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Abstract

This paper incorporates the driver compliance behaviour into a connected vehicle driving 

strategy (CVDS) that can be integrated with traditional car-following (CF) models to better 

describe the connected vehicle CF behaviour. Driver compliance, a key human factor for the 

success of connected vehicles technology, is modelled using a celebrated theory of decision 

making under risk – the Prospect theory (PT). The reformulated value and weighting functions 

of PT are consistent with the driver compliance behaviour and also preserve the integral 

elements of PT. Furthermore, the connected vehicle trajectory data collected from a carefully 

designed advanced driving simulator experiment are utilised to calibrate CVDS integrated with 

Intelligent Driver Model (IDM), i.e., CVDS-IDM. The calibration results reveal that drivers in 

the connected environment drive safely and efficiently. Moreover, the CVDS-IDM can 

successfully model and predict the CF dynamics of connected vehicles and is more 

behaviourally and numerically sound than a traditional CF model. 

Keywords: Driver compliance; Prospect theory; Human factors; Connected vehicles; Car-

following; Intelligent Driver Model (IDM)

1. INTRODUCTION

Human factors are often disregarded in traffic flow models which has made them insufficient 

for explaining the complex interactions between the human drivers and some important 

resulting traffic flow phenomena. More specifically, CF models that are based on the laws of 

physics have been criticised for their inability in explaining human driving behaviours during 

CF. Incorporating human factors in CF models can assist in explaining driving behaviour in 

various driving conditions, such as traffic breakdowns, traffic oscillations, driver risk-taking 

behaviours, distraction, and adverse weather conditions (refer Saifuzzaman and Zheng (2014) 

for a review of CF models from engineering and human factors perspective). Moreover, CF 

models capable of mimicking driver errors and ability to generate crash or near-crash scenarios 

can be important tools for evaluating traffic safety (Laval et al., 2014; Saifuzzaman et al., 

2015). Overall, incorporating human factors in CF models would enable us to holistically 

investigate traffic modelling, control, and safety, etc.
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The success of connected vehicle technology will heavily rely on the driver compliance with 

the transmitted information (Sharma et al., 2017). When the information is provided to a driver, 

he/she can either act according to the information or completely (or partially) ignore it, e.g., in 

response to a warning about the leading vehicle braking hard, the driver (follower) can either 

brake if he/she has noticed the warning, or responds only after noticing the leader’s braking if 

he/she has ignored the warning. Intuitively, the latter case nullifies the advantages of connected 

vehicle technology. Therefore, understanding and modelling of the driver compliance 

behaviour are imperative tasks before the wide-scale deployment of connected vehicle 

technologies. 

Recently, notable efforts have been made on modelling connected vehicle car-following 

(CVCF) behaviour (Ge and Orosz, 2014; Jia and Ngoduy, 2016; Li and Qiu, 2018; Mittal et 

al., 2017; Monteil et al., 2014; Ni et al., 2011; Rahman et al., 2018; Talebpour et al., 2017, 

2016; Tang et al., 2014). These CVCF models can be broadly classified as event-driven models, 

continuous models, and psychophysical models. Event-driven models assume that driving 

behaviour in the connected environment (CE) changes only when the audio or the video 

feedback (warnings or advice) provides an alert for potentially hazardous events such as 

accidents or hard braking by the lead vehicle, e.g., the model by Tampere et al. (2009). 

Continuous models assume a perpetual change in driving behaviour when the audio or video 

feedback is continuously presented to the driver, e.g., the models discussed in Talebpour et al. 

(2016); Talebpour and Mahmassani (2016); Tang et al. (2014); and Zhu and Ukkusuri (2017).

Similar to most of the CF models for traditional vehicles, the aforementioned CVCF models 

also assume that the driver reacts towards arbitrarily small changes in the relative speed (or 

other stimulus). Particularly, the CF models above assume that the driver fully complies with 

the information provided. These models, thus, completely ignore human factors such as driver 

compliance. Arguably, human factors will play a major and a predominant role in governing 

the CVCF dynamics. Psychophysical models are capable of incorporating those human factors 

that influence the driver’s decision-making in various driving situations plausible in the CE. A 

few notable attempts made in the literature are as follows: Ni et al. (2011) assumed different 

perception-reaction time distributions for information assisted and information unassisted 

drivers, whereas Jia et al. (2012) developed psychophysical model with CF suggestions 

considering various perception thresholds, such as minimum desired following distance, 

minimum desired stopping distance, and threshold of relative speed among others.     

In the aforementioned studies, a common and perhaps the most critical gap identified is the 

ignorance or inadequate consideration of the driver compliance and its influence on CF 

behaviour. In addition, a few studies directly adopted the existing CF models in their original 

form to model the CVCF behaviour even without examining the models’ suitability. Previous 

studies relied on numerical experiments or employed trajectories of traditional vehicles to 

calibrate CF models by imposing some strong assumptions, and did not calibrate their 

developed models using connected vehicle (CV) trajectory data due to the paucity of such data. 

Therefore, the following important questions are still largely unexplored: (a) what changes are 

expected in the CF behaviour due to a CE? (b) are traditional CF models capable of describing 
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the CVCF behaviour? If not, (c) how to incorporate the driver compliance behaviour in CF 

models to better mimic the CVCF behaviour? 

Motivated by the research needs above, this study aims to incorporate driver compliance using 

a general connected vehicle driving strategy (CVDS) that can be integrated with traditional CF 

models. Driver compliance behaviour, which is a typical case of decision making under risk 

(explained later), is modelled using the celebrated Prospect Theory (PT). To overcome the 

unavailability of CV data, a driving simulator experiment has been carefully designed and 

conducted to collect the CV trajectory data necessary for developing and testing the CVDS. 

The trajectory data are collected for two scenarios: baseline (without any information 

assistance) and connected (with certain types of information assistance). In this paper, a widely 

adopted CF model i.e., Intelligent Driver Model (IDM) (Treiber et al., 2000) is used to 

demonstrate how CVDS can be integrated with a traditional CF model and how the integrated 

model (CVDS-IDM) performs through rigorous calibration. By doing so, the paper sheds light 

on how a CE can influence CF behaviour, and demonstrates the superiority of CVDS-IDM 

over a traditional CF model in describing the CVCF behaviour. 

The remainder of the paper is organised as follows. Section 2 describes the driving simulator 

experiment design in detail. Section 3 presents PT-based modelling of the driver compliance 

behaviour. Section 4 discusses the CVDS and its integration with IDM (i.e., CVDS-IDM), and 

Section 5 details the methodology to calibrate CVDS-IDM. Section 6 presents the results and 

discusses the behavioural and numerical soundness of the CVDS-IDM. Finally, Section 7 

summarises the main conclusions and suggests future research directions.

2. CONNECTED VEHICLE DATA COLLECTION 

The unavailability of real-world CV data is a big challenge for researchers to develop, calibrate 

and validate the CVCF models. There are a number of pilot projects currently around the world 

including the U.S., Europe, South Korea, Japan, China, Australia, and etc. Emami et al. (2018) 

have published a good review of these testbeds and others. To the best of our knowledge, no 

investigation has been made towards human factor considerations in CF scenarios in a 

connected vehicle environment. Thus, in this research, a driving simulator experiment was 

designed and conducted to collect the necessary CV trajectory data with a focus on human 

factors. This section details the driving simulator experiment design. Please note that this 

driving simulator experiment was designed for a project with a larger scope and only the part 

relevant to this study is presented below.

2.1 The driving simulator

The CARRS-Q Advanced Driving Simulator is a high-fidelity simulator that consists of a 

complete car with working controls. The simulator is attached with eight computers, projectors, 

and a rotating base with the capability to move and rotate in three directions (6 degrees of 

freedom). Furthermore, the simulator can reproduce high-resolution real-world scenarios in a 

virtual environment on 180º field of view (e.g., actual sound effects of the engine, car-road 

interactions, passing by traffic, etc.). The simulator utilizes SCANeRTM studio software that 
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couples vehicle dynamics with virtual road environment, and displays road environment and 

traffic interactions on front projectors, rear-view mirrors, and wing mirrors at a rate of 60 Hz. 

For further information refer to CARRS-Q (2018) and Haque and Washington (2015). 

2.2 Experiment design

Participants are required to drive the simulator car in the baseline and connected scenarios. 

Note that the baseline scenario refers to traditional environment i.e., traffic environment 

consisting of vehicles without any communication capability whereas connected scenario 

mimics the future CE consisting of vehicles with communication capability and the 

uninterrupted dissemination of information. Each participant has to follow a platoon of vehicles 

on a single-lane motorway for 3 km in each scenario. Figure 1(a) displays the road geometry. 

Hereon, the simulator car driven by a participant is termed as ‘driven car’, the vehicle 

immediately in front of the simulator car (the first leader) is termed as ‘leading car’ (see Figure 

1(b)), and the platoon of vehicles in front of the simulator car is termed as ‘leading cars’. 

Moreover, participants were able to see up to two vehicles ahead to capture the multivehicle 

anticipation. The second leader was a mini truck which was clearly visible at all the time. In 

the baseline scenario, the participants drive the simulator car without driving aids, while in the 

connected scenario, to simulate V2V and V2I information dissemination the participants are 

assisted with driving aids displayed on the windscreen of the simulator car. Figure 1(c) depicts 

the participant’s view. 

Figure 1 Details of the driving simulator experiment. (a) The road geometry; (b) The 

vehicles in the simulator environment; (c) Categories of the information available in the 

connected scenario.

To ensure the realism of the participants’ driving experience using the driving simulator, the 

experiment has been meticulously designed by providing a realistic driving environment and 

driving scenarios. Several effective strategies have been carefully implemented to minimize 

any potential learning effect, e.g., the randomised sequence of the drives, different driving 
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environment and surrounding traffic in each drive, a break between the drives, etc.  For more 

information, see Ali et al. (2018).

2.2.1 Connectivity design

Driving aids are cautiously designed after a comprehensive review of the literature on in-

vehicle driver assistance systems and the current driving aids provided by major car 

manufacturers. In the ensuing paragraphs, we describe the type of information provided and 

how it is presented. 

In the connected scenario, two categories of information (driving aids) are provided to a 

participant: a) continuous information; and b) advanced event-triggered information. 

Continuous information is always available to the participants, including the leading car’s 

speed, and the spacing between the driven and leading cars. Assuming that the connectivity 

technologies will be smart enough to warn the drivers in advance, advanced event-triggered 

information ‘leader braking hard’ is also delivered to the participants 3 seconds before the 

leading car actually brakes hard. We believe connectivity can enhance the capabilities of 

systems like RECAS (Lee et al., 2002) and CLEWS (Greene et al., 2011), thereby making 

reliable and efficient advanced event-triggered information possible. To comprehend the 

rationale behind providing advanced event-triggered information, let’s picture a scenario in 

which a vehicle follows 3 leaders (same as Figure 1 of the revised manuscript, v1-> v2 ->v3-

>v4) and all vehicles are in CF regime. After some time, the first leader (v4) brakes hard. In 

TE, following vehicles will brake one after the other, and in most cases, a vehicle (say v1) will 

brake only after observing the brake of the vehicle that is immediately in front (v2). 

Multivehicle anticipation also plays a role in followers’ responses but majorly a follower 

responds to the vehicle immediately in front. In TE, we can expect that if the vehicle v4 starts 

braking at ‘t’ seconds then v1 will commence the braking at around ‘t + Δt’ seconds, where Δt 
represents the time taken by v1 to react to v2’s speed reduction.  In CE, vehicles receive 

information about surrounding vehicles’ actions and in this case leaders’ actions. As soon as 

v4 starts braking each of the 3 vehicles will receive the warning message ‘leader braking hard’ 

at almost the same time (assuming negligible communication delay). For the vehicle v3, the 

information will be an on-time event triggered by v4’s braking; however, for v1 it will be an 

advanced event since v2 has not started braking yet when v1 receives such message. How early 

such message will be delivered to v1 can vary as per the design of the connectivity (i.e., 

communication type, range, etc.) and the length of the platoon. In our driving simulator 

experiment, we have incorporated this advanced information condition among other conditions 

and have recorded drivers’ responses. 

The next natural question is why the message is delivered 3 seconds in advance? On average, 

drivers take 2 s to respond to a stimulus. In order to ensure that the full impact of connectivity 

in assisting drivers’ decision making can be captured, we have provided additional 1 s to cater 

for the time needed for perceiving and understanding the text message displayed on the screen. 

Also, in our pilot testings, we tested different time windows, i.e., 2.5, 3, and 4 s, and observed 

that 4 s was too long while 2.5 s was insufficient for many participants. Thus, we eventually 

adopted 3 s in the final experiment.

An effective driving aid design balances the method of information presentation and the 

amount of screen time. The literature reflects that researchers have mainly adopted three types 
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of information presentation namely, auditory (Ben-Yaacov et al., 2002; Groeger, 1998; Maltz 

and Shinar, 2007), imagery (Comte and Jamson, 2000; Erke et al., 2007; Saffarian et al., 2013), 

or both (Adell et al., 2011; Fairclough et al., 1997; Ghadiri et al., 2013; Lee et al., 2002; May 

et al., 1995). The auditory information is conveyed using either a beep sound or a voice 

message while the imagery information is presented either by displaying an image or through 

a text message. 

Table 1 Categories of information: types of events, corresponding messages, and their 

presentation style.

Information presentation

Categories 

of 

information

Type of 

event

Message trigger 

point
Text/Image 

(example)

Time 

duration 

on the 

windscreen

Audio

Leading car speed at 

every instant
Always -

Continuous 

information

Following 

the 

leading 

car

Spacing to leading 

car at every instant
Always -

Advanced 

event-

triggered 

information

Leading 

car 

braking 

hard

3 sec before leading 

car brakes hard

Leader 

Braking 

Hard

3 sec

3 beeps 

(one by 

one)

We adopted a combination of both the audio and imagery presentations to disseminate the 

information. All the text messages, e.g., ‘leader braking hard’ are projected on the screen for 3 

seconds accompanied with three beep sounds (one beep per second). All the warning symbols, 

e.g., ‘Speed limit sign’ are encircled with a red boundary accompanied with one beep sound. 

Table 1 summarises the characteristics of all the driving aids.

2.2.2 Vehicle interaction design 

The vehicular interactions are designed such that drivers undergo all the driving regimes 

transitions, which leads to a dataset containing complete trajectories. A trajectory is complete 

if it constitutes all the six driving regimes, i.e., free acceleration, cruising at the desired speed, 

following the leader at a constant speed, accelerating behind a leader, decelerating behind a 

leader, and standing behind a leader (Sharma et al., 2018a). Completeness of the driving 

regimes is an important aspect of the trajectory data quality and critical for the purpose of CF 

model calibration and validation. Treiber and Kesting (2013a) have empirically demonstrated 

the importance of trajectory completeness on model calibration. Punzo et al. (2015) 

demonstrated that the variance of the simulation error is lower for longer trajectories than for 

shorter ones, thereby indicating that longer trajectories including different driving regimes (car-

following and free-flow) have to be preferred for model calibration. Furthermore, Sharma et 

al. (2018a) proposed a pattern recognition algorithm for vehicle trajectories (PRAVT) to 

automatically and accurately identify different driving regimes in vehicle trajectory data, and 
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Sharma et al. (2018b) concluded that the average calibrated parameters obtained from the 

complete trajectories perform better in validation with smaller validation errors. As mentioned 

before, a single lane divided highway is considered in this study. An important reason to prefer 

the single lane divided motorway is to ensure that no lateral movements (lane change 

manoeuvres) occur at all the time. A lane change manoeuvre is undesired since the primary 

objective is to observe drivers’ CF behaviour in a CE and collect the corresponding data. In 

addition, given the extent of CF interactions (complete trajectories, and high-speed and low 

speed sections) this research aim to observe, the complexities involved in designing these 

interactions and collecting the data, and the peculiarity of drivers’ behaviour when interacting 

with messages provided in CE, we restrict the scenario to single lane divided motorways. 

Figure 2 shows the speed profile of the leading car depicting the high-speed and the low-speed 

CF regions. At the beginning of CF, the leading cars, the driven car, and the lag car are at 

standstill (Figure 1(b)). The leading cars start accelerating and continue to accelerate until they 

attain a speed of 23.5 m/s (85 km/h), and maintain this speed for 50 s. After the driven car starts 

accelerating, the lag car also accelerates and maintains a fixed distance from the driven car. 

Next, the leading cars decelerate hard to mimic the hard braking and arrive at a standstill. After 

5 s, the leading cars go through the same cycle of acceleration, constant speed, hard 

deceleration, and standstill, although this time, the constant speed maintained is 11 m/s (40 

km/h), much smaller than the previous constant speed in order to create a low-speed CF region. 

Note that the vehicle interactions remain the same in the baseline and in the connected scenario.

60 80 100 120 140 160 180 200
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10
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Figure 2 Speed profile of the leading car.

2.3 Participants

Seventy-eight eligible participants were recruited. A participant is eligible if he/she is between 

18 to 65 years old, holds either a provisional or an open Australian driving licence, has no 

history of motion sickness or epilepsy, and is not pregnant. Participants received AU $75 as 

compensation of their time. 

The average age of the participants is 30.8 years with a standard deviation of 11.7 years. Out 

of 78 participants, 34.9% are female and 61.6% have a university degree. Overall, the 

participants have a diverse background and the data collected from the experiments have a 
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reasonable representation of drivers with different sociodemographic background. A detailed 

note on participant testing protocol is reported elsewhere (Ali et al., 2018).

This study utilises all the 78 leader-follower trajectory pairs from the baseline and connected 

scenarios (156 pairs in total). For the rest of the paper, the terms ‘leader’ and ‘follower’ denote 

the first leading car and the simulator car driven by a participant, respectively. 

3. MODELLING DRIVER COMPLIANCE BEHAVIOUR USING PROSPECT THEORY

In this study, driver compliance is measured based on the driver’s response when the 

information is presented and the compliance is divided into two levels (i.e., low and high 

compliance).

A driver’s compliance decision to a warning message (e.g., ‘leader braking hard’) is a typical 

case of a decision under risk (risk of rear-end collision). Decision making under risk is 

frequently modelled by Expected Utility Theory (EUT) (von Neumann and Morgenstern, 1944) 

or Prospect Theory (Kahneman and Tversky, 1979). Here, prospect theory (PT) is employed 

since it is capable of describing rational and irrational driving behaviours observed in the real 

world in a realistic and consistent manner, as elaborated below. In 1992, Tversky and 

Kahneman (Tversky and Kahneman, 1992) published a generalised version of prospect theory 

called as cumulative prospect theory (abbreviated as cumulative PT) that is typically preferred 

in economic analysis. We adopt the same to model driver compliance behaviour.   

Firstly, a driver’s decision (e.g., travel speed, behavioural pattern, etc.) can be rational as well 

as irrational because his/her decisions are driven by personality, psychological state, risk 

preference, environmental factors, etc. (Atzwanger and Ruso, 2004; Dia, 2002; Summala, 

1988). EUT is most suitable for modelling the rational decision makers while PT can capture 

both rational and irrational decision-making mechanisms. Meanwhile, PT assumes that 

decision-makers value the choices in terms of gains and losses measured relative to some 

reference point and not on the final gain as in the case of EUT. Such reference dependence fits 

characteristics of drivers’ decision makings in CF because a driver’s decision to accelerate or 

decelerate at time  is dependent on his/her state variables (e.g., speed, spacing, relative (𝑖 + 1)

speed etc.) at time .(𝑖)
Additionally, we also demonstrate later how four integral elements of PT (i.e., reference 

dependence, loss aversion, diminishing sensitivity, and probability weighting) can consistently 

describe the key characteristics of a driver compliance behaviour.

3.1 Prospect Theory – a brief introduction

PT, developed by Kahneman and Tversky (1979), is a behavioural economic theory that 

explains how individuals evaluate risks and make choices between risky probabilistic 

alternatives. PT can be applied to prospects that are uncertain as well as risky. In PT, a decision 

maker associates a perceived utility with each of the available choices and chooses the one with 

the maximum perceived utility. PT has been studied and applied in different disciplines, e.g., 
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economics (Barberis and Huang, 2008), political science (Levy, 2003), health (Attema et al., 

2013), and law (Guthrie, 2002), etc. In Transportation Engineering, PT is predominantly 

applied to model the route choice behaviour (Avineri and Bovy, 2008; Avineri and Prashker, 

2004; Gao et al., 2010; Xu et al., 2011; Yang and Jiang, 2014) and rarely used to model the CF 

behaviour with the exception of the work by Hamadar and his collaborators (Hamdar et al., 

2008, 2015; Talebpour et al., 2011). To the best of the authors’ knowledge, PT has never been 

applied to model the driver compliance behaviour in a CE. 

To mimic or predict the choice of a decision maker using PT, first, prospects are identified and 

formulated (outcomes are assigned corresponding to each prospect). Note that choices given to 

the decision maker are termed as prospects in PT. Next, utility values are calculated for each 

prospect. The prospect with maximum utility depicts the final choice of the decision maker. 

Consider a case where a commuter makes a choice between two alternative bus stops, A and B 

that have different bus headway distributions to reach the desired destination. We need to 

model this decision making using PT. When applying PT, each bus stop serves as a prospect. 

Next, the prospects are formulated i.e., possible gains/losses with their objective probabilities 

are assigned to each prospect. In this case, prospects are formulated in terms of possible waiting 

times of the commuter at each bus stop with corresponding probabilities. After this utility 

values are calculated for prospects and as per PT, the decision maker will choose the prospect 

i.e., the bus stop having the maximum utility. Refer to Avineri (2004) for an empirical example.

Consider a prospect  given by  𝑓 (𝑥 ‒ 𝑚,𝑝 ‒ 𝑚;𝑥 ‒ 𝑚 + 1,𝑝 ‒ 𝑚 + 1;….;𝑥0,𝑝0;….;𝑥𝑛 ‒ 1,𝑝𝑛 ‒ 1;𝑥𝑛,𝑝𝑛)

read as “outcome (amount of gain/loss)   with probability , outcome with 𝑥 ‒ 𝑚 𝑝 ‒ 𝑚 𝑥 ‒ 𝑚 + 1

probability  and so on.” The outcomes are arranged in increasing order such that 𝑝 ‒ 𝑚 + 1 𝑥𝑖 <

 for , and where . The utility associated with the prospect  as per cumulative PT 𝑥𝑗 𝑖 < 𝑗 𝑥0 = 0 𝑓
is presented in Equation (1):𝑈(𝑓) =  ∑𝑛𝑖 =‒ 𝑚𝜋𝑖𝑣(𝑥𝑖) (1)

where  is the value function that assigns a value to an outcome  and  is the decision 𝑣( ∙ ) 𝑥𝑖 𝜋𝑖
weight. A decision maker does not weigh outcomes by their objective probabilities but rather 

by transformed probabilities or decision weights. The decision weights are computed with the 

help of a weighting function whose argument is an objective probability i.e., . A simple 𝑤(𝑝𝑖)
prospect entails only two outcomes (a) Gain/Loss denoted by  and (b) Neutral denoted by . 𝑥  0

These gain, loss, and neutral are measured from the reference. A gain implies some positive or 

favourable addition to the decision maker’s current situation, a loss implies some negative or 

unfavourable addition to the decision maker’s current situation, and a neutral implies no change 

in the decision maker’s current situation. Moreover, simple prospects are consistent with both 

the original and the cumulative versions of PT. The utility associated with a simple prospect 

denoted by  i.e.,  with probability  and 0 with probability , respectively, is a (𝑥,𝑝) 𝑥 𝑝 1 ‒ 𝑝
product of value associated with  and weight according to  as shown in Equation (2): 𝑥 𝑝𝑈(𝑥,𝑝) =  𝑣(𝑥)𝑤(𝑝) (2)

Note that in PT . The mathematical formulations of both  and  are shown in 𝑣(0) = 0 𝑣(𝑥) 𝑤(𝑝)

Equations (3) and (4):
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𝑣(𝑥) = { 𝑥𝛼               𝑖𝑓 𝑥 > 0 ‒ 𝜆( ‒ 𝑥)𝛽     𝑖𝑓 𝑥 ≤ 0    

(3)

𝑤(𝑝) =
𝑝𝛾

(𝑝𝛾 + (1 ‒ 𝑝)𝛾)
1/𝛾  (4)

where ,  and  are PT parameters that control the shape of the curves. The functions   𝛼  𝜆 𝛾 𝑣(𝑥)

and  are the value and the weight that the decision maker associates with the outcome  𝑤(𝑝) 𝑥
and its probability , respectively. Note that  in Equation (4) is the weighting function for  𝑝 𝑤(𝑝)

gains. The weighting function for losses has the same mathematical form with a different shape 

parameter i.e., replace  in Equation (4) by . Figure 3 shows  and  curves as per 𝛾 𝛿 𝑣(𝑥) 𝑤(𝑝)

Tversky and Kahneman (1992). 

Figure 3 (a) The value function and (b) The weighting function.

As stated earlier, PT has four integral elements: a) reference dependence; b) loss aversion; c) 

diminishing sensitivity; and d) probability weighting. The first three elements are captured by 

the  and the last element by . More specifically, reference dependence manifests that 𝑣(𝑥)  𝑤(𝑝)

a decision maker derives his/her utility from gains and losses measured from a reference point 

rather than an absolute value. Loss aversion explains that decision makers are more sensitive 

to losses than gains, and it is captured by making the loss part of the value function steeper (

) than the gain part (Figure 3(a)). Also, decision makers’ sensitivity usually diminishes 𝜆 > 1

for large values of gains and losses. Such diminishing sensitivity is also reflected in the shape 

of : it has a concave shape for gains ( ) and convex for losses ( ) as shown in 𝑣(𝑥) 𝛼 ≤ 1 𝛽 ≤ 1

Figure 3(a). Finally, probability weighting describes how a decision maker perceives 

probabilities and is quantified by Equation (4), e.g., smaller probabilities tend to be 

overweighted. It is easy to see from Equation (4) that when , the probability weighting 𝛾 = 1

becomes linear as in EUT (the dashed line in Figure 3(b)). A decision maker is risk-seeking for 

small-probability gains and large-probability losses, and risk-aversion for small-probability 

losses and large-probability gains. For a detailed discussion on these four elements, see 

Kahneman and Tversky (1979) and Tversky and Kahneman (1992).    
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3.2  Driver compliance modelling based on Prospect Theory

It is reasonable to assume that all changes in driving behaviour (see Section 6) due to CE are 

attributed to the degree of driver compliance with information (high or low compliance). A 

zero compliance will lead to no change in CF behaviour in CE. All the factors such as trust in 

the connected vehicle technology, user acceptance of the technology, driver aggressiveness, 

and even the level of risk will ultimately influence the driver compliance. Furthermore, it is 

reasonable to assume that the driver’s choice of the compliance generally depends on the time 

headway (hereon headway) at the time of information display. As headway decreases, drivers 

comply more and vice versa. Intuitively as well, a driver is more likely to comply high when 

an emergency message (advanced event-triggered message - ‘leader braking hard’) is delivered 

at small headway.

3.2.1 Compliance utility calculation

The compliance of a driver in response to the information is categorised as low compliance or 

high compliance levels. The two levels can be understood as two choices in front of a driver, 

the decision maker. To capture the subtle changes in the driver compliance, it is important to 

divide it into two levels. Moreover, different levels provide opportunities to characterise 

drivers, observe and learn differences in their behaviour, and understand how the drivers with 

different compliance level impact traffic flow. Furthermore, since the 3 PT parameters are 

sufficient to model the two categories of driver compliance levels, the two levels do not 

penalise in terms of model complexity. After perceiving and understanding the displayed 

information, the driver chooses one compliance level and responds accordingly. In this study, 

we are modelling this decision making using PT. The two compliance levels (low compliance 

and high compliance) are the two prospects and using PT we mimic which prospect i.e. 

compliance level, is chosen by the driver. The present treatment towards formulating these 

prospects is confined to simple prospects i.e., both prospects are simple prospects. Note that, 

in CF, any level of compliance (low or high) to a message displayed to assist the driver (e.g., 

warning message in an emergency) will represent a gain for the driver and complete ignorance 

of the message will represent a loss. Hence, both simple prospects are made up of gains. 

Obviously, the magnitude of gains at different compliance level will be different. 

In line with utility formulation for simple prospects (Equation (2)), this study defines the 

compliance level utility as a product of usefulness and weight (

). The usefulness denotes how useful an 𝐶𝑜𝑚𝑝𝑙𝑖𝑎𝑛𝑐𝑒 𝑢𝑡𝑖𝑙𝑖𝑡𝑦 = 𝑢𝑠𝑒𝑓𝑢𝑙𝑛𝑒𝑠𝑠 × 𝑤𝑒𝑖𝑔ℎ𝑡
information is to a driver, whereas the weight denotes how much a driver weighs the 

information at different compliance levels. Usefulness value is calculated using usefulness 

value function (similar to PT value function) and weights are calculated using weighting 

functions (similar to PT weighting function). Below we explain both usefulness value function 

and weighting function. 

3.2.2 Usefulness value function 

Since compliance utility is directly proportional to the usefulness, it is safe to assume that 

usefulness shares the same inverse proportionality relationship with observed headway as does 

the compliance. The smaller the observed headway is (at the time of information display), the 
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more useful the information is to the driver, and vice versa, e.g., an emergency message deliver 

at small headway is more useful to drivers. Moreover, in general, a logistic function is preferred 

when modelling choices (see the vast literature on discreet choice modelling, e.g., Hensher et 

al. (2015), Train (2009), etc.). Based on this and considering the properties of PT’s value 

function, the usefulness value function is formulated as in Equation (5):𝑉 (ℎ𝑜𝑏𝑠) =
1

(1 + 𝑒𝜆(𝛼ℎ𝑜𝑏𝑠 ‒ 1)
)

(5)

where  and  are the parameters that govern the shape of the function, and  is the observed 𝜆 𝛼 ℎ𝑜𝑏𝑠
headway at a given time. 

Figure 4 Usefulness value function plot ( )𝜆 = 5, 𝛼 = 0.4

Figure 4 depicts the inverse proportionality between the observed headway and the usefulness 

value as assumed previously. The sensitivity of usefulness value also diminishes for small and 

large headways, thus capturing the diminishing sensitivity property of PT. Furthermore, using 

the value function, one can estimate  (the headway when  value is close to zero, ℎ𝑚𝑎𝑥 𝑉 (ℎ𝑜𝑏𝑠)
which indicates the information is not useful at all) and  (the headway when  value ℎ𝑚𝑖𝑛 𝑉 (ℎ𝑜𝑏𝑠)
is close to one, which indicates the information is very useful). The headways  and are  ℎ𝑚𝑎𝑥  ℎ𝑚𝑖𝑛
later utilised to calculate weighting functions. In this study, the  is calculated at ℎ𝑚𝑎𝑥 𝑉 (ℎ𝑜𝑏𝑠)

 and   is calculated at . The  and  are not very sensitive = 0.001 ℎ𝑚𝑖𝑛 𝑉 (ℎ𝑜𝑏𝑠) = 0.99 ℎ𝑚𝑎𝑥 ℎ𝑚𝑖𝑛
to  values close to 0 or 1. This is due to the diminishing sensitivity feature of PT 𝑉 (ℎ𝑜𝑏𝑠)
captured by the usefulness value function curve. We have confirmed the same using sensitivity 

analysis. For most of the combinations of  and , the difference between  at 𝜆 𝛼 ℎ𝑚𝑎𝑥 𝑉 (ℎ𝑜𝑏𝑠)
 and  at  is not more than 1.5 s. Similar results are obtained = 0.001 ℎ𝑚𝑎𝑥 𝑉 (ℎ𝑜𝑏𝑠) = 0.0001

when computing  for all values of  in the range  (note ℎ𝑚𝑖𝑛 𝑉 (ℎ𝑜𝑏𝑠) 0.99 ≤ 𝑉 (ℎ𝑜𝑏𝑠) ≤ 0.997

that  results in unrealistic ). 𝑉 (ℎ𝑜𝑏𝑠) > 997 ℎ𝑚𝑖𝑛
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3.2.3 Weighting functions 

We assume that each driver has a subjective headway range corresponding to each compliance 

level. The magnitude of the weight at a particular compliance level is governed by the 

probability of the observed headway falling in the headway range of that level, e.g., if the 

observed headway is very small, then the probability of this headway falling in the headway 

range of high compliance level will be very high, and the probability of this headway falling in 

the headway range of low compliance level will be very low. Accordingly, for this headway, 

the weight will be high at the high compliance level and low at the low compliance level. The 

weighting functions for low and high levels of driver compliance are formulated in such a way 

that they capture the headway weighting behaviour. Furthermore, the functions capture the PT 

trait of probability weighting i.e., small probabilities are weighted higher and large probabilities 

are weighted lower.

The low compliance weighting function 

The low compliance weighting function ( ) and the probability that an observed 𝑊𝐿𝐶(𝑃𝐿𝐶)

headway falls in a driver’s low compliance range ( ) are given by Equations (6) and (7), 𝑃𝐿𝐶
respectively: 𝑊𝐿𝐶(𝑃𝐿𝐶) =

𝑃𝐿𝐶𝛾
(𝑃𝐿𝐶𝛾 + (1 ‒ 𝑃𝐿𝐶)𝛾)

1/𝛾 (6)

𝑃𝐿𝐶 = min (
ℎ𝑜𝑏𝑠ℎ𝑚𝑎𝑥,1)

(7)

where  is the shape parameter. The  formulation is the same as PT weighting 𝛾 𝑊𝐿𝐶(𝑃𝐿𝐶)

function. From Equations (6) and (7), as  increases and approaches to , the low ℎ𝑜𝑏𝑠  ℎ𝑚𝑎𝑥
compliance weight increases and approaches to 1. Figure 5 depicts the same relationship.
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Figure 5 Plots of the weighting functions (Solid curve: Low compliance/High compliance 
weighting behaviour at ; Dashed line: linear weighting behaviour). 𝛾 = 0.55

The high compliance weighting function 
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The high compliance weighting function  and the probability that an observed (𝑊𝐻𝐶(𝑃𝐻𝐶))

headway falls in a driver’s high compliance range  are given by Equations (8) and (9), (𝑃𝐻𝐶)

respectively:𝑊𝐻𝐶(𝑃𝐻𝐶) =
𝑃𝐻𝐶𝛾

(𝑃𝐻𝐶𝛾 + (1 ‒ 𝑃𝐻𝐶)𝛾)
1/𝛾 (8)

𝑃𝐻𝐶 = min (
ℎ𝑚𝑖𝑛ℎ𝑜𝑏𝑠,1)

(9)

where  is the shape parameter. A different shape parameter is not required because both the 𝛾
compliance levels represent gains (driver is following the information), though different in 

magnitude. From Equations (8) and (9), as  decreases and approaches to , the high ℎ𝑜𝑏𝑠  ℎ𝑚𝑖𝑛
compliance weight increases and approaches to 1. Figure 5 depicts the same relationship.

3.2.4 Formulating compliance utilities

Because only a single value of observed headway is possible at the time of information display, 

the usefulness value is the same across both levels of compliance. However, drivers can weigh 

the information differently at different levels of compliance; accordingly, two weights are used 

to compute the compliance utilities for the two levels of compliance (one weight for one level). 

Hence, we formulate the simple prospects for low compliance and high compliance as (ℎ𝑜𝑏𝑠,
 and , respectively. Equations (10) and (11) show the compliance utility 𝑃𝐿𝐶) (ℎ𝑜𝑏𝑠,𝑃𝐻𝐶)

formulations for low compliance and high compliance, respectively, and Equation (12) shows 

the maximum utility formulation:  𝑈𝑇𝐿𝐶(ℎ𝑜𝑏𝑠,𝑃𝐿𝐶) = 𝑉 (ℎ𝑜𝑏𝑠) 𝑊𝐿𝐶(𝑃𝐿𝐶) (10)𝑈𝑇𝐻𝐶(ℎ𝑜𝑏𝑠,𝑃𝐻𝐶) = 𝑉 (ℎ𝑜𝑏𝑠) 𝑊𝐻𝐶(𝑃𝐻𝐶) (11)𝑈𝑇 = max (𝑈𝑇𝐿𝐶,𝑈𝑇𝐻𝐶) (12)

where and  are compliance utilities of low and high compliance levels, respectively. 𝑈𝑇𝐿𝐶 𝑈𝑇𝐻𝐶
The usefulness value associated with the observed headway is , same at both the levels 𝑉 (ℎ𝑜𝑏𝑠)
as explained above. The probabilities that an observed headway will fall under low and high 

compliance headway ranges are  and , respectively, and the corresponding weights are  𝑃𝐿𝐶 𝑃𝐻𝐶
 and . The maximum utility is denoted by  that ranges from 0 to 1, with 𝑊𝐿𝐶(𝑃𝐿𝐶) 𝑊𝐻𝐶(𝑃𝐻𝐶) 𝑈𝑇

 representing no compliance and  representing the full compliance. The result 𝑈𝑇 = 0 𝑈𝑇 = 1

from Equation (12) depicts the compliance level chosen by the driver. Note that the 

probabilities  and  belong to two different i.e.,  belongs to low compliance prospect 𝑃𝐿𝐶 𝑃𝐻𝐶 𝑃𝐿𝐶
and  belongs to high compliance prospect, therefore, they are independent to each other 𝑃𝐻𝐶
and their sum can be greater or smaller than 1. Furthermore, as mentioned in Section 3.2.3, low 

compliance and high compliance headway ranges are subjective, thus, the probabilities 

associated with these ranges are latent and cannot be measured directly. More specifically,   𝑃𝐿𝐶
and  represent surrogate measures of low compliance and high compliance latent 𝑃𝐻𝐶
probabilities and as  and  increase, the associated latent probabilities also increase e.g.,  𝑃𝐿𝐶 𝑃𝐻𝐶
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if the observed headway is small, then  will be high and thereby the high compliance 𝑃𝐻𝐶
probability will be high.

The complete process of a driver compliance decision making based on PT is summarised in 

the first block of Figure 6, and a hypothetical case is presented in the second block of Figure 

6. The driver receives a warning message ‘leader braking hard’ at a headway of 2 seconds, 

he/she goes through the decision-making process as depicted in this figure, and eventually 

decides to comply high, i.e., high deceleration, because the high compliance prospect gives the 

maximum utility in this particular example.   

More specifically, the driver compliance decisions are evaluated for six observed headways (1 

to 10 sec) to showcase the efficacy of PT based modelling of driver compliance decision 

process. The results are reported in Table 2 where, as the observed headway increases, the 

usefulness value associated with the information decreases, thereby the maximum utility value 

decreases. Moreover, for each observed headway different weights to the same information at 

different levels of compliance can be observed. Table 2 also demonstrates how high or low 

compliance weights vary against observed headways. As the headway increases, the high 

compliance weight decreases while the low compliance weight increases. The table highlights 

the importance of both the usefulness value function and weighting function in evaluating 

compliance utility values and the level of compliance. The evidences from Figure 6 and Table 

2 corroborate that PT based modelling of driver compliance decision process is realistic and 

behaviourally sound. 

Figure 6 An example: a driver compliance decision-making process modelled using PT (

). 𝜆 = 6, 𝛼 = 0.2, 𝑎𝑛𝑑 𝛾 = 0.65

Table 2 Driver compliance final utility calculation for six observed headways (

).𝜆 = 6, 𝛼 = 0.2 𝑎𝑛𝑑 𝛾 = 0.65𝒉𝒐𝒃𝒔 𝑽 (𝒉𝒐𝒃𝒔) 𝑾𝑳𝑪(𝑷𝑳𝑪) 𝑾𝑯𝑪(𝑷𝑯𝑪) 𝑼𝑻𝑳𝑪 𝑼𝑻𝑯𝑪  𝑼𝑻(𝒉𝒐𝒃𝒔)
1 0.992 0.178 1.000 0.177 0.992 0.992

2 0.973 0.259 0.497 0.253 0.484 0.484
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4 0.768 0.382 0.324 0.293 0.251 0.293

6 0.231 0.497 0.259 0.115 0.060 0.115

8 0.026 0.640 0.222 0.017 0.005 0.017

10 0.002 1.000 0.197 0.002 0.000 0.002

4. CONNECTED VEHICLE DRIVING STRATEGY (CVDS) 

This section presents the proposed CVDS that can be integrated with traditional CF models. 

CVDS has two parts: the first part (section 4.1) modifies the traditional CF models to model 

the driver’s response to continuous information, and the second part (section 4.2) models the 

driver’s behaviour in response to advanced event-triggered information. Importantly, the driver 

compliance is an integral component of both the parts.    

4.1 CVDS Part I: Modelling the driver’s response to continuous information

A comparison of microscopic traffic flow parameters (e.g., average headway, average spacing, 

average speed, fluctuations in speed and spacing, etc.) between the baseline and connected 

scenarios revealed that headway increases, and acceleration behaviour becomes more stable in 

the connected scenario (see Section 6.3). The time gap and headway are directly proportional 

to each other, and the recent literature suggests that when the desired time gap increases, the 

stability of CF models like IDM increases (Sun et al., 2018). Thus, the time gap parameter in 

CF models is multiplied with  to accommodate the impact of driver compliance  (1 + 𝑈𝑇(ℎ𝑜𝑏𝑠))

with continuous information.

4.2 CVDS Part II: Modelling the driver’s response to advanced event-triggered 

information

In response to the warning message ‘leader braking hard’, the driver decelerates to achieve a 

desired headway ( ) from his/her reference headway ( ). The desired headway is the ℎ𝑑𝑒𝑠 ℎ𝑜𝑏𝑠
headway a driver desires to maintain when he/she is aware of an immediate emergency 

situation. In addition, the driver responses in  seconds after the advanced message is displayed. 𝜏
Here,  represents the delay in the driver’s response to the advanced message. Note that the 𝜏
response delay  is utilised while calibrating the integrated CF model. The required 𝜏
deceleration rate, dn is provided in Equation (13):

 𝑑𝑛 =  ‒ 𝐷 × (
𝑡𝑐𝑇𝑐)𝑛  (13)

where  varies from 0 to  with  at the start of deceleration process and  at the 𝑡𝑐  𝑇𝑐 𝑡𝑐 = 0 𝑡𝑐 = 𝑇𝑐
end of the deceleration process,  is the response period, i.e., the time taken by the driver to 𝑇𝑐
attain , and it depends upon the aggressiveness of the driver, and  is the time factor   𝐷 𝑛 (

𝑡𝑐𝑇𝑐)
exponent and is equal to 3 for this study. Fixing the value of  was a deliberate decision in 𝑛
order to better facilitate the calibration of more important driver behaviour parameters. To fix 

the parameter, we performed simulations and found that a cubic deceleration rate is closer to 
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the observations. At , the maximum deceleration  is reached, as given in Equation  𝑡𝑐 = 𝑇𝑐 𝐷
(14):

𝐷 = 𝑚𝑖𝑛{𝑏𝑚𝑎𝑥, (1 + 𝑈𝑇(ℎ𝑜𝑏𝑠)) ×

𝑏𝑚𝑎𝑥 × (1 ‒ ℎ𝑜𝑏𝑠ℎ𝑑𝑒𝑠)⏟𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑑𝑒𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛} (14)

where  is the maximum allowable deceleration, and  is the utility value calculated 𝑏𝑚𝑎𝑥 𝑈𝑇(ℎ𝑜𝑏𝑠)
at . Note that contrary to the desired deceleration ( ) parameter in IDM,  is the  ℎ𝑜𝑏𝑠 𝑏 𝑏𝑚𝑎𝑥
maximum physically possible value of deceleration that is limited by the car’s braking 

capability. The parameter  is relatively a new parameter in traffic flow modelling. 𝑏𝑚𝑎𝑥
Therefore, we measured the variable from the data collected from the simulator experiment 

and the average value of  for 78 participants at emergency is 8.16 m/s2. Thus, in 𝑏𝑚𝑎𝑥
calibration, we have fixed  equal to 8 m/s2. The factor  is multiplied with  to 𝑏𝑚𝑎𝑥 (1 ‒ ℎ𝑜𝑏𝑠ℎ𝑑𝑒𝑠) 𝑏𝑚𝑎𝑥
account for high/low deceleration when the difference between  and  is large/small. ℎ𝑜𝑏𝑠 ℎ𝑑𝑒𝑠
The required deceleration is multiplied by a factor equal to  that incorporates  (1 + 𝑈𝑇(ℎ𝑜𝑏𝑠))

the impact of the compliance on the deceleration. Next,  is measured at the time when the ℎ𝑜𝑏𝑠
advanced message is received by the follower. It is reasonable to assume that the data from the 

follower (a connected vehicle) will have the information about when messages are received by 

the driver, and using such information one can measure  corresponding to a specific ℎ𝑜𝑏𝑠
message, in this case, the advanced message.

Note that CVDS part II is applicable only when  > , otherwise CVDS part I is used for ℎ𝑑𝑒𝑠 ℎ𝑜𝑏𝑠
modelling driver’s response to the advanced event-triggered information as well. In addition, 

the parameter  is more likely to vary across different situations and human factors. ℎ𝑑𝑒𝑠
However, to control the complexity of the model and similar to how researchers often treat 

other similar parameters (e.g., desired speed, desired deceleration, and etc.), it is reasonable to 

assume  (a model parameter) remains constant for a driver. Furthermore, the condition ℎ𝑑𝑒𝑠 ℎ𝑑𝑒𝑠
 does not guide the calculation of ; instead, it governs the acceleration or > ℎ𝑜𝑏𝑠  𝑈𝑇(ℎ𝑜𝑏𝑠)

deceleration adopted when the advanced message is displayed. When simulating a CF model 

integrated with CVDS,   is calculated first, and then the acceleration or deceleration 𝑈𝑇(ℎ𝑜𝑏𝑠)
is calculated. As mentioned above, (  captures the driver compliance to messages 1 + 𝑈𝑇(ℎ𝑜𝑏𝑠))

in both CVDS parts I and II. It is calculated at each time interval for continuous information 

and also at the time when the advanced message is displayed. When the advanced message is 

displayed, the amplification effect i.e., (  is the same in parts I and II because we 1 + 𝑈𝑇(ℎ𝑜𝑏𝑠))

are capturing driver compliance to the same message (‘leader braking hard’) in both cases and 

the magnitude will only depend on the . It will be unreasonable to use two different  ℎ𝑜𝑏𝑠
amplification effects in parts I and II because it implies that the driver is responding to two 

different messages which is obviously not the case here. 
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4.3 Integrating CVDS with IDM

For the purpose of demonstration, we select IDM and integrate it into CVDS. IDM belongs to 

the category of desired measures models (Saifuzzaman and Zheng, 2014), and assumes that the 

acceleration is a continuous function of the driver’s speed, spacing to the leader, and speed 

difference between the leader and the follower. Equations (15) and (16) present the 

mathematical formulation of the IDM acceleration function of the  driver. 𝑛𝑡ℎ
 𝑎𝑛(𝑆𝑛,𝑉𝑛,∆𝑉𝑛) = 𝑎[1 ‒ (

𝑉𝑛𝑉0 )
𝛿 ‒ (

𝑠 ∗ (𝑉𝑛,∆𝑉𝑛)𝑆𝑛 )
2

]
(15)

𝑠 ∗ (𝑉𝑛,∆𝑉𝑛) = 𝑠0 + 𝑇𝑉𝑛 +
𝑉𝑛∆𝑉𝑛
2 𝑎𝑏 (16)

where , , , , and  are desired speed , free acceleration exponent, desired time 𝑉0, 𝛿  𝑇 𝑠0 𝑎  𝑏 (m/s)

gap , standstill distance , maximum acceleration , and desired deceleration (s) (m) (m/s2) (m/

, respectively. Moreover, is the IDM acceleration , is the desired spacing , s2)  𝑎𝑛  (m/s2)  𝑠 ∗   (m)

 is the speed ,  is the relative speed  (difference of the follower’s speed  𝑉𝑛  (m/s)  ∆𝑉𝑛 (m/s) 𝑉𝑛
and the leader’s speed ), and   is the distance gap .  𝑉𝑛 ‒ 1 𝑆𝑛  (m)

Corresponding to the two parts of CVDS discussed above, the integrated CVDS-IDM also has 

two parts, as shown in Figure 7. Part I is similar to the original IDM except that it has a modified 

time-gap parameter; and Part II  is for modelling the driver’s response to advanced event-

triggered information, and has the same functional form as mentioned in Section 4.2. 

While implementing CVDS-IDM, the switching between Part I and Part II might cause an 

abrupt jump in a very short period, which can be avoided by applying a smoothing function. 

Many smoothing functions can be used, while in this study, moving average smoothing is 

adopted to keep the smoothing step simple. 

Figure 7 Schematic of integrated CVDS-IDM.

5. Calibration Methodology

The CVDS-IDM model is calibrated using the CV trajectory data collected from the driving 

simulator experiment. CF model calibration is essentially an optimization problem that 

involves minimizing the difference between the observed follower and the simulated follower, 

and finding the optimal model parameters. The simulated follower is generated using the CF 

model under consideration and its parameters are sampled from their predefined ranges. The 
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deviation of the simulated follower from the observed follower is expressed as an error using 

goodness-of-fit (GoF) functions and the CF feature (variable in GoF) which is compared 

between the two trajectories is called as a measure of performance (MoP). A combination of 

MoP and GoF is termed as an objective function, which is minimized using an optimization 

algorithm (OA). For a review of current studies on CF model calibration issues, refer to Sharma 

et al. (2018b). 

5.1 Selection of a calibration setting

The uncertainty involved in the calibration process due to the elements above (particularly OA) 

affects the accuracy and the reliability of the calibration results. Thus, the calibration setting 

(i.e., a combination of MoP, GoF, and OA) is often evaluated for its efficacy before calibrating 

a CF model (Punzo et al., 2015, 2012; Saifuzzaman et al., 2015; Sharma et al., 2018b). The 

evaluation process involves examining different calibration settings using synthetic data (data 

generated by the model itself) followed by choosing the one that results in the lowest calibration 

errors. For CVDS-IDM, we have rigorously tested the suitability of an effective calibration 

setting, i.e., spacing as MoP (Ossen and Hoogendoorn, 2008; Punzo et al., 2012; Punzo and 

Montanino, 2016; Ranjitkar et al., 2004; Treiber and Kesting, 2013a), root mean square 

normalised error (RMSNE) as GoF (Ciuffo and Punzo, 2010; Punzo and Simonelli, 2005; 

Sharma et al., 2018b), and genetic algorithm (GA) as OA (Kesting and Treiber, 2008; Monteil 

et al., 2014; Punzo et al., 2012; Ranjitkar et al., 2004). The mathematical formulation of 

RMSNE with spacing as MoP is shown in Equation (17):

𝑅𝑀𝑆𝑁𝐸 =
1𝑁∑𝑁𝑖 = 1(

𝑆𝑎𝑐𝑡𝑖 ‒ 𝑆𝑠𝑖𝑚𝑖𝑆𝑎𝑐𝑡𝑖 )
2

 
   

(17)

where  with spacing as MoP denotes the objective function,   denotes the actual RMSNE 𝑆𝑎𝑐𝑡𝑖
value of spacing at  time step,  denotes the simulated spacing at  time step, and  𝑖𝑡ℎ 𝑆𝑠𝑖𝑚𝑖 𝑖𝑡ℎ 𝑁
denotes the total time steps. 

While testing the calibration setting, GA parameters are set as follows: the population size is 

200, the maximum number of generations is 600, the maximum number of stall generations is 

50, and the function tolerance is 1e-6. Furthermore, the upper and the lower bounds for CVDS-

IDM parameters are set for improving the computational tractability of GA based optimization 

process. These parameters are detailed in Table 3. 

When calibrating the CF model using GA, each optimization run (iteration) and different 

optimization start points results in slightly different solution because of two reasons: a) GA 

based  search process is stochastic; and b) a plateau without a distinctive global minimum is 

present in the objective function surface (Punzo et al., 2012; Sharma et al., 2018b). Therefore, 

the calibration process is repeated 10 times with five different starting points. Furthermore, the 

calibration error (or fitting error) is calculated at each optimization run to quantify the 

performance of calibration setting. The calibration error is the minimum value of objective 

function obtained at the end of the optimization process and given by Equation (18):

Calibration Error = min (𝑅𝑀𝑆𝑁𝐸) × 100 (18)
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Note that the calibration error reflects the fitting capability of any CF model (a lower calibration 

error indicates a better fitting capability). The final calibrated parameters set is the one with the 

minimum calibration error among all the 50 errors (5 starting points  10 runs with each ×

starting point). 

Table 3 CVDS-IDM parameter bounds given as input in optimization.

Parameter
Lower 

Bound

Upper 

Bound

Desired speed (𝑉0)(𝑚/𝑠) 1 40

Acceleration exponent (𝛿) 0.1 5

Desired time gap (𝑇) (𝑠) 0.1 4

Standstill distance (𝑠0) (𝑚) 1 10

Maximum acceleration (𝑎)(𝑚/𝑠2) 0.1 4

Desired deceleration (𝑏)(𝑚/𝑠2) 0.1 4.5

Response delay (𝜏)(𝑠) 0.1 3

alpha (𝛼) 0.1 0.5

Gamma (𝛾) 0.5 1

lambda (𝜆) 5 10

Maximum possible deceleration  (𝑏𝑚𝑎𝑥)

 (𝑚/𝑠2)
8 

Desired headway (ℎ𝑑𝑒𝑠) (𝑠) 1 5

Response period (𝑇𝑐) (𝑠) 1 5

Testing of the calibration setting requires a synthetic follower. To generate the synthetic 

follower, first, a leader’s trajectory is randomly selected from the trajectory pairs obtained from 

the driving simulator experiment. The synthetic follower is generated using CVDS-IDM with 

parameters ,   4,  2.1 s, , , , 𝑉0 = 30.6 𝑚/𝑠 𝛿 = 𝑇 = 𝑠0 = 10 𝑚 𝑎 = 1.79 𝑚/𝑠2 𝑏 = 2.69 𝑚/𝑠2

, , , ,  , , and . Using the 𝜏 = 0.2 𝑠 𝛼 = 0.35 𝛾 = 0.6 𝜆 = 9.8 𝑏𝑚𝑎𝑥 = 8 𝑚/𝑠2 ℎ𝑑𝑒𝑠 = 4.5 𝑠 𝑇𝑐 = 4.9 𝑠
selected calibration setting, CVDS-IDM calibration is performed and calibration errors are 

calculated. Table 4 reports the synthetic data calibration results (arranged in decreasing order 

of the calibration error). Since it is difficult to show all the 50 calibration errors with 

corresponding model parameters, in Table 4 we only show the calibration error which is the 

minimum error among 10 runs for a particular starting point, and the corresponding calibrated 

parameter set. The parameters obtained from the 3rd start point leads to the minimum calibration 

error i.e. 0.371 %, and hence it is the final calibrated parameter set. The difference between the 

final parameter set and the actual parameters (ground truth) used for generating the synthetic 

follower is very small. Therefore, the adopted calibration setting works efficiently as expected. 

Similar results are obtained for other leader-follower pairs.
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Table 4 Calibration results with different start points.

Start 

point
𝑽𝟎 𝜹 𝑻 𝒔𝟎 𝒂 𝒃 𝝉 𝜶 𝜸 𝝀 𝒉𝒅𝒆𝒔 𝑻𝒄 Calibration 

error

1 29.5 4.9 2.0 9.8 1.7 2.0 0.4 0.3 0.9 9.9 2.8 1.7 0.29 %
2 34.8 2.5 1.9 10 1.8 1.9 0.1 0.3 1 6.7 1.5 4.9 0.28 %

3 31.4 4.0 2.1 9.7 1.7 2.0 0.2 0.3 0.5 5.0 4.5 4.8 0.26 %

4 36.8 2.6 1.5 9.9 1.7 1.1 0.6 0.2 1 5.0 3.8 4.4 0.28 %

5 29.8 4.9 2.0 9.6 1.7 2.0 0.2 0.3 0.8 9.6 2.9 4.8 0.29 %

 

5.2 Calibration process for CVDS-IDM

CVs will not only provide high-resolution trajectory data but also the time information 

regarding when the vehicles receive the messages. Based on these benefits, a calibration 

methodology is framed particularly for CVs and described in Table 5. CVDS-IDM is a single 

model with two parts and when calibrating CVDS-IDM the entire trajectory is utilised in the 

same way as when we calibrate other CF models in general. Meanwhile, the original IDM is 

calibrated using the trajectory pairs in the baseline scenario to understand the impact of CE on 

CF behaviour by comparing the common parameters between CVDS-IDM and IDM.

Table 5 Methodology for calibrating IDM and CVDS-IDM.

Scenario Time frame
Model 

calibrated
Equation Remark

Baseline 𝑡𝑠𝑡𝑎𝑟𝑡 𝑡𝑜 𝑡𝑒𝑛𝑑 IDM

Equations 

(15) and 

(16)

 and  are the start and 𝑡𝑠𝑡𝑎𝑟𝑡 𝑡𝑒𝑛𝑑
the end time of the trajectory

𝑡𝑠𝑡𝑎𝑟𝑡 𝑡𝑜 (𝑡1 ‒ ∆𝑡) CVDS-

IDM (Part 

I)

Figure 7

 , where  is the 𝑡1 =  𝑡𝑚 +  𝜏 𝑡𝑚
time when the advanced 

warning message is displayed 

and is the response delay. 𝜏 

 is calculated at each 𝑈𝑇(ℎ𝑜𝑏𝑠)
time instant and  is the time ∆𝑡

step.

𝑡1 𝑡𝑜 𝑡2

CVDS-

IDM (Part 

II)

Figure 7

Connected

(𝑡2 + ∆𝑡) 𝑡𝑜 𝑡𝑒𝑛𝑑 CVDS-

IDM (Part 

I)

Figure 7

. Whenever the 𝑡2 = 𝑡1 + 𝑇𝑐
advanced warning message 

appears, the acceleration will 

be governed by either CVDS-

IDM Part I or II depending 

upon whether the condition  

 is true or not. ℎ𝑑𝑒𝑠 > ℎ𝑜𝑏𝑠



22

6. Results and Discussion

6.1 Calibration results and findings

The IDM and CVDS-IDM models are calibrated using 78 trajectory pairs in the baseline and 

connected scenarios, respectively, and employing the selected calibration setting discussed 

above. Figures 8 and 9 depict the frequency distributions of calibrated parameters of both 

models. Figure 10 presents the respective calibration errors.   

The distributions of calibrated parameters (Figures 8 and 9) attribute to the existence of inter-

driver heterogeneity (i.e., driving style variability among the participants), while the average 

values reflect the average driving behaviour of the 78 participants. The average fitting errors 

are 17.3 % and 13.3 % for IDM and CVDS-IDM models, respectively (Figure 10). 

The errors are consistent with the typical error ranges reported in previous studies, i.e., 15% to 

25% (Brockfeld et al., 2004; Kesting and Treiber, 2008; Punzo and Simonelli, 2005; Sharma 

et al., 2018b). Overall, calibration results show that both IDM and CVDS-IDM are capable of 

describing local CF dynamics in the baseline and connected scenarios, respectively.   
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Figure 8 Distributions of the calibrated parameter values common in CVDS-IDM (Connected) and IDM (Baseline). In each plot,  and  𝜇 𝜎
represent the mean and the standard deviation of calibrated parameters, respectively. 

                                            
Baseline Connected
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Figure 10 Distributions of the remaining CVDS-IDM calibrated parameter values. In each plot,  and  𝜇 𝜎
represent the mean and the standard deviation of calibrated parameters, respectively. 

Figure 9 Distribution of the calibration errors for CVDS-IDM (Connected) and IDM (Baseline). 
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A two-sample t-test is performed between the common parameters of IDM and CVDS-IDM to 

understand the changes in driving behaviour ascribed by the CE (Figure 8). Among the six 

common parameters, acceleration exponent  (p-value = 0.001), desired time gap  (p-(𝛿) (𝑇)
value = 0.02), and maximum acceleration  (p-value = 0.006) are found to be statistically (𝑎)
different at a 5% significance level. These findings provide insights into the changes in driving 

behaviour, as elaborated below. Based on CVDS-IDM’s mathematical formulation, the 

acceleration exponent  governs the reduction in the acceleration as the vehicle’s speed (𝛿)
approaches the desired speed. 

A larger acceleration exponent means a more gradual reduction in acceleration.  (𝛿) 

Meanwhile, the safety distance with the leading vehicle is given by the formula .  𝑠0 + 𝑣𝑇
Hence, an increase (decrease) in the desired time gap  leads to an increase (decrease) in the (𝑇)
safety distance with the leader. In the connected scenario, the acceleration exponent and  (𝛿) 

the desired time gap are larger, but the maximum acceleration is smaller compared to  (𝑇)  (𝑎) 

the values in the baseline scenario. These results signify that in the CE, drivers accelerate more 

cautiously, decelerate more gradually when approaching the desired speed, and maintain a 

larger safety distance with the leader. Overall, we can label such driving behaviour in the CE 

as ‘conscientious driving behaviour’. Talking about the combined effect, a larger  results in a 𝛿
larger acceleration and a larger  results in a lower acceleration, thereby countering each other. 𝑇
However, from the mathematical formulation of IDM or CVDS-IDM for that matter, the 

change in  and  will overpower the change in . We have confirmed this conclusion using 𝑇 𝑎 𝛿
simulations as well.   

The parameters response delay , desired headway , and response period  govern  (𝜏)  (ℎ𝑑𝑒𝑠)  (𝑇𝑐)
the driver’s response to the advanced information about an emergency. Based on the calibration 

results (Figure 9), in response to the advanced warning of the leader’s hard braking, on average 

the participants maintain a desired headway of 4.7 s, respond to the advanced information in 

1.1 s, and attain the deceleration required to achieve the desired headway in 2.5 s. An 

aggressive/conservative driver compared to the average driver is characterised by a 

lower/higher response delay, desired headway, and response period.PT parameters alpha ,  (𝛼)
lambda , and gamma govern the shapes of usefulness value and weighting function  (𝜆)  (𝛾) 

curves whereby influencing the driver compliance behaviour. Figure 11 displays the usefulness 

value and the weighting function curves for the average PT parameters (average of the 

calibrated PT parameters), and for the parameters greater and smaller than the average. Note 

that the average PT parameters describe an averaged compliance behaviour. Figure 11 assists 

in understanding the difference between the compliance behaviour of a driver and the average 

compliance behaviour.
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Figure 11 Effect of different PT parameters on the usefulness value function curve ((a)) and 

high-compliance weighting function curves (b)). 

 Figure 11 (a) shows the usefulness value function curves. To facilitate our discussion, three 

groups of drivers are defined: D>m is the group of drivers with PT parameters [ ] > [𝛼,𝜆 𝛼𝑎𝑣𝑔,𝜆𝑎𝑣𝑔
], Dm is the group of drivers with PT parameters equal to [ ], and D<m is the group of 𝛼𝑎𝑣𝑔,𝜆𝑎𝑣𝑔
drivers with PT parameters [ ] < [ ]. D>m is more sensitive to a change in the 𝛼,𝜆 𝛼𝑎𝑣𝑔,𝜆𝑎𝑣𝑔
observed headway than Dm as indicated by the steeper curve of D>m. A small decrease 

(increase) in the observed headway can significantly increase (decrease) the usefulness value 

of an information in case of D>m. Moreover, the usefulness region (i.e., the area under the 

usefulness value curve) of D>m is smaller than that of Dm, which implies that the information 

assistance is less useful (in terms of headway range and magnitude of usefulness) for D>m. 

Meanwhile, D<m is less sensitive to a change in the observed headway and has a bigger 

usefulness region, which implies that the information assistance is more useful for D<m. 

Similarly, to facilitate our discussion on weighting function curves (Figure 11(b)), three groups 

of drivers are defined:  D>n is the group of drivers with PT parameters [ ] > [ ], Dn is the 𝛾 𝛾𝑎𝑣𝑔
group of drivers with PT parameters equal to [ ], and D<n is the group of drivers with PT 𝛾𝑎𝑣𝑔
parameters [ ] < [ ]. For the same probability and information, D>n weighs the information 𝛾 𝛾𝑎𝑣𝑔
higher than Dn, while D<n weighs the information lower than Dn. The degree of trust in the 

information assistance system is one of the factors for such variability in weighing the same 

information. Madsen and Gregor (2000) define human computer trust as “the extent to which 

a user is confident in, and willing to act on the basis of, the recommendations, actions, and 

decisions of an artificially intelligent decision aid.” Accordingly, the three groups of drivers 

can be arranged in the decreasing order of trust in the information assistance: D>n, Dn, and D<n. 

Note that similar inferences can be drawn from the low-compliance weighting function curves.

6.2 CVCF behaviour modelling: Comparing the performance of CVDS-IDM and a 

traditional CF model 

In previous studies, traditional CF models i.e., models developed for vehicles in traditional 

environment, are often used to describe CVCF behaviour. The behavioural accuracy of the 

traditional CF models in modelling CVCF behaviour is questionable or even problematic, 

primarily because these models are calibrated using trajectory data of traditional vehicles. 

Thus, the next natural step is to calibrate a traditional CF model using CV trajectory data and 
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compare it with CVDS-IDM. In this regard, the IDM is calibrated using the trajectories of 

connected scenario, and the numerical and the behavioural soundness of CVDS-IDM and IDM 

are compared. The purpose of comparing CVDS-IDM with IDM is not for discrediting IDM, 

but for illustrating the necessity of introducing CVDS to IDM, i.e., the necessity of introducing 

“the trigger”, or the unsoundness of directly using IDM (or any other traditional CF models) 

for modelling CF behaviour in CE.

6.2.1 Behavioural soundness

Behavioural soundness in this study is defined as models’ capability to capture the signatures 

of driving behaviour in a traffic environment in the present case CF behaviour in CE. This 

section explores whether CVDS-IDM and IDM are behaviourally sound or not. The observed 

speed profiles of the leader and the follower in the baseline and connected scenarios are 

displayed in Figures 12(a) and 12(b), respectively. In Figure 12(a), the follower reacts 

(decelerates) after the leader has started deceleration (stimulus-response behaviour) while in 

Figure 12(b), the follower reacts to the advanced event-triggered information (‘Leader braking 

hard’) and decelerates before the leader decelerates (proactive behaviour). Such proactive 

behaviour in the connected scenario is evident in both the high-speed as well as the low-speed 

regions. For the leader-follower pair under consideration, Figure 12(b) also depicts the 

simulated speed profiles generated using CVDS-IDM and IDM, respectively. The simulated 

speed profiles are generated after calibrating CVDS-IDM and IDM using connected scenario 

data. From Figure 12(b), CVDS-IDM reacts to the advanced information and decelerates before 

the leader decelerates, which is consistent with the observed behaviour of the follower. In 

contrast, IDM is unable to capture this proactive behaviour.  

Furthermore, a paired t-test is performed between the observed response delays and the 

calibrated response delays  to underscore the capability of CVDS-IDM in describing the (𝜏)

CVCF behaviour. The observed response delays are calculated as the difference between the 

time when the message is delivered to the participant and the time when the participant starts 

pressing the brake pedal (accelerator and brake pedal pressure data are collected during the 

simulator experiment). The test reveals there is no statistical difference between the observed 

response delays and the calibrated response delays (p-value = 0.87) at 5% significance level. 

This further confirms the efficacy of CVDS in accurately reproducing the follower’s proactive 

behaviour in the CE. Additionally, this highlights that CVDS parameters e.g., , are physically 𝜏
measurable.

Importantly, CVDS-IDM incorporates a driver compliance behaviour in the presence of the 

information assistance, which is a significant advantage over IDM. As mentioned before, driver 

compliance with the information will play a key role in the success of connected vehicle 

technologies. 

6.2.2 Numerical soundness

Numerical soundness in our study is defined in terms of calibration errors. A model is 

numerically sound if the calibration errors are within the acceptable range i.e., 20-25% 

(Brockfeld et al., 2004; Kesting and Treiber, 2008; Punzo and Simonelli, 2005; Sharma et al., 

2018b). Note that in the literature a small calibration error is sometimes used as an evidence of 
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a model’s behavioural soundness, on which we disagree since a calibration error, no matter 

how small, is essentially a numerical number that can be obtained from an arbitrary model.  
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Figure 12 (a) Leader-follower speed profiles in the baseline scenario; (b) Leader, follower, 

CVDS-IDM follower, and IDM follower speed profiles in the connected scenario.

This section compares the numerical soundness of CVDS-IDM and IDM. In addition, we have 

also compared the calibrated parameter estimates of CVDS-IDM and IDM. Figure 13 displays 

the cumulative probability plots of the calibration errors for CVDS-IDM and IDM. Note that 

the plots are based on the calibration errors corresponding to all the 78 trajectory pairs. These 

plots clearly show the supremacy of CVDS-IDM over IDM. The 50th percentile values of the 

calibration errors for CVDS-IDM and IDM are 9.5% and 14.5%, respectively. In addition, 90% 

of the calibration errors for CVDS-IDM and IDM are below 18% and 25%, respectively. 

Moreover, the paired t-test results reveal statistically significant differences (p-value<0.05) 

between the two calibration error sets at 5% significance level. Therefore, the fitting capability 

of CVDS-IDM is significantly better than that of IDM.

Figure 14 illustrates a comparison of cumulative probability plots of calibrated parameters that 

are common in CVDS-IDM and IDM (except acceleration exponent). The desired speed  (𝑉0)

plot depicts that CVDS-IDM captures a good spectrum of desired speed values, which is highly 

likely considering the presence of inter-driver heterogeneity, while in case of IDM, more than 

65% of the desired speed values are 40 m/s (145 km/h). Next, for  IDM, 90% of the desired 

(a)

(b)
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deceleration values are below 0.7 m/s2, which is significantly lower than the comfortable 

deceleration of 1.5 m/s2 (Treiber and Kesting, 2013b). Similar observations can be observed 

for other parameters as well.  Overall, the parameter estimates from CVDS-IDM more evenly 

spread than those from IDM, which indicates that inter-driver heterogeneity in the CE is better 

captured by CVDS-IDM.

In case of CF model calibration using real data trajectories, among several other important 

factors the calibration results depend on bound settings since they essentially govern the 

feasible region of the objective function within which the optimisation algorithm (iteratively) 

attempts to find the global minimum. Figure 14 shows that the calibrated parameters of IDM 

have skewed distributions as they are close to either the lower bound or the upper bound of the 

parameter range provided during the optimization process. Moreover, for CVDS-IDM, a few 

 values are in the range of 20 m/s to 25 m/s i.e., close to the lower bound whereas for  𝑉0 𝑠0

values are close to 10 m i.e., the upper bound. Furthermore, for IDM, around 65% of  values 𝑉0

are close to 40 m/s. Such calibrated parameters values have been observed previously, e.g.,  

Kurtc and Treiber (2016) and Sharma et al. (2018b) obtained skewed distributions of parameter 

estimates when IDM was calibrated using NGSIM data (NGSIM, 2010). As reported in Sharma 

et al. (2018b), the optimisation algorithm often converges to local minima due to the presence 

of plateau (near the parameter bounds) in the surface plot of the objective function and hence, 

the calibrated parameter values are mostly close to the lower bounds or the upper bounds. For 

further details refer to Sharma et al. (2018b). As observed from Figure 14, CVDS-IDM 

parameters are less affected by such issue. Thus, CVDS-IDM can provide better parameter 

estimates.
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Figure 13 Comparison of the calibration errors between CVDS-IDM and IDM.

In addition to the issues in CF model calibration, there can be other contributing factors as well 

for such calibrated values. The driving simulator experiment setting can influence the driving 

behaviour because of its limited physical, perceptual, and behavioural fidelity. This in turn can 

affect the calibrated model parameters. Furthermore, driver heterogeneity that has been 

frequently reported and widely accepted in the literature (Ossen and Hoogendoorn, 2007, 2011) 

also impacts the CF model calibration results. 

The results reported above unambiguously demonstrate that CVDS-IDM is more behaviourally 

and numerically sound than IDM in modelling CVCF behaviour. The results also reflect that 
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when human factors are carefully incorporated in traditional CF models, it can, not only assist 

in comprehensively describing the driving behaviour but also in obtaining reliable and realistic 

parameter estimates. 
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Figure 14 Comparison of calibrated parameters estimates between CVDS-IDM and IDM.

6.3 Understanding connected vehicle CF behaviour  

Section 6.1 demonstrates the connected vehicle CF behaviour using the calibrated model 

parameters of CVDS-IDM. The previous section, using the driving simulator data, highlights 

a distinctive feature of CF behaviour in a CE environment i.e., how follower reacts to an 

advanced event-triggered message. This section reveals more insights about the connected 
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vehicle CF behaviour by comparing CF measures between the baseline and connected 

scenarios of the driving simulator experiment data of low speed section. A similar analysis can 

be carried out using high speed section as well. More specifically, four CF measures between 

the baseline and connected scenarios are compared namely, average spacing, average time 

headway, fluctuation in spacing, and fluctuation in speed. Average spacing is defined as the 

average of all the spacing values from the starting time to the end for a leader-follower pair. 

Average time headway is defined as the average of all the time headway values from the 

starting time to the end for a leader-follower pair. Fluctuation in spacing is calculated as the 

standard deviation of all the spacing values from the starting time to the end of for a leader-

follower pair. Fluctuation in speed is defined as the standard deviation of all the speed values 

from the starting time to the end for a follower. Fluctuations in spacing and speed demonstrate 

how stable CF behaviour is in a given scenario. 
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Figure 15 (a) Distributions of the CF measures of actual followers’ behaviour in the baseline 
and connected scenarios; (b) Distributions of the CF measures of simulated followers’ 

behaviour in the baseline and connected scenarios.

Note that our motive is to observe the relative change in a CF measure from the baseline to the 

connected scenario. Moreover, to further scrutinise the performance of CVDS-IDM these four 

CF measures are also calculated using simulated followers. These measures are then compared 

(a)

(b)
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and the consistency of relative change observed using simulated followers with the relative 

change observed using actual followers is examined. Actual followers are the followers in the 

simulator experiment. Each simulated follower in the baseline scenario is generated using IDM 

calibrated with baseline trajectories whereas each simulated follower in the connected scenario 

is generated using CVDS-IDM calibrated with traditional trajectories. The distributions of the 

CF measures in baseline and connected scenarios for the actual followers and for the simulated 

followers are shown in Figure 15. A paired t-test is carried out at the 90% level of significance 

to compare the means of CF measures in the two scenarios, and the results are reported in Table 

7. Based on those CF measures that are statistically significantly different between baseline 

and connected scenarios, we can conclude that an actual follower maintains a larger headway, 

a larger time gap, and a small fluctuation in speed in the connected scenario. Fluctuation in 

spacing is not significantly different between these two scenarios, however, the mean 

fluctuation is smaller in the connected scenario. The findings demonstrate that in general CF 

behaviour in the connected scenario is safer as drivers maintain a larger safety margin (large 

spacing and time headway in connected scenario) and it is also more stable (low fluctuation in 

speed in the connected scenario) relative to CF behaviour in the baseline scenario. From Table 

7, similar conclusions can be made using simulated follower results since average spacing, 

fluctuation in spacing, and fluctuation in speed are statistically significantly different (average 

time headway is not statistically significantly different, however, the mean average time 

headway is larger in the connected scenario). The results depict that CVDS-IDM CF behaviour 

is consistent with the actual CF behaviour in CE, thereby displaying CVDS-IDM’s nice 

performance and behavioural soundness.

Table 6 Comparison of CF measures between baseline and connected scenarios for actual 
followers and simulated followers.

Actual follower           

(Baseline vs Connected)

Simulated follower 

(Baseline vs Connected)

CF measure p-

value

Inference p-value Inference

Average 
Spacing

0.004 Large in CE <0.001 Large in CE

Average Time 
Headway

<0.001 Large in CE 0.491 -

Fluctuation in  
Spacing

0.973 - <0.001 Small in CE

Fluctuation in  
Speed

0.074 Small in CE <0.001 Small in CE

6.4 A note on the integrated CF model’s complexity

CVDS has two parts: part I models the driver’s response to continuous information about the 

leader’s stimulus, and part II models the driver’s response to advanced information about the 

leader’s stimulus. The CVDS has 6 parameters (3 PT parameters and 3 additional parameters). 

The three PT parameters are alpha, lambda, and gamma. In case of modelling the driver’s 

response to advanced information, 3 parameters are required and they are desired headway (
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), response delay ( ), and response period ( ). Importantly, all 6 CVDS parameters are ℎ𝑑𝑒𝑠 𝜏 𝑇𝑐
physically meaningful and behaviourally sensible. The 3 shape parameters of PT govern the 

essential traits of PT i.e., value and weighting functions (refer Section 3 for a detailed 

discussion). Section 4 provides the physical meanings of the remaining three parameters. 

CVDS parameters can be quantified using calibration as shown in Section 6.1 or using 

controlled experiments as shown in Section 6.2.2 (  is measured using trajectories).  𝜏
The final number of parameters will depend upon the CF model which is integrated with 

CVDS. When CVDS is integrated with IDM, there are 12 parameters in CVDS-IDM (6 IDM 

parameters and 6 CVDS parameters). We understand that calibrating these 12 parameters is 

not an easy task, and may lead to overfitting. Similar challenges exist for any other models, 

too. However, the critical point here is that we are trying to model CF behaviour with an 

additional component i.e., CE. That is, the physical system we are trying to approximate is 

distinctively different from and substantially more complex than the one traditional CF models 

aim to reproduce. Such extra complexity should be directly reflected in the extra complexity 

of a model, and it would be philosophically wrong if we assume that we could still be able to 

capture the CF behaviour in CE using a model with the same amount of complexity for 

capturing the CF behaviour in a TE (Wallace, 1996; Weisberg, 2013). Otherwise, the model’s 

interpretability, explanatory capability, and predictive power would be inevitably 

compromised. 

When developing a model for describing a more complex system, the focus should not be 

whether the model’s complexity would increase or not (inherently it should increase), but 

whether each new parameter is behaviourally sound and convincingly justified. CVDS allows 

us to model connected vehicle CF behaviour comprehensively with physically meaningful and 

behaviourally sensible parameters. More specifically, it incorporates a critical and decisive 

human factor i.e., driver compliance, and models the impact of different kinds of information 

i.e., continuous and advanced. Hence, the advantages and benefits of CVDS far outweigh its 

computational disadvantages. Note that we have adopted a few measures to reduce model 

complexity e.g., fixing the values of parameters  and , and  is treated as a model 𝑛 𝑏𝑚𝑎𝑥 𝑇𝑐
parameter rather than calculated as a function of speed, spacing and driver behaviour. 

Furthermore, when implementing this model, techniques like variance-based sensitivity 

analysis can be employed to reduce its computational complexity by revealing and fixing non-

influential parameters of a CF model, as described in Punzo et al., (2015) and Sharma et al., 

(2018b).

7. Conclusions and future work

This paper presents a connected vehicle driving strategy (CVDS) which is capable of being 

integrated with CF models to comprehensively and realistically describe the car-following 

behaviour in a CE. The driver compliance—a key human factor for the success of connected 

vehicles (CV)—is an integral part of the CVDS. Moreover, the driver compliance is modelled 

using a widely accepted theory of decision making under risk – the Prospect Theory (PT). The 

value function and the weighting functions of PT are reformulated such that these functions are 

consistent with the driver compliance behaviour and with the key PT features. Using PT, the 

driver compliance behaviour has been formulated to have following features: a) as headway 
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decreases the driver compliance increases; and b) the driver’s decision on whether and how 

much to comply with the information depends upon the observed headway. 

To overcome the issue of unavailability of CV trajectory data, the CE was designed in an 

advanced driving simulator, and the driving simulator experiment was conducted with 78 

participants.

CVDS is integrated with IDM (i.e., CVDS-IDM), and CVDS-IDM is calibrated using the data 

from the driving simulator experiment. The calibration results demonstrate that in CE, drivers 

accelerate more cautiously, decelerate more gradually when approaching the desired speed, 

and maintain a larger safety distance with the leader. Furthermore, follower maintains a larger 

headway, a larger time gap, and a small fluctuation in speed and spacing in the connected 

scenario. This shows when drivers are informed with surrounding traffic information they 

perform the CF task safely and efficiently in comparison to no information. In addition, CVDS-

IDM is more behaviourally sound than IDM in modelling CVCF behaviour because it reacts 

to the advanced event-triggered information (consistent with the participants’ behaviour 

observed in the experiment). Similarly, CVDS-IDM is more numerically sound because of low 

calibration errors and calibrated parameters estimates are more evenly spread. Since this 

research is based on driving simulator experiments, an important point to highlight here is that 

the results and the inferences made for CE using CVDS-IDM shall be comprehended relative 

to the traditional environment results rather than in the absolute terms. 

It is important to highlight that results reported in the paper shall be looked through the relative 

lenses rather than the absolute since the study is based on driving simulator experiments. This 

signifies that although the results from this study demonstrate that CVDS-IDM model is 

capable of describing the CVCF behaviour, and is more behaviourally and numerically sound 

than IDM, the magnitudes of calibrated model parameters might not represent the true 

parameter values in the real world, and they are not directly transferable to the same or other 

real world CE scenarios. Hence, CVDS-IDM should be calibrated using the real world CE data 

to better gauge the model parameter ranges and distributions, and to improve the model’s 

transferability. The current modelling framework i.e., CVDS focusses on the information from 

the leading vehicles only and thus, it can be extended to incorporate the effect of information 

from the lag vehicle. To this end, a dedicated study is required to understand what information 

from the lag-vehicle can be provided to drivers without increasing participants’ workload. 

CVDS can be extended to model the CF behaviour in the presence of communication 

impairments (e.g., communication delay and communication loss), and to model the driver 

compliance behaviour while performing lane-changing manoeuvre (Zheng, 2014) in the CE. 

At present, the driver compliance is measured at each interval as per  i.e., . A ℎobs 𝑈𝑇(ℎobs(𝑡))

straightforward way to incorporate the communication delay is to calculate  with some time 𝑈𝑇
delay i.e., . This signifies that since information is delayed, the impact of 𝑈𝑇(ℎobs(𝑡 + 𝑡d))

driver compliance will also be delayed. Moreover, a straightforward way to incorporate 

communication loss is to set , i.e., zero compliance because no information is 𝑈𝑇(ℎobs(𝑡)) = 0

provided. 
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The calibrated CVDS-IDM parameters hinted that driving behaviour in CE can be a 

‘conscientiousness driving behaviour.’ Conscientiousness, one of the five factors in the Big 

Five Factor (BFF) model of personality (John and Srivastava, 1999), is a personality trait 

representing carefulness. A focussed study to explore whether the driving behaviour in CE is a 

‘conscientiousness driving behaviour’ or not can be insightful. Furthermore, the calibrated 

values of PT parameters (i.e., , , and ) provide surrogate measures of a driver compliance  𝛼 𝜆 𝛾
and can assist in classifying drivers into different categories: low compliance, moderate 

compliance, and high compliance. 

CVDS can also be used to investigate how the driver’ compliance influences important traffic 

flow phenomena, e.g., stability (Sun et al., 2018), capacity drop (Chen et al., 2014), traffic 

hysteresis (Chen et al., 2012; Laval, 2011), and stop-and-go oscillations (Tian et al., 2015; 

Zheng et al., 2011a, 2011b). If we look at CVDS-IDM analytically, we have incorporated the 

impact of driver compliance as a stochastic desired time gap and a stochastic required 

deceleration. A comparison of CVDS-IDM with CF models having stochastic time headway 

term such as described in Tian et al. (2016) and Treiber et al. (2006) can be carried out after 

modifying these models to suit the CE. On similar lines, future research studies can focus on a 

comprehensive comparison of behavioural and numerical soundness of traditional CF models, 

modified traditional CF models (traditional CF models modified to be used in CE), and 

connected vehicle CF models in CE. Such work is ongoing.  
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