distribution. For the diagonal

entries we chose the largest n out of 20 rates drawn from a log-

normal distribution with mean l ¼ �2 and variance r2 ¼ 1. This

was done to mimick the event frequencies observed in the biological

datasets in Section 3.2 and yielded on average 2.7, 3.5 and 3.9 real-

ized events in tumours with n 2 10; 15; 20f g possible events.

We then generated a dataset of size jDj from each model and

trained on it another model Ĥ by optimizing expression (6). We

chose a common regularization parameter for all 50 simulation

runs, which we found to be roughly k ¼ 1=jDj through validation on

separate datasets of each sample size. We then assessed the recon-

structed model Ĥ by the Kullback-Leibler (KL) divergence from its

probability distribution to the distribution of the true model H,

DKL pHkpĤ
� �

¼ pT
H
logpH � pT

H
logp

Ĥ
: (12)

The median KL divergence, as well as its variance over the 50

simulation runs, improved with larger training datasets and reached

almost zero (Fig. 3).

Next, we simulated datasets of size jDj ¼ 500 from random

MHNs and CBNs as ground truth models with n¼8 events. We

added noise by flipping each event independently with probability �,

trained MHNs and CBNs on both datasets and evaluated how well

the estimated models fit the distribution of the ground truth models.

(Fig. 4) shows the average KL divergence over 5 simulation runs for

each noise level � 2 1%; 5%;10%; 15%; 20%f g. For CBNs as

ground truth we found that CBNs outperformed MHNs when noise

was below 10%, while MHNs performed better than CBNs at

higher levels of noise. For MHNs as ground truth we found that

MHNs performed better than CBNs at all levels of noise.

Lastly, we tested the performance of our implementation. The

runtime of a single gradient step for random and dense H was about

1min for n¼20 on a standard workstation and scaled exponentially

with n as expected (see Supplementary Section S2 for details).

3.2 Application to cancer progression data

3.2.1 Comparison to conjunctive Bayesian Networks

We tested our method and first compared it to Conjunctive Bayesian

Networks (CBN) on three cancer datasets that were previously used

by Gerstung et al. (2009). They were obtained from the Progenetix

molecular-cytogenetic database (Baudis and Cleary, 2001) and

Fig. 3. KL divergence from estimated MHNs to ground truth MHNs over 50

simulations for the shown sample sizes and number of events
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consist of 817 breast cancers, 570 colorectal cancers, and 251 renal

cell carcinomas. The cancers are characterized by 10, 11 and 12 re-

current copy number alterations, respectively, which were detected

by comparative genomic hybridization (CGH). On average 3.3, 3.5

and 2.6 of these possible events were observed in individual tumours

within each dataset.

We trained MHNs on all three datasets (see Supplementary

Section S3) and compared them to the CBNs given in Gerstung et al.

(2009) which provide log-likelihood scores in-sample. The in-

sample scores of MHNs are not directly comparable because MHNs

have more degrees of freedom than CBNs. Therefore we additional-

ly provide the average log-likelihood scores of MHNs in 5-fold

cross-validation and the Akaike Information Criterion (Akaike,

1974) (AIC) for both models. MHN compared favourably on all

three datasets (Table 1).

3.2.2 Comparison to pathTiMEx

Next, we compared MHN to pathTiMEx on a glioblastoma dataset

from The Cancer Genome Atlas (Cerami et al., 2012) which was

previously used in Cristea et al. (2017) (see Fig. 5). The data consist

of jDj ¼ 261 tumours characterized by 486 point mutations (M),

amplifications (A), or deletions (D). We focus on n¼20 of these

events which were pre-selected by pathTiMEx using the TiMEx al-

gorithm (Constantinescu et al., 2016). On average 3.3 of these pos-

sible events were observed in individual tumours.

We trained MHN as above for 100 iterations, which achieved a

log-likelihood score of -7.70 in-sample and a score of -7.97 in 5-fold

cross-validation. While pathTiMEx does not yield a directly com-

parable log-likelihood score, it quantifies discrepancies between

model and data by considering the data to be corrupted by noise,

each event in a tumour being independently flipped with probability

e. PathTiMEx estimated this noise parameter as ê ¼ 20%, from

which we gauge an upper bound on its log-likelihood score as fol-

lows: even a hypothetical model that learns the data distribution pD
perfectly but assumes a level of noise

pê ¼�
n

i¼1

1� ê ê

ê 1� ê

	 


pD (13)

achieves only a score of pTD logpê ¼ �8:50 in-sample, which is less

than the cross-validated score of MHN.

Nevertheless MHN largely agreed with pathTiMEx on the inhib-

itions implied by the three most mutually exclusive groups of events,

which broadly correspond to the signaling pathways Rb, p53 and

PI(3)K (red, blue and green in Fig. 5) and are well known to be

affected in glioblastoma (McLendon et al., 2008).

The RB1 signaling pathway (red) regulates cell cycle progression

and involves the genes CDKN2A, CDK4 and RB1. CDKN2A codes

for the tumour suppressor protein p16INK4a which binds to CDK4

and prevents it from phosphorylizing RB1, thereby blocking cell

cycle transition from G1 to S-phase. This function can be disrupted

by deletion of CDKN2A or RB1, or by amplification of CDK4.

MHN and pathTiMEx both report a corresponding inhibition be-

tween the events CDKN2A(D) and CDK4(A), while MHN add-

itionally reports inhibition between CDKN2A(D) and RB1(D).

The p53 signaling pathway (blue) induces apoptosis in response

to stress signals and involves the genes TP53, MDM2, MDM4 and

CDKN2A. TP53 codes for the tumour suppressor protein p53

which is antagonized by MDM2 and MDM4 in a non-redundant

manner (Toledo and Wahl, 2007). PathTiMEx identifies the events

TP53(M), MDM2(A), MDM4(A) as mutually exclusive ways to

evade apoptosis, while MHN reports inhibition only between

TP53(M) and each of MDM2(A) and MDM4(A) separately. This

may reflect non-diminishing returns due to their complementary

roles in the pathway.

The gene CDKN2A is, in addition to its role in the RB1 path-

way, also involved in the p53 pathway by coding for the protein

p14ARF in an alternate reading frame. p14ARF physiologically inhib-

its MDM2, which suggests that a deletion of CDKN2A may be

functionally similar to an amplification of MDM2. While MHN

reports a corresponding inhibition between CDKN2A(D) and

MDM2(A), pathTiMEx cannot because this would lead to an over-

lap of pathways.

Fig. 4. Average KL divergence from estimated MHNs/CBNs to ground truth

MHNs/CBNs over 5 simulations for each of the shown noise levels

Table 1. MHNs compare favourably to CBNs on three datasets in

terms of the log-likelihood scores per tumour, averaged over 5

folds in cross-validation

Cross-validated In-sample AIC

Dataset MHN CBN MHN CBN MHN

Breast cancer �5.63 �5.73 �5.54 �9373 9152

Colorectal cancer �5.64 �5.79 �5.41 �6612 6288

Renal cell carcinoma �5.02 �5.13 �4.81 �2587 2559

Note: They also compare favourably in terms of the AIC which penalizes

the number of parameters in a model and is weighted by the sample size.

While MHNs have n2 continuous parameters, CBNs have n continuous

parameters and a discrete graph structure that is hard to quantify in terms of

degrees of freedom, hence we ignore the latter and bound the AIC of CBNs

from below.
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A

B

C

D

Fig. 5. (A) Glioblastoma dataset from TCGA, where rows show events sorted by frequency and columns show tumours sorted lexicographically. The purple

stripes highlight tumours which have IDH1(M) but lack TP53(M). (B) PathTiMEx model inferred in Cristea et al. (2017). It simultaneously divides the dataset into

pathways, i.e. into mutually exclusive groups of events and learns a CBN of these pathways. The CBN considers a pathway altered if at least one of its constituent

events has occurred. A pathway alteration fixates at the rate given in the upper right-hand corner once all its parent pathways in the CBN have been altered. (C)

Mutual Hazard Network, where nodes show the base rates Hii and edges show the multiplicative interactions Hij. Similarities to pathTiMEx are highlighted in col-

our and roughly correspond to the signaling pathways Rb, p53 and PI(3)K (red, blue and green). (D) Highlighted data interpreted differently by the models. While

both models explain the anti-correlation between CDKN2A(D) and CDK4(A) by mutual inhibition, pathTiMEx treats these as a group and infers a positive effect of

any of these events on MDM2(A) from the correlation between CDK4(A) and MDM2(A). MHN reports only a positive effect of MDM2(A) on CDK4(A) and in fact

infers inhibition between CDKN2A(D) andMDM2(A) from their anti-correlation in the data
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To the contrary, pathTiMEx implies that CDKN2A(D) pro-

motes MDM2(A) despite their anti-correlation in the data (Fig. 6D).

We argue that this is an artifact driven by the assumption that all

events in a group are interchangeable, and by the need to group

CDKN2A(D) with CDK4(A) which is in turn highly correlated with

MDM2(A).

The PI(3)K pathway (green) regulates cell proliferation and

involves the genes PTEN, PIK3CA, EGFR, PDGFRA. While IDH1

is not a canonical member of the PI(3)K pathway, MHN reports an

inhibition between IDH1(M) and PTEN(M) and pathTiMEx groups

IDH1(M) together with PTEN(M), PTEN(D) and PIK3CA(M).

Notably, MHN inferred that the rare event IDH1(M) promotes the

more common event TP53(M). This is further illustrated in Figure 6

which shows the most likely chronological order of events for all

261 tumours. Each of their 193 distinct states is represented by a

path that starts at the root node and terminates at either a leaf node

or an internal node with a black outline. As can be seen in the lower

left, all tumours that contain IDH1(M) are located on a common

branch and thus share an early mutation history initiated by

IDH1(M). This interpretation is in line with the fact that IDH1(M)

is considered a defining attribute of the Proneural subtype of glio-

bastoma which is clinically distinct and also associated with

TP53(M) (Verhaak et al., 2010). It is further supported by independ-

ent data from consecutive biopsies of gliomas where IDH1(M) in

fact preceded TP53(M) (Watanabe et al., 2009).

4 Discussion

We presented Mutual Hazard Networks, a new framework for mod-

elling tumour progression from cross-sectional observations. MHN

are an extension of Conjunctive Bayesian Networks (Beerenwinkel

et al., 2007): The multiplicative dependencies between rates

[Equation (2)] approximate the conjunctive dependencies of CBNs

in the limit of a vanishing baseline hazard (see Supplementary

Section S1). MHN are also an extension of Network Aberration

Models (Hjelm et al., 2006): NAM also use multiplicative depend-

encies of rates but restrict hazard ratios to be greater than one,

which cannot generate patterns of mutual exclusivity. Moreover,

MHN further develop the idea of Raphael and Vandin (2015) and

Cristea et al. (2017) that grouping events into ‘pathways’ of mutual

exclusive events cannot be done independently from dependencies

between pathways. In fact, MHN give up the concept of grouping

events entirely. It is not needed anymore, because patterns of mutu-

ally exclusive events can be naturally formed by pairwise

Fig. 6. Most likely chronological order of events for all 261 tumours in the glioblastoma dataset. Each of the 193 distinct tumour states corresponds to a terminal

node in the tree or an internal node with a black outline and contains all events indicated by the symbols along the trajectory from the starting state (white circle

in the centre). The order of events and the unobserved intermediate tumour states (internal nodes without a black outline) were imputed from the estimated tran-

sition rate matrix Q
Ĥ
. To this end we used the uniformization method (Grassmann, 1977) to construct the time-discretized transition probability matrix ðI þQ

Ĥ
=cÞ,

where c is the greatest absolute diagonal entry of Q
Ĥ
. The most likely trajectories from the starting state to each observed tumour state were then computed

using a single-source shortest path algorithm, where each transition was weighted by the negated logarithm of its probability
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bidirectional inhibitions or longer inhibiting cycles [such as between

TP53(M), MDM2(A) and CDKN2A(D)], both allowing for overlap-

ping pathways. Such overlap exists. The screening approach of

Leiserson et al. (2015) finds overlapping gene sets forming patterns

of mutual exclusivity, nicely reflecting the fact that several cancer

genes participate in multiple pathways (McLendon et al., 2008).

However, this approach does not yet embed overlapping pathways

into progression models while MHNs do just this.

Still, MHN shares some limitations with earlier models. Kuipers

et al. (2017) have shown that back mutations, which MHNs cannot

account for, do occur in tumour progression, although not frequent-

ly. Our proposed implementation of the MHN learning algorithm

has a space and time complexity that is exponential in the number

of events n, which compares similarly to Hjelm et al. (2006) and

trails (Montazeri et al., 2016). Therefore events have to be pre-

selected by recurrency or more sophisticated approaches (Hainke

et al., 2017). In practice, we saw limits at n¼25 on a standard

workstation. Modern cancer datasets report hundreds of recurrent

mutations, and the question arises whether MHN can deal with

them. In fact we believe that MHN is competitive with other algo-

rithms also for these large datasets, because interactions between

low-frequency events cannot be resolved reliably at all. For example,

in the glioblastoma dataset, the rare events OBSCN(M),

CNTNAP2(M), LRP2(M), TP53(D) and PAOX(M) remained un-

connected to the rest of the network. In other words, the evidence

for possible interactions was so low that it could not compensate for

the L1-costs of an additional edge. These are limitations in the data

itself and not in computation times.

An interesting feature of MHN are the spontaneous occurrence/

fixation rates Hii. The event pair IDH1(M) and TP53(M) was in-

structive for understanding their role. IDH1 mutations were infre-

quent in the glioblastomas compared to TP53 mutations. Moreover,

10 out of 14 IDH1(M) positive glioblastoma also showed a TP53

mutation. We see at least two alternative explanations for this noisy

subset pattern: (1) TP53 mutations are needed for IDH1 mutations

to occur. (2) TP53(M) has a much higher spontaneous rate than

IDH1(M) explaining that it is more frequent, and moreover, an

IDH1 mutation strongly increases the rate of a TP53 mutation,

explaining why so many IDH1(M) positive glioblastoma were also

positive for TP53(M). While both scenarios explain the noisy subset

pattern, they disagree with respect to the chronological order of

events. In (1) the TP53mutation precedes the IDH1mutation, while

in (2) the events occur in reverse order. MHN decided for explan-

ation (2) and is endorsed by independent data from consecutive

biopsies (Watanabe et al., 2009). Where in the training data was the

evidence in favour of (2) over (1)? If TP53(M) were necessary for

IDH1(M), we would expect IDH1(M) to have a very small spontan-

eous rate in the absence of TP53(M) and hence to occur later than

other events, if at all. Yet, of the four cases that were IDH1(M) posi-

tive and TP53(M) negative, all of them had at most one mutation in

addition to IDH1(M) (Fig. 5A, purple), which is in line with (2) but

not with (1).

In summary, we introduced a new, very flexible framework for

tumour progression modelling that naturally accounts for cyclic

interactions between events.
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