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Abstract

This paper examines international equity market co-movements using time-varying copulae.
We examine distributions from the class of Symmetric Generalized Hyperbolic (SGH) distri-
butions for modelling univariate marginals of equity index returns. We show based on the
goodness-of-fit testing that the SGH class outperforms the normal distribution, and that the
Student-t assumption on marginals leads to the best performance, and thus, can be used
to fit multivariate copula for the joint distribution of equity index returns. We show in
our study that the Student-t copula is not only superior to the Gaussian copula, where the
dependence structure relates to the multivariate normal distribution, but also outperforms
some alternative mixture copula models which allow to reflect asymmetric dependencies in
the tails of the distribution. The Student-t copula with Student-t marginals allows to model
realistically simultaneous co-movements and to capture tail dependency in the equity index
returns. From the point of view of risk management, it is a good candidate for modelling
the returns arising in an international equity index portfolio where the extreme losses are
known to have a tendency to occur simultaneously. We apply copulae to the estimation
of the Value-at-Risk and the Expected Shortfall, and show that the Student-t copula with
Student-t marginals is superior to the alternative copula models investigated, as well the
Riskmetics approach.

Keywords: International equity market indices, Student-t distribution, symmetric general-
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1 Introduction

Risk modelling requires the understanding of the evolution of portfolio returns where underlying

assets often exhibit extreme movements simultaneously. The source of co-movements can be

interpreted as the volatility-in-correlation and the tail dependence which is present in the returns

of the single stocks, see Andersen, Bollerslev, Diebold and Ebens (2001), as well as in the equity

index returns, see Solnik, Boucrelle and Le (1996). Studying correlation and co-movements in

the international stock market is important for risk diversification of an international portfolio,

see Embrechts, McNeil and Straumann (2001) and Sun, Rachev, Fabobozzi and Petko (2006).

Studying the dependency suggests analysis of correlations within a single regional market as

well as correlation between regional markets.

When dealing with a single market, one should take into account certain characteristics and

stylized facts of the data which include non-Gaussianity, skewness and fat tails in the return

distribution, as well as volatility clustering and the leverage effect. Therefore, an underlying re-

alistic assumption about the distributional form of marginals is a crucial first step. Time series of

financial data are high-dimensional and have typically a non-Gaussian behavior. Empirical stud-

ies have failed to support the assumption that return data follow a normal distribution due to its

failure to capture the apparent heavy tails and excess kurtosis in the data, see Granger (2003).

Alternative distributions should be used in order to capture characteristics of financial return

data. We use several important cases of the Symmetric Generalized Hyperbolic (SGH) distri-

bution family discussed in Platen and Rendek (2008) and Wenbo and Kercheval (2008). These

include Student-t, Normal Inverse Gaussian (NIG), Hyperbolic (HYP) and Variance Gamma

(VG) distributions. We show that they allow us to better capture stylized facts of the observed

index returns. In particular, the Student-t distribution turns out to be preferable to the nor-

mal distribution and other distributions from the SGH family when dealing with equity risk

management applications.

To study the dependency among international equity markets, linear correlation is not an ap-

propriate measure of dependency. It fails to measure non-linear dependencies which arise when

one works with models other than the multivariate normal one, and it often appears far too low

when taking into account that extreme events occur simultaneously, see Embrechts, McNeil and

Straumann (2001) and Solnik et al. (1996). A better understanding of the time-varying mul-

tivariate (conditional) distribution is vital to many applications in finance, including portfolio

selection, option pricing, asset pricing, Value-at-Risk estimation etc. Copulae can be used to

describe the dependencies among random variables. They allow to separate the modelling of

the marginal distributions from the modelling of the dependence structure. We will use copulae

to analyze the non-linear non-Gaussian dependencies between regional∗ markets, including the

modelling of dependent extreme values.

When studying the dependency in international stock markets, we use some regional market

indices of each country as a proxy for the market movements of this country. More precisely,

we consider the following regional indices: S&P 500 for the USA, Dow Jones EURO STOXX 50

for continental Europe, FTSE 100 for the UK, and TOPIX for Japan. For modelling the world

∗We will use the terminologies regional and country interchangeably.
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equity market movements we use an equally weighted index EWI104s constructed as a weighted

average of 104 world industry sector indices. While regional indices describe market movements

of a specific country, the EWI104s describes general market movements, that is, fluctuations of

the world stock market as a whole.

In our analysis we proceed as follows: In the first stage we specify marginal distributions for

modelling equity market index returns of each country, as well as the world stock index returns.

In the second stage we characterize the dependence structure among these by identifying the

copula function which fits data best. It will turn out, based on goodness-of-fit testing, that

among all distributions from the SGH family, the Student-t distribution provides the best fit.

Furthermore, among all copula models investigated in our analysis the Student-t copula allows

to model realistically co-movements of log-returns and to capture the tail dependence in the

regional equity market indices. Thus, from the point of view of risk management, the Student-t

copula with Student-t marginals is a good candidate for modelling returns in an international

equity index portfolio since it captures well the extreme losses that have a tendency to occur

simultaneously.

The paper is organized as follows: Section 2 discusses specifications of the marginal distributions,

which include a brief overview of the SGH family and goodness-of-fit testing for the fitted

distributions. Section 3 deals with modelling dependencies by specifying an appropriate copula

family. It briefly reviews some facts on copulae, followed by fitting static and time-varying

copulae to the data. Finally, applications in risk management are discussed in Section 4. Section

5 summarizes the findings.

2 Specification of Marginal Distributions

Empirical studies have failed to support the assumption that equity index return data follow a

normal distribution, since it exhibits much heavier tails and excess kurtosis. We use as alterna-

tive distributions several important cases from the family of Symmetric Generalized Hyperbolic

(SGH) distributions discussed in Hurst and Platen (1997), Platen and Rendek (2008) and Wenbo

and Kercheval (2008). These include the Student-t, Normal Inverse Gaussian (NIG), Hyperbolic

(HYP) and Variance Gamma (VG) distributions.

2.1 Symmetric Generalized Hyperbolic Distributions

Barndorff-Nielsen (1977) has introduced the family of generalized hyperbolic distributions, which

has been discussed in its general form in Jørgensen (1982), Barndorff-Nielsen and Stelzer (2004),

McNeil, Frey and Embrechts (2005). For the purpose of our research, we will concentrate on

the symmetric representation, that is, when the location of the distribution and the skewness

parameter are set equal to zero. Therefore, we consider the SGH density in the form:

fX(x) =
1

δσKλ(ᾱ)

√
ᾱ

2π

(
1 +

x2

(δσ)2

) 1

2
(λ− 1

2
)

Kλ− 1

2

(
ᾱ

√
1 +

x2

(δσ)2

)
(1)

where α 6= 0 if λ ≥ 0 and δ 6= 0 if λ ≤ 0. Kλ(·) denotes a modified Bessel function of the

third kind with index λ, see Abramowitz and Stegun (1972). The parameters λ and ᾱ are
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invariant under scale transformations and can be interpreted as the shape parameters for the

tails of the distribution. Varying λ and ᾱ allows to specify special cases of the SGH distribution.

In particular, we will investigate the following important special cases: the Variance Gamma

distribution is obtained by setting ᾱ = 0 and λ > 0, see Madan and Seneta (1990); the Student-t

distribution assumes ᾱ = 0 and λ < 0, see Praetz (1972); the Hyperbolic distribution is specified

when λ = 1, see Eberlein and Keller (1995); and the Normal Inverse Gaussian distribution

is obtained by setting λ = −0.5, see Barndorff-Nielsen (1995). The first two special cases are

limiting cases and can be described by taking into account the limiting behavior of the Bessel

function involved, see Platen and Heath (2006) for details. The symmetric Variance Gamma

density is a two parameter density where λ is a shape parameter. Smaller values of λ indicate

increasingly heavier tails. When λ → ∞ the Variance Gamma density asymptotically approaches

the Gaussian density. For the Student-t density we consider λ ≤ −1 in which case the number

of degrees of freedom equals ν = −2λ ≥ 2. We do not consider the case when −1 < λ < 0,

since it corresponds to ν < 2 for which the normalization constant diverges, see Platen and

Rendek (2008), and it is not relevant to the financial applications that we have in mind. Note

that in the Student-t case the parameter σ is not the standard deviation of the random variable

X, which is σX = σ
√

ν
ν−2 . When the number of degrees of freedom ν decreases, we observe

an increase in the tail heaviness of the density, which implies a larger probability of extreme

values. Additionally, with an increase of the degrees of freedom ν → ∞, the Student-t density

converges asymptotically to the Gaussian density. Further details on the representation of the

density functions can be found in Platen and Rendek (2008).

2.2 Empirical Methodology: ARMA-GARCH Model for the Marginals

To capture distributional characteristics of index returns which will be used to identify marginals

for the joint distribution modelled via copulae, we implement an ARMA-GARCH model as

proposed in Dias (2004), McNeil et al. (2005) and Sun et al. (2006). Consider the sequence of

i.i.d. random variables (ut)t≥0 with zero mean and unit variance. We assume that the log-return

process (Xt)t≥0 follows the ARMA(p1,q1)-GARCH(p2,q2) model, that is, it satisfies:

Xt = µt + εt with εt = σtut. (2)

Here the process for the conditional mean equation is defined as follows:

µt = µ +

p1∑

i=1

ai(Xt−i − µ) +

q1∑

j=1

bjεt−j . (3)

The innovations εt have by definition a conditional variance V ar(εt|Ft) = σ2
t in the form

σ2
t = α0 +

p2∑

i=1

αiσ
2
t−i +

q2∑

j=1

βjε
2
t−j , (4)

with α0 > 0, αi ≥ 0, βj ≥ 0,
∑p

i=1 αi +
∑q

j=1 βj < 1, and ut is independent of (Xs)s≤t. We fit

univariate ARMA(1,1)-GARCH(1,1) models via maximum likelihood for each marginal series

assuming that the fitted residuals

ût =
Xt − µ̂t

σ̂t
=

ε̂t

σ̂t
(5)
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follow certain distributional assumptions, and are approximately i.i.d. We assume that the

residuals come from either the normal distribution, or one of the SGH distributions: Student-

t, NIG, HYP or VG. McNeil et al. (2005) argue that the GARCH(1,1) model with Student-t

innovations is sufficient to remove dependencies in the return series. Moreover, the ARMA

term is usually not necessary to generate filtered i.i.d. observations, see Dias (2004) and Wenbo

and Kercheval (2008), which allows to set p1 = 0 and q1 = 0, leading to an assumption on a

constant conditional mean: µt = µ. After fitting univariate time series by maximum likelihood,

we will use a goodness-of-fit test described below, to select the best model for the marginals,

and proceed with modelling dependencies via copulae.

2.3 Data

We consider the following market capitalization weighted regional market indices to capture the

equity market movements of a specific country: the Standard & Poor’s equity index (S&P 500)

for the USA, the Eurozone Dow Jones EURO STOXX 50 (DJ EURO STOXX 50) for continental

Europe, the Financial Times and London Stock Exchange Index (FTSE 100) for the UK, the

Tokyo Stock Price index (TOPIX) for Japan. The data, covering the time span from 01 January

1987 to 10 March 2006 is available from Datastream Thomson Financial. The world stock index

we use proxies the world stock market movements and is the equally weighted index EWI104s

which was constructed in Lee and Platen (2006) and Platen and Rendek (2008) based on 104

world industry sector indices as constituents provided by Datastream Thomson Financial. The

EWI104s is an almost ideally diversified index over all d = 104 industries where all fractions are

set equal to πδEWI ,t = 1/d with
∑d

j=1 πδEWI ,t = 1, j ∈ {1, 2, ..., d}. The raw index data for the

EWI104s, as well as the four regional equity indices are plotted in Figure 1 for the time span

from 01 January 1987 to 10 March 2006. The log-returns and the fitted annualized volatilities

obtained using equations (2)-(4) are plotted in Figures 3 and 4, respectively. From these figures

we observe that the returns are concurrently correlated and that the regional indices appear to

be more volatile than the EWI104s.

2.4 Analysis of Log-returns of the Marginals

First, in order to get a visual impression of the shape of the log-returns, we assume constant

volatility and standardize the data to get a sample mean of zero and a sample variance of one.

Figure 2 represents the histogram for the pooled data taken from all regional indices for the

period from 01 January 1987 to 10 March 2006 displayed in log-scale vs. the normal density

(in the left panel) and the Student-t density (in the right panel). We observe already visually

an excellent fit of the log-returns to the Student-t density compared to a poor fit to the normal

density.

We fit univariate returns of the EWI104s, S&P 500, Dow Jones EURO STOXX 50, FTSE 100

and TOPIX using equations (2)-(4), assuming either normal, or SGH innovations. To assure that

the fitted residuals can be interpreted as being approximately i.i.d., we examine serial correlation

in the time-series using sample autocorrelograms and Ljung-Box statistics, introduced by Ljung

and Box (1978) for the univariate case. The test statistic for testing the null hypothesis of no
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serial correlation in time series is the modification of the Portmanteau statistic, see Box and

Pierce (1970), Hosking (1980), Hosking (1981). With T denoting the number of observations,

the test statistic for no serial correlation in lag m ≥ 0 in the univariate time series has the form:

Q(m) = T (T + 2)
m∑

l=1

ρ̂2
l

T − l
, (6)

where ρl is a sample correlation at lag l ≥ 0. Under the null hypothesis of no serial correlation

the test statistic is Chi-squared distributed with m degrees of freedom: Q(m) ∼ χ2
m. Using

Student-t innovations†, the results for the test statistics up to lag five are summarized in Table

2, with the p-values given in parentheses. We observe that the values of the test statistics for

the absolute and the squared fitted residuals are not significant at the 1% level for the EWI104s,

Dow Jones EURO STOXX 50, FTSE 100 and TOPIX, indicating that we cannot reject the

hypothesis of no serial correlation in these time series. For the S&P 500 we reject the null

hypothesis at lag one, two and three for the absolute fitted residuals at the 1% significance level.

However, the autocorrelogram in Figure 5 shows that there is no evidence of serial dependence

of the absolute and squared residuals for the higher lags for all time series. Thus, since the

absolute and the squared filtered returns show little evidence of serial correlation, they can be

used for calibrating parameters of various distributions, as well as for performing goodness-of-fit

testing for the best fitting distribution.

For goodness-of-fit testing for the residual assumption we use the Anderson-Darling (AD) dis-

tance and the Kolmogorov-Simirnov (KS) distance proposed by Rachev and Mittnik (2000) and

Sun et al. (2006):

AD =
supx∈R |Fs(x) − F̂ (x)|√

F̂ (x)(1 − F̂ (x))
, (7)

KS = sup
x∈R

|Fs(x) − F̂ (x)|, (8)

where Fs(x) denotes the empirical sample distribution and F̂ (x) is the estimated distribution.

The drawback of the KS statistics is that it is sensitive close to the center of the distribution

and not at the tails. The AD statistics allows to overcome this drawback. It captures both,

the deviations around the median of the distribution, as well as the discrepancies in the tails.

Table 1 summarizes the results of the Anderson-Darling distance for log-returns of the indices

using different marginal distributions estimated from the entire time series of the period from

01 January 1987 to 10 March 2006, assuming constant volatility. We observe that all distri-

butions from the SGH family provide a considerably better fit than the normal distribution.

The Student-t assumption on the marginals leads to the smallest mean values and the smallest

dispersion for the AD statistics providing the best fit to the return data.

However, modelling univariate marginals in this way, we assume constant volatility, and thereby,

ignore time dependence of serial volatility. Therefore, in the following we apply the ARMA(1,1)-

GARCH(1,1) model described by equations (2)-(4) to estimate time-varying volatility σ̂t. We

apply goodness-of-fit testing to the filtered series ût which are approximately i.i.d. The results

are summarized in Table 3, and Figure 6 shows box-plots for the AD distance for the normal

†We do not report the results for other fitted distributions from the SGH family, since they perform similarly.
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distribution and all distributions from the SGH family. As can be observed from the tables and

the box-plots, the ARMA(1,1)-GARCH(1,1) model with Student-t assumption exhibits smaller

mean value for the AD distance and less outliers than the normal distribution and the other

distributions from the SGH family. This demonstrates again, as already in the case of constant

volatility, the superiority of this fit compared to those of all other models.

Altogether, we obtain that the ARMA(1,1)-GARCH(1,1) model with Student-t residuals pro-

vides the best fit to the index data. Thus, assuming Student-t marginals for returns of each

regional equity index, we estimate below the dependence structure by fitting multivariate copulae

to the data.

3 Specification of the Copula Family

Copulae provide a natural way for measuring the dependence structure between d random vari-

ables. These are multivariate distribution functions on the unit cube [0, 1]d. They allow to

connect their one-dimensional uniform-(0,1) marginals to the joint cumulative distribution func-

tion. The formal definition can be found in Nelsen (1998).

Sklar’s theorem, see Joe (1997) for a proof, shows that every distribution function can be de-

composed into its marginal distribution and a copula, and every distribution function can be

obtained by coupling marginal distributions with the dependence structure given by a copula.

More precisely, Sklar’s theorem states that if F is a d-dimensional distribution function with

marginals F1 . . . , Fd, then there exists a copula C with

F (x1, . . . , xd) = C{F1(x1), . . . , Fd(xd)} (9)

for every x1, . . . , xd ∈ R. If F1, . . . , Fd are continuous, then C is unique. On the other hand, if

C is a copula and F1, . . . , Fd are distribution functions, then the function F defined in (9) is a

joint distribution function with marginals F1, . . . , Fd.

Thus, if X = (X1, . . . , Xd)
⊤ is a random vector with distribution X ∼ FX and continuous

marginals Xj ∼ FXj
(j = 1, . . . d), then the copula of X is the distribution function CX of

u = (u1, . . . , ud)
⊤ ∈ [0, 1]d, where uj = FXj

(xj):

CX(u1, . . . , ud) = FX{F−1
X1

(u1), . . . , F
−1
Xd

(ud)}. (10)

For an absolutely continuous copula C we can define the copula density as

c(u1, . . . , ud) =
∂dC(u1, . . . , ud)

∂u1 . . .∂ud
. (11)

Given a random variable X = (X1, . . . , Xd)
⊤, with absolute continuous distribution function F

and copula CX , the density cX is obtained by differentiating CX in (10):

cX(u1, . . . , ud) =
f{F−1

X1
(u1), . . . , F

−1
Xd

(ud)}
∏d

j=1 fj{F
−1
Xj

(uj)}
(12)

where f is the joint density of FX and fj is the density of FXj
. The density function of X is

then given by

f(x1, . . . , xd) = cX(u1, . . . , ud) ·

d∏

j=1

fj(xj)
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with xj = F−1
Xj

(uj).

We will use in our analysis the following notion of a survival copula. If F is the distribution

function of the random vector X = (X1, . . . , Xd)
⊤ with marginals F1 . . . , Fd, then there exist a

copula C∗ with

F (x1, . . . , xd) = C∗{F 1(x1), . . . , F d(xd)} (13)

where F (x1, . . . , xd) = P (X1 > x1, . . . Xd > xd). C∗ is the so-called survival copula correspond-

ing to C. In particular, for the bivariate case the survival copula can be defined as follows:

C∗(u1, u2) = 1 − u1 − u2 + C(1 − u1, 1 − u2), (14)

see Nelsen (1998).

3.1 Copulae Examples

Throughout the paper we will concentrate mostly on two popular copula families: the ellip-

tical copulae family, which include the Gaussian copula and the Student-t copula, and the

Archimedean copulae family, which has e.g. Frank, Gumbel and Clayton copulae as special

members. Furthermore, we consider for completeness some mixture models of Archimedean

copulae where the distribution function has the form of a convex combination of two or more

copulae. These d-dimensional parametric copulae are presented below. A copula parameter con-

trols the degree of dependence. Further copula models, in particular, Ali-Mikhail-Haq, Plakett

copulae etc. can be found e.g. in Joe (1993) and Nelsen (1998).

3.1.1 Elliptical Copulae

Elliptical copulae have a dependence structure generated by the elliptical distributions, see e.g.

Lindskog, McNeil and Schmock (2001). These include normal and Student-t distributions, as

well as the stable distribution class discussed in e.g. Rachev and Mittnik (2000) and Rachev and

Han (2000). The modelling of dependency using elliptical distributions can be found in Hult

and Lindskog (2001), Fang, Fang and Kotz (2002) and Frahm, Junker and Szimayer (2003). Its

applications in finance and risk management are discussed, for instance, in Breymann, Dias and

Embrechts (2003), McNeil et al. (2005) and Dias and Embrechts (2008). The Gaussian copula

and Student-t copula are presented below.

Gaussian Copula

The Gaussian copula expresses the dependence structure of the multivariate normal distribution,

i.e. normal marginal distributions are combined with a Gaussian copula to form a multivariate

normal distribution. If Yj ∼ N(0, 1) and Y = (Y1, . . . , Yd)
⊤ ∼ Nd(0,Ψ), where Ψ denotes a

correlation matrix, an explicit expression for the Gaussian copula is given by

CGa
Ψ (u1, . . . , ud) = FY {Φ

−1(u1), . . . ,Φ
−1(ud)} (15)
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=

∫ Φ−1(u1)

−∞
. . .

∫ Φ−1(ud)

−∞
2π− d

2 | Ψ |−
1

2 exp

(
−

1

2
r⊤Ψ−1r

)
dr1 . . . drd.

Defining ζj = Φ−1(uj), ζ = (ζ1, . . . , ζd)
⊤, the density of the Gaussian copula can be written as

cGa
Ψ (u1, . . . , ud) = | Ψ |−

1

2 exp

{
−

1

2
ζ⊤(Ψ−1 − Id)ζ

}
. (16)

Student-t Copula

The Student-t copula expresses the dependence structure from the multivariate Student-t distri-

bution. Let X = (X1, . . . , Xd)
⊤ ∼ td(ν, µ,Σ) have a multivariate Student-t distribution with ν

degrees of freedom, mean vector µ and positive-definite dispersion or scatter matrix Σ. The cop-

ula remains invariant under a standardization of the marginal distributions‡. This means that

the copula of a td(ν, µ,Σ) distribution is identical to that of a td(ν, 0,Ψ) distribution where Ψ is

the correlation matrix associated with Σ. The unique copula is the Student-t copula CX = Ct
ν,Ψ.

For u = (u1, . . . , ud)
⊤ ∈ [0, 1]d, the Student-t copula is given by

Ct
ν,Ψ(u1, . . . , ud) = tν,Ψ{t

−1
ν (u1), . . . , t

−1
ν (ud)}, (17)

where t−1
ν is the quantile function from the univariate t-distribution. The density of the t-copula

is given by

ct
ν,Ψ(u1, . . . , ud) =

tν,Ψ{t
−1
ν (u1), . . . , t

−1
ν (ud)}∏d

j=1 tν,Ψ{t
−1
ν (uj)}

. (18)

With ζj = t−1
ν (uj) the density of the t-copula can be expressed as:

ct
ν,Ψ(u1, . . . , ud) = | Ψ |−

1

2

Γ(ν+d
2 )
{
Γ(ν

2 )
}d−1 (

1 + 1
ν ζ⊤Ψ−1ζ

)− ν+d
2

{
Γ(ν+1

2 )
}d∏d

j=1

(
1 + 1

ν ζ2
j

)− ν+1

2

. (19)

3.1.2 Archimedean Copulae

Gumbel, Clayton and Frank copulae belong to the family of so-called Archimedean copulae

which have been studied in relation with modelling portfolio credit risk in McNeil et al. (2005),

Dias (2004) and Wu, Valdez and Sherris (2006). These copulae have a simple closed form and

are briefly reviewed below.

Clayton Copula

The Clayton copula with the dependence parameter θ ∈ (0,∞) is defined by

Cθ(u1, . . . , ud) =








d∑

j=1

u−θ
j


− d + 1





−1/θ

(20)

with the density given by:

cθ(u1, . . . , ud) =

d∏

j=1

{1 + (j − 1)θ}u
−(θ+1)
j




d∑

j=1

u−θ
j − d + 1




−(1/θ+d)

. (21)

‡In fact, it remains invariant under any series of strictly increasing transformations of the components of the

random vector X, see Nelsen (1998).
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As the copula parameter θ tends to infinity, the dependence becomes maximal and as θ tends

to zero, we have independence. The Clayton copula can mimic lower tail dependence but no

upper tail dependence.

Gumbel Copula

The Gumbel copula with the dependence parameter θ ∈ [1,∞) is given by

Cθ(u1, . . . , ud) = exp


−





d∑

j=1

(− log uj)
θ





1/θ

 . (22)

For θ > 1 this copula generates an upper tail dependence, while for θ = 1 it reduces to the

product copula (i.e. independence): Cθ(u1, . . . , ud) =
∏d

j=1 uj . Maximal dependence is achieved

when θ tends to infinity.

3.1.3 Mixture Copula Models

Mixture models as introduced in Joe (1993) can be obtained by building convex combinations

of two or more copulae. Denoting CA and CB copulae with dependence parameters θ1 and θ2,

respectively, the mixture model has a form:

CX(u1, . . . , ud, θ) = θ3C
A
X(u1, . . . , ud, θ1) + (1 − θ3)C

B
X(u1, . . . , ud, θ2). (23)

In the following, we will consider four mixture models studied in Dias (2004) when modelling

dependencies between FX rates. Angel Canela and Pedreira Collazo (2006) and Hu (2006) study

mixture models for modelling dependencies across international financial markets.

3.2 Dependence and Tail Dependence

Before dealing with the tail dependence coefficient measured via copulae, we briefly recall the

concept of correlation used to measure the degree of dependence among random variables. Well-

known measures of dependence include the Pearson correlation coefficient r, Spearmann’s ρ and

Kendall’s τ . While Pearson’s linear correlation depends on the distribution of the univariate

marginals (i.e., keeping the dependence structure constant, different marginals might lead to

different values for the joint distribution, see Dias (2004)), the other two rank correlations

are independent of the univariate marginal distributions. For properties of the dependence

measures we refer to Embrechts, McNeil and Straumann (2001). The estimates obtained for

these coefficients using log-returns of the sector indices S&P 500, Dow Jones EURO STOXX

50, FTSE 100 and TOPIX are summarized in Table 4. We observe high values for dependence

measures between the Dow Jones EURO STOXX 50 and the FTSE 100, and low dependence

between the Japanese TOPIX and the other indices.

3.2.1 Tail Dependence

While Pearson’s correlation coefficient measures linear dependence among random variables,

tail dependence coefficients allow to measure the extreme dependence in the tails of the multi-

variate distribution. These appear to be particularly useful in insurance and risk management
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when modelling the joint (dependent) risk, see e.g. Wang (1997) and Embrechts, McNeil and

Straumann (2001). The concepts of lower and upper tail dependence refer to the study of the

dependence between extreme values in the lower and in the upper tails. The notion of tail

dependence in relation to copulae first appeared in Joe (1997). For the bivariate case, the upper

and the lower tail dependence coefficients are presented below.

Let (U1, U2) be a pair of uniform variables on the unit square [0, 1]2, the upper tail dependence

coefficient λu ∈ [0, 1] is defined as

λu = lim
u→1−

P (U1 > u|U2 > u) = lim
u→1−

C∗(u, u)

1 − u
. (24)

Similarly, the lower tail dependence coefficient λl ∈ [0, 1] is defined as

λl = lim
u→0+

P (U1 ≤ u|U2 ≤ u) = lim
u→0+

C(u, u)

u
. (25)

If the coefficient of upper tail dependence λu ∈ (0, 1], then U1 and U2 are said to be asymptoti-

cally dependent in the upper tail, and if λu = 0, then U1 and U2 are said to be asymptotically

independent in the upper tail. Similarly, if λl ∈ (0, 1] or λl = 0, then U1 and U2 are said to be

asymptotically dependent, or independent, respectively, in the lower tail. For properties of the

lower and the upper tail dependence coefficients we refer to Embrechts, Lindskog and McNeil

(2001) and Embrechts, McNeil and Straumann (2001). Hu (2006) reviews dependence and tail

dependence measures for the mixture copula models. The following result for the Student-t

copula, as well the derivations for other copula models can be found in Embrechts, McNeil and

Straumann (2001) and McNeil et al. (2005).

3.2.2 Example on Student-t Tail Dependence

The Student-t copula generates symmetric tail dependence. The tail dependence coefficients are

defined by

λu = λl = 2tν+1

√
(ν + 1)(1 − ρ)/(1 + ρ), (26)

where tν denotes the Student-t distribution function, ν is the number of degrees of freedom, and

ρ is the correlation coefficient.

Table 5 shows estimated coefficients of lower and upper tail dependence λu = λl = λ, the

estimated number of degrees of freedom ν and the estimated correlation ρ for the Student-

t copula of the pairs (S&P 500, DJ EURO STOXX 50), (S&P 500, FTSE 100), (S&P 500,

TOPIX) and (FTSE 100, TOPIX), as well as a 3-dimensional copula of (S&P 500, DJ EURO

STOXX 50, FTSE 100), and a 4-dimensional copula of (S&P 500, DJ EURO STOXX 50, FTSE

100, TOPIX). We observe that the tail dependence coefficient λ decreases as ν increases. For

example, for all combinations, in which the TOPIX is not present, the estimated ν ranges

between 3.6 and 4.4, and λ lies between 0.18 and 0.39. However, when the TOPIX is included,

we observe an increase in the estimated number of degrees of freedom ν, which is maximal for

the pair (S&P 500, TOPIX) where it reaches 11.26, in which case the tail dependence coefficient

λ is nearly zero. We will use this result later when testing different copula models to select the

best performing copula family.
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3.3 Copula Estimation

Consider a vector of random variables: X = (X1, ..., Xd)
⊤ with parametric univariate marginal

distributions FXj
(xj , δj), j = 1, ..., d. Furthermore, let a copula belong to a parametric family

C = {Cθ, θ ∈ Θ}. From Sklar’s Theorem the distribution of X can be expressed as

FX(x1, . . . , xd) = C{FX1
(x1; δ1), . . . , FXd

(xd; δd); θ} (27)

and its density as

f(x1, . . . , xd; δ1, . . . , δd, θ) = c{FX1
(x1; δ1), . . . , FXd

(xd; δd); θ}
d∏

j=1

fj(xj ; δj), (28)

where

c(u1, . . . , ud) =
∂dC(u1, . . . , ud)

∂u1 . . .∂ud
(29)

is a copula density. For a sample of observations {xt}
T
t=1 where xt = (x1,t, . . . , xd,t)

⊤, and a

vector of parameters α = (δ1, . . . , δd, θ)
⊤ ∈ Rd+1 the likelihood function is given by

L(α;x1, . . . , xT ) =

T∏

t=1

f(x1,t, . . . , xd,t; δ1, . . . , δd, θ) (30)

and the corresponding log-likelihood function by

ℓ(α;x1, . . . , xT ) =

T∑

t=1

ln [c{FX1
(x1,t; δ1), . . . , FXd

(xd,t; δd); θ}] +

T∑

t=1

d∑

j=1

ln [fj(xj,t; δj)] . (31)

Our objective is to maximize this log-likelihood numerically. The estimation can be per-

formed, for instance, in the following three different ways, employing the exact maximum likeli-

hood (EML), the inference for marginals (IFM) and the canonical maximum likelihood (CML)

method.

3.3.1 Exact Maximum Likelihood (EML)

The exact maximum likelihood (EML) method is straightforward, it estimates the parameter α

in one step through

α̃EML = arg max
α

ℓ(α). (32)

The estimates α̃EML = (δ̃1, . . . , δ̃d, θ̃)
⊤ solve the first order condition

(∂ℓ/∂δ1, . . . , ∂ℓ/∂δd, ∂ℓ/∂θ) = 0. (33)

The drawback of the EML method is that with an increasing scale of the problem the algorithm

becomes computationally challenging.
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3.3.2 Inference for Marginals (IFM)

In the inference for marginals (IFM) method parameters for marginals and copulae are estimated

separately, which represents a sequential two-step maximum likelihood method, see McLeish and

Small (1988) and Joe (1997). The parameters δj from the marginal distributions are estimated in

the first step and the dependence parameter θ is estimated in the second step after the estimated

marginal distributions have been substituted into the copula. For j = 1, . . . , d the log-likelihood

function for each of the marginal distributions is given by

ℓj(δj) =
T∑

t=1

ln fj [xj,t; δj ] (34)

and the estimated marginal parameter is given by

δ̂j = arg max
δ

ℓj(δj). (35)

The pseudo log-likelihood function

ℓ(θ, δ̂1, . . . , δ̂d) =

T∑

t=1

ln
[
c{FX1

(x1,t; δ̂1), . . . , FXd
(xd,t; δ̂d); θ}

]
(36)

is maximized over θ to obtain the estimator θ̂ for the dependence parameter θ. The estimates

α̂IFM = (δ̂1, . . . , δ̂d, θ̂)
⊤ solve the first order condition

(∂ℓ1/∂δ1, . . . , ∂ℓd/∂δd, ∂ℓ/∂θ) = 0. (37)

3.3.3 Canonical Maximum Likelihood (CML)

In contrast to the EML and IFM methods, where we have to make an assumption about the

parametric form of the marginal distributions, the canonical maximum likelihood (CML) method

maximizes the pseudo log-likelihood function with empirical marginal distributions:

ℓ(θ) =

T∑

t=1

ln
[
c{F̂X1

(x1,t), . . . , F̂Xd
(xd,t); θ}

]
. (38)

Here the empirical marginal cumulative distribution function is given by

F̂Xj
(x) =

1

T + 1

T∑

t=1

1{Xj,t≤x}, (39)

see Genest and Rivest (2002). Using this method, the parameter can be estimated in one step

by using the estimate

θ̂CML = arg max
θ

ℓ(θ). (40)

3.4 Fitting Static and Time-Varying Copulae

In the following, we aim to fit a parametric copula, that is, to estimate the copula dependence

parameter, assuming that the unknown marginals are Student-t with the fixed number of degrees
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of freedom corresponding to 3.62 for the S&P 500, 4.22 for the Dow Jones EURO STOXX 50,

4.15 for FTSE 100, and 4.31 for TOPIX. To estimate the dependence parameter of the copula,

we proceed as follows. First, we transform the original data to the ”copula scale”, we apply a

probability integral transform to obtain uniformly [0, 1]-distributed values. Then, we apply the

IFM method to estimate different copulae in a static, as well as, time-varying setting.

A static copula is assumed to estimate the global (average) dependence parameter using log-

return data from the time interval covering the whole time span from 01 January 1987 to 10

March 2006. Tables 6 and 7 show estimated copula parameters using different one-parameter

families of copulae, as well as some mixture copula models for the pairs formed by the S&P

500, Dow Jones EURO STOXX 50, FTSE 100 and TOPIX. The standard errors are reported

in parenthesis. Table 8 summarizes the results for a 3-dimensional copula of (S&P 500, DJ

EURO STOXX 50, FTSE 100) and a 4-dimensional copula of (S&P 500, DJ EURO STOXX 50,

FTSE 100, TOPIX). In the case of the mixture models, the parameters θ1 and θ2 represent the

dependence parameters for the first and second terms of the mixture, respectively, and θ3 is the

mixture parameter which gives the proportion of the first term. From these tables we observe

that the strength of the dependence decreases when we increase the dimension of the problem

by adding an additional risk factor in the analysis.

3.4.1 Model Selection

To judge on the performance of each model fitted, we provide the Akaike Information Criterion

(AIC) introduced in Akaike (1974):

AIC = −2l(α;x1, . . . , xT ) + 2q. (41)

In (41) l(α;x1, . . . , xT ) denotes the maximized value of the log-likelihood and q is the number

of parameters of the family of distributions fitted. Since the AIC is defined as minus twice

the log-likelihood plus the penalty term which accounts for the effective number of estimated

parameters, smaller values of the AIC indicate a better data fit.

In the last column of Tables 6, 7 and 8 all models are ranked by their AIC (the model ranking is

given in parentheses). We observe that for the copulae of pairs, the Student-t copula is ranked

first in four out of six cases, followed by the mixture model Gumbel & survival Gumbel for those

copulae of pairs where the TOPIX is not present in the analysis. The same copula models are

favored by the AIC for a 3-dimensional copula of (S&P 500, DJ EURO STOXX 50, FTSE 100).

This indicates that modelling dependency in the tails of a joint distribution is crucial for some

portfolio constructed of S&P 500, Dow Jones EURO STOXX 50 and FTSE 100. Furthermore,

when including the TOPIX in a portfolio, we observe that the AIC favors another model, the

Clayton & Gumbel mixture, where the Clayton term obtains higher weight ranging between

0.85 for the copula of (FTSE 100, TOPIX) and the four-constituent copula of (S&P 500, DJ

EURO STOXX 50, FTSE 100, TOPIX) to 0.93 for the copula of (S&P 500, TOPIX). Recall

that the Clayton copula can generate lower tail dependence, but not upper tail dependence, and

that from Table 5 we know that including the TOPIX in the portfolio leads to smaller numbers

for the tail dependence coefficient.
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3.4.2 Time-Varying Copulae

The results described above are applied to the estimation of the dependence parameter in a time-

varying context. For these purposes we estimate the dependence parameter by using subsets

of size n of log-returns, that is, a moving window of size n, {X̂t}
s
t=s−n+1 scrolling in time for

s = n, ..., T . This generates a time-series for the dependence parameter {θ̂t}
T
t=n. The static

case, on the contrary, estimates the dependence parameter at once, based on the entire series of

observations.

Figure 7 shows the dependence parameter θ̂ estimated for a three-constituent portfolio con-

structed of (S&P 500, DJ EURO STOXX 50, FTSE 100) in the upper panel, and a four-

constituent portfolio constructed of (S&P 500, DJ EURO STOXX 50, FTSE 100, TOPIX) in

the lower panel, using the Student-t copula with Student-t marginals. The dashed line corre-

sponds to the static case, estimated from the whole time interval, and a solid line represents

the time-varying dependence parameter estimated using log-returns corresponding to a moving

window with a fixed size of n = 250 days. Figures 8 and 9 show estimated time-varying param-

eters for a three- and a four-constituent portfolio estimated using mixture Gumbel & survival

Gumbel and mixture Clayton & Gumbel, respectively.

4 Applications in Risk Management

Based on the AIC model selection criterion, we have favored three different models providing

the best fit to the data. These are the Student-t copula vs. mixture Gumbel & survival Gumbel

model for a 3-constituent portfolio of (S&P 500, DJ EURO STOXX 50, FTSE 100), and the

Student-t copula vs. mixture Clayton & Gumbel model for a 4-constituent portfolio of (S&P 500,

DJ EURO STOXX 50, FTSE 100, TOPIX). These copula models are employed for the Value-

at-Risk and the Expected Shortfall estimation of the respective three- and four-constituent

portfolios. The estimation technique and details of the results are described below.

4.1 Value-at-Risk Methodology

The dependency over time between the index returns is of particular importance in risk man-

agement since the resulting profit and loss (P&L) function is closely linked to the Value-at-Risk

(VaR) of an international index portfolio. The VaR of a portfolio is determined by the multi-

variate distribution of risk factor increments. If w = (w1, . . . , wd)
⊤ ∈ Rd denotes a portfolio of

positions on d assets and St = (S1,t, . . . , Sd,t)
⊤ is a non-negative random vector representing the

asset (index) price at time t, the value Vt of the portfolio w is given by:

Vt =

d∑

j=1

wjSj,t. (42)

The random variable

Lt = (Vt − Vt−1) (43)
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is called profit and loss (P&L) function, it expresses daily changes in the portfolio value. Defining

the log-returns as Xt = log St − log St−1, equation (43) can be written as

Lt =
d∑

j=1

wjSj,t−1 {exp(Xj,t) − 1} . (44)

If the distribution function of Lt is given by FLt(x) = P (Lt ≤ x), then the VaR of a portfolio

with strategy w at time t and level α is defined as the α-quantile from the distribution of the

P&L:

V aRt(α) = F−1
Lt

(α). (45)

The Expected Shortfall (ES) at time t can be computed as

ESt(α) =
1

Nt+1

Nt+1∑

i=1

L̂t+1,i1{bLt+1,i≤V aRt(α)}
, (46)

where Nt+1 denotes the number of simulated portfolio returns with value less or equal than

V aRt(α) and L̂t+1,i is the ith outcome of the Nt+1 samples. Obviously ESt(α) ≥ V aRt(α).

Note that the ES has been proposed in several ways as a remedy for the deficiencies of VaR

which is in general not a coherent risk measure, see Föllmer and Schied (2004) and McNeil et al.

(2005). It follows from (44) and (45) that FLt depends on the specification of the d-dimensional

distribution of the risk factors Xt. Thus, modelling their distribution over time is essential to

obtain the quantiles in (45).

4.1.1 RiskMetrics vs. Copula-Based Approach

The RiskMetrics technique, a widely used methodology for VaR estimation, see Morgan/Reuters

(1996), assumes that the log-returns follow a multivariate normal distribution: Xt ∼ N(0, Σt).

The elements of a covariance matrix Σt can be estimated using the exponential smoothing

technique:

(σ̂t)
2 = (eλ − 1)

∑

s<t

e−λ(t−s)(Xs)
2. (47)

The parameter λ ∈ (0, 1) is a so-called exponential moving average decay factor. Morgan/Reuters

(1996) show that the value of 0.05 for λ provides good backtesting results.

In the copulae-based approach we first correct the contemporaneous volatility in the log-returns

process using the t-GARCH(1,1) model described in Section 2.2. We employ the IFM technique

to estimate parametric copulae. After fitting time-varying volatilities (plotted in Figure 4) of

the marginals using t-GARCH(1,1) we estimate a time-varying copula dependence parameter

{θ̂t}
T
t=n using a moving window of size n = 250. The estimated parameter is then used to

generate Monte-Carlo samples of the P&L using the specified copula. Their quantiles at different

confidence levels give estimates of the time-varying {V̂ aRt}
T
t=n, and averaging over the worst

100 · α% cases leads to the estimated {ÊSt}
T
t=n.

4.1.2 Backtesting

Backtesting is applied to evaluate the performance of the procedure. It uses part of the in-

formation available to estimate the one period ahead risk measures and afterwards compares
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them with the values actually observed. It compares the estimated values of VaR with the true

realizations {Lt} of the P&L function by computing the exceedance ratio α̂:

α̂ =
1

T − n

T∑

t=n

1
{Lt<V̂ aRt(α)}

. (48)

Whenever Lt < V̂ aRt, we say that a violation of the VaR has occurred. By definition VaR is

a number such that the loss cannot occur with probability larger than α. Therefore, the ratio

of the number of such violations to the total number of observations in the backtesting period

should be close to a target level α.

4.2 Results

Based on N = 10000 simulations we estimate the VaR and the ES for confidence levels α ∈

{0.1, 0.05, 0.01, 0.005, 0.001}. Average one-day estimates for a 3-constituent portfolio of (S&P

500, DJ EURO STOXX 50, FTSE 100) and a 4-constituent portfolio of (S&P 500, DJ EURO

STOXX 50, FTSE 100, TOPIX) are reported in Tables 9 and 11, respectively, with standard

errors reported in parentheses. Table 9 shows the results for VaR and ES, estimated using the

Student-t copula and a mixture Gumbel & survival Gumbel copula, compared to the Riskmetrics

approach. Table 11 employs a Clayton & Gumbel mixture copula instead. Recall, that the

marginals are assumed to be Student-t and with fixed number of degrees of freedom for all

models. From the tables we observe that the dependence structure given by the copula function

influences the VaR and the ES numbers. For the lower significance levels, e.g. 10.0%, 5.0%,

we observe high VaR numbers in the case of Riskmetrics. For increasing significance levels

to e.g. 0.5%, 0.1%, the effect of fat tails becomes much stronger, therefore, the VaR will be

underestimated if one assumes normality. This leads to the smaller VaR and ES numbers for the

Riskmetrics case compared to the Student-t copula case. VaR numbers for the mixture models

lie roughly in the range between the estimated VaR for the Riskmetrics and the Student-t copula

VaR, indicating that it outperforms the Riskmetrics approach but underperforms the Student-t

copula method. Not surprisingly, errors increase as the estimated risk measures go further into

the tail.

To confirm the outperformance of the Student-t copula over two other models we report the

exceedance ratios for all confidence levels in Tables 10 and 12 for a three- and a four-constituent

portfolio, respectively. We compare the performances of the methods by checking how close is

the percentage of VaR violations to the targets of 10.0%, 5.0%, 1.0%, 0.5%, 0.1%. For all cop-

ula models we observe that the estimated exceedance ratios α̂ are consistent with a specified

target confidence level α. For example, for our three-constituent portfolio of (S&P 500, DJ

EURO STOXX 50, FTSE 100) the estimated 1.0%, 0.5%, 0.1% Riskmetrics VaR is violated

by 2.4%, 1.7%, 0.9% of observations, respectively, that is, the model underestimates the VaR.

Choosing the mixture Gumbel & survival Gumbel model improves the performance, leading

to less VaR violations corresponding to 2.2%, 1.1%, 0.2%, respectively. However, the mixture

model still underestimates VaR. Student-t models perform significantly better, leading to the

percentage of VaR violations close to the target levels of α. The overall performance is sum-

marized by computing a sum of relative squared errors
∑

α((α − α̂)/α)2 and a sum of relative
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absolute errors
∑

α |α − α̂|/α reported in the last column of Tables 10 and 12. We observe

that the Student-t copula with Student-t marginals leads to the smallest errors for the three-

dimensional case and, thus, the best backtesting results. Note that the TOPIX does not enter

the 3-constituent portfolio. This is in line with the results on the AIC model selection reported

in Table 8 where the Student-t copula model was ranked first followed by the mixture model. In

case of a four-constituent portfolio with TOPIX included in the portfolio, the mixture Clayton

& Gumbel model performs overall slightly better, leading to the sum of squared (absolute) errors

of 1.06 (2.06) for the mixture model compared to 1.49 (2.28) for the Student-t model. However,

the mixture model underestimates VaR at e.g. 10.0%, 5.0% and 0.5% significance levels.

Figures 10 and 11 show P&L outcomes and VaR estimated at different confidence levels of 10.0%,

5.0%, 1.0% together with exceedances computed for the 1.0% significance level. The upper panel

corresponds to the Student-t copula, and the lower panel refers to the respective mixture model

for the three- and a four-constituent portfolio.

Overall, we conclude that the Student-t copula and the mixture models are clearly superior to

the Riskmetrics approach. Furthermore, the Student-t copula with Student-t marginal performs

significantly better than the mixture model in terms of backtesting when modelling VaR for our

three-constituent portfolio, and is slightly outperformed by the mixture model in our four-

constituent case.

5 Conclusions

This paper examines time-varying copulae to model the dependency of regional equity indices

on the international equity market. We use portfolios constructed of the following indices: S&P

500 for the USA, Dow Jones EURO STOXX 50 for continental Europe, FTSE 100 for the UK,

and TOPIX for Japan.

Based on the Anderson-Darling statistics we show that the Student-t assumption on the marginals

provides the best fit to the index data across the alternative distributions from the class of Sym-

metric Generalized Hyperbolic distributions, as well as the normal distribution.

We use Student-t marginals with about four degrees of freedom and t-GARCH(1,1)-fitted time-

varying volatilities for each series of index returns to generate the dependence structure by fitting

multivariate copulae to the data. We consider different copula specifications which include some

mixture models allowing to generate asymmetric dependencies in the tails of the distribution.

The Akaike Information Criteria indicate that the Student-t copula with Student-t marginals

allows for a realistic modelling of co-movements and captures well the tail dependence in the

index returns of an international portfolio.

When modelling Value-at-Risk and Expected Shortfall using copulae, we show that the Student-t

copula and the mixture copula models outperform the Riskmetrics approach. Furthermore, the

Student-t copula with Student-t marginals performs significantly better than some alternative

mixture copula models in terms of VaR backtesting when modelling VaR for a portfolio with

the three constituents S&P 500, Dow Jones EURO STOXX 50 and FTSE 100. However, on

average it is slightly outperformed by the mixture model in the case with the four constituents

S&P 500, Dow Jones EURO STOXX 50, FTSE 100 and TOPIX.
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Altogether, the Student-t copula with Student-t marginals allows for flexible modelling of the

joint distribution by splitting marginals from the dependence structure, and capturing a non-

linear behavior and extreme values arising in the distribution of the log-returns. It is a strong

candidate model from the point of view of risk management which allows the investors to allocate

their capital in a most effective way when dealing with the modelling of potential extreme losses

that have a tendency to occur simultaneously in regional equity indices.
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Table 1: Anderson-Darling distance and Kolmogorov-Smirnov distance for EWI104s, S&P 500

and Dow Jones EURO STOXX 50, FTSE 100 and TOPIX log-returns, using different marginal

distributions. Estimated from the whole time series of the period from 01 January 1987 to 10

March 2006 assuming constant volatility.

EWI104s

Anderson-Darling Normal Student-t NIG HYP VG

ADmean 1.616788 0.031107 0.063653 0.429391 0.440249

ADmedian 0.161642 0.026724 0.054528 0.079064 0.084363

ADstd 4.310154 0.024337 0.064946 0.935552 0.950782

ADmax 31.81653 0.321230 1.044265 6.219692 6.196912

ADmin 0.000232 0.000212 0.000017 0.000458 0.000060

ADrange 31.81630 0.321019 1.044248 6.219234 6.196852

S&P 500

Anderson-Darling Normal Student-t NIG HYP VG

ADmean 1.356158 0.030634 0.054019 0.411616 0.430305

ADmedian 0.173919 0.016333 0.037722 0.042945 0.041857

ADstd 3.769661 0.052518 0.061608 1.02216 1.059168

ADmax 30.24927 0.813711 0.821604 6.178514 6.225368

ADmin 0.002185 0.000039 0.000004 0.000079 0.000052

ADrange 30.24708 0.813672 0.821599 6.178436 6.225316

Dow Jones EURO STOXX 50

Anderson-Darling Normal Student-t NIG HYP VG

ADmean 1.351050 0.014727 0.087296 0.049472 0.473320

ADmedian 0.211767 0.009762 0.055306 0.048157 0.060959

ADstd 2.815063 0.013300 0.137143 0.029320 1.428817

ADmax 18.96239 0.095215 2.393155 0.333732 21.72984

ADmin 0.000286 0.000024 0.000020 0.000190 0.000333

ADrange 18.96210 0.095192 2.393135 0.333542 21.72950

FTSE 100

Anderson-Darling Normal Student-t NIG HYP VG

ADmean 1.149534 0.038767 0.108343 0.438483 0.494560

ADmedian 0.153101 0.029698 0.058666 0.043228 0.045778

ADstd 2.589437 0.035602 0.215906 1.090280 1.260014

ADmax 18.25937 0.439793 3.768648 6.753976 8.177442

ADmin 0.000240 0.000059 0.000047 0.000043 0.000003

ADrange 18.25913 0.439735 3.768601 6.753933 8.177439

TOPIX

Anderson-Darling Normal Student-t NIG HYP VG

ADmean 1.298336 0.015972 0.076726 0.178283 0.068037

ADmedian 0.157526 0.013549 0.033476 0.031368 0.026075

ADstd 2.832192 0.016437 0.161895 0.505222 0.176657

ADmax 18.16919 0.193644 2.734778 6.000118 2.919006

ADmin 0.000020 0.000022 0.000031 0.000095 0.000030

ADrange 18.16917 0.193623 2.734748 6.000024 2.918976
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Table 2: Ljung-Box statistic at different lags for the absolute and the squared residuals of

the log-returns of EWI104s, S&P 500, Dow Jones EURO STOXX 50, FTSE 100 and TOPIX;

p-values are given in parenthesis.

Ljung-Box statistic for absolute residuals but

Index Lag 1 Lag 2 Lag 3 Lag 4 Lag 5

EWI104s 0.2425(0.6224) 2.8489(0.2406) 2.8490(0.4155) 6.5394(0.1623) 6.5435(0.2569)

S&P 500 11.166(0.0008) 11.703(0.0029) 12.041(0.0072) 12.371(0.0148) 13.208(0.0215)

Dow Jones EURO STOXX 50 5.1755(0.0229) 7.5279(0.0232) 7.5502(0.0563) 11.771(0.0191) 13.438(0.0196)

FTSE 100 3.7456(0.0529) 3.7630(0.1524) 3.7669(0.2878) 5.6265(0.2288) 5.6347(0.3434)

TOPIX 0.5664(0.4517) 0.5746(0.7503) 2.1702(0.5378) 2.5681(0.6325) 6.0607(0.3004)

Ljung-Box statistic for squared residuals bu2
t

Lag 1 Lag 2 Lag 3 Lag 4 Lag 5

EWI104s 2.9339(0.0867) 3.6474(0.1614) 4.0320(0.2580) 5.5038(0.2394) 5.6971(0.3368)

S&P 500 0.9515(0.3293) 1.1087(0.5744) 1.1106(0.7745) 1.5022(0.8263) 1.6266(0.8980)

Dow Jones EURO STOXX 50 0.2160(0.6421) 0.5003(0.7787) 0.5204(0.9144) 1.3759(0.8484) 1.3853(0.9260)

FTSE 100 3.8682(0.0492) 3.9675(0.1375) 4.0459(0.2565) 4.6542(0.3247) 4.7160(0.4515)

TOPIX 2.0752(0.1497) 2.2070(0.3317) 2.5445(0.4673) 2.9157(0.5720) 3.4072(0.6375)
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Table 3: Anderson-Darling distance and Kolmogorov-Smirnov distance for EWI104s, S&P 500

and Dow Jones EURO STOXX 50, FTSE 100 and TOPIX log-returns, using different marginal

distributions. Estimated from the whole time series of the period from 01 January 1987 to 10

March 2006 assuming time-varying volatility estimated using ARMA(1,1)-GARCH(1,1) model.

EWI104s

Anderson-Darling Normal Student-t NIG HYP VG

ADmean 1.490917 0.037894 0.069538 0.221952 0.224156

ADmedian 0.090005 0.033707 0.053669 0.066937 0.076008

ADstd 4.640579 0.026619 0.077276 0.416044 0.483405

ADmax 35.91549 0.329346 1.046693 5.285221 7.127305

ADmin 0.000650 0.000059 0.000123 0.000162 0.000008

ADrange 35.91484 0.329287 1.046569 5.285060 7.127298

S&P 500

Anderson-Darling Normal Student-t NIG HYP VG

ADmean 0.705431 0.025874 0.052369 0.166808 0.180805

ADmedian 0.099477 0.021449 0.030704 0.036524 0.038781

ADstd 1.917500 0.020885 0.073779 0.384024 0.403709

ADmax 12.34245 0.228615 0.818680 5.502823 5.178977

ADmin 0.000025 0.000005 0.000059 0.000006 0.000013

ADrange 12.34242 0.228611 0.818621 5.502815 5.178964

Dow Jones EURO STOXX 50

Anderson-Darling Normal Student-t NIG HYP VG

ADmean 0.698899 0.034206 0.086242 0.497675 0.318385

ADmedian 0.081210 0.027996 0.040001 0.042892 0.049475

ADstd 2.151991 0.032731 0.156050 1.497084 0.831028

ADmax 17.95773 0.534882 2.386785 20.53927 12.25963

ADmin 0.000201 0.000033 0.000126 0.000111 0.000026

ADrange 17.95753 0.534849 2.386659 20.53916 12.25960

FTSE 100

Anderson-Darling Normal Student-t NIG HYP VG

ADmean 0.430330 0.035574 0.105875 1.218255 1.158709

ADmedian 0.051894 0.027707 0.046036 0.043556 0.049943

ADstd 0.944762 0.037833 0.245016 4.380829 4.296439

ADmax 5.985886 0.622037 3.777301 62.70089 69.01680

ADmin 0.000627 0.000020 0.000152 0.000158 0.000046

ADrange 5.985259 0.622017 3.777150 62.70073 69.01676

TOPIX

Anderson-Darling Normal Student-t NIG HYP VG

ADmean 0.499650 0.023266 0.070841 0.558110 0.289041

ADmedian 0.095646 0.015207 0.022977 0.023640 0.026182

ADstd 0.956378 0.033897 0.178793 1.971034 0.983859

ADmax 6.192678 0.582280 2.727558 27.67034 15.26800

ADmin 0.001471 0.000016 0.000029 0.000189 0.000032

ADrange 6.191207 0.582264 2.727529 27.67016 15.26796
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Table 4: Pearson correlation r, Spearmann’s ρ and Kendall’s τ for the log-returns of EWI104s,

S&P 500, Dow Jones EURO STOXX 50, FTSE100 and TOPIX from 01 January 1987 to 10

March 2006.

Pearson correlation coefficient r

EWI104s S&P 500 DJ ES 50 FTSE 100 TOPIX

EWI104s 1.0000000

S&P 500 0.3432575 1.0000000

Dow Jones EURO STOXX 50 0.6529906 0.4169373 1.0000000

FTSE 100 0.5853366 0.4176875 0.7402107 1.0000000

TOPIX 0.4184749 0.1112277 0.2635704 0.2626654 1.0000000

Spearmann’s ρ

EWI104s S&P 500 DJ ES 50 FTSE 100 TOPIX

EWI104s 1.0000000

S&P 500 0.2962977 1.0000000

Dow Jones EURO STOXX 50 0.5616447 0.3369013 1.0000000

FTSE 100 0.4920005 0.3578612 0.6642572 1.0000000

TOPIX 0.3494137 0.1119928 0.2336505 0.2067932 1.0000000

Kendall’s τ

EWI104s S&P 500 DJ ES 50 FTSE 100 TOPIX

EWI104s 1.0000000

S&P 500 0.2045868 1.00000000

Dow Jones EURO STOXX 50 0.4040263 0.23556472 1.0000000

FTSE 100 0.3488939 0.24997723 0.4918589 1.0000000

TOPIX 0.2405465 0.07586944 0.1614175 0.1418930 1.0000000

Table 5: Estimated tail dependence coefficient λ = λu = λl, the number of degrees of freedom ν

and the correlation ρ. Estimated using the Student-t copula for the pairs (S&P 500, DJ ES 50),

(S&P 500, FTSE 100), (S&P 500, TOPIX) and (FTSE 100, TOPIX), a 3-dimensional copula

of (S&P 500, DJ ES 50, FTSE 100) and a 4-dimensional copula of (S&P 500, DJ ES 50, FTSE

100, TOPIX). Data covers time span from 01 January 1987 to 10 March 2006,

Copula ν ρ λ = λl = λu

(S&P 500, DJ ES 50) 4.401111 0.3987770 0.1838132

(S&P 500, FTSE 100) 3.722864 0.4366287 0.2348772

(S&P 500, TOPIX) 11.26293 0.1181285 0.0088138

(DJ ES 50, FTSE 100) 4.264437 0.7129477 0.3886651

(DJ ES 50, TOPIX) 7.583633 0.2575067 0.0522758

(FTSE 100, TOPIX) 9.547416 0.2480824 0.0292512

(S&P 500, DJ ES 50, FTSE 100) 3.584181 0.5246560 0.2900480

(S&P 500, DJ ES 50, FTSE 100, TOPIX) 5.011470 0.3648167 0.1453324
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Table 6: Copula dependence parameter, standard errors, AIC and model ranking (in parenthe-

sis), estimated for different copulae assuming Student-t marginals for the pairs of log-returns of

S&P 500, Dow Jones EURO STOXX 50, FTSE 100 and TOPIX. In the case of mixture models,

the parameters θ1 and θ2 are the dependence parameters for the first and second terms of the

mixture, respectively, and θ3 is the mixture parameter which gives the proportion of the first

term.

(S&P 500, Dow Jones EURO STOXX 50)

Copula family bθ1( ˆs.e.) bθ2( ˆs.e.) θ̂3( ˆs.e.) AIC

AMH 0.830857(0.000242) - - -685.10(10)

Clayton 0.506535(0.000564) - - -616.88(11)

Frank 2.623623(0.009578) - - -691.61(9)

Gaussian 0.404432(0.000139) - - -732.23(8)

Gumbel 1.358234(0.000249) - - -793.55(6)

Plakett 3.773934(0.025373) - - -771.09(7)

Student-t 0.398777(0.000206) - - -910.34(1)

Clayton & surv. Clayton 0.485517(0.071340) 1.099605(0.198363) 0.583701(0.051689) -828.65(5)

Clayton & Gumbel 0.228705(0.040673) 1.919703(0.111136) 0.554277(0.042995) -875.41(3)

surv. Clayton & surv. Gumbel 0.308214(0.050013) 1.884531(0.123729) 0.554277(0.042995) -848.62(4)

Gumbel & surv. Gumbel 1.208340(0.025353) 2.065686(0.170736) 0.697168(0.044822) -876.61(2)

(S&P 500, FTSE 100)

Copula family bθ1( ˆs.e.) bθ2( ˆs.e.) θ̂3( ˆs.e.) AIC

AMH 0.877309(0.000199) - - -758.11(10)

Clayton 0.628307(0.000703) - - -718.23(11)

Frank 2.894370(0.010148) - - -775.50(9)

Gaussian 0.453370(0.000133) - - -816.32(8)

Gumbel 1.420639(0.000297) - - -873.99(6)

Plakett 4.155037(0.030489) - - -853.45(7)

Student-t 0.436629(0.000217) - - -1012.52(1)

Clayton & surv. Clayton 1.162593(0.218111) 0.669177(0.092488) 0.418331(0.051208) -917.39(5)

Clayton & Gumbel 0.318263(0.050861) 1.952291(0.115171) 0.532836(0.046807) -950.31(3)

surv. Clayton & surv. Gumbel 0.363507(0.059322) 1.883106(0.103689) 0.519942(0.045951) -948.69(4)

Gumbel & surv. Gumbel 1.243717(0.031112) 2.005463(0.137576) 0.636167(0.050293) -967.70(2)

(S&P 500, TOPIX)

Copula family bθ1( ˆs.e.) bθ2( ˆs.e.) θ̂3( ˆs.e.) AIC

AMH 0.343811(0.001485) - - -58.86(7)

Clayton 0.150366(0.000388) - - -68.48(4)

Frank 0.697033(0.008801) - - -53.04(9)

Gaussian 0.115939(0.000249) - - -49.93(10)

Gumbel 1.068007(0.000129) - - -42.33(11)

Plakett 1.430615(0.004499) - - -54.96(8)

Student-t 0.118128(0.000273) - - -74.61(1)

Clayton & surv. Clayton 0.132904(0.022524) 1.193569(1.185655) 0.947824(0.043568) -68.58(3)

Clayton & Gumbel 0.115115(0.025006) 1.806004(0.537352) 0.932927(0.040120) -70.77(2)

surv. Clayton & surv. Gumbel 2.674385(4.760467) 1.072005(0.013107) 0.021055(0.032403) -64.92(6)

Gumbel & surv. Gumbel 1.785085(0.576285) 1.061260(0.015450) 0.057097(0.040120) -66.37(5)
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Table 7: Copula dependence parameter, standard errors, AIC and model ranking (in parenthe-

sis), estimated for different copulae assuming Student-t marginals for the pairs of log-returns of

S&P 500, Dow Jones EURO STOXX 50, FTSE 100 and TOPIX. In the case of mixture models,

the parameters θ1 and θ2 are the dependence parameters for the first and second terms of the

mixture, respectively, and θ3 is the mixture parameter which gives the proportion of the first

term.

(Dow Jones EURO STOXX 50, FTSE 100)

Copula family bθ1( ˆs.e.) bθ2( ˆs.e.) θ̂3( ˆs.e.) AIC

AMH 1.000000(0.005396) - - -2495.47(11)

Clayton 1.406544(0.001137) - - -2670.43(10)

Frank 5.951390(0.012649) - - -3002.77(9)

Gaussian 0.707104(0.000035) - - -3095.10(7)

Gumbel 1.964733(0.000532) - - -3046.28(8)

Plakett 12.12717(0.185987) - - -3221.17(5)

Student-t 0.712948(0.000057) - - -3364.03(1)

Clayton & surv. Clayton 1.664937(0.099117) 2.200696(0.167507) 0.564240(0.024139) -3150.47(6)

Clayton & Gumbel 1.200580(0.128810) 2.418690(0.106660) 0.394510(0.028700) -3279.39(3)

surv. Clayton & surv. Gumbel 3.403908(0.444728) 1.892394(0.034519) 0.220560(0.024715) -3270.04(4)

Gumbel & surv. Gumbel 2.736944(0.134834) 1.723420(0.043646) 0.419230(0.035792) -3324.06(2)

(Dow Jones EURO STOXX 50, TOPIX)

Copula family bθ1( ˆs.e.) bθ2( ˆs.e.) θ̂3( ˆs.e.) AIC

AMH 0.655199(0.000614) - - -328.52(7)

Clayton 0.335801(0.000412) - - -371.72(6)

Frank 1.559018(0.008083) - - -297.57(10)

Gaussian 0.260018(0.000173) - - -326.10(8)

Gumbel 1.178222(0.000158) - - -268.86(11)

Plakett 2.232172(0.009187) - - -317.06(9)

Student-t 0.257507(0.000213) - - -390.59(5)

Clayton & surv. Clayton 0.310304(0.025021) 1.200672(0.410199) 0.878077(0.037735) -392.22(4)

Clayton & Gumbel 0.266833(0.026465) 1.898542(0.271677) 0.860732(0.037052) -398.67(2)

surv. Clayton & surv. Gumbel 1.667922(0.728685) 1.171986(0.013894) 0.061270(0.029161) -396.17(3)

Gumbel & surv. Gumbel 1.955947(0.331888) 1.154098(0.016293) 0.096550(0.036831) -406.20(1)

(FTSE 100, TOPIX)

Copula family bθ1( ˆs.e.) bθ2( ˆs.e.) θ̂3( ˆs.e.) AIC

AMH 0.335559(0.044385) - - -260.80(8)

Clayton 0.331820(0.000473) - - -297.38(5)

Frank 1.425567(0.008566) - - -232.98(10)

Gaussian 0.255971(0.000203) - - -265.21(7)

Gumbel 1.170043(0.000172) - - -213.47(11)

Plakett 2.061494(0.008352) - - -243.22(9)

Student-t 0.248082(0.000239) - - -293.19(6)

Clayton & surv. Clayton 0.335559(0.044385) 0.585374(0.365508) 0.835962(0.090107) -305.28(3)

Clayton & Gumbel 0.292111(0.043747) 1.514145(0.448117) 0.849749(0.097071) -313.45(1)

surv. Clayton & surv. Gumbel 54.59107(16.94812) 1.175092(0.012844) 0.010116(0.003896) -310.48(2)

Gumbel & surv. Gumbel 1.749433(0.770825) 1.161687(0.018259) 0.069130(0.062588) -303.83(4)
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Table 8: Copula dependence parameter, standard errors, AIC and model ranking (in paren-

thesis), estimated for different copulae assuming Student-t marginals for the three and four-

dimensional data of log-returns of S&P 500, Dow Jones EURO STOXX 50, FTSE 100 and

TOPIX. In the case of mixture models, the parameters θ1 and θ2 are the dependence parame-

ters for the first and second terms of the mixture, respectively, and θ3 is the mixture parameter

which gives the proportion of the first term.

3-dim portfolio (S&P 500, Dow Jones EURO STOXX 50, FTSE 100)

Copula family bθ1( ˆs.e.) bθ2( ˆs.e.) θ̂3( ˆs.e.) AIC

Clayton 0.761801(0.000302) - - -2811.53(9)

Frank 3.492155(0.004482) - - -2950.77(8)

Gaussian 0.531821(0.000045) - - -3208.50(6)

Gumbel 1.509687(0.000149) - - -3043.15(7)

Student-t 0.524656(0.000008) - - -3928.61(1)

Clayton & surv. Clayton 0.922227(0.051830) 1.176395(0.067929) 0.526103(0.022631) -3482.41(4)

Clayton & Gumbel 0.444848(0.027397) 2.261876(0.063801) 0.544275(0.023184) -3533.11(3)

surv. Clayton & surv. Gumbel 0.511552(0.034746) 2.042400(0.055737) 0.495830(0.025025) -3423.92(5)

Gumbel & surv. Gumbel 1.894318(0.064543) 1.411731(0.035420) 0.481504(0.023499) -3612.18(2)

4-dim portfolio (S&P 500, Dow Jones EURO STOXX 50, FTSE 100, TOPIX)

Copula family bθ1( ˆs.e.) bθ2( ˆs.e.) θ̂3( ˆs.e.) AIC

Clayton 0.460034(0.000130) - - -2495.15(6)

Frank 2.136350(0.002528) - - -2236.07(7)

Gaussian 0.378284(0.000048) - - -2645.79(5)

Gumbel 1.290089(0.000006) - - -2193.28(8)

Student-t 0.364817(0.000073) - - -3325.99(2)

Clayton & surv. Clayton 0.614358(0.032137) 0.678867(0.045221) 0.570954(0.022230) -3040.83(4)

Clayton & Gumbel 0.347367(0.013310) 2.298225(0.058947) 0.851707(0.007111) -3693.53(1)

surv. Clayton & surv. Gumbel 0.342768(0.013719) 2.226239(0.056340) 0.838576(0.007696) -3046.57(3)

Gumbel & surv. Gumbel 1.509240(0.017013) 1.460484(0.016137) 0.472377(0.008150) -928.27(9)

Table 9: Average one-day VaR and ES (standard errors reported in parentheses) obtained for

portfolio w = (1, 1, 1)⊤ and different confidence levels α. Estimated for a portfolio constructed

of S&P 500, Dow Jones EURO STOXX 50 and FTSE 100 assuming Student-t marginals.

Copula α V aRt(s.e.) ESt(s.e)

Student-t 0.1 8.367720 (5.936709) 13.63373 (9.600081)

0.05 11.63965 (8.228813) 17.45316 (12.25592)

0.01 20.42360 (14.35879) 28.32472 (19.81916)

0.005 25.01291 (17.53015) 34.20856 (23.88475)

0.001 38.52563 (27.15569) 51.44901 (36.55230)

Gumbel & surv. Gumbel 0.1 6.889122 (4.778975) 10.17219 (7.019050)

0.05 9.123218 (6.317515) 12.45905 (8.587481)

0.01 14.29932 (9.837058) 18.19985 (12.46410)

0.005 16.69643 (11.47290) 21.03255 (14.41506)

0.001 23.12079 (15.83239) 28.89332 (19.80532)

Riskmetrics 0.1 8.846485 (7.587636) 8.846485 (7.587636)

0.05 11.34009 (9.713624) 11.34009 (9.713624)

0.01 15.99587 (13.68190) 15.99587 (13.68190)

0.005 17.66844 (15.10453) 17.66844 (15.10453)

0.001 21.08556 (17.99120) 21.08556 (17.99120)
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Table 10: Exceedances ratio α̂ for portfolio w = (1, 1, 1)⊤ and different confidence levels α,

estimated for a portfolio constructed of S&P 500, Dow Jones EURO STOXX 50 and FTSE 100

assuming Student-t marginals.

Copula 0.1 0.05 0.01 0.005 0.001
P

α((α − bα)/α)2
P

α |α − bα|/α

Student-t 0.094180 0.043981 0.004442 0.001111 0.000444 1.242913 2.076854

Gumbel & surv. Gumbel 0.125499 0.077521 0.021990 0.011106 0.002221 4.788473 4.446913

Riskmetrics 0.106525 0.063471 0.024190 0.016866 0.009099 73.31631 12.22592

Table 11: Average one-day VaR and ES (standard errors reported in parentheses) obtained for

portfolio w = (1, 1, 1, 1)⊤ and different confidence levels α. Estimated for a portfolio constructed

of S&P 500, Dow Jones EURO STOXX 50, FTSE 100 and TOPIX assuming Student-t marginals.

Copula α V aRt(s.e.) ESt(s.e)

Student-t 0.1 8.694056 (5.325734) 15.03824 (9.449525)

0.05 12.66563 (7.928426) 19.63659 (12.42850)

0.01 23.19557 (14.75000) 32.60920 (20.83317)

0.005 28.67367 (18.33681) 39.65182 (25.52060)

0.001 44.66574 (28.97034) 60.07442 (39.44106)

Clayton & Gumbel 0.1 7.282619 (4.238482) 12.88768 (7.603326)

0.05 10.80745 (6.397911) 16.93568 (10.03881)

0.01 20.09178 (11.91436) 28.25327 (16.70725)

0.005 24.89026 (14.75315) 34.35621 (20.35394)

0.001 38.77440 (23.12767) 52.32670 (31.74362)

Riskmetrics 0.1 9.166406 (6.858449) 9.166406 (6.858449)

0.05 12.46968 (9.471922) 12.46968 (9.471922)

0.01 18.96584 (14.50667) 18.96584 (14.50667)

0.005 21.43761 (16.40011) 21.43761 (16.40011)

0.001 26.53300 (20.25335) 26.53300 (20.25335)

Table 12: Exceedances ratio α̂ for portfolio w = (1, 1, 1, 1)⊤ and different confidence levels α,

estimated for a portfolio constructed of S&P 500, Dow Jones EURO STOXX 50, FTSE 100 and

TOPIX assuming Student-t marginals.

Copula 0.1 0.05 0.01 0.005 0.001
P

α((α − bα)/α)2
P

α |α − bα|/α

Student-t 0.096179 0.041315 0.003110 0.000888 0.000444 1.491430 2.278987

Clayton & Gumbel 0.127277 0.062639 0.007552 0.024621 0.000222 1.064764 2.059529

Riskmetrics 0.102308 0.058145 0.017310 0.010874 0.004882 17.01467 5.974256
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Figure 1: World Stock Equally Weighted Index (EWI104s), Standard & Poor’s value weighted index

(S&P 500), Eurozone Dow Jones EURO STOXX 50, Financial Times and London Stock Exchange Index

(FTSE100), Tokyo Stock Price index (TOPIX) from 01 January 1987 to 10 March 2006.

Figure 2: Logarithm of the histogram for the pooled data vs. normal density (left panel) and Student-t

density (right panel). Pooled data is taken for indices S&P 500, Dow Jones EURO STOXX 50, FTSE100,

TOPIX from 01 January 1987 to 10 March 2006. Estimated number of degrees of freedom for the Student-

t distribution is ν = 3.15.
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Figure 3: Daily log-returns in percentages for the EWI104s, S&P 500, Dow Jones EURO STOXX 50,

FTSE100, TOPIX from 01 January 1987 to 10 March 2006.
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Figure 4: t-GARCH(1,1)-fitted annualized volatilities in percentages for the log-returns of EWI104s,

S&P 500, Dow Jones EURO STOXX 50, FTSE100, TOPIX from 01 January 1987 to 10 March 2006.
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Figure 5: Autocorrelograms for fitted absolute and squared residuals of log-returns of EWI104s, S&P

500, Dow Jones EURO STOXX 50, FTSE100, TOPIX from 01 January 1987 to 10 March 2006.

33



Figure 6: Box-plots for Anderson-Darling distance for modelling marginal distributions of EWI104s,

S&P 500, Dow Jones EURO STOXX 50, FTSE100, TOPIX with alternative residual distributions.
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Figure 7: Copula dependence parameter θ̂ estimated for a 3-constituent portfolio constructed of (S&P

500, Dow Jones EURO STOXX 50, FTSE 100) (upper panel) and 4-constituent portfolio constructed of

(S&P 500, Dow Jones EURO STOXX 50, FTSE 100, TOPIX) (lower panel) using Student-t copula with

Student-t marginals. Time-varying parameter (solid line) is estimated from the moving window of 250

days. Global parameter (dashed line) is estimated from the whole time period from 01 January 1987 to

10 March 2006. The IFM method is applied with t-GARCH(1,1)-fitted volatilities for the marginals, the

number of degrees of freedom for the marginals is fixed.
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Figure 8: Estimated parameters θ̂1 (upper panel), θ̂2 (middle panel), θ̂3 (lower panel) for the mixture

model CX(u1, u2, u3, θ) = θ3C
Gumbel
X (u1, u2, u3, θ1)+(1−θ3)C

Surv.Gumbel
X (u1, u2, u3, θ2). Estimated for a

3-constituent portfolio constructed of (S&P 500, Dow Jones EURO STOXX 50, FTSE 100) using moving

window of 250 days, assuming Student-t marginals.
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Figure 9: Estimated parameters θ̂1 (upper panel), θ̂2 (middle panel), θ̂3 (lower panel) for the mixture

model CX(u1, u2, u3, u4, θ) = θ3C
Clayton
X (u1, u2, u3, u4, θ1)+(1−θ3)C

Gumbel
X (u1, u2, u3, u4, θ2). Estimated

for a 4-constituent portfolio constructed of (S&P 500, Dow Jones EURO STOXX 50, FTSE 100, TOPIX)

using moving window of 250 days, assuming Student-t marginals.
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Figure 10: P&L, VaR estimated at different confidence levels α ∈ {0.1, 0.05, 0.01, 0.005, 0.001} using

Student-t copula with Student-t marginals (upper panel) and mixture model Gumbel & survival Gumbel

with Student-t marginals (lower panel) for a 3-constituent portfolio w = (1, 1, 1)⊤ constructed of S&P

500, Dow Jones EURO STOXX 50 and FTSE 100. Exceedances are plotted at level α = 0.01.
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Figure 11: P&L, VaR estimated at different confidence levels α ∈ {0.1, 0.05, 0.01, 0.005, 0.001} using

Student-t copula with Student-t marginals (upper panel) and mixture model Clayton & Gumbel with

Student-t marginals (lower panel) for a 4-constituent portfolio w = (1, 1, 1, 1)⊤ constructed of S&P 500,

Dow Jones EURO STOXX 50, FTSE 100 and TOPIX . Exceedances are plotted at level α = 0.01.
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